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I. INTRODUCTION

The success of the anti-de Sitter/conformal field theory correspondence (AdS/CFT) has inspired applications to de
Sitter spacetime (dS) [1]. This leads one to try to find conformal field theories of relevance to this correspondence
which appear to exhibit novel properties, and many have questioned whether such theories can be defined at all.

In the context of AdS/CFT detailed dictionaries relating the bulk and boundary variables [2] were found at the free
level. These ideas were generalized to a precision boundary/bulk correspondence, order by order in a 1/N expansion
in HKLL [3–6]. Our present goal is to attempt to extend such ideas to the dS/CFT correspondence.

However, it has been difficult to produce examples in Minkowski space and De-Sitter space because of various issues.
Instability of string theory in de-Sitter background [7], and the compact spacelike boundary has made holography
challenging in de-Sitter [8]. We have discussed many of these problems, in our previous papers [9, 10]. There we have
shown how to extend the HKLL dictionary to dS space for the case of non-interacting bulk theory. Many people have
contributed in understanding dS-holography including higher-spin holography for dS[1, 11–20].

In section II we introduce principal series and discrete series representation and give a short description of the
earlier work in maths literature. Then we show how the generators act on the bulk fields. We derive the bulk fields by
solving the appropriate wave equation. Section III, is devoted to the massless scalar field. We find that modes of the
massless scalar include both the discrete series and a limit of the complementary series, which is an indecomposable
representation of the conformal group. This work makes contact with recent work by Ashtekar et al. [21, 22] on the
asymptotic boundary conditions in de Sitter spacetime. In particular the discrete series modes carry vanishing energy,
while the indecomposable mode can carry energy, but changes the conformal structure of the boundary. Both sets of
operators are needed in the CFT to reproduce a complete set of bulk modes.

It is the main goal of the present paper to construct the operator product expansion in the conformal field theory for
operators dual to massive modes in the bulk. As is usual in conformal field theory, the two and three-point functions
of quasi-primary operators are determined by conformal invariance. However when we explore the implications of this
for the operator product expansion, some surprising results emerge, including the fact that the expansion involves
terms with arbitrarily rapid short distance singularities determined by a seemingly infinite number of free parameters.
This is in constrast to the more ordinary CFTs appearing in the AdS/CFT correspondence, where the most singular
terms in the operator product expansion are determined by the weights of the operators, and conformal invariance
implies a single parameter determines the full set of descendent couplings via conformal partial waves. This leads
us to conclude that such conformal field theories do not exist in the space of ordinary renormalizable quantum field
theories, but rather share many of the features of non-renormalizable field theories. For concreteness, many of our
results are stated for three-dimensional de Sitter spacetime. However since we only use the global conformal group,
the results are easily generalized to higher dimensions.

II. PRINCIPAL, COMPLEMENTARY AND DISCRETE SERIES REPRESENTATIONS OF BULK
STATES.

The isometries of 3-dimensional dS form the group SO(1, 3). This spacetime may be viewed as a hyperboloid
embedded in 4-dimensional Minkowski spacetime. The generators are given by Ji,Ki for i = 1, 2, 3. Ji are the
generators of rotation mixing three spacelike embedding dimensions. Ki are the generators of boost mixing three
spacelike dimension with the timelike dimension. There are various Cartan sub-algebras of SO(1, 3). Depending on
which Cartan subgroup we choose, we get a different basis for the representations. One can choose SO(3) = {Ji} as
the Cartan subgroup. Most papers in 1950-70 by Naimark, Tagirov, Chernikov, Raczka et al[23–27] do that. So mode
functions were labelled by quantum numbers l,m (Eigenvalue of {J2, J3} respectively). SO(3) (compact group) has
only finite dimensional representations l = 0, 1

2 , 1,
3
2 , 2, ...,m = −l,−l+ 1, ..., l. So range of m is bounded for a given l.

On the CFT side, states are usually chosen as eigenstates of the SU(1, 1) Cartan sub-group. So it is useful to write
the bulk generators SO(1, 3) as SUL(1, 1) ⊗ SUR(1, 1). (Just like SL(2, C) ∼= SU(1, 1) ⊗ SU(1, 1).) Combine the
generators in the following way

K1L =
1

2
(−K1 + iJ1) K2L = 1

2 (−K2 + iJ2) JL =
1

2
(J3 + iK3)

K1R =
1

2
(K1 + iJ1) K2R = 1

2 (K2 + iJ2) JR =
1

2
(J3 − iK3) .

Then
[JL(R),K1L(R)] = iK2L(R)

[JL(R),K2L(R)] = −iK1L(R)

[K1L(R),K2L(R)] = −iJL(R) .
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Left and right sectors commute. We can also form the raising and lowering operators K±L(R) = K1L(R) ± iK2L(R).

[JR,K±R] = ±K±R [JL,K±L] = ±K±L .

Thus {JL(R),K±L(R)} form SUL(R)(1, 1) group.
Now let us discuss unitary irreducible representations of SU(1, 1). States are labelled by eigenvalues of {CL =

J2
L −K2

1L −K2
2L, JL, JR}

CL|h, l〉 = h(h− 1)|h, l〉
JL|h, l〉 = l|h, l〉 .

Irreducible representations split into discrete series and continuous series (principal and complementary series)
[25, 26, 28–34]. In the discrete series h = −n/2, n ∈ N . l = −h,−h + 1, ... for positive discrete series D+(lowest
weight) and l = h, h − 1, ... for negative discrete series D−(highest weight). For continuous series h = − 1

2 + iρ, 0 <

ρ < ∞ and l = 0,±1,±2, ... or l = ± 1
2 ,±

3
2 , ... corresponding to C0

ρ or C1/2
ρ respectively.For complementary series

h = − 1
2 + ρ, 0 < ρ < 1

2 and l = 0,±1,±2, ... .
Similarly, SUR(1, 1) sector can be constructed. For scalar fields hL = hR = h. Casimir of SO(1, 3) is then given by

C = CL + CR

= 2h(h− 1) .

For the discrete series

C = −1

2
n(2− n), n ∈ N .

For the continuous series

C = −2ρ2 − 1

2
, 0 < ρ <∞ .

As we will see, some modes of the massless scalar correspond to the n = 2 discrete series. There l = ±1,±2, ... for
D± respectively.

A. Action of the generators on the states

Let us write below action of all the generators on the state |h, l, r〉

JR|h, l, r〉 = r|h, l, r〉 (1)
JL|h, l, r〉 = l|h, l, r〉 (2)
CL|h, l, r〉 = h (h− 1) |h, l, r〉
CR|h, l, r〉 = h (h− 1) |h, l, r〉
C|h, l, r〉 = (CL + CR) |h, l, r〉 = 2h (h− 1) |h, l, r〉 (3)

K±L|h, l, r〉 = i (± (h− 1)− l) |jL, l ± 1, r〉 (4)
K±R|h, l, r〉 = i (∓ (h− 1)− r) |jL, l, r ± 1〉 . (5)

For a scalar field of mass m, 4h (h− 1) = m2 =⇒ h± = 1
2 ±

√
1
4 −

m2

4 and l(r) = 0,±1,±2, ... or l(r) = ± 1
2 ,±

3
2 , ....

The principal series corresponds to m > 1 and the complementary series corresponds to 1 > m > 0. A component
of the massless scalar behaves like a discrete series with h = 1. Figure 1 and 2 show the weight space diagram for
principal series and discrete series. Similar weight space diagrams for representation in Anti-de Sitter space was given
by Dusedau and Freedman[35].

B. States in coordinate space

Now we know how the generators act on the states. To explore bulk-boundary correspondence, we want to see how
the states behave close to the boundary. It is convenient to transform to a basis of eigenstates in coordinate space.

De Sitter space can be described by the flat slicing coordinates η, z, z̄

ds2 =
1

η2

(
−dη2 + dzdz̄

)
.
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Figure 1. Weight space diagram for principal series. x-y axes are the l, r values. Solid dots represent states for all l, r ∈ Z.
These states have both growing and decaying modes. K±L shift the states right and left respectively. Similarly K±R shift the
states up and down respectively.

Figure 2. Weight space diagram for discrete series x-y axes are the l, r values. Solid dots represent states for all non zero l, r.
These states contain only decaying modes. K±L shift the states right and left respectively. K±L annihilates l = ∓1 states
respectively. Similarly K±R shift the states up and down respectively. K±R annihilates r = ∓1 states respectively.

There are many nice reviews of de-Sitter space [17]. z is complexified spacelike coordinate. η is timelike coordinate.
De-Sitter has boundary at future and past infinity η → 0. Bulk isometry generators are

JL = z∂z +
η

2
∂η , K+L = i

(
z2∂z + η2∂z̄ + zη∂η

)
, K−L = −i∂z

JR = −z̄∂z̄ −
η

2
∂η , K−R = −i

(
z̄2∂z̄ + η2∂z + z̄η∂η

)
, K+R = i∂z̄ .

Note that if we put η → 0 and η∂η → 2h as we approach the boundary then

JL → −L0 K+L → −iL1 K−L → iL−1

JR → L̄0 K+R → −iL̄−1 K−R → iL̄1

as shown in the appendix. Casimir operator is given by

C = CL + CR .
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Simultaneous eigenstates of JL, JR, C with eigenvalues l, r, m
2

4 (m is mass) respectively, form the principal series
representation. Solving the differential equations (1), (2) and (3) we get

φl,r(z, z̄, η) =
(z
z̄

) l+r
2

ηl−r
[
A1i
−l−r

(
zz̄

η2

)− l+r
2

2F1

(
1− 2l −

√
1−m2

2
,

1− 2l +
√

1−m2

2
, 1− l − r, zz̄

η2

)

+A2i
l+r

(
zz̄

η2

) l+r
2

2F1

(
1 + 2r −

√
1−m2

2
,

1 + 2r +
√

1−m2

2
, 1 + l + r,

zz̄

η2

)]
. (6)

Near the boundary (η → 0) it behaves like

φl,r(z, z̄, η → 0) =
(z
z̄

) l+r
2

ηl−r
[
A1i
−l−r

(
zz̄

η2

)− l+r
2

(
a1

(
η2

zz̄

)−l+h−
+ a2

(
η2

zz̄

)−l+h+
)

+A2i
l+r

(
zz̄

η2

) l+r
2

(
a1

(
η2

zz̄

)r+h−
+ a2

(
η2

zz̄

)r+h+
)]

= b−η
2h−

(
1

zh−−lz̄h−+r

)
+ b+η

2h+

(
1

zh+−lz̄h++r

)
= b−η

2h−Ol,r,h−(z, z̄) + b+η
2h+Ol,r,h+

(z, z̄)

where b± are some constants and h± = 1±
√

1−m2

2 . Here −∞ ≤ l, r ≤ ∞. Another important thing to note is that
φl,r ∼ zlz̄r (power law).

φl,r(z, z̄, η → 0) =

(
b−

(
η2

zz̄

)h−
+ b+

(
η2

zz̄

)h+
)
zlz̄−r .

For principal series h−, h+ are complex conjugate of each other. So the modes oscillate close to the boundary. For
complementary series 0 < h− <

1
2 < h+. So half of the modes grow

(
η2h−

)
and other half of the modes decay

(
η2h+

)
near the boundary. They are respectively called growing and decaying mode. For massless case h− = 0. So these
modes stay constant near, hence are called constant modes.

III. MASSLESS SCALAR FIELD

Now we are going to look into the massless case. There are two ways that representations contribute to the massless
scalar.

A. Limit of complementary series

One is the m→ 0 limit of equation (6). This is the limit of complementary series representation.

φl,r(z, z̄, η) =
(z
z̄

) l+r
2

ηl−r
[
A1i
−l−r

(
zz̄

η2

)− l+r
2

2F1

(
−l, 1− l, 1− l − r, zz̄

η2

)
+A2i

l+r

(
zz̄

η2

) l+r
2

2F1

(
r, 1 + r, 1 + l + r,

zz̄

η2

)]
. (7)

Close to the boundary it goes like

φl,r(z, z̄, η → 0) =

(
b− + b+

η2

zz̄

)
zlz̄−r .

Note that, it has both the decaying mode and the constant mode.
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B. Discrete series

Second is the Discrete series representation. There are two ways of deriving discrete series. Let us first see how it is
derived in earlier math papers [23–25]. First find the eigenstates of �|l,m〉 = −m2|l,m〉 in the |l,m〉 basis (eigenstate
of {J2, J3}). � is second order differential equation and we get two independent solutions. Then choose only the
decaying modes. This removes half of the solutions. This condition results in discrete eigenvalues (−m2) of �. Hence
the representation is called Discrete series. Note that this is in agreement with the previous section where we said
that for massless discrete series h = 1.

Now let us derive the discrete series in another way. Diagonalize the Hilbert space in the eigenstates of JL, JR. In
addition to equations (1), (2) and (3)(with h = 1) states have to satisfy equations

CL|1, l, r〉 = 0

CR|1, l, r〉 = 0

K±L|1,∓1, r〉 = 0 (8)
K±R|1, l,∓1〉 = 0 . (9)

There are four sectors as shown in figure 2. DmLmR where l(r) = −1 is the lowest weight and l(r) = 1 is the highest
weight state. Thus(8) and (9). In this basis, highest and lowest weight states are manifest. This is over-constrained
set of equations. Equation (8) and (9) are first order differential equation which has only one solution. As a result,
half of the general solution of equation (3) is removed. We find that eigenstates decay near boundary. To see this
consider the following states

φD−1,r(z, z̄, η) = A

(
z

η

)r−1(
zz̄

η
− η
)−1−r

φD1,r(z, z̄, η) = Az̄−
r+1
2 η2

φDl,1(z, z̄, η) = A

(
z̄

η

)−l−1(
zz̄

η
− η
)−1+l

φDl,−1(z, z̄, η) = Az
l−1
2 η2 .

Note that close to boundary all the above solutions go like η2. All other states can be obtained by acting with
K±L,K±R. Since K±L,K±R do not decrease the power of η, all the states will have same η dependence. Hence all
the modes of the discrete series decay near the boundary. This also shows that h = 1. This suggests that these states
are a linear combination of states found in the previous approach.

So either imposing regularity of the modes in the |m, l〉 basis is equivalent to requiring the existence of a highest
weight state in |1, l, r〉 basis. It removes the half of the modes which stay constant near the boundary. On the other
hand, the limit of the complementary series has both growing and decaying modes.

C. Discrete series cannot carry energy in dS.

Now that we have understood discrete series and limit of complementary series in more detail, what are the physical
consequences? Does graviton belong to discrete series or complementary series? Ashtekar et al., in a series of papers
[21, 22], has shown that gravity waves in de-Sitter cannot carry energy if the constant modes of the gravitons are
removed. In light of this,

1. If the gravitons are described by discrete series then the constant modes are absent. Then gravity waves cannot
carry energy.

2. If we want graviton modes to carry energy and a complete set of modes, the gravitons must contain modes from
the limit of complementary series.

D. Indecomposiblity of limit of complementary series

In this section we will show that limit of complementary series is indecomposible. A representation is indecomposible[36]
if it cannot be separated into two or more irreducible representations. We have already shown that decaying modes
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form the irreducible discrete series representation. Then the question is: Does the remaining constant mode also form
irreducible representation?

To establish this we show that constant modes turn into decaying modes under the action of generators. Schemat-
ically,

K|decay〉 → |decay〉
K|constant〉ml 6=0 → |constant〉
K|constant〉ml=0 → |decay〉

where K is some ladder operator. Equation (7) is the general solution of the massless scalar field. Schematically the
two independent solutions are

φl,r(z, z̄, η → 0) =

(
b− + b+

η2

zz̄

)
zlz̄−r

=

(
b−|constant〉+ b+

|decay〉
zz̄

)
zlz̄−r

|decay〉η→0 = η2

|constant〉η→0 = 1

where b−, b+ are some constants. |decay〉 modes form the irreducible discrete series. They are either highest or lowest
weight representations. This we have discussed in previous section.

To understand the issue let us see the general | − 1, l = 0, r〉 mode

φ0,r(z, z̄, η) =
(z
z̄

) r
2

η−r
[
A1i
−r
(
zz̄

η2

)− r
2

2F1

(
0, 1, 1− r, zz̄

η2

)
+A2i

r

(
zz̄

η2

) r
2

2F1

(
r, 1 + r, 1 + r,

zz̄

η2

)]
= A1i

−r z̄−r +A2i
r

(
z

η2

)r (
1− zz̄

η2

)−r
.

We see that there is only a constant part. Now let us apply K−L,K+L

K−L|0, r〉 = A2ri
−1+rz−1+rη2r

(
1− zz̄

η2

)−r−1

= | − 1, r〉decay

K+L|0, r〉 = A1ri
−1−r z̄−1−rη2 = |1, r〉decay .

Thus we get only the decaying modes. This shows that the growing modes convert into decaying modes and proves
that limit of complementary series is indecomposible representation. Figure 3 gives the weight space diagram for the
limit of complementary series to illustrate this point.

IV. TRANSFORMATION FROM |l, r〉 BASIS TO MOMENTUM BASIS

In this section we derive the transformation from a momentum basis (eigenstate of L−1 operator) to the l, r basis
(eigenstates of L0, L̄0 operator with eigenvalue l, r respectively. ). One reason to do it is that the scalar field in the
bulk is generally written in momentum basis but boundary operators are generally expressed in l, r basis. Subsection
(IVA) gives in detail the calculations for principal series. In subsection (IVB) we summarize the main results and
compare the differences between the two representations.

A. Principal series

Momentum basis are eigenstates of L−1 = −∂z, L̄−1 = −∂z̄. l, r basis are eigenstate of L0 = − (z∂z + h) , L̄0 =
−
(
z̄∂z̄ + h̄

)
respectively. We want to find the coefficients ck,l,r of the relation

|k, k̄〉 =
∑

ck,l,r|l, r〉 (10)
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Figure 3. Weight space diagram for limit of complementary series. x-y axes are the l, r values. Solid dots represent states for all
non-zero l, r. These states have both constant and decaying modes. Empty dots for l = 0 or r = 0 represent states which have
only constant modes. K±L shift the states right and left respectively.K±L acting on constant modes of l = 0 states, convert
them to decaying modes. Similarly K±R shift the states up and down respectively. K±R acting on constant modes of r = 0
states, convert them to decaying modes.

Our approach is similar to what Lindbad et al do in section (4A) of [28]. From commutation relation [Ln, φl] =
((h− 1)n− l)φn+l we get

L0|l, r〉 = −l|l, r〉 (11)
L1|l, r〉 = (h− 1− l) |l + 1, r〉 (12)
L−1|l, r〉 = (1− h− l) |l − 1, r〉 (13)

L−1|k, k̄〉 =

(
ik̄

2

)
|k, k̄〉 . (14)

To find ck,l,r we act with L−1 on both the side of equation (10)

L−1|k, k̄〉 =
∑

ck,l,rL−1|l, r〉(
ik̄

2

)
〈l′, r′|k, k̄〉 =

∑
ck,l,r(−l + 1− h)〈l′, r′|l − 1, r〉(

ik̄

2

)
ck,l′,r′ = ck,l′+1,r′(−l′ − h) .

Solving the recurrence relation we get

ck,l,r = ck,l−1,r

(
−ik̄

2

)
1

(h+ l − 1)

=⇒ ck,l,r =

(
−ik̄

2

)l
h!

(h+ l − 1)!
ck,0,r

=

(
−ik̄

2

)l
Γ(h+ 1)

Γ(h+ l)
ck,0,r

=

(
−ik̄

2

)l
sin(π(h+ l))

π
Γ(h+ 1)Γ(1− h− l)ck,0,r

=

(
−ik̄

2

)l
sin(πh) cos(πl) + cos(πh) sin(πl)

π
Γ(h+ 1)Γ(1− h− l)ck,0,r

=

(
ik̄

2

)l
sin(πh)

π
Γ(h+ 1)Γ(1− h− l)ck,0,r
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In the third step, we have used the identity

Γ(h+ l)Γ(1− h− l) =
π

sin(π(h+ l))

Then, since l is integer

sin(πl) = 0 cos(πl) = (−1)l

Similarly one can derive ck,0,r by the action of L̄−1. Finally one gets

ck,l,r =

(
ik

2

)r (
ik̄

2

)l(
sin(πh)

π

)2

Γ(h+ 1)2Γ(1− h− l)Γ(1− h− r)ck,0,0

We choose normalization ck,0,0 =
(

π
sin(πh)(−2i)hΓ(h+1)

)2
i
|k| . Plugging this back into equation (10) we get

|k, k̄〉 =
∑(

ik

2

)r−1/2(
ik̄

2

)l−1/2

(−2i)−2h−1Γ(1− h− l)Γ(1− h− r)|l, r〉 . (15)

We can now invert equation (15).

|l, r〉 =
1

(2πi)2

˛
dkdk̄

(
ik

2

)−r−1/2(
ik̄

2

)−l−1/2
(−2)2h+1

Γ(1− h− l)Γ(1− h− r)
|k, k̄〉 . (16)

One can check that this is consistent with equation (15). To see that start with the RHS of the above equation,
substitute |k, k̄〉 from equation (15) and we get the LHS of above equation

1

(2πi)2

˛
dkdk̄

(
ik

2

)−r′−1/2(
ik̄

2

)−l′−1/2
(−2i)2h−1

Γ(1− h− l′)Γ(1− h− r′)
|k, k̄〉

=
∑
l.r

1

(2πi)2

˛
dkdk̄

(
ik

2

)−r′+r−1(
ik̄

2

)−l′+l−1 −Γ(1− h− l)Γ(1− h− r)
4Γ(1− h− l′)Γ(1− h− r′)

|l, r〉

=
∑
l.r

δll′δrr′
Γ(1− h− l)Γ(1− h− r)

Γ(1− h− l′)Γ(1− h− r′)
|l, r〉

= |l′, r′〉 .

Now we know the basis transformations each way |k, k̄〉 ↔ |l, r〉, we can write this as a boundary operator/state
correspondence as follows

O(z, z̄)|0〉 = |z, z̄〉 =
∑
l,r

1

zh+lz̄h+r
|l, r〉

O(z, z̄)|0〉 = |z, z̄〉 =

˛
dkdk̄

(2πi)2
e

i
2 (kz̄+k̄z)|k|2h−1|k, k̄〉 .

So RHS of the above two equations must be equal. That is∑
l,r

1

zh+r z̄h+l
|l, r〉 =

˛
dkdk̄

(2πi)2
e

i
2 (kz̄+k̄z)|k|2h−1|k, k̄〉 . (17)

To verify that, substitute |l, r〉 from equation (16) in LHS to get the RHS.

|z, z̄〉 =
∑
l,r

1

zh+lz̄h+r
|l, r〉

=
1

(2πi)2

˛
dkdk̄

∑
l,r

(
ikz̄

2

)−r−1/2(
ik̄z

2

)−l−1/2
(−2i)2h−1

Γ(1− h− l)Γ(1− h− r)
|k, k̄〉

=
1

(2πi)2

˛
dkdk̄|k|2h−1

∑
l,r

(
ikz̄

2

)−h−r (
ik̄z

2

)−h−l
1

Γ(1− h− l)Γ(1− h− r)

 |k, k̄〉
=

1

(2πi)2

˛
dkdk̄|k|2h−1e

i
2 (kz̄+k̄z)|k, k̄〉 .
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Here we have used the identity

ez =
∑
n∈Z

zh+n

Γ(h+ n+ 1)
.

When h is integer, 1
Γ(h+n+1) = 0 for n < −h. Thus

ez =
∑
n≥−h

zh+n

Γ(h+ n+ 1)

=
∑
m≥0

zm

Γ(m+ 1)

coincides with the usual definition of exponential function. When h is non integer, negative powers of z appear in the
sum. Each such term diverges at the the origin but the sum is finite.

B. Summary

The boundary operator/state correspondence is

O(z, z̄)|0〉 =

{∑
l,r≤0

1
zlz̄r
|l − h, r − h〉 HighestWeight∑

l,r
1

zh+lz̄h+r |l, r〉 Principal Series

Transforming to the momentum basis we get

O(z, z̄)|0〉 =
1

(2πi)2

˛
dkdk̄|k|2h−1e

i
2 (kz̄+k̄z)|k, k̄〉 .

We can also transform back. As we have already stated in subsection (IVA), the key identity is

ez =
∑
n∈Z

zh+n

Γ(h+ n+ 1)
=
∑
m≥0

zm

Γ(m+ 1)

where h is integer.
In the momentum basis, the expansion

O(z, z̄)|0〉 =

˛
dkdk̄

(2πi)2
e

i
2 (kz̄+k̄z)|k|2h−1|k, k̄〉

takes the same form for both the highest weight and principal series representation. So any two or three-point
correlation function in the momentum or position basis is going to have the same scaling form for principal series and
highest weight representation since the form is fixed by conformal symmetry. For example,

〈O(z)O(w)〉principal-series =
1

(z − w)
2h

〈O(z)O(w)〉highest-weight =
1

(z − w)
2h

where h is the weight of operator. It is real for highest weight rep but complex for principal series. Now consider the
following 2-point function 〈

¸
wk+hφ(w)

¸
zkφ(z)〉 (h is the weight of the operator). For highest weight representation

〈
˛
wk+hφH(w)

˛
zkφH(z)〉 = 0 (for k ∈ Z+)

because
¸
zkφH(z)|0〉 = 0 for k ∈ Z+.
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For principal series representation it gives

〈
˛
wk+hφNH(w)

˛
zkφNH(z)〉

= 〈
∑

−∞<m<∞

˛
wk−mdwφm

∑
−∞<n<∞

˛
zk−n−hdzφn〉

= 〈φk+1

∑
−∞<n<∞

rk−n−h+1
(
e2πi(k−n−h+1) − 1

)
i(k − n− h+ 1)

φn〉

=
i
(
e−2πhi − 1

)
hrh

where r is the radius of the circular loop around the origin. So we have constructed an observable which vanishes for
highest weight CFT but does not vanish for non-highest weight CFT.

Another way to distinguish them is to compute the correlation function in l, r basis

〈(L0O(l, r)) (L0O(l, r))〉principal-series = 〈l, r|L†0L0|l.r〉 = l2

〈(L0O(l, r)) (L0O(l, r))〉highest-weight = 〈l − h, r − h|L†0L0|l − h.r − h〉 = (l − h)2 .

For principal series, we get integer squared and is independent of the weight. Whereas for highest weight, it is
non-integer and depends on the weight of the operator.

V. OPE OF CONTINUOUS (PRINCIPAL AND COMPLEMENTARY) SERIES REPS.

In this section we derive operator product expansion (OPE) for the principal series. First we will review the
calculation for highest weight CFT from [37]. Then we will extend the derivation for principal series with suitable
modification.

A. Highest weight OPE

Start with an ansatz

O1(z)O2(0) =
∑
k≥0

βkz
∆3−∆1−∆2+k

(
∂

∂ζ

)k
O3(ζ)|ζ→0 . (18)

Then using symmetry we can determine the coefficients. Commute left side with L1. Using the relation

[L1, O∆(z)] =

[
z2 ∂

∂z
+ 2∆z

]
O∆(z)

we get

[L1, O1(z)O2(0)] =

[
z2 ∂

∂z
+ 2∆1z

]
O1(z)O2(0) .

Substituting the ansatz from equation (18) in the right side we get

[L1, O1(z)O2(0)] =
∑
k≥0

βkz
∆3−∆1−∆2+k+1 (∆3 + ∆1 −∆2 + k)

(
∂

∂ζ

)k
O(ζ)|ζ→0 . (19)

Now commuting L1 with the right side of equation (18) we get

∑
k≥0

βkz
∆3−∆1−∆2+k

(
∂

∂ζ

)k
[L1, O(ζ)] |ζ→0 =

∑
k≥0

βkz
∆3−∆1−∆2+k

(
∂

∂ζ

)k (
ζ2 ∂

∂ζ
+ 2ζ∆3

)
O(ζ)|ζ→0 . (20)
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We can now match the coefficient of power series of equations (19) and (20). Let us set ∆1 = ∆2 for simplicity. As
an example, let us match the coefficient of z∆3−∆1−∆2+1

β0
Γ (∆3 + ∆1 −∆2 + 1)

Γ (∆3 + ∆1 −∆2)
O(ζ)|ζ→0 = β1

(
∂

∂ζ

)(
ζ2 ∂

∂ζ
+ 2ζ∆3

)
O(ζ)|ζ→0

β0∆3O(ζ)|ζ→0 = β1

(
2∆3 + 2ζ

∂

∂ζ
+ ζ2

(
∂

∂ζ

)2
)
O(ζ)|ζ→0 . (21)

For highest weight O(ζ)|ζ→0 is finite and ζ ∂
∂ζO(ζ)|ζ→0 = 0. Thus we get

β1 =
β0

2
.

Similarly matching all the terms, we get

O1(z)O2(0) = β123

∑
z∆3−2∆1

1F1

(
∆3, 2∆3, z

∂

∂ζ

)
O3(ζ)|ζ→0 . (22)

The above equality can also be derived, starting from the 3 point function

〈O(z1)O(z2 → 0)O(z3)〉 = β123

zh1 (z3−z1)hzh3
= β123z

−h
1

(
1 + h

z1

z3
+ ...

)
1

z2h
3

. (23)

B. Principal series

For the principal series the OPE will take the form

O1(z)O2(0) =
∑
k>0 β−kz

∆3−∆1−∆2−k (L1)
k
O3(ζ)|ζ→0 +

∑
k≥0

βkz
∆3−∆1−∆2+k (L−1)

k
O3(ζ)|ζ→0 . (24)

Here we have also added terms with L1O because for principal series L1O 6= 0 in general. Again we commute with
L1 to determine βk. Commuting the left side of equation (24) we get

[L1, O1(z)O2(0)] =
∑
k>0

βkz
∆3−∆1−∆2+k

(
z (∆3 + ∆1 −∆2 + k) (L−1)

k
+

(
ζ2 ∂

∂ζ
+ 2∆2ζ

)
(L−1)

k

)
O(ζ) .

Commuting the right side of equation (24) we get

[L1, O1(z)O2(0)] =
∑
k>0

βkz
∆3−∆1−∆2+k

[
L1, (L−1)

k
O(ζ)

]
.

Equating the above two equations gives

βk+1

(
Lk+1
−1

(
ζ2 ∂

∂ζ
+ 2∆3ζ

)
−
(
ζ2 ∂

∂ζ
+ 2∆2ζ

)
(L−1)

k+1

)
O(ζ)

= βk (∆3 + ∆1 −∆2 + k) (L−1)
k
O(ζ) . (25)

Similarly, to determine β−k we can commute both sides with L−1

[L−1, O1(z)O2(0)] =
∑
k>0

β−kz
∆3−∆1−∆2−k−1

(
(∆3 −∆1 −∆2 − k) (L1)

k
+ z (L1)

k
L−1

)
O(ζ) .

Commuting the right side of equation (24) we get

[L−1, O1(z)O2(0)] =
∑
k<0

β−kz
∆3−∆1−∆2−k

[
L−1, (L1)

k
O(ζ)

]
.

Equating the two sides we get

β−k−1

[
L−1, L

k+1
1

]
O(ζ)|ζ→0 = β−k (∆3 −∆1 −∆2 − k) (L1)

k
O(ζ) . (26)
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Simplifying equation (25) gives

βk+1

(
2 (k + 1 + ∆3 −∆2) ζ

(
∂

∂ζ

)k+1

+ (k + 1) (k + 2∆3)

(
∂

∂ζ

)k)
O(ζ)

= βk (∆3 + ∆1 −∆2 + k)

(
∂

∂ζ

)k
O(ζ) . (27)

An important thing to note is that recursion relations explicitly depend on O(ζ). Now we substitute the expansion

O3(ζ) =
∑
j

O3j

ζh+j

and compare the coefficient of same power of ζ, we get

βk+1 = βk
(∆3 + ∆1 −∆2 + k)

(2 (k + 1 + ∆3 −∆2) (−h− j − k) + (k + 1) (k + 2∆3))
.

We find that βk depends on j. This suggests that we must start with an OPE of the form

O1(z)O2(ζ) =
∑
j

(∑
k>0

β−k,jz
∆3−∆1−∆2−k (L1)

k O3j

ζj
+
∑
k>0

βk,jz
∆3−∆1−∆2+k (L−1)

k O3j

ζj

)
. (28)

Then going through the above derivation we get

βk+1,j = −βk,j
(∆3 + ∆1 −∆2 + k)

(k −K+) (k −K−)

β−k−1,j = β−k,j
(∆3 −∆1 −∆2 − k)

(k + 2∆3 + 2j + 2h)(k + 1)

where

K± =
1

2

(
1 + 2 (∆2 − j − h)±

√
(1 + ∆2)

2
+ 4 (2∆3 − j − h) (1− j − h)

)
.

Calculations are shown in the appendix.
Then equation (28) can be written in terms of hypergeometric functions

O1(z)O2(ζ) =
∑
j

z∆3−∆1−∆2β0,j

(
1F1

(
∆1 + ∆2 −∆3; 2∆3 + 2j + 2h;−1

z

(
ζ2 ∂

∂ζ
+ 2∆3ζ

))
O3j

ζh+j

+ 2F2

(
∆3 + ∆1 −∆2, 1;K+,K−;−z ∂

∂ζ

)
O3j

ζh+j

)
.

This is the conformal partial wave expansion for the principal series.
Using equation (17), we can show that above equation is equivalent to three point function

〈O(z1)O(z2 → 0)O(z3)〉 =
β123

zh1 (z3 − z1)
h
zh3

given β0,j = β123.
The main conclusion is that there are infinitely many singular terms coming from terms like Lk1O in the OPE. The

OPE therefore has an essential singularity, unlike any known conformal field theory that may be viewed as arising
from a renormalizable field theory. This puts the set of interacting conformal field theories based on representations
containing the principal series well outside the class of conventional quantum field theories. The OPE also depends on
an infinite number of parameters that are free at this level of analysis, compared to the single parameter one normally
encounters in CFT. If these CFTs of relevance for de Sitter space exist, it seems they have more in common with
non-renormalizable theories, than with conventional CFTs.

Finally we note all the conclusions of the present section carry over to the complementary series, provided we take
h in the appropriate range 1 > h > 1/2.
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VI. CONCLUSION

de-Sitter holography implies that bulk and boundary states should be in principal, complementary, discrete series
and indecomposible representations. Some of the details of these representations were studied from the conformal
field theory perspective. In particular, we analyzed the implications of global conformal invariance for the operator
product expansion. Because the weights of the principal and complementary series are unbounded, there end up being
infinitely many singular terms in the operator product expansion. Nevertheless, this is compatible with the usual
simplifications of the two and three-point functions of quasi-primary operators. The essential singularity present
in these operator product expansions is not reproducible from conventional quantum field theories. The essential
singularity and the infinite number of free parameters is related to our earlier result in [10], that in dS we do not have
an ordinary CFT on the boundary but a theory of conformal gravity.
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APPENDIX

A. Bulk isometries

Bulk SO(3, 1) isometries can be expressed in terms of embedding coordinates XA = (Y1, Y2, Z, T )

zAB = i (XB∂A −XA∂B) (29)

where de Sitter spacetime is the hyperboloid

R2 = Y 2
1 + Y 2

2 + Z2 − T 2 .

Poincare coordinates (y1, y2, η) are given by

T =
R

2
(η − 1

η
)− 1

2Rη
(y2

1 + y2
2)

Y1 =
y1

η

Y2 =
y2

η

Z =
R

2
(η +

1

η
)− 1

2Rη
(y2

1 + y2
2) .

With inverse relations

η =

√
Y 2

1 + Y 2
2 + Z2 − T 2

Z − T

y1 =
Y1

Z − T

y2 =
Y2

Z − T
.
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Equation (29) in R, η, y1, y2 coordinates becomes

J3 ≡ JY1Y2
= i (y2∂y1 − y1∂y2)

J2 ≡ JZY1
= −i

(
1 + y2

1 − y2
2 + η2

2
∂y1 + y1y2∂y2 + y1η∂η

)
−J1 ≡ JZY2

= −i
(

1− y2
1 + y2

2 + η2

2
∂y2 + y1y2∂y1 + y2η∂η

)
K1 ≡ KY1T = −i

(
−1 + y2

1 − y2
2 + η2

2
∂y1 + y1y2∂y2 + y1η∂η

)
K2 ≡ KY2T = −i

(
−1− y2

1 + y2
2 + η2

2
∂y2 + y1y2∂y1 + y2η∂η

)
K3 ≡ KZT = −i (y1∂y1 + y2∂y2 + η∂η) .

We can go to the complex coordinate z = y1 + iy2 and define

JL = z∂z +
η

2
∂η , K+L = i

(
z2∂z + η2∂z̄ + zη∂η

)
, K−L = −i∂z

JR = −z̄∂z̄ −
η

2
∂η , K−R = −i

(
z̄2∂z̄ + η2∂z + z̄η∂η

)
, K+R = i∂z̄ .

We see that they take very simple form in Poincare coordinates compared to spherical coordinates.

B. OPE calculation for principal series

Calculation of βk,j is same as in equation (27).

βk+1,j

(
2 (k + 1 + ∆3 −∆2) ζ

(
∂

∂ζ

)k+1

+ (k + 1) (k + 2∆3)

(
∂

∂ζ

)k)
ζ−h−j

= βk,j (∆3 + ∆1 −∆2 + k)

(
∂

∂ζ

)k
ζ−h−j

βk+1,j (2 (k + 1 + ∆3 −∆2) (−h− j)...(−h− j − k) + (k + 1) (k + 2∆3) (−h− j)...(−h− j − k + 1)) ζ−h−j−k

= βk,j (∆3 + ∆1 −∆2 + k) (−h− j)...(−h− j − k + 1)ζ−h−j−k

βk+1,j (2 (k + 1 + ∆3 −∆2) (−j − h− k) + (k + 1) (k + 2∆3)) ζ−h−j−k

= βk,j (∆3 + ∆1 −∆2 + k) ζ−h−j−k

βk+1,j

= −βk,j
(∆3 + ∆1 −∆2 + k)

(k −K+) (k −K−)

where

K± =
1

2

(
1 + 2 (∆2 − j − h)±

√
(1 + ∆2)

2
+ 4 (2∆3 − j − h) (1− j − h)

)
.

Calculation of β−k,j is

β−k−1,j

[
L−1, L

k+1
1

]
ζ−h−j

= β−k,j (∆3 −∆1 −∆2 − k) (L1)
k
ζ−h−j

β−k−1,j ((2∆3 + k − h− j − 1) ... (2∆3 − h− j − 1) (−h− j)− (2∆3 + k − h− j) ... (2∆3 − h− j) (k − h− j + 1)) ζ−h−j+k

= β−k,j (∆3 −∆1 −∆2 − k) (2∆3 + k − 1− h− j) ... (2∆3 − h− j) ζ−h−j+k

β−k−1,j ((2∆3 − h− j − 1) (−h− j)− (2∆3 + k − h− j) (k − h− j + 1)) ζ−h−j+k

= β−k,j (∆3 −∆1 −∆2 − k) ζ−h−j+k

β−k−1,j

= β−k,j
(∆3 −∆1 −∆2 − k)

(k + 2∆3 + 2j + 2h)(k + 1)
.
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