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N. Neria and F. Palomboab

INFN Sezione di Milanoa; Dipartimento di Fisica, Università di Milanob, I-20133 Milano, Italy
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Laboratoire de Physique Nucléaire et de Hautes Energies,
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We report a Dalitz plot analysis of charmless hadronic decays of charged B mesons to the final state
K0

Sπ
+π0 using the full BABAR dataset of 470.9 ± 2.8 million BB events collected at the Υ (4S) reso-

nance. We measure the overall branching fraction and CP asymmetry to be B
(

B+
→ K0π+π0

)

=
(

31.8± 1.8± 2.1+6.0
−0.0

)

× 10−6 and ACP

(

B+
→ K0π+π0

)

= 0.07 ± 0.05 ± 0.03+0.02
−0.03 , where the un-

certainties are statistical, systematic, and due to the signal model, respectively. This is the first
measurement of the branching fraction for B+

→ K0π+π0. We find first evidence of a CP asym-
metry in B+

→ K∗(892)+π0 decays: ACP

(

B+
→ K∗(892)+π0

)

= −0.52 ± 0.14 ± 0.04+0.04
−0.02 . The

significance of this asymmetry, including systematic and model uncertainties, is 3.4 standard devi-
ations. We also measure the branching fractions and CP asymmetries for three other intermediate
decay modes.

PACS numbers: 13.25.Hw, 12.15.Hh, 11.30.Er

I. INTRODUCTION

The Cabibbo-Kobayashi-Maskawa (CKM) mecha-
nism [1, 2] for quark mixing describes all weak charged
current transitions between quarks in terms of a unitarity
matrix with four parameters: three rotation angles and
an irreducible phase. The unitarity of the CKM matrix
is usually expressed as triangle relationships among its
elements. The interference between tree-level and loop
(“penguin”) amplitudes can give rise to direct CP vio-
lation, which is sensitive to the angles of the Unitarity
Triangle, denoted α, β, and γ. Measurements of the pa-
rameters of the CKM matrix provide an important test
of the Standard Model (SM) since any deviation from
unitarity or discrepancies between measurements of the
same parameter in different decay processes would im-
ply a possible signature of new physics. Tree ampli-
tudes in B → K∗π decays are sensitive to γ, which can
be extracted from interferences between the intermedi-
ate states that populate the Kππ Dalitz plane. How-
ever, these amplitudes are Cabibbo-suppressed relative
to contributions carrying a different phase and involv-
ing radiation of either a gluon (QCD penguin) or photon
(electroweak penguin or EWP) from a loop.
QCD penguin contributions can be eliminated by con-

structing a linear combination of the weak decay am-
plitudes for B+ → K∗π to form a pure isospin I = 3

2
state [3]:

A 3
2
= A

(

K∗0π+
)

+
√
2A

(

K∗+π0
)

. (1)

Since all transitions from I = 1
2 to I = 3

2 states occur via

∗Now at: University of Tabuk, Tabuk 71491, Saudi Arabia
†Also at: Università di Perugia, Dipartimento di Fisica, I-06123
Perugia, Italy
‡Now at: Laboratoire de Physique Nucléaire et de Hautes Energies,
IN2P3/CNRS, F-75252 Paris, France
§Now at: University of Huddersfield, Huddersfield HD1 3DH, UK
¶Deceased
∗∗Now at: University of South Alabama, Mobile, Alabama 36688,
USA
††Also at: Università di Sassari, I-07100 Sassari, Italy

only ∆I = 1 operators, A 3
2
is free from QCD contribu-

tions. The weak phase of A 3
2
is often denoted as

Φ 3
2
= −1

2
Arg

(

Ā 3
2
/A 3

2

)

, (2)

where Ā 3
2
is the CP conjugate of the amplitude in Eq. (1).

The phase Φ 3
2
in Eq. (2) is the CKM angle γ in the

absence of EWP contributions [4].
Measurements of the rates and CP asymmetries in

B → Kπ have generated considerable interest because
of possible hints of new-physics contributions [5, 6]. Of
particular interest is the difference, ∆ACP , between the
CP asymmetry in B+ → K+π0 and the CP asymme-
try in B0 → K+π−, which in the SM is expected to be
consistent with zero within the theoretical uncertainties
assuming U-spin symmetry and in the absence of color-
suppressed tree and electroweak amplitudes [7, 8]. Using
the average values of ACP ofK+π0 andK+π− decays [9],
∆ACP (Kπ) is

∆ACP (Kπ) = ACP

(

K+π0
)

−ACP

(

K+π−
)

= 0.122± 0.022, (3)

which differs from zero by 5.5 standard deviations. Un-
fortunately, hadronic uncertainties prevent a clear inter-
pretation of these results in terms of the new-physics
implications [3, 10]. Additional information can be ob-
tained through studies of the related vector-pseudoscalar
decays B → K∗π and B → Kρ [11–13], for which the ra-
tios of tree-to-penguin amplitudes are expected to be two
to three times larger than for B → Kπ decays. Hence,
B → K∗π and B → Kρ decays could have considerably
larger CP asymmetries.
In this article, we present the results from an ampli-

tude analysis of B+ → K0
S
π+π0 decays. The inclusion of

charge conjugate processes is implied throughout this ar-
ticle, except when referring to CP asymmetries. This is
the first Dalitz plot analysis of this decay by BABAR; the
only previous BABAR analysis of this decay was restricted
to measuring the branching fraction and CP asymmetry
of B+ → K0ρ+ [14]. An upper limit on the branching
fraction for B+ → K0π+π0 was set by the CLEO Col-
laboration: B(B+ → K0π+π0) < 66× 10−6 [15].
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Two contributions to the K0
S
π+π0 final state arise

from the resonant decays B+ → K∗(892)0π+ and
B+ → K∗(892)+π0. Although both the rate and CP
asymmetries for B+ → K∗(892)0π+ have been well mea-
sured, with K∗0 → K+π−, by both the BABAR [16] and
Belle [17] Collaborations, the measurements of the rate
and CP asymmetry for B+ → K∗(892)+π0 [18] have sig-
nificant statistical uncertainties and could benefit from
the additional information provided by a full amplitude
analysis. In Table I we review the existing measurements
of the rates and CP asymmetries in the B → K∗(892)π
system.

TABLE I: Average values of the branching fractions B and CP
asymmetries ACP for B → K∗(892)π decays as determined by
the Heavy Flavor Averaging Group [9].

Mode B(10−6) ACP References

K∗+π− 8.5± 0.7 −0.23± 0.06 [19–22]
K∗+π0 8.2± 1.8 −0.06± 0.24 [18]
K∗0π+ 9.9+0.8

−0.9 −0.038± 0.042 [16, 17]
K∗0π0 2.5± 0.6 −0.15± 0.13 [19, 23]

This article is organised as follows. The isobar model
used to parameterize the complex amplitudes describing
the intermediate resonances contributing to the K0

S
π+π0

final state is presented in Section II. A brief descrip-
tion of the BABAR detector and the dataset is given in
Section III. The event reconstruction and selection are
discussed in detail in Section IV, the background study
in Section V, and a description of the extended maxi-
mum likelihood fit in Section VI. The results are given in
Section VII, and a study of the systematic uncertainties
is presented in Section VIII. In Section IX, we provide
a summary and conclusion, discussing the results and
combining the branching fractions and CP asymmetries
for the decays B+ → K∗(892)0π+, B+ → K∗

0 (1430)
0π+,

and B+ → K∗(892)+π0 with previous BABAR results
obtained from the final states B+ → K+π−π+ and
B+ → K+π0π0.

II. AMPLITUDE ANALYSIS FORMALISM

A number of intermediate states contribute to the
decay B+ → K0

S
π+π0. Their individual contributions

are measured by performing a maximum likelihood fit
to the distribution of events in the Dalitz plot formed
from the two variables, m2

K0
S
π+ and m2

π+π0 . We use the

Laura++ [24] software to perform this fit.
The total signal amplitudes for the B+ and the B−

decays are given in the isobar formalism by [25, 26]

A
(

m2

K0
S
π+ ,m

2

π+π0

)

=
∑

j

cjFj

(

m2

K0
S
π+ ,m

2

π+π0

)

, (4)

Ā
(

m2

K0
S
π−

,m2

π−π0

)

=
∑

j

c̄j F̄j

(

m2

K0
S
π−

,m2

π−π0

)

, (5)

where cj is the complex coefficient for a given resonant
decay mode j contributing to the Dalitz plot. This com-
plex coefficient contains the weak-interaction phase de-
pendence that is measured relative to one of the con-
tributing resonant channels. In this article we report
results for the relative phases between each pair of am-
plitudes.
The function Fj describes the dynamics of the decay

amplitudes and is the product of a resonant lineshape
(Rj), two Blatt-Weisskopf barrier factors [27] (XL), and
an angular-dependent term (Tj,L) [28]:

Fj = Rj ×XL(|~p| , |~p0|)×XL(|~q| , |~q0|)× Tj,L (~p, ~q) , (6)

where L is the orbital angular momentum between the in-
termediate resonance and the bachelor particle (the bach-
elor particle is the daughter of the B decay that does not
arise from the resonance), ~q is the momentum of one of
the daughters of the resonance in the rest frame of the
resonance, ~p is the momentum of the bachelor particle in
the rest frame of the resonance, and ~p0 and ~q0 are the
values of ~p and ~q, respectively, at the nominal mass of
the resonance. The Blatt-Weisskopf barrier factors are
given by

XL=0(|~u| , |~u0|) = 1, (7)

XL=1(|~u| , |~u0|) =

√

1 + z0
1 + z

, (8)

XL=2(|~u| , |~u0|) =

√

(z0 − 3)
2
+ 9z0

(z − 3)2 + 9z
, (9)

where z = (|~u| rBW)2, z0 = (|~u0| rBW)2, ~u is either ~q or ~p,

and rBW = 4.0 (GeV/c)
−1

is the meson radius parameter.
The uncertainty in rBW, used for systematic variations,
is ±2 (GeV/c)

−1
for the K∗ resonances, and ranges from

−1.0 to +2.0 (GeV/c)
−1

for the ρ(770)+ [28]. The an-
gular term depends on the spin of the resonance and is
given by [29, 30]

Tj,L=0 = 1, (10)

Tj,L=1 = −2~p.~q, (11)

Tj,L=2 =
4

3

[

3 (~p.~q)
2 − (|~p| |~q|)2

]

. (12)

The choice of which resonance daughter is defined to
carry the momentum ~q is a matter of convention. How-
ever, its definition is important when comparing mea-
surements from different experiments. In Fig. 1, we il-
lustrate the momentum definitions used for the K0

S
π+,

K0
S
π0, and π+π0 resonance combinations.
Table II lists the resonances used to model the signal.

We determine a nominal model from data by studying
changes in the log likelihood values for the best fit when
omitting or adding a resonance to the fit model, as de-
scribed in Section VI.
For the K∗(892)0 and K∗(892)+ resonances, we use a

relativistic Breit-Wigner (RBW) lineshape [28]:

RRBW
j (m) =

1

m2
0 −m2 − im0Γ(m)

, (13)
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0π)+π
S

(K

)p(0π

)q(+π

)q(-SK

+π)0π
S

(K

)p(+π

)q(SK

)q(-0π

S
)K0π+π(

)p(SK

)q(+π

)q(-0π

FIG. 1: Schematic representation of the definitions of ~q and ~p
used in this analysis for the (left) K0

Sπ
+, (center) K0

Sπ
0, and

(right) π+π0 resonances.

TABLE II: Parameters of the Dalitz plot model for
B+

→ K0
Sπ

+π0 used in the nominal fit. The mass and width
of the ρ(770)+ and their uncertainties are taken from the anal-
yses by the ALEPH [31] and CMD2 [32] Collaborations. All
other parameters are taken from Ref. [28]. The resonance
shapes are a Gounaris-Sakurai (GS) function, a relativistic
Breit-Wigner (RBW) function, or based on measurements by
the LASS Collaboration [33], with a the scattering length and
r the effective range of the LASS parametrization.

Resonance Lineshape Parameters
Resonance mass Width
(

MeV/c2
)

(MeV)

ρ(770)+ GS 775.5 ± 0.6 148.2 ± 0.8
K∗(892)+ RBW 891.7 ± 0.3 50.8 ± 0.9
K∗(892)0 RBW 896.1 ± 0.2 50.7 ± 0.6

(Kπ)
∗0/+
0 LASS 1412 ± 50 294± 80

mcutoff = 1800MeV/c2 [16]
a = 2.1 ± 0.1 (GeV/c)−1 [16]
r = 3.3± 0.3 (GeV/c)−1 [16]

where m is the two-body invariant mass and Γ(m) is
the mass-dependent width. In general, for a resonance
decaying to spin-0 particles, Γ(m) can be expressed as

Γ(m) = Γ0

( |~q|
|~q0|

)2L+1
(m0

m

)

XL(|~q| , |~q0|)2, (14)

where m0 and Γ0 are the nominal mass and width of the
resonance.
The Gounaris-Sakurai (GS) parametrization [34] is

used to describe the lineshape of the ρ resonance decaying
into two pions. The parametrization takes the form

RGS
j =

1 + Γ0 · d/m0

m2
0 −m2 + f(m)− im0Γ(m)

, (15)

where Γ(m) is given by Eq. (14). Expressions for f(m),
in terms of Γ0 and m, and the constant d can be found
in Ref. [34]. The parameters specifying the ρ lineshape
are taken from Refs. [31, 32], which provides lineshape

information derived from fits to e+e− annihilation and τ
lepton decay data.
For the JP = 0+ component of the Kπ spectrum, de-

noted (Kπ)∗0/+0 , we make use of the LASS parametriza-
tion [33], which consists of a K∗

0 resonant term together
with an effective-range, nonresonant component to de-
scribe the slowly increasing phase as a function of the
Kπ mass:

RLASS
j = e2iδB

m0Γ0
m0

|~q0|

(m2
0 −m2)− im0Γ0

|~q|m0

m|~q0|

+

m

|~q| cot δB − i |~q| , (16)

where cot δB = 1
a|~q| +

1
2r |~q|. The values used for the

scattering length a and the effective range r are given
in Table II. The effective-range component has a cutoff
imposed at 1800MeV/c2 [16]. Integrating separately the
resonant term, the effective-range term, and the coherent
sum, we find that the resonant terms (hereafter referred
to as the K∗

0 (1430)
0 and theK∗

0 (1430)
+) account for 88%

of the sum, and the effective range component 49%; the
37% excess is due to destructive interference between the
two terms. The LASS parametrization is the least-well-
determined component of the signal model; we discuss
the impact of these uncertainties in Section VIII.
The complex coefficients cj and c̄j in Eqs. (4,5)

can be parametrized in different ways; we follow the
parametrization used in Ref. [16] as it avoids a bias in
the measurement of amplitudes and phases when the res-
onant components have small magnitudes:

cj = (xj +∆xj) + i (yj +∆yj) , (17)

c̄j = (xj −∆xj) + i (yj −∆yj) ,

where xj ± ∆xj and yj ± ∆yj are the real and imagi-
nary parts of the amplitudes. The quantities ∆xj and
∆yj parametrize the CP violation in the decay. The CP
asymmetry for a given intermediate state is given by

ACP,j =
|c̄j |2 − |cj |2

|c̄j |2 + |cj |2
(18)

= − 2 (xj∆xj + yj∆yj)

x2
j +∆x2

j + y2j +∆y2j
. (19)

The results quoted for the resonances in the follow-
ing analysis use fit fractions (FFj) as phase-convention-
independent quantities representing the fractional rate of
each contribution in the Dalitz plot. The FF for mode j
is defined as

FFj =

∫ ∫

(

|cjFj |2 +
∣

∣c̄jF̄j

∣

∣

2
)

dm2
Kπdm

2
ππ

∫ ∫

(

|A|2 +
∣

∣Ā
∣

∣

2
)

dm2
Kπdm

2
ππ

. (20)

The sum of all the fit fractions does not necessarily yield
unity due to constructive and destructive interference, as
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quantified by the interference fit fractions given by [30]

FFij =

∫ ∫

2Re
[

cic
∗
jFiF

∗
j

]

dm2
Kπdm

2
ππ

∫ ∫

|∑k ckFk|2 dm2
Kπdm

2
ππ

. (21)

The parameters xj , ∆xj , yj , and ∆yj are determined
in the fit, except for the reference amplitude. Fit frac-
tions, relative phases, and asymmetries are derived from
the fit parameters and their statistical uncertainties de-
termined from pseudo experiments generated from the fit
results.

III. THE BABAR DETECTOR AND MC

SIMULATION

The data used in the analysis were collected with
the BABAR detector at the PEP-II asymmetric-energy
e+e− collider at SLAC National Accelerator Laboratory.
The sample consists of 429 fb−1 of integrated luminosity
recorded at the Υ (4S) resonance mass (“on-peak”) and
45 fb−1 collected 40 MeV below the resonance mass (“off-
peak”) [35]. The on-peak sample corresponds to the full
BABAR Υ (4S) dataset and contains 470.9± 2.8 million
BB events [30]. A detailed description of the BABAR de-
tector is given in Refs. [36, 37]. Charged-particle tracks
are measured by means of a five-layer double-sided sil-
icon vertex tracker (SVT) and a 40-layer drift chamber
(DCH), both positioned within a solenoid that provides
a 1.5 T magnetic field. Charged-particle identification
is achieved by combining the information from a ring-
imaging Cherenkov detector (DIRC) and specific ioniza-
tion energy loss (dE/dx) measurements from the DCH
and SVT. Photons are detected and their energies mea-
sured in a CsI(Tl) electromagnetic calorimeter (EMC).
Muon candidates are identified in the instrumented flux
return of the solenoid.
We use Geant4-based software to simulate the de-

tector response and account for the varying beam and
experimental conditions [38, 39]. The EvtGen [40] and
Jetset7.4 [41] software packages are used to generate sig-
nal and background Monte-Carlo (MC) event samples in
order to determine efficiencies and evaluate background
contributions for different selection criteria.

IV. EVENT SELECTION

We reconstructB+ → K0
S
π+π0 candidates from one π0

candidate, one K0
S
candidate reconstructed from a pair of

oppositely charged pions, and a charged pion candidate.
The π0 candidate is formed from a pair of neutral en-
ergy clusters in the EMC with laboratory energies above
0.05 GeV and lateral moments [42] between 0.01 and 0.6.
We require the invariant mass of the reconstructed π0 to
lie in the range 0.11 < mγγ < 0.16 GeV/c2. The K0

S
can-

didate is required to have a π+π− invariant mass within
15 MeV/c2 of the K0

S
mass [28], and a proper decay time

greater than 0.5×10−11s. To reduce combinatorial back-
ground, we also require that the K0

S
candidates have a

vertex probability greater than 10−6 and that the cosine
of the angle between the K0

S
momentum direction and

the K0
S
flight direction (as determined by the interaction

point and the K0
S
vertex) be greater than 0.995. For the

π+ candidate, we use information from the tracking sys-
tems, the EMC, and the DIRC to select a charged track
consistent with the pion hypothesis. We constrain the
π+ track and K0

S
candidate to originate from a common

vertex.
Signal events that are misreconstructed with the de-

cay products of one or more daughters completely or
partially exchanged with other particles in the rest of
the event have degraded kinematic resolution. We re-
fer to these as “self-cross-feed” (SCF) events. This mis-
reconstruction has a strong dependence on the energy
of the particles concerned and is more frequent for low-
energy particles, i.e., for decays in the corners of the
Dalitz plot. Because of the presence of a π0 in the final
state, there is a significant probability for signal events to
be misreconstructed due to low-energy photons from the
π0 decay. Using a classification based on MC informa-
tion, we find that in simulated events the SCF fraction
depends strongly on the resonant substructure of the sig-
nal and ranges from 34% for B+ → K∗(892)+π0 to 50%
for B+ → ρ(770)+K0

S
. In events simulated uniformly in

phase space, hereafter referred to as nonresonant MC,
the SCF fraction varies from less than 10% in the center
of the Dalitz plot to almost 70% in the two corners of
the Dalitz plot, where either the π0 or the π+ has low
energy. We describe how the SCF events are handled in
Section VI.
In order to suppress the dominant background, due to

continuum e+e− → qq (q = u, d, s, c) events, we employ
a boosted decision tree (BDT) algorithm that combines
four variables commonly used to discriminate jet-like qq
events from the more spherical BB events in the e+e−

center-of-mass (CM) frame. The first of these is the ratio
of the second-to-zeroth order momentum-weighted Leg-
endre polynomial moments,

L2

L0
=

∑

i∈ROE

1
2

(

3 cos2 θi − 1
)

pi
∑

i∈ROE

pi
, (22)

where the summations are over all tracks and neutral
clusters in the event, excluding those that form the B
candidate (the “rest of the event” or ROE); pi is the par-
ticle momentum, and θi is the angle between the particle
and the thrust axis of the B candidate, hereafter also
referred to as the B. The three other variables entering
the BDT are the absolute value of the cosine of the an-
gle between the B direction and the collision axis, the
zeroth-order momentum-weighted Legendre polynomial
moment, and the absolute value of the output of another
BDT used for “flavor tagging”, i.e., for distinguishing B
from B decays using inclusive properties of the decay of
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the other B meson in the Υ (4S) → BB event [43]. Al-
though flavor tagging is not needed for charged B decays,
the degree of tagging certainty provides some discrimina-
tion between BB pairs and continuum background. The
momentum-weighted Legendre polynomial moments and
the cosine of the angle between the B direction and the
beam axis are calculated in the e+e− CM frame. The
BDT is trained on a sample of signal MC events and off-
peak data. We apply a loose criterion on the BDT output
of BDTout > 0.06, which retains approximately 70% of
the signal while rejecting 92% of the qq background.
In addition to BDTout, we use two kinematic variables

to distinguish the signal from the background:

mES =
√

E2
X − p

2
B , (23)

∆E = E⋆
B −

√
s/2 , (24)

where

EX = (s/2 + pe+e− · pB) /Ee+e− , (25)

and where
√
s is the total e+e− CM energy, with

(Ee+e− ,pe+e−) and (EB ,pB) the four-momenta of the
initial e+e− system and the B candidate, respectively,
both measured in the lab frame. The quantity E⋆

B is the
energy of the B candidate measured in the e+e− CM
frame. The signal mES distribution for correctly recon-
structed events is approximately independent of their po-
sition in the K0

S
π+π0 Dalitz plot and peaks near the B

mass with a resolution of about 3.4MeV/c2.
We retain all candidates satisfying the following selec-

tion criteria: 5.23 < mES < 5.29GeV/c2 and −0.3 <
∆E < 0.3GeV. The signal region, where the final fit
to data is performed, is defined by the tighter crite-
ria 5.260 < mES < 5.287GeV/c2 and −0.20 < ∆E <
0.15GeV. We also use candidates in the sideband re-
gion of mES defined by 5.23 < mES < 5.26GeV/c2 and
−0.20 < ∆E < 0.15GeV and subtract the BB back-
ground contributions, predicted by MC simulations, from
the distribution for these sideband events. We then
add these distributions to the off-peak data distributions
to increase the statistical precision of our model of the
Dalitz plot distribution for continuum background.
Each of the B candidates is refit to determine the

Dalitz plot variables. In these fits the K0
S
π+π0 invari-

ant mass is constrained to the world average value of the
B mass [28] to improve position resolution within the
Dalitz plot.
We find that 20% of the remaining events in nonreso-

nant MC have two or more candidates. We choose the
best candidate in multiple-candidate events based on the
highest B-vertex probability. This procedure is found to
select a correctly reconstructed candidate more than 60%
of the time and does not bias the fit variables.
The reconstruction efficiency over the Dalitz plot is

modeled using a two-dimensional (2D) binned distri-
bution based on a generated sample of approximately
2× 106 simulated B+ → K0

S
π+π0 MC events, where the

events uniformly populate phase space. All selection cri-
teria are applied except for those corresponding to a Kπ
invariant-mass veto described below, which is taken into
account separately. The 2D histogram of reconstructed
MC events is then divided by the 2D histogram of the
generatedMC events. In order to expand regions of phase
space with large efficiency variations, the Dalitz plot vari-
ables are transformed into “square Dalitz plot” [44] coor-
dinates. We obtain an average efficiency, for nonresonant
MC events, of approximately 15%. In the likelihood fit
we use an event-by-event efficiency that depends on the
Dalitz plot position.

V. BB BACKGROUNDS

In addition to continuum events, background arises
from non-signal BB events. A major source of BB
background arises from B+ → D0

(

→ K0
S
π0

)

π+ de-
cays. To suppress this background, we veto events with
1.804 < mK0

S
π0 < 1.924GeV/c2.

The remaining BB backgrounds are studied using MC
simulations and classified based on the shape of the mES,
∆E, and Dalitz plot distributions. We identify nine cat-
egories of BB backgrounds: categories 1, 2 and 3 include
different types of three- and four-body B decays involv-
ing an intermediate D meson; categories 4 and 5 include
charmless four-body B decays to intermediate resonances
where a π0 in the final state is not reconstructed; cate-
gories 6 and 7 include two-body B decays with a radi-
ated photon misreconstructed as a π0 decay product or
where the π0 arises from the other B decay; category 8
includes charmless three-body B decays where a charged
pion is interchanged with a π0 meson from the other B;
and finally category 9 includes all other simulated BB
background contributions. Within each category, each
of the mES, ∆E, BDTout, and Dalitz plot distributions
are formed by combining the contributions of all decay
modes in the category. The combinations are done by
normalizing the distributions for each decay mode to the
expected number of events in the recorded data sam-
ple, which is estimated using reconstruction efficiencies
determined from MC, the number of BB pairs in the
recorded data sample, and the branching fractions listed
in Refs. [9, 28]. For each category, the histograms ofmES,
∆E, BDTout, and the Dalitz plot variables are used as
the probability density functions (PDF) in the likelihood
fit to data to model the BB background.
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VI. THE MAXIMUM LIKELIHOOD FIT

The extended likelihood function is given by

L = exp

(

−

∑

k

Nk

)

× (26)

Ne
∏

i=1

[

∑

k

NkP
i
k

(

m2

K0
S
π+ ,m

2

π+π0 ,mES,∆E,BDTout, qB
)

]

,

where Nk is the number of candidates in each signal or
background category k, Ne is the total number of events
in the data sample, and P i

k (the PDF for category k and
event i) is the product of the PDFs describing the Dalitz
plot, mES, ∆E, and BDTout distributions, with qB the
charge of the B candidate.
To avoid possible biases in the determination of the

fit parameters [45], we use MC samples to study corre-
lations between the fit variables and the Dalitz plot pa-
rameters, m2

K0
S
π+ and m2

π+π0 . We find that for correctly

reconstructed signal candidates, the ∆E distribution is
strongly dependent on mK0

S
π+ . This is mostly due to

a dependence of the energy resolution of the B candi-
date on the π0 momentum. For SCF signal candidates,
both the mES and ∆E distributions depend on all three
two-body invariant masses: mK0

S
π+ , mK0

S
π0 , and mπ+π0 .

The mES, ∆E, and BDTout distributions for continuum
and BB backgrounds have negligible correlations with
the Dalitz plot parameters.
For correctly reconstructed signal candidates, the mES

and ∆E PDFs are parameterized by a Cruijff function,
which is given by (omitting normalization factor)

fCruijff(x) = exp

[

− (x−m)
2

2σ2
L,R + αL,R (x−m)

2

]

, (27)

where m gives the peak of the distribution and the asym-
metric width of the distribution is given by σL for x < m
and σR for x > m. The asymmetric modulation is sim-
ilarly given by αL for x < m and αR for x > m. The
∆E PDF parameters are calculated on an event-by-event
basis in terms of the K0

S
π+ invariant mass, as a linear

function for m2
K0

S
π+ < 20GeV2/c4 and as a quadratic

function for m2
K0

S
π+ > 20GeV2/c4. These functions are

determined by fitting the ∆E distribution in large non-
resonant MC samples. For the SCF signal, in order to
follow the rapid shape variations across the Dalitz plot of
the mES and ∆E distributions, we divide the Dalitz plot
into several regions as illustrated in Fig. 2. Each letter
indicates whether the dependence is on m2

π+π0 , m2
K0

S
π+ ,

or m2
K0

S
π0 . The regions are chosen based on the distri-

bution in the Dalitz plot of the SCF fraction and the
mean difference between the true and reconstructed po-
sition in the Dalitz plot; we include more regions in areas
of the Dalitz plot where these quantities are largest. As
a representative example of the variation in ∆E distri-
bution in nonresonant signal MC simulation, we show

2)2 (GeV/c2
+πSKm

0 5 10 15 20 25

2 )2
 (

G
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/c
2

0 π+ π
m

0
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B1B2B3

FIG. 2: Diagram illustrating the division of the Dalitz plot
into different regions for the definition of the PDFs for self-
crossfeed signal events. Each letter indicates whether the de-
pendence is on m2

π+π0 (A), m2

K0
S
π+ (B), or m2

K0
S
π0 (C). The

remaining region of the Dalitz plot (D1) is where we expect
to find fewer SCF events, and where the shapes for mES and
∆E are less dependent on their position in the Dalitz plot,
further described in Table III.

TABLE III: List of PDFs used to describe the mES and ∆E
self-crossfeed signal distributions in each of the regions of the
B+

→ K0
Sπ

+π0 Dalitz plot shown in Fig. 2. The abbrevi-
ations correspond to the following functional forms: Cruijff
function described in Eq. (27) (Cruijff), Chebychev polyno-
mial (Cheb), Gaussian (Gauss), two-piece Gaussian described
in Eq. (28) (BGauss), and exponential (Exp).

Dalitz plot region mES PDF ∆E PDF

m2

π+π0 (A1) Cruijff Cruijff
m2

K0
S
π+ (B1) Cheb+Gauss Exp+Sigmoid

(B2) Cheb+Gauss linear+BGauss
(B3) Cruijff Exp+Sigmoid

m2

K0
S
π0 (C1) Cheb+Gauss Cheb

(C2) Cheb+Gauss Cheb
(C3) Cruijff Cheb
(C4) Cruijff Cruijff

Central region (D1) Cruijff Cruijff

in Fig. 3 the ∆E distributions for regions C1, C2, C3,
and C4. We use mES and ∆E PDFs specific to each re-
gion, as listed in Table III. Some of the PDFs used in
the parametrization of the SCF include Cruijff functions,
Chebychev polynomials, Gaussian functions, and two-
piece Gaussian (BGauss) functions. A two-piece Gaus-
sian function is an asymmetric Gaussian described by the
following functional form (omitting normalization factor)

fBGauss(x) = exp

[

− (x−m)
2

2σ2
L,R

]

. (28)

For the continuum background, we use an ARGUS
function [46] to parameterize the mES shape. The ∆E



11

 E (GeV)∆
-0.2 -0.15 -0.1 -0.05 0 0.05 0.1 0.15N

or
m

al
iz

ed
 c

an
di

da
te

s 
/0

.0
1 

G
eV

0.01

0.015

0.02

0.025

0.03

0.035

0.04

0.045

FIG. 3: Variations of the ∆E distribution as seen in nonreso-
nant signal MC simulation across the m2

K0
S
π0 regions (bands

starting with label C in Fig. 2). The dotted (black) histogram
shows the distribution in region C1, the solid (red) histogram
the distribution in region C2, the dashed (green) histogram
the distribution in region C3, and the dash-dotted (blue) his-
togram the distribution in region C4.

distribution is described by a linear function, and the
BDTout distribution by an exponential function. The
mES, ∆E, and BDTout PDFs for BB backgrounds are
defined by the sum of the histograms from the MC simu-
lations for decay modes in each background category, as
described in Section V.

The continuum and BB background Dalitz plot distri-
butions are included in the likelihood as two-dimensional
histograms. For BB backgrounds, we use MC samples.
For continuum background, we combine events from the
off-peak data and the mES sideband in on-peak data, af-
ter subtracting contributions fromB decays, as described
in Section IV. For the 2D histograms, we use the square
Dalitz plot coordinates. A linear interpolation between
bin centers is applied.

The free parameters in the fit are the yields for signal,
continuum background, and BB background categories
1 and 9. The yields for the remaining BB background
categories are fixed to the estimated values. All the PDF
parameters for the correctly reconstructed mES and ∆E
PDFs, except for the tail parameters, are determined
in the fit. For each region of the Dalitz plot, the SCF
fraction is fixed to the value predicted by the nonreso-
nant MC simulation. All SCF signal PDF parameters
are fixed to values obtained from fits to nonresonant MC
events. The endpoint of the ARGUS function is fixed
to 5.289GeV/c2 while the shape parameter is determined
in the fit. The slope for the linear function of the ∆E
PDF and the exponent for the exponential function of
the BDTout PDF for continuum background are simi-
larly determined in the fit. The isobar coefficients, x and
y in Eq. (18), for all but one of the isobar components
are fitted parameters in the fit and are measured relative

to the fixed isobar component. The coefficients for the
reference isobar are fixed to x = 1 and y = 0. In total,
the fit is performed with 21 free parameters.

TABLE IV: Fit fractions obtained from the fit to data when
each additional isobar is added to the fit model one at a time.

Additional isobar Fit fraction

ρ(1450)+ 0.042 ± 0.044
K∗

2 (1430)
0 0.038 ± 0.017

K∗
2 (1430)

+ 0.012 ± 0.020
K∗(1680)0 0.032 ± 0.034
K∗(1680)+ 0.005 ± 0.030

We determine a nominal signal Dalitz plot model based
on information from previous studies [16, 18–20], and on
the changes in the log likelihood in the fit to data when
resonances are added to, or removed from, the list shown
in Table II. In these fits to the combined B+ and B−

data samples, the CP coefficients ∆x and ∆y are fixed to
zero. Based on the change in log likelihood and account-
ing for the change in the number of degrees of freedom
when the resonances ρ(1450)+, K∗

2 (1430)
0, K∗

2 (1430)
+,

K∗(1680)0, orK∗(1680)+, are added to the default model
one at a time, we find that the significance of each reso-
nance is well below 3 sigma. Therefore we do not include
any of these additional resonances in the nominal fit. We
also note that the fit fractions for these additional reso-
nances, reported in Table IV, are consistent with zero.
We do not observe an excess of events for invariant

masses greater than 2GeV/c2, suggesting that a nonreso-
nant component, in addition to that included in the LASS
parametrization, is not necessary. We observe that if we
add a nonresonant component to the fit, the change in log
likelihood for the binned data and the fit projections for
the K0

S
π+, K0

S
π0, and π+π0 invariant masses are con-

sistent with the expected change due to the additional
free parameters in the fit, and do not indicate any sta-
tistically significant nonresonant component. We there-
fore conclude that, with the current level of statistical
sensitivity, the base model, which includes the ρ(770)+,
K∗(892)+, K∗(892)0, (Kπ)∗00 , and (Kπ)∗+0 resonances,
provides an adequate description of the data.

VII. RESULTS

We apply the fit described in Section VI to the 31 876
selected B+ → K0

S
π+π0 candidates. A first fit is per-

formed on the combined B± sample. We obtain yields of
1014± 60 signal events, 24 381± 200 continuum events,
2745± 70 BB events in category 1, and 1768± 140 BB
events in category 9. The results of the fit are shown
in Fig. 4. For the purpose of this figure, the contribu-
tions of signal events are enhanced by applying the more
restrictive selection criteria listed in Table V.
The branching fraction for B+ → K0π+π0 is deter-

mined from the number of signal events, the efficiency
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FIG. 4: Combined B± fit: Measured distributions and fit projections for B±
→ K0

Sπ
±π0 candidates; (a) mES, (b) ∆E, (c)

BDTout, (d) mK0
S
π+ , (e) mK0

S
π0 , and (f) mπ+π0 . The points with error bars correspond to data, the solid (blue) curves

to the total fit result, the dashed (green) curves to the total background contribution, and the dotted (red) curves to the
continuum background component. The dash-dotted curves represent the signal contribution. The projected distributions are
obtained from statistically precise pseudo experiments generated using the fit results. For all distributions in each panel, the
signal-to-background ratio is increased by applying tighter selection requirement on mES, ∆E, and/or BDTout, listed Table V.

estimated from MC events, and the total number of BB
events in data. We take into account differences between
the π0 reconstruction efficiency in data and MC events,
determined from control samples with either τ leptons
or initial-state radiation, as a function of π0 momentum
( ǫdataǫMC

= 97.2%, averaged over π0 momentum). We cor-
rect for small biases in the branching fraction, as deter-
mined from MC pseudo experiments generated with the
same number of signal events and resonance composi-

tion as found in the fit to data. We divide the partial
branching fraction of B+ → K0

S
(→ π+π−)π+π0 by the

branching fraction for K0
S

→ π+π−, and multiply the
result by a factor of 2 to account for K0

L
decay, to ob-

tain the branching fraction result B
(

B+ → K0π+π0
)

=
(

31.8± 1.8± 2.1+6.0
−0.0

)

×10−6, where the first uncertainty
is statistical, the second is systematic, and the third is
due to assumptions made concerning the signal model.
The latter two uncertainties are described in Section VIII



13

TABLE V: Selection criteria imposed to enhance the contri-
butions of signal events for the results presented in Figs. 4
and 5.

Projection plot Selections
mES −0.05 < ∆E < 0.05GeV

BDTout > 0.1
∆E mES > 5.27GeV/c2

BDTout > 0.1
BDTout mES > 5.27GeV/c2

−0.05 < ∆E < 0.05GeV
mK0

S
π+ , mK0

S
π0 , mπ+π0 mES > 5.27GeV/c2

−0.05 < ∆E < 0.05GeV
BDTout > 0.1

and the breakdown of the systematic uncertainties is de-
tailed in Table XI.

We measure amplitudes and phases relative to each
of the five two-body decays in the signal model to take
advantage of the smaller uncertainty observed when mea-
suring the relative phases of the two pairs of decays with
same-charge K∗ resonances. Table VI lists the relative
phase, φ, between each pair of two-body decays in the
signal model and its uncertainty. The statistical uncer-
tainty in the relative phase is smallest (≈ 10◦) for the
resonances that decay to the same-chargeKπ state. This
is due to a larger overlap in the Dalitz plot between the
same-chargeK∗ resonances than occurs for other pairs of
resonances that only overlap in the corners of the Dalitz
plot.

Since the statistical uncertainties of the fit fractions do
not depend on the reference mode, we quote in Table VII
only the fit fractions from the fit where the K∗(892)0π+

amplitude is the reference. The fit fractions for the
K∗

0 (1430)
0π+ and K∗

0 (1430)
+π0 modes are the product

of the (Kπ)∗0 S-wave fit fraction, shown in Table VII,
and the fraction due to the resonant contribution in the
LASS parametrisation (88%). The off-diagonal fit frac-
tions are small compared to the diagonal elements. We
calculate the branching fractions for the resonant contri-
butions shown in Table VIII as the product of the total
branching fraction and the fit fractions returned by the
fit to data, including appropriate Clebsch-Gordan coeffi-
cients.

To determine the overall CP asymmetry as well as the
CP asymmetries for the contributing isobar components,
we simultaneously fit the separate B+ and B− data sam-
ples. The overall ACP value is calculated from the inte-
grals of the positive and negative signal Dalitz plot dis-
tributions. The ∆x and ∆y parameters from Eq. (18) are
allowed to vary in the fit for all components except the
reference isobar, for which the ∆y parameter is fixed to
zero (the relative phase of the B+ and B− Dalitz plots
cannot be determined since they do not interfere). To
account for possible differences in the reconstruction and
particle identification efficiencies for B+ and B−, the ef-
ficiency map as a function of the Dalitz plot position is
determined separately for B+ and B−. The asymme-

try for the continuum background is allowed to vary in
the fit, and is found to be consistent with zero. The CP
asymmetries of the BB backgrounds are expected to be
small and so are fixed to zero in the nominal fit. They
are varied within reasonable ranges based on world av-
erage experimental results [28] in order to determine the
associated systematic uncertainty.
We find an overall CP asymmetry of

ACP

(

B+ → K0π+π0
)

= 0.07 ± 0.05 ± 0.03+0.02
−0.03,

where the first uncertainty is statistical, the second is
systematic, and the third is due to the signal model.
This is consistent with zero CP asymmetry. Invariant
mass projections for the fit to data allowing for direct
CP violation are shown in Fig. 5.
Table VIII shows the results for the branching frac-

tions and CP asymmetries obtained from the fit to data.
The first uncertainty is statistical, the second is system-
atic, and the third is the uncertainty associated with the
signal model. We observe a significant asymmetry be-
tween the mK0

S
π+ and mK0

S
π− distributions in the region

of the K∗(892)+ resonance; see Figs. 5(a) and (b). We
determine the statistical significance, S, of a non-zero CP
asymmetry in B+ → K∗(892)+π0 from the difference be-
tween the best-fit value of the likelihood, LACP

, and the

value when the CP asymmetry is fixed to zero, L0:

S =

√

−2 ln
(

L0/LACP

)

. (29)

Using this method, we measure a statistical signifi-
cance of 3.6 standard deviations for a non-zero ACP in
B+ → K∗(892)+π0. We obtain a consistent result of
3.7 standard deviations for the statistical significance
by dividing the central value of the CP asymmetry
by the statistical uncertainty, indicating that the log-
likelihood function is close to parabolic. Figure 6 dis-
plays the contours in the complex plane of the coef-
ficients c = (x+∆x, y +∆y), defined in Eq. (4), for
B+ → K∗(892)+π0 decays, and of c̄ = (x−∆x, y −∆y),
defined in Eq. (5), for B− → K∗(892)−π0 decays. For
other resonances the CP asymmetry is within 2 standard
deviations of zero.
We also express the complex isobar coefficients c and

c̄ of Eq. (18) in terms of amplitudes and phases,

c = A+e
iφ+ , (30)

c̄ = A−e
−iφ

− . (31)

Table IX presents the results, measured with respect to
the B± → K∗(892)0π± reference amplitude. The sta-
tistical uncertainties of the separate B+ and B− de-
cay amplitudes, A+ and A−, vary between 0.1 and 0.3.
We thus obtain significant statistical precision for these
terms. With respect to the phases, φ+ and φ−, only
the (Kπ)∗00 π+ amplitude yields a statistically precise re-
sult. For the other amplitudes, the statistical uncertainty
ranges between 70◦ and 170◦, and only the statistical un-
certainty is quoted. For the more precisely determined
variables, systematic uncertainties are evaluated as well.
Because the statistical uncertainties on the phases of the
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TABLE VI: Combined B± fit: Relative phases, φ, for the isobar amplitudes as measured from five fits to data, where each of
the five isobar amplitudes is in turn taken as the reference. All phases are quoted in degrees. The uncertainties are statistical
only.

Relative phase (degrees)

Reference amplitude
Resonant contribution

K∗(892)0π+ K∗(892)+π0 (Kπ)∗00 π+ (Kπ)∗+0 π0 ρ(770)+K0
S

B+
→ K∗(892)0π+ 0 −95± 43 174± 11 −89± 43 −122± 43

B+
→ K∗(892)+π0 – 0 −90± 42 6± 10 −27± 26

B+
→ (Kπ)∗00 π+ – – 0 96± 42 63± 37

B+
→ (Kπ)∗+0 π0 – – – 0 −32± 25

B+
→ ρ(770)+K0

S – – – – 0

TABLE VII: Combined B± fit: Results for the fit fractions FFj (diagonal terms) and interference terms FFij in data for each
resonant contribution. The uncertainties are statistical only.

FFj and FFij

Resonant contribution K∗(892)0π+ K∗(892)+π0 (Kπ)∗00 π+ (Kπ)∗+0 π0 ρ(770)+K0
S

B+
→ K∗(892)0π+ 0.10 ± 0.03 0.0004 ± 0.0028 (17± 5)× 10−5 0.007 ± 0.005 −0.008± 0.007

B+
→ K∗(892)+π0 – 0.14 ± 0.02 −0.010 ± 0.007 (−3± 1)× 10−6 0.012 ± 0.008

B+
→ (Kπ)∗00 π+ – – 0.36± 0.05 (1.5± 6.1) × 10−5

−0.04± 0.02
B+

→ (Kπ)∗+0 π0 – – – 0.27 ± 0.03 −0.02± 0.02
B+

→ ρ(770)+K0
S – – – – 0.19± 0.04

TABLE VIII: Measured branching fractions B from a fit to
the combined B± data sample, and CP asymmetries ACP

(Eq. (19)). The first uncertainty is statistical, the second is
systematic, and the third is due to the signal model.

Decay channel B
(

10−6
)

ACP

K0π+π0 31.8 ± 1.8± 2.1+6.0
−0.0 0.07± 0.05 ± 0.03+0.02

−0.03

K∗(892)0π+ 10.1 ± 1.7± 1.0+0.2
−0.3 −0.12± 0.21 ± 0.08+0.0

−0.11

K∗(892)+π0 6.4± 0.9± 0.4+0.2
−0.3 −0.52± 0.14 ± 0.04+0.04

−0.02

K∗
0 (1430)

0π+ 34.6 ± 3.3± 4.2+1.9
−1.8 0.14± 0.10 ± 0.04+0.13

−0.05

K∗
0 (1430)

+π0 11.9 ± 1.7± 1.0+0.0
−1.3 0.26± 0.12 ± 0.08+0.12

−0.0

ρ(770)+K0 6.5± 1.1± 0.8+0.0
−1.7 0.21± 0.19 ± 0.07+0.23

−0.19

(Kπ)∗±0 π0 andK∗(892)±π0 amplitudes listed in Table IX
are highly correlated, we also calculate the phase differ-
ences, for which the statistical uncertainties are smaller.
The results, including systematic uncertainties, are:

φ+

(

(Kπ)∗+0 π0
)

− φ+

(

K∗(892)+π0
)

=
(

−14± 18± 9+4
−3

)◦
,

(32)

φ−

(

(Kπ)∗−0 π0
)

− φ−

(

K∗(892)−π0
)

=
(

11± 19± 10+17
−9

)◦
.

VIII. SYSTEMATIC UNCERTAINTIES

We evaluate systematic uncertainties to account for
effects that could affect the branching fractions, phases,
and asymmetries, by varying the fixed parameters. The
systematic uncertainties described in this section are
summarized in Tables XI through XVI of Appendix A.

The uncertainties associated with the branching frac-
tions are listed in Table XI. To estimate the uncertainty
related to the modeling of the SCF PDFs, we implement
a simpler model consisting of only four regions in the
Dalitz plot. The PDFs are defined by the distribution
of SCF MC events in each of these new regions. We
then fit the data using the new SCF model and take
the uncertainties to be the change in the fit parame-
ters compared to those obtained from the nominal fit
to data. All relative systematic uncertainties due to the
SCF mES and ∆E PDFs range from approximately 1%
to 4%, except for the relative systematic uncertainty for
the B+ → ρ(770)+K0 decay, which is 7.5%. This is con-
sistent with expectations from simulation that more than
half the B+ → ρ(770)+K0 events are due to SCF.

The uncertainties associated with the number of BB
background events are evaluated by varying the estimates
within their uncertainties, which are primarily due to un-
certainties in the branching fractions. The uncertainties
related to the BB background mES, ∆E, and BDTout

PDFs are accounted for by varying the histogram bin
contents according to their statistical uncertainties. The
uncertainty is then taken as the RMS of the distribution
of the difference in the fit parameters. The uncertain-
ties related to the limited statistical precision of the MC
and data-sideband samples are similarly accounted for by
varying the results in the corresponding histogram bins
by their uncertainties. The uncertainty due to possible
variations of the SCF fraction is estimated by varying
each bin of the PDF distribution by an uncertainty of
2%.

The uncertainty in the BDTout histogram PDFs for
correctly reconstructed and SCF signal events is deter-
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FIG. 5: The CP fit: Measured distributions and fit projections for B+
→ K0

Sπ
+π0 (left column) and B−

→ K0
Sπ

−π0 (right
column) candidates; (a) mK0

S
π+ , (b) mK0

S
π− , (c) mK0

S
π0(from B+

→ K0
Sπ

+π0), (d) mK0
S
π0(from B−

→ K0
Sπ

−π0), (e) mπ+π0 ,

and (f) mπ−π0 . The points with error bars correspond to data, the solid (blue) curves to the total fit result, the dashed (green)
curves to the total background contribution, and the dotted (red) curves to the continuum background component. The
dash-dotted curves represent the signal contribution. The projected distributions are obtained from statistically precise pseudo
experiments generated using the fit results. For all distributions in each panel, the signal-to-background ratio is increased by
applying the tighter selection requirements on mES, ∆E, and/or BDTout, listed in Table V.

mined by varying the bin contents in accordance with
the observed data/MC difference. For correctly recon-
structed signal events, the tails of the asymmetric Gaus-
sian PDFs for mES and ∆E are fixed. To account for an
associated uncertainty, we allow the relevant parameters
to vary in a fit to data and use the variation in the fit
parameters to define the uncertainty.

To validate the fitting procedure, 500 MC pseudo ex-

periments are generated, using the PDFs with parameter
values found from the fit to data. Small fit biases are
found for some of the fit parameters and are included in
the systematic uncertainties.

We also account for uncertainties in the following pa-
rameters describing the signal model: the mass and width
of each resonance and the value of the Blatt-Weisskopf
barrier radius. The associated uncertainties are deter-
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TABLE IX: Results for the relative phases φ obtained from the combined B± fit, the CP amplitudes A+ and A−, and the
CP phases φ+ and φ− obtained from the CP fit. All parameters are measured relative to the B±

→ K∗(892)0π± reference
amplitude. The first uncertainty is statistical, the second is systematic, and the third is due to the signal model. Note that for
the CP phases of all contributions except for B±

→ (Kπ)∗00 π±, only statistical uncertainties are quoted.

Isobar φ (◦) A+ A− φ+ (◦) φ− (◦)

K∗(892)±π0
−95± 43+48+8

−36 −70 1.46 ± 0.22 ± 0.05+0.05
−0.03 0.82± 0.18 ± 0.05+0.06

−0.04 −10± 112 −98± 97
(Kπ)∗00 π± 174± 11± 11+0

−6 1.74 ± 0.21 ± 0.11+0.07
−0.12 2.00± 0.27 ± 0.13+0.14

−0.02 165± 19± 9+4
−3 190± 21± 11+1

−3

(Kπ)∗±0 π0
−89± 43+53+5

−40 −17 1.44 ± 0.22 ± 0.13+0.00
−0.10 1.88± 0.25 ± 0.14+0.22

−0.06 4± 111 −109± 92
ρ(770)±K0

−122± 43+55+16
−47 −66 1.24 ± 0.01 ± 0.09+0.00

−0.21 1.54± 0.01 ± 0.09+0.23
−0.09 −50± 168 −120± 71

 x∆±x
-2 -1 0 1 2 3

 y∆±y

-4

-2

0

2

4 + y) B∆ x, y+∆(x+

- y) B∆ x, y-∆(x-

FIG. 6: CP parameters (x±∆x, y±∆y) obtained from the fit
to data for B±

→ K∗±(892)π0 resonant decay including the 1
and 2 standard deviation contours (solid and dashed curves).
The contours are estimated by calculating the uncertainty
and correlation between the two CP parameters. The stars
indicate the central values of the CP parameters and the cross
sign the origin of the plot.

mined by varying the parameters within their uncertain-
ties (some of which are given in Table II) and refitting.

The uncertainties in the branching fractions related
to particle identification, tracking efficiency, and the to-
tal number of BB events are 1.0%, 1.0%, and 0.6%, re-
spectively. We estimate systematic uncertainties in the
branching fractions associated with the π0 and K0

S
recon-

struction efficiencies to be 1.0% and 1.1%, respectively.

Uncertainties from all the above sources are added in
quadrature to yield the total systematic uncertainties,
which are listed in Table XI.

We determine changes in the branching fractions,
∆B, when the signal model is varied. The system-
atic uncertainties in the branching fractions due to the

(Kπ)
∗0/+
0 parametrization are estimated by replacing the

LASS model with another phenomenologically inspired
parametrization [47]. We take the differences in branch-
ing fractions with respect to the nominal fit as the sys-
tematic uncertainty. This is the largest contribution to
the uncertainty due to the model. Another uncertainty
reflects any changes in the fit parameters for the nom-
inal model when including components that are omit-

ted in the nominal fit, such as the ρ(1450)+, K∗
2 (1430)

0,
K∗

2 (1430)
+, K∗(1680)0, and K∗(1680)+. Positive and

negative variations are added separately in quadrature
to obtain the systematic uncertainties due to the signal
model, listed in Table XI.

We determine systematic uncertainties in the phases
averaged over B+ and B− decays from the same sources
as considered for the branching fractions. The variations
in the phases are measured relative to the K∗(892)0π+

amplitude. Since the differences between positive and
negative shifts in the phases, shown in Table XII, are
large in some cases, we quote for those phase shifts asym-
metric systematic uncertainties.

Reconstruction and particle identification efficiencies
cancel to first order in the fit to CP asymmetries; there-
fore the only uncertainties that are included for ACP are
those coming from the fit and signal model. In addition
to this, we do not evaluate any of the uncertainties that
are found to be negligible for the branching fractions.

An additional uncertainty for ACP arises from having
fixed the CP asymmetries for individual BB background
components to zero. We vary the CP asymmetry indi-
vidually for each B background category, based on the
world-average experimental results [9], and take as the
corresponding uncertainty the sum in quadrature of the
largest of the positive or negative change in ACP .

The uncertainty related to the efficiency model is deter-
mined by exchanging the efficiency maps for the positive
and negative Dalitz plots and refitting the data. We then
take the difference in CP asymmetry with respect to the
nominal fit as the uncertainty.

We list in Table XIII the systematic uncertainties asso-
ciated with the signal CP asymmetries and the variations
in the asymmetry due to changes in the signal composi-
tion.

We evaluate systematic uncertainties for the CP
amplitudes and CP phases from the same sources
as for the CP asymmetries. We list the varia-
tions to the amplitudes A+ in Table XIV and to
the amplitudes A− in Table XV, including the un-
certainties due to changes to the signal model. Ta-
ble XVI lists the systematic variations and model uncer-

tainties for φ+(−)

(

(Kπ)
∗0
0 π+(−) −K∗(892)0π+(−)

)

and

φ+(−)

(

(Kπ)∗+(−)
0 π0 −K∗(892)+(−)π0

)

.
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IX. SUMMARY AND CONCLUSIONS

The measured branching fractions and CP asymme-
tries are summarized in Table VIII, and the amplitude
and phase values in Table IX, including statistical, sys-
tematic, and model uncertainties. We have measured for
the first time the branching fraction and CP asymme-
try for the decay B+ → K0π+π0. We obtain first evi-
dence for direct CP violation in the intermediate decay
B+ → K∗(892)+π0, with a total significance of 3.4 stan-
dard deviations determined by adding statistical, system-
atic, and signal-model uncertainties in quadrature and
dividing the measured ACP by the total uncertainty.
In addition, we have measured the branching fractions,

CP asymmetries, and relative CP -averaged phase values
of the decays B+ → K∗(892)0π+, B+ → K∗(892)+π0,
B+ → K∗

0 (1430)
0π+, B+ → K∗

0 (1430)
+π0, and

B+ → ρ(770)+K0. The results for the branching
fractions and CP asymmetries for B+ → K∗(892)0π+

are consistent with the previous measurements from
B+ → K+π−π+ decays by the Belle and BABAR

Collaborations and the branching fraction for
B+ → K∗

0 (1430)
0π+ is consistent with the previous

BABAR measurement and within two standard deviations
of the Belle measurement [16, 17]. The branching
fraction for B+ → K∗(892)+π0 is consistent with the
previous measurement from the BABAR Collaboration
in the B+ → K+π0π0 decay mode and the result
for ACP is within two standard deviations of the
previous measurement [18]. The branching fraction
and ACP results for B+ → ρ(770)+K0 supersede the
previous BABAR measurements [14]. The CP asym-
metries of B+ → K∗(892)0π+, B+ → K∗

0 (1430)
0π+,

and B+ → ρ(770)+K0 are all consistent with zero,
as expected. We obtain the first measurements
of the branching fraction and CP asymmetry for
B+ → K∗

0 (1430)
+π0, with a significance of 5.4 standard

deviations for the branching fraction.
We combine our results for the branching frac-

tions and CP asymmetries of B+ → K∗(892)0π+,
B+ → K∗

0 (1430)
0π+, and B+ → K∗(892)+π0 with the

previous BABAR measurements. The statistical uncer-
tainties and all systematic uncertainties for the CP asym-
metries are uncorrelated between the measurements. For
the branching fractions, we account for possible corre-
lations when combining the systematic uncertainties. If
the systematic uncertainties are asymmetric, the aver-
age systematic uncertainty is calculated from the largest
limit. The combined results from BABAR for these decay
modes are presented in Table X.
Using the world average value for direct CP violation

in B0 → K∗(892)+π− [9] and the final BABAR result for
direct CP violation in B+ → K∗(892)+π0, we calculate
∆ACP for the K∗π system to be

∆ACP (K∗π) = ACP

(

K∗+π0
)

−ACP

(

K∗+π−
)

= −0.16± 0.13. (33)

Thus the value of ∆ACP in K∗π is found to be consis-

tent with zero. The uncertainty in the ∆ACP (K
∗π) result

remains large, rendering the comparison to ∆ACP (Kπ),
given in Eq. (3), inconclusive at present and motivating
improved determinations in future experiments.
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TABLE X: Combined BABAR measurements of branching fractions and CP asymmetries of B+
→ K∗(892)0π+ and

B+
→ K∗

0 (1430)
0π+ from B+

→ K0
Sπ

+π0 (this analysis) and B+
→ K+π−π+ [16], and of B+

→ K∗(892)+π0 from
B+

→ K0
Sπ

+π0 and B+
→ K+π0π0 [18]. The first uncertainty is statistical and the second is systematic.

Decay channel B
(

10−6
)

ACP

K∗(892)0π+ 10.5± 0.6± 0.9 0.025 ± 0.050 ± 0.016
K∗(892)+π0 6.8± 0.8± 0.5 −0.39± 0.12 ± 0.03
K∗

0 (1430)
0π+ 34.1± 1.1± 4.3 0.040 ± 0.033 ± 0.033



19

[1] N. Cabibbo, Phys.Rev.Lett. 10, 531 (1963).
[2] M. Kobayashi and T. Maskawa, Prog. Theor. Phys. 49,

652 (1973).
[3] M. Ciuchini, M. Pierini, and L. Silvestrini, Phys.Rev.D

74, 051301 (2006), hep-ph/0601233.
[4] M. Gronau, D. Pirjol, A. Soni, and J. Zupan,

Phys.Rev.D 75, 014002 (2007), hep-ph/0608243.
[5] B. Aubert et al. (BABAR Collaboration), Phys.Rev.D 76,

091102 (2007), arXiv:0707.2798.
[6] S. W. Lin et al. (Belle Collaboration), Nature 452, 332

(2008).
[7] M. Gronau, Phys. Lett. B 627, 82 (2005), hep-

ph/0508047.
[8] A. J. Buras, R. Fleischer, S. Recksiegel, and F. Schwab,

Phys.Rev.Lett. 92, 101804 (2004), hep-ph/0312259.
[9] Y. Amhis et al. (Heavy Flavor Averaging Group) (2012),

arXiv:1207.1158.
[10] M. Gronau and J. L. Rosner, Phys. Lett. B 666, 467

(2008), arXiv:0807.3080.
[11] Q. Chang, X.-Q. Li, and Y.-D. Yang, JHEP 09, 038

(2008), arXiv:0807.4295 [hep-ph].
[12] C.-W. Chiang and D. London, Mod. Phys. Lett. A 24,

1983 (2009), arXiv:0904.2235 [hep-ph].
[13] M. Gronau, D. Pirjol, and J. Zupan, Phys.Rev.D 81,

094011 (2010), arXiv:1001.0702 [hep-ph].
[14] B. Aubert et al. (BABAR Collaboration), Phys.Rev.D 76,

011103 (2007), hep-ex/0702043.
[15] E. Eckhart et al. (CLEO Collaboration), Phys.Rev.Lett.

89, 251801 (2002), hep-ex/0206024.
[16] B. Aubert et al. (BABAR Collaboration), Phys.Rev.D 78,

012004 (2008), arXiv:0803.4451.
[17] A. Garmash et al. (Belle Collaboration), Phys.Rev.Lett.

96, 251803 (2006), hep-ex/0512066.
[18] J.P., Lees et al. (BABAR Collaboration), Phys.Rev.D 84,

092007 (2011), arXiv:1109.0143.
[19] J.P., Lees et al. (BABAR Collaboration), Phys.Rev.D 83,

112010 (2011), arXiv:1105.0125.
[20] B. Aubert et al. (BABAR Collaboration), Phys.Rev.D 80,

112001 (2009), arXiv:0905.3615.
[21] J. Dalseno et al. (Belle Collaboration), Phys.Rev.D 79,

072004 (2009), arXiv:0811.3665.
[22] A. Garmash et al. (Belle Collaboration), Phys.Rev.D 75,

012006 (2007), hep-ex/0610081.
[23] P. Chang et al. (Belle Collaboration), Phys. Lett. B 599,

148 (2004), hep-ex/0406075.
[24] T. Latham, J. Back, and P. Harrison, Laura++, http:

//laura.hepforge.org.
[25] G. N. Fleming, Phys.Rev. 135, B551 (1964).
[26] D. Herndon, P. Soding, and R. Cashmore, Phys.Rev.D

11, 3165 (1975).
[27] J. Blatt and V. Weisskopf, Theoretical Nuclear Physics

(J. Wiley and sons (New York), 1952).
[28] J. Beringer et al. (Particle Data Group), Phys.Rev.D

86, 010001 (2012).
[29] C. Zemach, Phys.Rev. 140, B109 (1965).
[30] A. Bevan, B. Golob, T. Mannel, S. Prell, and

B. Yabsley (BABAR Collaboration, Belle Collaboration),
Eur. Phys. J. C. 74, 3026 (2014), SLAC-PUB-15968,
KEK-PREPRINT-2014-3, arXiv:1406.6311.

[31] R. Barate et al. (ALEPH Collaboration), Zeit. Phys. C
76, 15 (1997).

[32] R. Akhmetshin et al. (CMD-2 Collaboration),
Phys. Lett. B 527, 161 (2002), hep-ex/0112031.

[33] D. Aston et al. (LASS Collaboration), Nucl. Phys. B 296,
493 (1988).

[34] G. Gounaris and J. Sakurai, Phys.Rev. Lett. 21, 244
(1968).

[35] J.P., Lees et al. (BABAR Collaboration),
Nucl. Instrum.MethodsPhys.Res., Sect. A 726, 203
(2013), 1301.2703.

[36] B. Aubert et al. (BABAR Collaboration),
Nucl. Instrum.MethodsPhys.Res., Sect. A 479, 1
(2002), hep-ex/0105044.

[37] B. Aubert et al. (BABAR Collaboration),
Nucl. Instrum.MethodsPhys.Res., Sect. A 729, 615
(2013), arXiv:1305.3560.

[38] S. Agostinelli et al. (Geant4 Collaboration),
Nucl. Instrum.MethodsPhys.Res., Sect. A 506, 250
(2003).

[39] J. Allison et al., IEEE Trans. Nucl. Sci. 53, 270 (2006).
[40] A. Ryd et al. (2005), EVTGEN-V00-11-07.
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Appendix A: Tables of Systematic and Model

Uncertainties

Table XI lists the uncertainties in the branching frac-
tions due to systematic effects, efficiency corrections, and
changes to the signal model. Table XII lists uncertainties
in the relative phase values (for B+ and B− decays com-
bined) due to systematic effects and changes to the signal
model. Tables XIII, XIV, XV, and XVI list the system-
atic and signal model uncertainties for the CP asymme-
tries, the amplitudes for the B+ and B− Dalitz plots,
A+ and A−, respectively, and the corresponding phases
φ+ and φ− for the B+ → K∗

0 (1430)
0π+ amplitude rela-

tive to that for B+ → K∗(892)0π+, and the phase values
for the B+ → (Kπ)∗+0 π0 amplitude relative to that for
B+ → K∗(892)+π0.
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TABLE XI: Combined B± fit: Systematic uncertainties for the branching fraction measurements, including uncertainties due
to the signal model. For each of the four alternative signal models (described in the text), we give the change in the branching
fraction; positive and negative changes are added separately in quadrature to obtain the total positive (+) and negative (−)
uncertainties listed in the last two rows.

Relative Variations of branching fraction (%)

Source
Resonant contribution

Inclusive K∗(892)0 K∗(892)+ K∗
0 (1430)

0 K∗
0 (1430)

+ ρ(770)+

Correctly reconstructed mES and ∆E PDF (fixed parameters) 0.8 1.1 0.6 1.1 0.7 1.2
Correctly reconstructed and self crossfeed signal BDTout PDFs 3.3 3.3 3.4 3.4 4.2 4.0
Self crossfeed signal mES and ∆E PDF models 3.0 4.3 3.1 1.3 1.8 7.5
Fit bias 0.3 0.9 0.6 0.5 0.7 0.9
BB background mES, ∆E and BDTout PDFs 0.3 0.4 0.2 0.3 0.5 0.6
BB background yields 0.7 1.2 0.6 0.9 2.0 1.8
Background model in Dalitz plot 1.5 3.7 2.8 2.8 2.7 3.5
Signal efficiency model 0.3 1.8 1.0 0.4 0.4 0.8
Self crossfeed PDF model 0.3 0.4 0.6 0.3 0.3 0.5
K∗(892) mass and width 0.1 0.7 0.3 0.1 0.2 0.1
K∗

0 (1430) mass and width 3.2 3.8 2.1 8.1 5.5 4.0
ρ(770)+ mass and width < 0.1 0.2 0.1 0.1 0.2 0.3
Blatt-Weisskopf radius 2.3 4.4 2.9 7.4 2.9 3.7
Subtotal 6.3 9.1 6.7 12.0 8.5 11.0
Neutral pion efficiency 1.0 1.0 1.0 1.0 1.0 1.0
K0

S efficiency 1.1 1.1 1.1 1.1 1.1 1.1
Charged particle identification efficiency 1.0 1.0 1.0 1.0 1.0 1.0
Tracking efficiency 1.0 1.0 1.0 1.0 1.0 1.0
NBB 0.6 0.6 0.6 0.6 0.6 0.6
Total 6.6 9.4 7.0 12.2 8.7 11.2

Changes due to signal model ∆B
(

10−6
)

(Kπ)∗00 /(Kπ)∗+0 parametrization +5.5 −0.2 −0.2 – – −0.9
ρ(1450)+ +1.6 +0.2 −0.3 +1.8 −0.6 −1.4
K∗

2 (1430)
0 and K∗

2 (1430)
+ +1.0 −0.2 +0.2 −1.8 −0.6 −0.2

K∗(1680)0 and K∗(1680)+ +1.2 – – +0.4 −1.0 −0.2
Total (+) +6.0 +0.2 +0.2 +1.9 +0.0 +0.0
Total (−) −0.0 −0.3 −0.3 −1.8 −1.3 −1.7
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TABLE XII: Combined B± fit: Systematic uncertainties due to the fit model and the fixed shapes in the parametrization (top
part of table), and changes to the signal model (bottom part of table), for the relative phases (in degrees) measured relative
to the K∗(892)0π+ amplitude. For each of the four alternative signal models (described in the text), we give the change in
the branching fraction; positive and negative changes are added separately in quadrature to obtain the total positive (+) and
negative (−) uncertainties listed in the last two rows.

Systematic Variations (◦)

Systematic

Resonant contribution
K∗(892)+π0 K∗

0 (1430)
0π+ K∗

0 (1430)
+π0 ρ(770)+K0

S

Self crossfeed PDFs and mapping 7.4 1.4 9.6 6.7

Correctly reconstructed and self crossfeed BDTout PDFs 1.4 0.9 1.3 1.3

BB background yields 1.7 0.5 1.8 2.1

Correctly reconstructed mES and ∆E PDF 0.4 0.2 0.9 1.2

Background DP PDF 5.7 2.2 4.5 5.4

BB background mES, ∆E, BDTout PDFs 0.3 0.2 0.3 0.3

Signal efficiency model 0.5 0.4 0.7 0.7

Fit bias 9.3 7.8 7.3 23.5

K∗(892) mass 1.4 0.2 1.2 1.4

K∗(892) width 0.3 0.1 0.1 < 0.1

K∗
0 (1430) mass +43

−33
+5.2
−4.7

+48
−37

+46
−36

K∗
0 (1430) width 5.2 4.0 5.7 14.6

ρ(770)+ mass 0.3 0.1 0.4 1.0

ρ(770)+ width 0.6 0.1 0.6 0.2

Blatt-Weisskopf radius +15
−2

+1.0
−1.4

+17
−3

+0.3
−0.5

Total +48
−36

+11
−11

+53
−40

+55
−47

Changes due to signal model

(Kπ)∗00 /(Kπ)∗+0 parametrization −67.0 – – −60.3

ρ(1450)+ −18.4 −2.8 −11.8 −27.4

K∗
2 (1430) +7.8 −3.1 +5.5 +11.3

K∗(1680) −7.8 −4.9 −12.9 +11.8

Total (+) +7.8 +0.0 +5.5 +16.4

Total (−) −69.9 −6.5 −17.5 −66.2
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TABLE XIII: Contributions to the uncertainties in the CP asymmetries for the overall and resonant isobar contributions,
including uncertainties due to changes to the signal model. For each of the four alternative signal models (described in the
text), we give the change in the branching fraction; positive and negative changes are added separately in quadrature to obtain
the total positive (+) and negative (−) uncertainties listed in the last two rows.

Systematic Variations of ACP (%)

Systematic
Resonant contribution

Inclusive K∗(892)0π+ K∗(892)+π0 K∗
0 (1430)

0π+ K∗
0 (1430)

+π0 ρ(770)+K0
S

Self crossfeed PDFs and mapping 2.0 6.0 1.0 1.2 0.9 5.0
Correctly reconstructed and self crossfeed BDTout PDFs 0.7 1.7 1.8 1.6 1.1 2.8
BB background asymmetries 2.5 1.4 1.7 1.8 7.5 2.3
Background DP PDF 0.7 2.7 2.1 2.8 2.0 2.5
BB background mES, ∆E, BDTout PDFs 0.2 0.1 0.2 0.3 0.5 0.4
Signal efficiency model 0.2 3.9 2.1 0.1 0.9 1.3
Fit bias 0.3 1.4 0.8 1.9 1.0 1.2
K∗(892) mass and width 0.1 0.2 0.4 0.2 0.2 0.2
K∗

0 (1430) mass and width 1.1 4.4 0.5 3.0 2.8 2.2
ρ(770)+ mass and width < 0.1 0.1 0.1 0.2 0.1 0.1
Blatt-Weisskopf radius < 0.1 0.9 0.3 0.8 1.1 0.5
Total 3.4 8.1 4.1 4.3 8.0 6.9

Changes due to signal model

(Kπ)∗00 /(Kπ)∗+0 parametrization −0.7 +6.2 +2.0 – – −8.1
ρ(1450)+ +3.3 +1.5 −3.4 −10.5 −11.6 −21.3
K∗

2 (1430) −0.2 +5.7 −1.5 −7.5 −2.7 +14.4
K∗(1680) −2.2 +6.3 +0.5 +4.8 −1.9 +12.3
Total (+) +2.4 +0.0 +3.7 +13.0 +12.0 +22.8
Total (−) −3.3 −10.6 −2.0 −4.8 −0.0 −19.0

TABLE XIV: Variations in the CP amplitude, A+, including uncertainties due to changes to the signal model (bottom part
of table). In the fits, the amplitudes are measured relative to the K∗(892)0π+ amplitude. For each of the four alternative
signal models (described in the text), we give the change in the branching fraction; positive and negative changes are added
separately in quadrature to obtain the total positive (+) and negative (−) uncertainties listed in the last two rows.

Variation of A+

Systematic
Resonant contribution

K∗(892)+π0 (Kπ)∗00 π+ (Kπ)∗+0 π0 ρ(770)+K0
S

Self crossfeed PDFs and mapping 0.02 0.02 0.04 0.02
Correctly reconstructed and self crossfeed BDTout PDFs 0.01 0.03 0.02 0.02
BB background asymmetries 0.01 0.03 0.07 0.02
Background DP PDF 0.02 0.06 0.04 0.04
BB background mES, ∆E, BDTout PDFs < 0.01 0.01 0.01 < 0.01
Signal efficiency model 0.01 0.01 < 0.01 0.01
Fit bias 0.01 0.03 0.02 0.03
K∗(892) mass 0.01 0.01 0.01 < 0.01
K∗(892) width < 0.01 0.01 0.01 < 0.1
(Kπ)∗0 mass 0.02 0.02 0.09 0.06
(Kπ)∗0 width 0.02 0.06 0.01 0.02
ρ(770)+ mass < 0.01 < 0.01 < 0.01 < 0.01
ρ(770)+ width < 0.01 < 0.01 < 0.01 < 0.01
Blatt-Weisskopf radius 0.02 0.03 0.02 0.02
Total 0.05 0.11 0.13 0.09

Changes due to signal model

(Kπ)∗00 /(Kπ)∗+0 parametrization −0.03 −− −− −0.17
ρ(1450)+ < 0.01 −0.01 −0.02 −0.12
K∗

2 (1430) 0.05 −0.08 −0.08 −0.04
K∗(1680) −0.02 0.07 −0.05 −0.05
Total (+) +0.05 +0.07 +0.00 +0.00
Total (−) −0.03 −0.12 −0.10 −0.21
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TABLE XV: Variations in the CP amplitude, A−, including uncertainties due to changes to the signal model (bottom part of
table). In the fits, the amplitudes are measured relative to the K∗(892)0π+ amplitude. For each of the four alternative signal
models (described in the text), we give the change in the branching fraction; positive and negative changes are added separately
in quadrature to obtain the total positive (+) and negative (−) uncertainties listed in the last two rows.

Variation of A−

Systematic
Resonant contribution

K∗(892)−π0 (Kπ)∗00 π− (Kπ)∗−0 π0 ρ(770)−K0
S

Self crossfeed PDFs and mapping < 0.01 0.05 0.04 0.05
Correctly reconstructed and self crossfeed BDTout PDFs 0.02 0.02 0.02 0.03
BB background asymmetries 0.01 0.01 0.06 0.02
Background DP PDF 0.02 0.05 0.04 0.03
BB background mES, ∆E, BDTout PDFs < 0.01 < 0.01 < 0.01 < 0.01
Signal efficiency model 0.02 < 0.01 0.02 0.02
Fit bias 0.02 < 0.01 0.02 0.02
K∗(892) mass < 0.01 0.01 0.01 < 0.01
K∗(892) width < 0.01 0.01 0.01 0.01
(Kπ)∗0 mass 0.01 0.08 0.08 0.04
(Kπ)∗0 width 0.01 0.07 0.05 0.03
ρ(770)+ mass < 0.01 < 0.01 < 0.01 < 0.01
ρ(770)+ width < 0.01 < 0.01 < 0.01 < 0.01
Blatt-Weisskopf radius 0.01 0.01 0.05 0.01
Total 0.05 0.13 0.14 0.09

Changes due to signal model

(Kπ)∗00 /(Kπ)∗+0 parametrization −0.04 −− −− −0.09
ρ(1450)+ 0.04 0.12 0.22 0.22
K∗

2 (1430) 0.05 0.07 0.05 0.03
K∗(1680) −0.01 −0.02 −0.02 −0.04
Total (+) +0.06 +0.14 +0.22 +0.23
Total (−) −0.04 −0.02 −0.06 −0.09

TABLE XVI: Variations in the CP phase values φ± (in degrees) measured for the (Kπ)∗00 π± amplitude relative to the
K∗(892)0π± amplitude, and for the (Kπ)∗±0 π0 amplitude relative to the K∗(892)±π0 amplitude. For each of the four al-
ternative signal models (described in the text), we give the change in the branching fraction; positive and negative changes are
added separately in quadrature to obtain the total positive (+) and negative (−) uncertainties listed in the last two rows.

Systematic Absolute variations of CP phase values

(Kπ)∗00 π±
−K∗(892)0π± (Kπ)∗±0 π0

−K∗(892)±π0

φ+ φ− φ+ φ−

Self crossfeed PDFs and mapping 0.6 4.5 1.6 3.1
Correctly reconstructed and self crossfeed BDTout PDFs 0.9 1.6 1.4 2.6
BB background asymmetries 1.4 1.3 0.7 1.0
Background DP PDF 2.5 3.0 2.0 2.7
BB background mES, ∆E, BDTout PDFs 0.2 0.2 0.2 0.4
Signal efficiency model 0.3 1.4 0.8 1.2
Fit bias 2.4 5.2 1.7 0.9
K∗(892) mass 0.2 0.2 0.4 0.6
K∗(892) width 0.3 0.3 0.2 0.2
(Kπ)∗0 mass 6.1 5.3 5.9 5.5
(Kπ)∗0 width 4.2 5.0 5.2 4.5
ρ(770)+ mass 0.2 0.2 < 0.1 0.2
ρ(770)+ width 0.2 0.2 0.1 0.2
Blatt-Weisskopf radius 1.0 3.3 1.3 3.8
Total 8.5 11.3 8.7 9.6

Changes due to signal model
ρ(1450)+ +3.7 −0.9 −3.2 +9.4
K∗

2 (1430) −2.6 +0.5 +3.6 −8.8
K∗(1680) +1.9 +3.3 +2.2 +14.6
Total (+) +4.2 +0.5 +4.2 +17.4
Total (−) −2.6 −3.4 −3.2 −8.8


