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For a perturbation of the state of a Conformal Field Theory (CFT), the response of the

entanglement entropy is governed by the so-called “first law” of entanglement entropy, in

which the change in entanglement entropy is proportional to the change in energy. Whether

such a first law holds for other types of perturbations, such as a change to the CFT La-

grangian, remains an open question. We use holography to study the evolution in time t of

entanglement entropy for a CFT driven by a t-linear source for a conserved U(1) current or

marginal scalar operator. We find that although the usual first law of entanglement entropy

may be violated, a first law for the rates of change of entanglement entropy and energy still

holds. More generally, we prove that this first law for rates holds in holography for any

asymptotically (d + 1)-dimensional Anti-de Sitter metric perturbation whose t dependence

first appears at order zd in the Fefferman-Graham expansion about the boundary at z = 0.

I. INTRODUCTION, SUMMARY, AND OUTLOOK

Many-body systems in thermal equilibrium are governed by universal laws, the laws of thermo-

dynamics. Many-body systems perturbed out of thermal equilibrium are also governed by universal

laws, the laws of hydrodynamics (for sufficiently small perturbations and at sufficiently late times).

What laws, if any, govern many-body systems driven far from equilibrium? This question is of cen-

tral importance in many branches of physics, from cosmology (the electroweak phase transition, the

Kibble-Zurek mechanism, etc.) to condensed matter physics (quantum quenches, thermalization,

etc.) to heavy ion collisions (thermalization and isotropization of the quark-gluon plasma), and

beyond. Many of these phenomena, such as thermalization, necessarily involve interactions. Few
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reliable techniques exist for studying interacting systems far from equilibrium, hence the question

remains open.

Cardy and Calabrese pioneered the use of entanglement entropy (EE), SEE, to characterize

far-from-equilibrium systems [1–4]. The EE of a sub-region of space at a fixed time, t, is defined

as the von Neumann entropy of the reduced density matrix, ρ, obtained by tracing out the states

in the rest of space (i.e. the region’s complement), SEE ≡ −tr (ρ ln ρ).

Cardy and Calabrese focused on a quantum quench of a coupling in the Hamiltonian to a value

that produces a Conformal Field Theory (CFT), and used the powerful techniques of (boundary)

CFT in spacetime dimension d = 2 to compute SEE, for a spatial interval of length ℓ. They showed

that after the quench ends, SEE evolves linearly in t, and then saturates at a time proportional

to ℓ/c, with c the speed of light. They also provided an intuitive model for SEE’s evolution,

in terms of maximally-entangled (EPR) pairs of particles produced by the quench, which are

necessarily massless, due to the CFT’s scale invariance, and hence move at speed c. Liu and

Suh proposed, based on evidence from the Anti-de Sitter/CFT (AdS/CFT) correspondence, also

known as holography, that when d > 2, Cardy and Calabrese’s massless particle model becomes

an “entanglement tsunami” in which a quench produces a wave-front of entangled excitations that

moves inward from the region’s boundary [5–7].

Crucially, EE obeys constraints that ultimately come from unitarity, and that can be, and

have been, used to constrain far-from-equilibrium evolution in quantum systems. For example,

for two density matrices ρ and ρ′ in the same Hilbert space, their relative entropy, S(ρ|ρ′) ≡
tr (ρ ln ρ)− tr (ρ ln ρ′), is non-negative, and indeed provides a measure of the “statistical distance”

or distinguishability between them. Positivity of relative entropy, S(ρ|ρ′) ≥ 0, played a key role in

proving speed limits on entanglement tsunamis [5–9].

Further constraints can be derived from S(ρ|ρ′) ≥ 0. In particular, if ρ and ρ′ are close, so that

ρ′ = ρ+ δρ with δρ small, then expanding S(ρ|ρ′) to first order in δρ gives a constraint called the

“First Law of EE” (FLEE) [10–13]:

δSEE = δ〈H〉, (1)

where δSEE is the change in EE, H is the modular Hamiltonian, defined via ρ ≡ e−H , and δ〈H〉
is the change in H’s expectation value. If ρ is a thermal density matrix with temperature T , then

the FLEE becomes the usual first law of thermodynamics, δS = δE/T , with entropy S and energy

E. If ρ is the reduced density matrix of a spatial sub-region, then generically H and δ〈H〉 are

complicated non-local objects that are difficult to calculate. However, for a spherical sub-region
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in a CFT vacuum, H is a product of two factors, integrated over the sphere’s volume. The first

factor is δE, or in terms of the stress-energy tensor Tµν (µ, ν = 0, 1, . . . , d − 1, with x0 ≡ t), the

change in 〈Ttt〉 in the sub-region. The second factor depends only on geometric data, including

in particular the sphere’s radius, R [13, 14]. For perturbations with δ〈Ttt〉 constant in space, or

for spheres sufficiently small that δ〈Ttt〉 can be approximated as constant, the integral is easily

performed, with the result

δSEE =
δE

Tent
, (2)

where the “entanglement temperature,” Tent, depends on R and d,

T sphere
ent =

d+ 1

2πR
, (3)

but is independent of any other details of the CFT or of the state ρ. For a “strip” sub-region,

consisting of two parallel planes separated by a distance ℓ, holographic CFTs also obey eq. (2),

but now with [10]

T strip
ent =

2 (d2 − 1) Γ
(

d+1
2(d−1)

)

Γ
(

d
2(d−1)

)2

√
π Γ
(

1
d−1

)

Γ
(

1
2(d−1)

)2

1

ℓ
. (4)

The FLEE does not hold for arbitrary deformations. In quantum mechanics, the FLEE holds

only for “completely positive trace-preserving” maps, linear maps that are combinations of unitary

transformations, partial tracing, and adding sub-systems—for a precise definition, see for example

appendix A of ref. [12], and references therein.

In a continuum Quantum Field Theory (QFT), what deformations obey the FLEE? Finding

a precise answer appears to be more challenging than in quantum mechanics. In particular, in

continuum QFT, ρ generically has an infinite number of eigenvalues, so in what sense can a per-

turbation of the eigenvalues, δρ, be small? Currently the best intuition appears to be that, for

compact sub-regions, the FLEE should hold when δ〈Tµν〉 is small, relative to the scale set by the

sub-region’s size [12].

In this paper we will consider perturbations that go beyond a change of state: we will deform a

CFT Hamiltonian by a relevant or marginal operator with a t-dependent source, which drives the

CFT far from equilibrium. We will focus on sources linear in t, although our most general results

apply to a larger class of sources, characterized most precisely via holography, as we discuss below.

For our cases, we will show two things: first, generically the näıve FLEE in eq. (2) is violated, and

second, a relation very similar to eq. (2) holds for the rates of change of EE and energy.



4

We will restrict to CFTs with holographic duals, mainly because holography is currently the

easiest way to compute SEE in interacting QFTs. Computing SEE holographically requires two

steps. First, we must solve Einstein’s equation for the asymptotically-AdSd+1 metric, Gmn (m,n =

0, 1, . . . , d), of the holographically dual spacetime. We will mostly work with a Fefferman-Graham

(FG) holographic coordinate z with asymptotic AdSd+1 boundary at z = 0, where the CFT “lives.”

Second, we must compute the area of the extremal surface that at the asymptotic AdSd+1 boundary

coincides with the entangling region’s boundary in the dual QFT. SEE is then that area divided

by 4GN , with Newton’s constant GN [15–19].

In holography, a deformation of the CFT Hamiltonian by a relevant or marginal operator

corresponds to a change of the bulk metric, Gmn → Gmn + δGmn. Our unperturbed metric Gmn

will be asymptotically AdSd+1 and independent of t and the CFT spatial coordinates, but otherwise

arbitrary. Our main examples of Gmn will be Poincaré patch AdSd+1, dual to the CFT vacuum,

and the AdSd+1 black brane, dual to the CFT with non-zero T . Our perturbation δGmn will

preserve the asymptotic AdSd+1, but generically depend on t. Our only non-trivial assumption

will be that t-dependence in δGmn first appears at order zd in the FG expansion. In other words,

the t dependence of δGmn will be arbitrary, except terms in the FG expansion with powers of z

smaller than zd will be t-independent. With that assumption, in section II we will prove a “First

Law Of Entanglement Rates” (FLOER),

∂tδSEE =
∂tδE

Tent
, (5)

where Tent depends on the unperturbed Gmn and the extremal surface therein. If the unperturbed

Gmn is Poincaré patch AdSd+1, then Tent is identical to that in eq. (3) or (4).

Our proof of eq. (5) can also be straightforwardly extended to deformations by sources which

are position-dependent instead of time-dependent, provided the corresponding assumptions about

Gmn and δGmn are satisfied. The resulting FLOER involves rates of change in a spatial coordinate

x1 ≡ x, rather than t, i.e. ∂xδSEE = ∂xδE/Tent. However, given our motivation to understand

far-from-equilibrium evolution, and also for clarity, we will continue to refer only to t-dependent

sources, unless stated otherwise.

Eq. (5) is our main result. The key assumption underlying eq. (5), that t-dependence in δGmn

appears first at order zd in the FG expansion, characterizes the most general class of perturba-

tions for which our FLOER holds, and turns out to be a relatively mild constraint. Indeed, in

sections III, IV, and V we discuss various non-trivial examples that illustrate how easily our key

assumption can be satisfied with a t-linear source. Our examples also provide our other main result:
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in many of our examples the FLEE in eq. (2) is explicitly violated, indicating that the FLOER

may be more fundamental than the FLEE, as we discuss below.

In sections III and IV, we consider holographic CFTs in d = 3 and 4, respectively, each with a

conserved current Jµ of a global U(1) symmetry. In each case, in the CFT we introduce a constant

external electric field E in the x direction, that is, we add to the CFT Lagrangian a relevant

deformation ∝ t EJx, resulting in a current, 〈Jx〉 6= 0. We introduce no charge density, 〈J t〉 = 0,

so the current arises exclusively from Schwinger pair production, i.e. production of maximally-

entangled particle-anti-particle (EPR) pairs. Crucially, in our examples, 〈Jx〉 is t-independent.

As a result, the Ward identity ∂µT
µν = F νρJρ implies Joule heating, ∂t〈Ttt〉 = E〈Jx〉, that is

also t-independent. As a convenient shorthand, we will call such states “Non-Equilibrium Steady-

States” (NESS): non-equilibrium because ∂t〈Ttt〉 6= 0, but steady states because 〈Jx〉 and ∂t〈Ttt〉
are t-independent.

In holography, Tµν is dual to Gmn, and J
µ is dual to a U(1) gauge field, Am. On the gravity

side of the duality, our examples in sections III and IV thus both have Gmn and Am, albeit with

some essential differences.

In section III, we consider Einstein-Maxwell theory in AdS4, which arises for example from the

consistent truncation of eleven-dimensional supergravity on AdS4 × S7 down to AdS4 [20, 21]. In

that example, the dual CFT is the ABJM theory, i.e. the N = 6 supersymmetric (SUSY) Chern-

Simons-matter CFT in d = 3 [22]. Our NESS are dual to spacetimes with a null U(1) field strength

and AdS4-Vaidya metric [23], describing a horizon that moves towards the asymptotically AdS4

boundary as t increases.

In contrast, in section IV our Am has a probe Dirac-Born-Infeld (DBI) action in a fixed asymp-

totically AdS5 background. Specifically, we consider asymptotically AdS5 × S5 solutions of type

IIB supergravity with a number Nf of probe D7-branes along AdS5 × S3. The type IIB solutions

are dual to states of N = 4 SU(Nc) SUSY Yang-Mills (SYM) theory in d = 4, at large Nc and

large ’t Hooft coupling, and the probe D7-branes are dual to a number Nf ≪ Nc of N = 2 SUSY

hypermultiplets in the fundamental representation of SU(Nc), i.e. flavor fields. When T 6= 0, 〈T µν〉
receives order N2

c and NfNc contributions from the N = 4 SYM and flavor fields, respectively. We

may thus think of the flavors as probes inside a huge heat bath. Our NESS exist because E pumps

energy into the flavor sector at the same constant rate that the flavors dissipate energy into the

heat bath. To obtain δSEE we compute only the linearized (not the full non-linear) back-reaction

of Am onto Gmn.

Although in sections III and IV we focus on particular “top-down” string/M-theory construc-
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tions, in each case our analysis should easily generalize to many other systems of U(1) gauge fields

in asymptotically AdSd+1 spacetimes, either fully back-reacted, as in section III, or with linear

back-reaction of a probe, as in section IV.

In section V, we consider holographic CFTs in d = 2, 3, 4 with a marginal scalar operator O,

and add to the CFT Lagrangian a deformation ∝ tO. In holography, a marginal O is dual to a

massless scalar field, φ. In section V we compute only φ’s linearized back-reaction onto Gmn, and

only in the asymptotically AdSd+1 region, which suffices to establish the FLOER. (The appendix

contains the results of the holographic renormalisation [24] of φ in d = 3 and 4 that we use in

section V.) In section V we also follow ref. [25], and add to the CFT Lagrangian a deformation

∝ xO. In that case, a spatial FLOER is satisfied trivially, because in the system of ref. [25] both

δSEE and δE turn out to be x-independent.

In our examples symmetries actually require Tmn to depend only on z, and not on t. In

sections III and IV, U(1) gauge invariance implies that Tmn depends only on Am’s field strength,

Fmn, which is t-independent because our solutions for Am are linear in t. In section V, the massless

scalar φ has a shift symmetry φ → φ + C with constant C, which implies Tmn depends only on

derivatives of φ, and hence is t-independent because our solutions for φ are linear in t. Time-

dependence is instead generated by off-diagonal terms Ttz = Tzt which, via Einstein’s equation,

force δGmn to depend on both z and t. Indeed, such off-diagonal terms in Tmn indicate ∂t〈Ttt〉 6= 0

in the dual QFT [26], i.e. the system is out of equilibrium. We emphasize, however, that while the

symmetries of our examples are sufficient to guarantee that δGmn obeys our key assumption, they

are not strictly necessary.

In terms of the CFT generating functional, in all of our examples we deform the CFT by a

source linear in t. Such deformations are not quenches in any conventional sense: our systems

do not necessarily approach equilibrium in the infinite past or future. At best, our deformations

could perhaps be interpreted as an endless series of global quenches, one right after another, every

moment in t. More succinctly, our systems are driven by a source linear in t (not periodic in t, in

contrast to ref. [27]). We emphasize again, however, that our examples are only a subset of a much

larger class of t-dependent deformations, as mentioned above.

To summarize, we have identified a law governing a certain class of far-from-equilibrium systems.

Specifically, we extended the FLEE in eq. (2) beyond deformations of the state, to deformations of

the Hamiltonian, characterized holographically by δGmn whose t-dependence first appears at order

zd in the FG expansion. For such deformations, we have shown that the FLOER of eq. (5) holds,

while the FLEE of the form in eq. (2) in general does not.
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Looking to the future, our results have implications both practical and conceptual. In practical

terms, the FLOER may be useful because ∂tδE is often easier to calculate than ∂tδSEE. In

particular, if we can argue that the FLOER holds, and we know Tent, then we can obtain ∂tδSEE

by calculating ∂tδE, for example via the Ward identity ∂µT
µν = F νρJρ.

Of the many conceptual questions our results raise, we will highlight only three. First, given

that the same Tent appears in our FLOER and in the FLEE of eq. (2), can the FLOER simply

be integrated to obtain the FLEE? In our examples where the FLEE is violated, δSEE has a t-

independent contribution absent from δE. Apparently, integrating the FLOER produces different

integration constants in δSEE and δE. We suspect that the difference arises from initial conditions.

For instance, imagine “turning on” our t-linear source at t = 0. We expect EE and energy to be

produced immediately. However, the EE is only sensitive to entanglement across the entangling

surface, so in an entanglement tsunami description some of the EPR pairs produced at t = 0 will

contribute to SEE only after some “lag time” required for one EPR partner to leave the sub-region.

The lag time should be on the order of the sub-region’s size, as indeed we find in some of our

examples.

Second, when the FLOER holds but the FLEE in the form of eq. (2) is violated, could the

FLEE in the form of eq. (1) still hold? This is only possible if δ〈H〉 6= δE/Tent. The crucial

point is that we are not comparing two states in the same Hilbert space. We are changing the

CFT Hamiltonian, which changes the Hilbert space, and then comparing states in the old and new

Hilbert spaces. In such cases, can S(ρ|ρ′) even be defined, and if so, do S(ρ|ρ′) ≥ 0 and hence

the FLEE in eq. (1) hold? To our knowledge, these questions remain open. The current state of

the art appears to be the proof in ref. [28], for t-independent relevant deformations, that S(ρ|ρ′)
can be defined, and S(ρ|ρ′) ≥ 0, for states in two different Hilbert spaces only if the two theories

have the same UV fixed point1. The D3/D7 system with massive flavors actually provides a time-

independent example where the assumptions of ref. [28] are satisfied but the FLEE in the form of

eq. (2) fails, as we discuss in sec. IV. In our time-dependent examples we could attempt to test the

FLEE in eq. (1) directly, by calculating δ〈H〉 holographically. However, although much is known

about the holographic dual of H [30–34], we know of no practical prescription for computing δ〈H〉
holographically, so we will leave such a test for future research.

Third, can we identify more precisely in field theory terms the class of t-dependent deformations

for which the FLOER of eq. (5) holds while the FLEE of eq. (2) need not? Moreover, can we extend

1 See also ref. [29] for a discussion of whether S(ρ|ρ′) ≥ 0 holds for a deformation ∝ tO, with marginal O, for CFTs

on a spatial sphere, holographically dual to gravity in global AdSd+1.
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our results to more general systems, either in QFT or in holography (for work in this direction,

see for example ref. [35])? We believe that these and many other questions relating to the FLOER

deserve further study, in large part because they may eventually reveal universal laws governing

far-from-equilibrium systems.

II. GENERAL ANALYSIS

In this paper we consider only asymptotically AdSd+1 spacetimes. In this section, we exclusively

use FG coordinates, in which the metric takes the form

ds2 = Gmndx
mdxn =

L2

z2
(dz2 + gµν(z, x

ρ)dxµdxν), (6)

where m,n = 0, 1, . . . , d and µ, ν, ρ = 0, 1, . . . , d−1, where x0 = t is time, and L is the radius of the

asymptotic AdSd+1, with boundary at z = 0. The FG expansion of gµν(z, x
ρ) about the boundary

is of the form

gµν(z, x
ρ) = g(0)µν (x

ρ) + z2 g(2)µν (x
ρ) + . . .+ zd g(d)µν (x

ρ) + zd log z2 h(d)µν (x
ρ) + . . . , (7)

where the term ∝ zd log z2 is present only when d is even. The expectation value of the energy-

momentum (density) tensor of the dual field theory, 〈Tµν(xρ)〉, takes the generic form [24]

〈Tµν(xρ)〉 =
dLd−1

16πGN
g(d)µν (x

ρ) +Xµν [g
(N)
κλ (xρ)], (8)

where Xµν [g
(N)
κλ (xρ)] is a function of the g

(N)
κλ (xρ) with N < d. Via Einstein’s equation, the g

(N)
µν (xρ)

with N < d are functions of the leading asymptotic coefficients in the near-boundary FG expansions

of matter fields, or in dual QFT terms, functions of sources of operators.

Our key assumption is that the g
(N)
µν (xρ) with N < d are t-independent: g

(N)
µν (xρ) = g

(N)
µν (~x),

where ~x are the field theory spatial coordinates. In these cases,

∂t〈Tµν(xρ)〉 =
dLd−1

16πGN
∂tg

(d)
µν (x

ρ), (9)

so in particular the energy density’s rate of change, ∂t〈Ttt(xρ)〉, is fixed by g
(d)
tt (xρ) alone.

Our goal is to relate ∂t〈Ttt(xρ)〉 to ∂tSEE, where in the QFT SEE is the EE between a sub-

region A and its complement on a Cauchy surface. To compute SEE holographically, we consider

a codimension-two surface W homologous to A, with ∂W = ∂A. We describe W’s embedding by

a mapping Xm(ξ) from W’s worldvolume, with coordinates ξ, into the background spacetime. We

then define W’s area functional,

A[W] =

∫

dd−1ξ
√
γ, (10)
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where γ is the determinant of W’s worldvolume metric. Extremizing A then gives SEE [17, 19],

SEE =
A[Wext]

4GN
. (11)

Imagine we have the solution Xm
(0) for W

(0)
ext’s embedding in a given background geometry G

(0)
mn,

which we assume is asymptotically AdSd+1, but is otherwise arbitrary. If we perturb the metric,

G
(0)
mn → G

(0)
mn + δGmn, which leads to a change in the embedding, Xm

(0) → Xm
(0) + δXm, then the

change in the EE, δSEE, to leading order in δGmn and δXm, is 2

δSEE =
1

4GN

∫

W
(0)
ext

dd−1ξ
√
γ

(

θmδX
m +

1

2
Θmn

ext δGmn

)

, (12)

where θm and Θmn
ext are variations of A, evaluated on the unperturbed solutions,

θm ≡ 1√
γ

δA

δXm

∣

∣

∣

∣

Xm

(0)
, G

(0)
mn

, Θmn
ext =

2√
γ

δA

δGmn

∣

∣

∣

∣

Xm

(0)
, G

(0)
mn

. (13)

As argued for example in refs. [36–38], because W(0)
ext is an extremal surface in the unperturbed

geometry G
(0)
mn, by definition θm = 0. We therefore find

δSEE =
1

8GN

∫

W
(0)
ext

dd−1ξ
√
γΘmn

ext δGmn, (14)

which generalizes the result of ref. [37] for δSEE to t-dependent perturbations.

Eq. (14) is valid for any holographic spacetime, but for our proof of a FLOER we impose a few

restrictions, as follows. First, we assume G
(0)
mn is asymptotically AdSd+1, and so admits a FG form,

and is invariant under translations and rotations in the ~x directions as well as translations in t, so

that

G(0)
mndx

mdxn =
L2

z2
(

dz2 + gtt dt
2 + gxx d~x

2
)

, (15)

where gtt and gxx depend only on z. In our examples in the following sections, G
(0)
mn will be Poincaré

patch AdSd+1 or an AdSd+1 black brane. The assumption that G
(0)
mn is t-independent means the

extremal surface W(0)
ext will actually be a minimal surface, W(0)

min, and hence also Θmn
ext → Θmn

min, the

notation that we will use in the following.

We also make three assumptions about the perturbation δGmn. First, we assume δGmn preserves

the AdSd+1 FG asymptotics, and also preserves translational and rotational symmetry in ~x, so that

δGmndx
mdxn =

L2

z2
(

δgtt dt
2 + δgxx d~x

2
)

, (16)

2 We may safely assume that under a small perturbation the topology around the entangling wedge does not change,

so the homology constraint does not rule out W
(0)
min in the back-reacted geometry.
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where gtt and gxx depend only on z and t. In particular, as mentioned above, in δgtt and δgxx’s FG

expansions we assume that the first t-dependent coefficients are δg
(d)
tt and δg

(d)
xx , respectively. All of

these assumptions are crucial for our proof of the FLOER, except for translational and rotational

symmetry in ~x, which we assume only for simplicity of our presentation, but which could be relaxed

without spoiling the FLOER. Moreover, our assumptions are relatively mild, being satisfied by an

enormous class of holographic spacetimes.

Under these assumptions, plugging the FG expansion of δGmn into eq. (14) and taking ∂t of

both sides gives us

∂tδSEE =
L2

8GN

∫

W
(0)
min

dd−1ξ
√
γΘµν

min z
d−2 ∂tδg

(d)
µν (t) + . . . , (17)

where . . . indicates higher powers of z, which are suppressed for a sub-region sufficiently small

compared to any other scale. We will henceforth assume that the sub-region is sufficiently small

to neglect the . . . terms.

To proceed any further we need an explicit form for Θµν
min, for which we must restrict to specific

A. We will use two different A’s: a sphere, defined by |~x| ≤ R, and a strip, defined as two parallel

planes separated in x1 ≡ x by a distance ℓ, and symmetric about x = 0.

For the sphere, we employ spherical coordinates, with radial coordinate r. By spherical sym-

metry we can then parameterize W’s embedding as r(z), so that

√
γ =

(

L

z

)d−1

rd−2g(d−2)/2
xx

√
h
√

1 + gxx r′2, (18)

where h is the determinant of the metric hαβ of a unit (d− 2) sphere, Sd−2. We then find

Θmn
min ∂m ⊗ ∂n =

( z

L

)2
(

(∂z + r′∂r)
2

1 + gxxr′2
+

1

r2gxx
hαβ∂α ⊗ ∂β

)

. (19)

For the strip, by translational symmetry in the ~x directions we can parameterize W’s embedding

as x(z), so that

√
γ =

(

L

z

)d−1

g(d−2)/2
xx

√

1 + gxx x′2, (20)

Θmn
min ∂m ⊗ ∂n =

( z

L

)2
(

(∂z + x′∂x)
2

1 + gxxx′2
+

1

gxx
δαβ∂α ⊗ ∂β

)

. (21)

Since the
√
γ in eq. (20) depends only on x′(z), and not on x(z), if we plug eq. (20) into the area

functional eq. (10), then variation with respect to x′(z) gives us a constant of motion, κ. We can

then solve algebraically for x′(z) in terms of κ,

x′(z) = ± 1
√

κd−1z2−2dgdxx − gxx
, κ =

z2∗
g∗xx

, (22)
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where z⋆ denotes W(0)
min’s maximal extension in z, fixed by integrating x′(z) from z = 0 to z⋆ with

the boundary conditions x(0) = ±ℓ/2 and by symmetry x(z⋆) = 0, and g∗xx ≡ gxx(z∗).

We now plug the Θmn
min from eqs. (19) and (21) into eq. (17) for ∂tSEE. Crucially, the Θmn

min

in eqs. (19) and (21) depend only on z, so we can trivially perform the integration over all other

worldvolume coordinates ξ. Moreover, in the sum over µ and ν in Θµν
min ∂tδg

(d)
µν (t), only the ~x

directions contribute, and indeed all contribute equally, due to the rotational symmetry in the ~x

directions. Dropping the . . . terms in eq. (17), as mentioned above, we thus find, for the sphere

and strip, respectively,

∂tδS
sphere
EE =

Ld−1

8GN
vol(Sd−2)∂tδg

(d)
xx

∫ z∗

0
dz zrd−2g

d

2
−2

xx

√

1 + gxxr′2
(

gxxr
′2

1 + gxxr′2
+ d− 2

)

, (23a)

∂tδS
strip
EE =

Ld−1

4GN
vol(Rd−2)∂tδg

(d)
xx

∫ z∗

0
dz zg

d

2
−2

xx
(g∗xxz

2/gxxz
2
∗)

d−1 + d− 2
√

1− (g∗xxz
2/gxxz2∗)

d−1
, (23b)

where in both cases z∗ denotes W(0)
min’s maximal extension in z.

We can write each right-hand-side in eq. (23) in terms of ∂tE, with E the energy inside A, as

follows. Translational and rotational symmetry in ~x implies 〈Tµν〉 is ~x-independent, so ∂tE is simply

the volume of A times ∂t〈Ttt〉. From eq. (9) we have ∂t〈Ttt〉 ∝ ∂tg
(d)
tt , however the right-hand-sides

of eq. (23) involve ∂tg
(d)
xx . To replace g

(d)
xx with g

(d)
tt , we use the fact that Tµν is traceless, T µ

µ = 0,

up to a possible Weyl anomaly in even d, and the fact that the Weyl anomaly is t-independent

for G
(0)
mn obeying our assumptions, so that ∂tT

µ
µ = 0 in any d. As a result, ∂tg

(d)
tt = (d − 1)∂tg

(d)
xx

in any d. Plugging that into eq. (9) and multiplying by A’s volume we find (for the sphere, the

volume of a (d− 1) unit ball is vol(Sd−2)/(d− 1))

∂tE
sphere =

dLd−1

16πGN
vol(Sd−2)Rd−1∂tg

(d)
xx , (24a)

∂tE
strip =

dLd−1

16πGN
vol(Rd−2) (d− 1) ℓ ∂tg

(d)
xx . (24b)

From eq. (23) we thus identify our FLOER,

∂tSEE =
∂tE

Tent
, (25)

with entanglement temperature Tent for the sphere and strip, respectively,

(T sphere
ent )−1 =

2π

dRd−1

∫ z⋆

0
dz zrd−2g

d

2
−2

xx

√

1 + gxxr′2
(

gxxr
′2

1 + gxxr′2
+ d− 2

)

, (26a)

(T strip
ent )−1 =

4π

d(d− 1)ℓ

∫ z⋆

0
dz zg

d

2
−2

xx
(g⋆xxz

2/gxxz
2
⋆)

d−1 + d− 2
√

1− (g⋆xxz
2/gxxz2⋆)

d−1
. (26b)
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If G
(0)
mn is pure AdSd+1, where gxx = 1, then W(0)

min for the sphere is given by r(z) =
√
R2 − z2,

for which z∗ = R, and for the strip, z⋆ = ℓΓ( 1
2(d−1))/2

√
πΓ( d

2(d−1) ) [16]. In these cases Tent takes

the same value as in the FLEE, eqs. (3) and (4), respectively.

In the following sections we identify examples in which the bulk stress-energy tensor, Tmn,

produces a perturbation δGmn obeying all of our assumptions, thus leading to a non-trivial FLOER.

Moreover, the FLEE in eq. (2) is typically violated.

III. AdS4 VAIDYA

In this section we consider solutions of Einstein-Maxwell theory in AdS4, with bulk action

S =
1

16πGN

∫

d4x
√

−det(Gmn)

[

R+
6

L2
− F 2

]

, (27)

with Ricci scalar R and U(1) field strength Fmn. This theory arises for example as a consistent

truncation of eleven-dimensional supergravity on S7 [20, 21]. In that case, the dual CFT is the

ABJM theory [22], the N = 6 SUSY Chern-Simons-matter theory with gauge group U(Nc)k ×
U(Nc)−k, in the limits Nc → ∞ and Nc ≫ k5, where the Maxwell gauge field is dual to a conserved

current Jµ of a U(1) subgroup of the R-symmetry.

A solution of the Einstein-Maxwell theory in AdS4 that describes a constant external electric

field E in the x direction has Vaidya metric,

ds2 =
L2

u2
[

−
(

1−m(v)u3
)

dv2 − 2dudv + d~x2
]

, (28)

with holographic coordinate u, with asymptotic AdS4 boundary at u = 0, null time coordinate

v ≡ t−u, andm(v) = 2E2v [23]. The metric in eq. (28) is sourced by a U(1) field strength whose only

non-zero components are Fxv = −Fvx = E , which in the CFT describes an E that produces 〈Jx〉 =
σE with conductivity σ = L2/(4πGN ) [23]. In the ABJM example, σ = k1/2N

3/2
c /(π3

√
2) [22]. The

bulk stress-energy tensor’s only non-zero component is Tvv = E2u2/L2, which via v = t−u produces

both diagonal components Ttt and Tuu and off-diagonal components Ttu = Tut, all t-independent,
as advertised in section I.

The metric in eq. (28) is well-defined only when m(v) > 0, that is, when v > 0. In that

regime, the metric in eq. (28) describes a black brane geometry with a horizon moving outward,

towards the AdS4 boundary, in reaction to E dumping energy into the system at a constant rate

∂t〈Ttt〉 = E〈Jx〉 = σE2. We can write the metric in eq. (28) in the form G
(0)
mn + δGmn, with G

(0)
mn
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the metric of pure AdS4, by switching from v to t = v + u:

G(0)
mndx

mdxn =
L2

u2
(

du2 − dt2 + d~x2
)

, (29a)

δGmndx
mdxn =

L2

u2
[

2E2u3 (t− u)
(

dt2 − dtdu+ du2
)]

. (29b)

However, just to be clear, G
(0)
mn + δGmn is an exact solution of the (full, non-linear) Einstein

equation, not merely a solution to linear order in δGmn.

Crucially, G
(0)
mn + δGmn obeys all the assumptions in section II, and hence will obey a FLOER.

However, we will also compute δSEE and δE themselves, to show that the FLEE of eq. (2), δSEE =

E/Tent, is violated.

Eq. (14) gives us the δSEE induced by E , to leading order in E ,

δSEE =
1

8GN

∫

W(0)
dd−1ξ

√
γΘuu

min δGuu, (30)

where in this example γ and Θmn
min are the determinant of the induced metric and the stress-tensor,

respectively, of the minimal surface W(0)
min in pure AdS4. Again, just to be clear, eq. (30) only

captures the leading change in the EE due to E , whereas the metric in eq. (28) is an exact solution

of the Einstein equation. For a spherical sub-region, we plug the solution for W(0)
min’s embedding,

r(u) =
√
R2 − u2, into eqs. (18) and (19) for γ and Θmn

min, respectively, and then use δGuu from

eq. (29b), to find from eq. (30)

δSEE =

(

L2

4πGN
E2

)

2π2R

R
∫

0

duu (t− u)

(

1− u2

R2

)

= E〈Jx〉
(

πR2
)

(

πR

2

)(

t− 8

15
R

)

,

where in the second equality we used 〈Jx〉 = σE with σ = L2/(4πGN ). Using the Ward identity

for the energy density ∂t〈Ttt〉 = E〈Jx〉 and the area (πR2) of a sphere in two spatial dimensions,

we identify E〈Jx〉
(

πR2
)

= ∂tE, and from eq. (3) with d = 3, we identify Tent = 2/(πR). We thus

find

δSEE =
∂tE

Tent

(

t− 8

15
R

)

. (31)

The analogous calculation for a strip sub-region of width ℓ gives

δSEE =
∂tE

Tent

(

t− 8

5π
ℓ

)

, (32)

where Tent = 4ℓ/(π2u2∗) with u∗ = ℓΓ(1/4)/2
√
πΓ(3/4) in d = 3, in agreement with eq. (4) with

d = 3. As mentioned above, the metric in eq. (28) is valid only for v = t − u > 0, so eqs. (31)
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and (32) are valid only for t > R or t > u∗, respectively, so that in both cases δSEE > 0. Eqs. (31)

and (32) clearly obey the FLOER, ∂tδSEE = ∂tE/Tent, as expected.

To compute δE we switch from the coordinate u in eq. (29) to the FG coordinate z in eq. (6),

using 1/u2 = gxx/z
2. Comparing Gtt in the two coordinate systems,

Gtt =
L2

z2

(

−1 + z3g
(3)
tt + . . .

)

=
L2

u2

(

−1 + u3
(

g
(3)
tt + g(3)xx

)

+ . . .
)

, (33)

we find g
(3)
tt +g

(3)
xx = 2E2t. Tracelessness of Tµν gives us g

(3)
xx = g

(3)
tt /2, so that g

(3)
tt = 4E2t/3. Eq. (8)

then gives the energy density,

〈Ttt〉 =
3L2

16πGN
g
(3)
tt =

L2

4πGN
E2 t = E〈Jx〉t, (34)

so that, unsurprisingly, ∂t〈Ttt〉 = E〈Jx〉. As a result, for spherical and strip sub-regions, δE =

E〈Jx〉(πR2) t and δE = E〈Jx〉(ℓVol(R))t, respectively, or more simply, δE = t ∂tE.

For perturbations of the CFT state, without changes to the CFT Hamiltonian, intuition from

QFT [12] and results from holography [10] suggest that for a sub-region of fixed size the FLEE of

eq. (2) should hold for sufficiently small δE. Strictly speaking, that criterion does not immediately

translate to our case, because we deform the CFT Hamiltonian, by E . Nevertheless, näıvely

applying that criterion to our case, we expect the FLEE to hold for t short enough that E has

deposited little energy into the sub-region. For example for the sphere we expect the FLEE to

hold for t short enough that δE = t ∂tE . 1/R, meaning t .
(

E〈Jx〉πR3
)−1

. We can make that

time arbitrarily long by making E arbitrarily small. In particular, the times for which we expect

the FLEE to hold can be made ≫ R, and hence can easily include the regime t > R where our

result for δSEE eq. (31) is valid. However, plugging a time of order R into δSEE in eq. (31), we find

that δSEE 6= δE/Tent, due to the term ∝ R in eq. (31). Of course analogous statements apply for

δSEE of the strip in eq. (32). In short, in both cases we find that the FLEE of eq. (2) is violated,

as advertised.

Moreover, as mentioned in section I, the “entanglement tsunami” model [5–7] offers a possible

explanation for the offending terms, as a difference in initial conditions. As soon as E is turned on,

it pumps energy into the CFT and begins producing massless EPR pairs, doing both at a constant

rate and uniformly throughout space. However, the pairs produced at sufficiently early times only

contribute to EE after some finite time required to exit the sub-region A. As a result, δSEE lags

behind δE by an amount on the order of A’s size, R or ℓ, as indeed observed in eqs. (31) and (32).

Of course, not all EPR partners are equidistant from ∂A, so the lag is not identically R or ℓ, but

is only ∝ R or ℓ.
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IV. D3/D7 WITH ELECTRIC FIELD

In this section we study the D3/D7 system [39]. Type IIB supergravity in the near-horizon

geometry of Nc → ∞ D3-branes, AdS5 × S5, is dual to N = 4 SYM with gauge group SU(Nc),

in the limits Nc → ∞ and ’t Hooft coupling λ → ∞ [40]. A number Nf of probe D7-branes

along AdS5 × S3 is dual to a number Nf ≪ Nc of massless N = 2 SUSY hypermultiplets in the

fundamental representation of SU(Nc), i.e. flavor fields [39]. The D7-brane worldvolume U(Nf )

gauge fields are dual to conserved U(Nf ) flavor symmetry currents.

As mentioned in sec. I, the probe D7-brane provides a time-independent example in which the

FLEE of eq. (1) can hold while that in eq. (2) is violated. Suppose we give the flavor fields a

non-zero N = 2 SUSY-preserving mass, m. The proof of ref. [28] applies in that case, so if ρ and ρ′

are the vacua of the m = 0 and m 6= 0 theories, then we expect S(ρ|ρ′) ≥ 0 and hence the FLEE of

eq. (1). For the FLEE of eq. (2), SUSY guarantees δE = 0. On the other hand, holographic results

for δSEE of a spherical sub-region [41, 42] include a term ∝ (mR)2 log(ǫ/R), with FG cut-off ǫ.

The coefficient of the the log(ǫ/R) cannot be set to zero by re-scaling ǫ, so clearly δS 6= δE/Tent,

i.e. the FLEE of eq. (2) is violated.

To realize out time-dependent example, we introduce T 6= 0, so that AdS5 becomes an AdS5

black brane. TheN = 4 SYM and flavor contributions to 〈Tµν〉 are then order N2
c andNfNc ≪ N2

c ,

respectively [26], so we may think of the flavors as probes inside an enormous heat bath. We also

introduce a constant, external electric field E in the x direction for the diagonal U(1) ⊂ U(Nf ),

producing a current, 〈Jx〉, of charge carriers in the flavor sector. The charge density vanishes,

〈J t〉 = 0, so the current comes entirely from Schwinger pair production [43, 44]. We consider

NESS in which 〈Jx〉 is t-independent because the charge carriers gain energy from E at the same

constant rate E〈Jx〉 that they lose energy to the heat bath [26], as we discuss below.

We use an AdS5 black brane metric

ds2 =
L2

u2

(

du2

b(u)
− b(u)dt2 + d~x2

)

, b(u) = 1− (u/uh)
4, (35)

with T = 1/(πuh). The D7-branes fill the AdS5 black brane space and also wrap an equatorial

S3 ⊂ S5 with radius L. The only non-trivial contribution to the D7-brane action, SD7, is then the

DBI term,

SD7 = −NfTD7

∫

d8ζ
√

− det(Γab + (2πα′)Fab), (36)

with D7-brane tension TD7 = (2π)−7α′−4g−1
s , with string length squared α′ and coupling gs,

worldvolume coordinates ζa with a = 0, . . . , 7, worldvolume metric Γab, and worldvolume U(1)
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field strength Fab = ∂aAb − ∂bAa. To describe E and 〈Jx〉 we make the ansatz

Ax(t, u) = −Et+ ax(u), (37)

with all of Aa’s other components zero. Plugging our ansatz eq. (37) into SD7 in eq. (36), and

trivially performing the integration over the S3 directions, we find

SD7 = −NfTD7L
3vol(S3)

∫

d5ζ
L5

u5

√

1 + (2πα′)2
u4

L4

(

b(u)a′2x (u)−
E2

b(u)

)

. (38)

For simplicity, we define an “effective tension”,

T̃D7 ≡ NfTD7L
3vol(S3) =

λNfNc

(2π)4
1

L5
, (39)

where in the second equality we used vol(S3) = 2π2, λ ≡ 4πgsNc, and λ = L4/α′2 [45].

Crucially, SD7 in eq. (38) depends on a′x(u) but not on ax(u), hence we have a first integral

of motion, which in the dual CFT is precisely the current: δSD7
δa′x

= 〈Jx〉 [45]. We can then solve

algebraically for a′x(u) in terms of 〈Jx〉,

a′x(u) =
〈Jx〉
b(u)L

√

b(u)/u4 − (2πα′)2E2/L4

T̃ 2
D7(2πα

′)2b(u)/u6 − 〈Jx〉2/L6
. (40)

To fix 〈Jx〉 we follow ref. [45]: we plug the solution for a′x(u) in eq. (40) into SD7 in eq. (38)

and demand that the result remains real for all u ∈ [0, uh], since a non-zero imaginary part of an

effective action signals a tachyon [43, 44]. We find 〈Jx〉 = σE , with conductivity

σ =
NfNcT

4π

[

1 + E2/
(

π
√
λT 2/2

)2
]1/4

. (41)

To compute the δSEE due to E , we must compute the perturbative back-reaction of the D7-

branes to first order. At first, that looks like a daunting task, since the D7-branes couple not

only to the metric but also to the axio-dilaton and B-field, and moreover break several symmetries

of the background, for example breaking the S5’s SO(6) isometry down to the SO(4) × U(1)

preserved by the equatorial S3 ⊂ S5. Fortunately, however, as argued in refs. [37, 46], if the D7-

brane worldvolume fields are independent of the S3 ⊂ S5 directions, as in our case, then using

an “effective stress-energy tensor”, obtained by integrating the AdS5 part of the D7-brane stress

energy tensor over the S3, is sufficient for computing δSEE. In our case, this effective stress-energy

tensor is

T mn
eff = −T̃D7

√

− det(Γmn + (2πα′)Fmn)
√

− det(G
(0)
mn)

[

(Γ + (2πα′)F )−1
](mn)

, (42)
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where G
(0)
mn is the AdS5 black brane metric in eq. (35), Γmn and Fmn are now restricted to the

directions in eq. (35), and (mn) indicates symmetrization over the indices m and n. Splitting T mn
eff

into diagonal and off-diagonal parts, T eff
mn = T diag

mn + T off
mn, for the a

′
x(u) solution in eq. (40) we find

T diag
mn dxmdxn = − a′xL

3

〈Jx〉u3

[(

1− 〈Jx〉2
T̃ 2
D7(2πα

′)2
u6

bL6

)

du2 − b
b2 − 〈Jx〉2E2u10/(T̃ 2

D7L
10)

b− (2πα′)2E2u4/L4
dt2

+
〈Jx〉2u2

T̃ 2
D7 b a

′2
xL

2
dx2 + b (dx2)2 + b (dx3)2

]

, (43a)

T off
mndx

mdxn = −E〈Jx〉 u3

b(u)L3
2du dt. (43b)

As advertised in section I, T mn
eff is t-independent but has off-diagonal terms T ut

off = T tu
off . In fact,

T diag
mn and T off

mn turn out to be separately conserved, so if we linearize Einstein’s equation in δGmn,

and split δGmn into parts sourced by T diag
mn and T off

mn, respectively, δGmn = δGdiag
mn + δGoff

mn (which

are not necessarily diagonal and off-diagonal themselves), then we can solve for δGdiag
mn and δGoff

mn

separately.

We have checked explicitly that a t-independent solution for δGdiag
mn exists, whose existence relies

crucially on the fact that T diag
mn is invariant under t-reversal. At leading order in E , T diag

mn ’s back-

reaction is just a shift of the cosmological constant, as expected: the DBI action in eq. (36) with

trivial worldvolume fields is a contribution to the cosmological constant ∝ TD7. The cosmological

constant is ∝ 1/L2, and roughly speaking L in Planck units is dual to the number of degrees of

freedom in the CFT, measured for example in even d by a central charge [47]. In particular, adding

a space-filling probe DBI action with trivial worldvolume fields corresponds to adding degrees of

freedom, such as adding flavor fields to N = 4 SYM. Such a deformation results in a FLEE of the

form in eq. (2), but with a “chemical potential” term arising from the change in the number of

degrees of freedom [48].

On the other hand, T off
mn breaks t-reversal, and hence so does δGoff

mn. Indeed, the solution for

δGoff
mn is

δGoff
mndx

mdxn =
16πGN

3L
E〈Jx〉 t u2

(

dt2 +
du2

b2(u)

)

. (44)

If δGoff
mn grows too big, then the linearized approximation breaks down, hence the linearized solution

in eq. (44) is valid only for sufficiently small E〈Jx〉t.
Strictly speaking, in this example Gmn = G

(0)
mn + δGmn does not obey all the assumptions in

section II. For instance, as mentioned above δGdiag
mn is asymptotically AdS5, but shifts L, something

we did not account for in section II. However, a key step in section II was taking ∂t of δSEE, so in
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fact we only need the t-dependent part of δGmn to obey our assumptions. In this example, all of

δGmn’s t-dependence is in δGoff
mn, and indeed, G

(0)
mn +Goff

mn obeys all the assumptions in section II,

and hence this example must obey a FLOER.

However, to dispel any doubt, we have calculated ∂tSEE following the steps in section II, adapted

to the coordinate u of eq. (35), with the results

∂tδS
sphere
EE = E〈Jx〉

(

4

3
πR3

)

2π

R3

∫ u⋆

0
du

r2u
√

b3(u)(1 + b(u)r′2)
, (45a)

∂tδS
strip
EE = E〈Jx〉

(

ℓ vol(R2)
) 4π

3ℓ

∫ u⋆

0
duu

√

1− (u/u⋆)6

b3(u)
, (45b)

where for the sphere r(u) is the solution for the the minimal surface’s embedding, and for both

the sphere and strip u⋆ is the minimal surface’s maximal extension in u, in the unperturbed AdS5

black brane geometry of eq. (35). For the strip, u⋆ is related to the width ℓ by

ℓ = 2

∫ u⋆

0
du

(u/u⋆)
3

√

b(u)(1− (u/u⋆)6)
. (46)

Identifying ∂tδE = E〈Jx〉
(

4
3πR

3
)

or ∂tδE = E〈Jx〉
(

ℓ vol(R2)
)

for the sphere and strip, respectively,

we thus find

∂tδS
sphere
EE = ∂tδE

2π

R3

∫ u⋆

0
du

r2u
√

b3(u)(1 + b(u)r′2)
, (47a)

∂tδS
strip
EE = ∂tδE

4π

3ℓ

∫ u⋆

0
duu

√

1− (u/u⋆)6

b3(u)
. (47b)

A straightforward calculation confirms that for the AdS5 black brane the integrals in eqs. (47a)

and (47b) reproduce Tent from eqs. (26a) and (26b), respectively. We have thus explicitly shown

that this example obeys the FLOER.

As mentioned in section I, the FLOER may be useful because ∂tδE is often easier to calculate

than ∂tδSEE. Indeed, for probe branes we can calculate ∂tδE in the probe limit, without computing

back-reaction, following refs. [26, 49]. The probe flavor’s order NfNc contribution to the energy

density, δ〈Ttt〉, is given holographically by the energy density on the D7-brane, T t
t, integrated over

the S3 ⊂ S5 and u directions,

δ〈Ttt〉 = −
∫ uh

0
du
√

−det(Γab) T t
t. (48)

Taking ∂t of eq. (48) and using ∇c(
√

−det(Γab)T c
t) = 0, from conservation of Tab, we find

∂tδ〈Ttt〉 =
∫ uh

0
du ∂u

√

−det(Γab) T u
t =

[

√

−det(Γab)T u
t

]uh

0
. (49)
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From the T u
t in eq. (43), we find that the rate of energy density gain at the boundary, dual to the

energy density pumped into the probe sector by E , and energy density loss at the horizon, dual to

the energy density the probe sector dumps into the heat bath, are equal:

√

−det(Γab)T u
t

∣

∣

∣

u=0
=
√

−det(Γab) T u
t

∣

∣

∣

u=uh

= −E〈Jx〉. (50)

The total rate of change of energy density in eq. (49) thus vanishes, ∂tδ〈Ttt〉 = 0, producing a

NESS, as advertised. Presumably, the ∂tδE that appears in the FLOER in eq. (47) comes from the

energy injected into the sub-region by E , i.e. from the u = 0 contribution to ∂tδ〈Ttt〉 in eq. (49).

In short, we can calculate ∂tδE directly in the probe limit, avoiding any back-reaction, simply by

evaluating
√

−det(Γab)T u
t at u = 0.

In general, when E 6= 0 a probe brane’s induced metric Γab has a horizon distinct from that

of the background metric [45, 50, 51]. A temperature can be associated with the worldvolume

horizon [52–59], which in general is distinct from the background temperature T , clearly indicating

that the system is out of equilibrium. The worldvolume horizon may represent the EE of the

Schwinger pairs produced by E [60]. However, whether any meaningful notion of entropy can

be associated to the worldvolume horizon is unclear. An obvious guess is a Bekenstein-Hawking

entropy, the horizon’s area over 4GN . However, the DBI action does not describe gravitational

degrees of freedom, and Γab is not necessarily a solution of Einstein’s equation, so although we can

compute the area of the worldvolume horizon, what should play the role of 4GN? The open string

coupling [56]? In any case, the worldvolume horizon did not appear to play any special role in our

calculation of EE, and in particular, our result for the EE does not appear to be proportional to

the area of the worldvolume horizon.

Although we focused on the D3/D7 system, the analysis in this section should straightforwardly

generalise to many other systems involving a space-filling probe DBI action with E 6= 0 in an

asymptotically AdSd+1 spacetime.

V. MASSLESS SCALARS

In this section we study holographic CFTs deformed by marginal scalar operators O with a

source linear in time t or in a spatial direction x. Explicit examples of such CFTs are N = 4 SYM

in d = 4, which has three exactly marginal scalar operators [61, 62], and ABJM theory, where the

Chern-Simons level, or equivalently the ’t Hooft coupling, is exactly marginal.

A marginal scalar operator O is holographically dual to a massless scalar field φ, whose stress-
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energy tensor Tmn depends only on derivatives of φ, due to invariance under constant shifts of φ.

A linear source for O produces a Tmn that depends only on the holographic radial coordinate, but

may have non-trivial off-diagonal components, producing a δGmn that may depend on t or x, but

obeys the assumptions in section II, hence the FLOER will be obeyed.

However, we compute δSEE and δE separately for d = 2, 3, 4, and show that in all cases the FLEE

of eq. (2) is violated. More specifically, we solve Einstein’s equation for δGmn near the asymptotic

AdSd+1 boundary, obtaining explicit expressions for only a subset of δGmn’s FG coefficients, while

any remaining FG coefficients could in principle be fixed by imposing regularity of δGmn in the

bulk. These asymptotic solutions for δGmn suffice to establish violation of the FLEE of eq. (2).

A. Linear Time Dependence

In this sub-section we consider (d+1)-dimensional Einstein-Hilbert gravity coupled to a massless

scalar field φ, with bulk action

S =

∫

dd+1x
√

−det(Gmn)

[

1

16πGN

(

R+
d(d− 1)

L2

)

− 1

2
(∂φ)2

]

. (51)

As in section II, we consider Gmn = G
(0)
mn + δGmn in FG form, with G

(0)
mn the AdSd+1 metric,

G(0)
mndx

mdxn =
L2

z2
(

dz2 − dt2 + d~x2
)

. (52)

A solution for φ admits the FG expansion

φ = φ0 + . . . zdφd + . . . , (53)

where the coefficients φ0, φd, etc. generically depend on t and ~x. The coefficient φ0 is dual to the

source for O, so we introduce φ0 = −c t with constant c > 0 of dimension [t]−1. The remaining

coefficients in φ’s and δGmn’s FG expansions can then depend only on t, although their explicit

solutions depend on d, so in the following we consider d = 2, 3, 4 in turn.

For each of d = 2, 3, 4, we compute δSEE and δE for a sphere or strip sub-region. More

specifically, to compute δSEE we use eq. (14), whose inputs are
√
γ, Θmn

min, and δGmn. We plug

the solution for W(0)
min’s embedding, for example r(z) =

√
R2 − z2 for the sphere, into eqs. (18)

and (19) to obtain γ and Θmn
min, respectively. As mentioned above, we solve for δGmn only near

the asymptotic AdSd+1 boundary, and then extract δE via holographic renormalisation [63]. The

details of the holographic renormalisation appear in appendix A, where we also check several Ward

identities. (In each case, the ∂t〈Ttt〉 from holographic renormalisation reproduces eq. (9).) For
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each of d = 2, 3, 4, we find that the FLOER is obeyed, as expected, while the FLEE of eq. (2) is

violated.

a. Boundary Dimension d = 2: The holographic renormalisation for a massless scalar in

AdS3 appears in ref. [63]. Plugging a Minkowski metric at the AdS3 boundary and φ0 = −ct into
the results of ref. [63] yields

Gxx =
L2

z2

[

1 + z2 g(2)xx − z2 log
(

z2/L2
)

2π
GN

L
c2 + . . .

]

, (54a)

〈Txx〉 =
L

8πGN
g(2)xx + c2

(

1

4
− η

)

, (54b)

〈T µ
µ〉 =

1

2
c2, (54c)

where the term ∝ η in 〈Txx〉 is scheme-dependent, and comes from the finite counterterm

SCT = η

∫

d2x
√

−det(g̃µν) g̃
µν∂µφ∂νφ , (55)

added to the bulk action S in eq. (51) (with d = 2) at a regulating cut-off surface z = ǫ, with

induced metric g̃µν . Plugging 〈Txx〉 from eq. (54b) into 〈T µ
µ〉 = 1

2c
2 from eq. (54c) then gives

〈Ttt〉 = 〈Txx〉 − 1
2c

2.

The bulk stress-energy tensor Tmn is quadratic in ∂mφ and hence ∝ c2. We treat Tmn as a

perturbation, and so linearize Einstein’s equation, producing δGmn of order c2. The change in

energy inside the sphere |x| < R

δE = (2R)δ〈Ttt〉 = (2R)
L

8πGN
δg(2)xx − (2R)c2

(

1

4
+ η

)

, (56)

is then ∝ c2, and in particular, δg
(2)
xx ∝ c2. As mentioned above, we compute δSEE from eq. (14),

with the result

δSEE =
δE

Tent
+
π

9
c2R2 (−6 log (2R/L) + 8 + 12 η) , (57)

where Tent = 3/(2πR), as in eq. (3) with d = 2. The δSEE in eq. (57) has some scheme dependence,

via the term ∝ η, and in particular, a shift of η produces a shift of the argument of the logarithm in

the term ∝ −R2 log(2R/L). Crucially, however, the choice of η is part of the definition of the QFT,

so η cannot depend on the size R of some arbitrarily-chosen sub-region, and so η cannot affect the

coefficient of the term ∝ −R2 log(2R/L). As a result, the latter coefficient is scheme-independent

and hence physically meaningful.

As discussed in section III, we näıvely expect the FLEE of eq. (2) to hold at sufficiently early

times such that t ∂tE . 1/R. The diffeomorphism Ward identity ∇µTµν = O∂νφ0 implies ∂t〈Ttt〉 =



22

c〈O〉, and hence ∂tE = (2R)c〈O〉. We thus expect the FLEE to hold for t .
(

c〈O〉2R2
)−1

, which

can be made arbitrarily long by making c arbitrarily small, and can hence include the regime t ≃ R.

As argued above, δE’s only dependence on c is δE ∝ c2, and when t ≃ R dimensional analysis

requires δE ∝ c2R or c2R logR. In that case, in the δSEE in eq. (57) the terms ∝ δE/Tent and

∝ c2R2 are of the same order, so the FLEE of eq. (2) is clearly violated, as advertised.

b. Boundary Dimension d = 3: The details of the holographic renormalisation for a mass-

less scalar in asymptotically AdS4 spacetimes appear in the appendix. In particular, plugging a

Minkowski metric at the AdS4 boundary and φ0 = −ct into eqs. (A1) and (A3b) yields

Gxx =
L2

z2

[

1 + z2 2π
GN

L2
c2 + z3g(3)xx + . . .

]

, (58a)

〈Tµν〉 =
3L2

16πGN
g(3)µν , (58b)

and T µ
µ = 0, as expected in d = 3. As in the d = 2 case above, a linearized perturbation δGmn is

∝ c2, so the change in the energy inside the sphere |~x| < R is

δE = (πR2)δ 〈Ttt〉 = (πR2)
3L2

16πGN
δg

(3)
tt , (59)

where δg
(3)
tt ∝ c2. The δE for the strip is identical, but with (πR2) → ℓVol(R). As mentioned

above, from eq. (14) we compute δSEE for the sphere,

δSEE =
δE

Tent
+

2π

3
c2R2, (60)

where Tent = 2/(πR) as in eq. (3) with d = 3, and for the strip,

δSEE =
δE

Tent
+

π5/2

3
√
2Γ(3/4)2

c2 z∗vol(R), (61)

where Tent = 4ℓ/(π2z2∗) with z∗ = ℓΓ(1/4)/2
√
πΓ(3/4), as in eq. (4) with d = 3. Via essentially

the same arguments as those below eq. (57), for sufficiently small c we can enter a regime where

näıvely we expect the FLEE of eq. (2) to hold, but the two terms in eq. (60) or (61) are of the

same order. The FLEE of eq. (2) is then clearly violated, as advertised.

c. Boundary Dimension d = 4: The details of the holographic renormalisation for a mass-

less scalar in asymptotically AdS5 spacetimes appear in the appendix. In particular, plugging a

Minkowski metric at the AdS5 boundary and φ0 = −ct into eqs. (A5) and (A8b) yields

Gxx =
L2

z2

[

1 + z2
2π

3

GN

L3
c2
(

1− z2 log
(

z2/L2
)

2π
GN

L3
c2
)

+ z4g(4)xx + . . .

]

, (62a)

〈Txx〉 =
L3

4πGN
g(4)xx − 5π

18

GN

L3
c4, (62b)

〈T µ
µ〉 =

2π

3

GN

L3
c4. (62c)
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Plugging 〈Txx〉 from eq. (62b) into 〈T µ
µ〉 from eq. (62c) then gives 〈Ttt〉 = 3〈Txx〉 − 〈T µ

µ〉. As in

the d = 2 case above, a linearized perturbation δGmn is ∝ c2, so the change in the energy inside

the sphere |~x| < R is

δE =
4

3
πR3δ 〈Ttt〉 =

L3

GN
R3δg(4)xx , (63)

where δg
(4)
xx ∝ c2. As mentioned above, from eq. (14) we compute δSEE for the sphere,

δSEE =
δE

Tent
− π2

9
c2R2 (5− 6 log 2 + 6 log (ǫ/R)) , (64)

with UV cut-off z = ǫ. The δSEE in eq. (64) has some scheme dependence, via the term ∝
c2R2 log (ǫ/R), such that re-scaling ǫ shifts the terms ∝ c2R2. However, the coefficient of the

term ∝ c2R2 log (ǫ/R) is invariant under re-scalings of ǫ, i.e. is scheme-independent, and hence is

physically meaningful.

Via essentially the same arguments as those below eq. (57), for sufficiently small c we can enter

a regime where näıvely we expect the FLEE of eq. (2) to hold, but all terms in eq. (64) are of order

c2R2. The FLEE of eq. (2) is then clearly violated, as advertised.

B. Linear Spatial Dependence

In this sub-section we consider the model of ref. [25], containing a U(1) gauge field Am and

massless scalars φI with I = 1, . . . , d − 1 in asymptotically AdSd+1 spacetime. We consider the

solutions of ref. [25] describing charged black branes with φI linear in a spatial direction x, dual to

CFT states with non-zero chemical potential, µ, and x-linear sources for a set of exactly marginal

scalar operators OI . The main result of ref. [25] was that the x-linear sources break translational

symmetry in the CFT and hence produce the effects of momentum relaxation, such as a Drude

peak in the U(1) conductivity. We are instead interested in the x-linear sources as perturbations

of the CFT at non-zero µ. In d = 3 we will show that the FLEE in eq. (2) is violated, while

both δSEE and δE are independent of t and ~x, and hence will trivially obey a FLOER involving

any CFT coordinate. Previous calculations of EE in the model of ref. [25] appear for example in

ref. [64].

The model of ref. [25] has bulk action

S =

∫

dd+1x
√

−det(Gmn)

[

1

16πGN

(

R+
d(d− 1)

L2
− F 2

)

− 1

2

d−1
∑

I=1

(∂φI)
2

]

, (65)
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where Fmn = ∂mAn − ∂nAm. We consider the solutions of ref. [25] describing a static, charged

black brane with scalar hair linear in x,

Gmndx
mdxn =

L2

u2

(

du2

f(u)
− f(u)dt2 + d~x2

)

, (66a)

At = µ

[

1−
(

u

uh

)d−2
]

, (66b)

φI = ~αI · ~x, (66c)

with horizon at u = uh and all other components of Am vanishing. The constant vector ~αI in

eq. (66c) has components (αI)i with i = 1, . . . , d− 1 defined such that

d−1
∑

I=1

(αI)i(αI)j = α2δij , (67)

with constant α2. The blackening function f(u) appearing in the metric in eq. (66a) is

f(u) = 1−M
( u

L2

)d
+

(

uhµ

β

)2( u

uh

)2(d−1)

− 8πGN

(d− 2)
α2 u2, (68a)

M ≡
[

1 +

(

uhµ

β

)2

− 8πGN

(d− 2)
α2 u2h

]

(

L2

uh

)d

, (68b)

β2 ≡ d− 1

d− 2

L2

2
. (68c)

When α2 = 0, this solution reduces to the AdSd+1-Reissner-Nordström charged black brane.

We henceforth specialise to d = 3, the case for which the holographic renormalisation of this

model was performed in ref. [25]. When d = 3, the asymptotic change of coordinates

u = z − z3 2πGNα
2 − z4

M

6L6
+O(z5), (69)

brings the metric in eq. (66a) into asymptotic FG form

Gmndx
mdxn =

L2

z2
(

dz2 + gttdt
2 + gxxd~x

2
)

, (70a)

gtt = −1 + z24πGNα
2 + z3

2M

3L6
+O(z4), (70b)

gxx = 1 + z24πGNα
2 + z3

M

3L6
+O(z4). (70c)

The holographic renormalisation in ref. [25] then gives for the energy density

〈Ttt〉 =
3L2

8πGN
g(3)xx =

M

8πGNL4
. (71)



25

For sufficiently small α2, we may treat the terms ∝ α2 in eq. (68) as perturbations, and write

Gmn = G
(0)
mn + δGmn, with G

(0)
mn the AdS4-Reissner-Nordström metric, and δGmn of order α2. In

particular,

δgxx = z2 4πGNα
2 − z3

8πGNα
2

3uh
+O(z4). (72)

Using eq. (71) we thus find the change in energy inside a spherical sub-region comes from the

change in the order z3 term in the FG asymptotics

δE = (πR2)
3L2

8πGN
δg(3)xx = −(πR2)

L2α2

uh
, (73)

and the change in energy inside a strip sub-region is identical, but with (πR2) → ℓVol(R).

In contrast, δSEE depends on both δg
(2)
xx and δg

(3)
xx . Indeed, applying the results of section II,

we find for spherical and strip sub-regions, respectively,

δSsphere
EE =

vol(S1)

8GN

∫ z⋆

0
dz

(

L

z

)2

rg−1/2
xx

√

1 + gxxr′2
(

gxxr
′2

1 + gxxr′2
+ 1

)

(

δg(2)xx z
2 + δg(3)xx z

3 . . .
)

,

(74a)

δSstrip
EE =

vol(R1)

4GN

∫ z⋆

0
dz

(

L

z

)2

g−1/2
xx

(g⋆xxz
2/gxxz

2
⋆)

2 + 1
√

1− (g⋆xxz
2/gxxz2⋆)

2

(

δg(2)xx z
2 + δg(3)xx z

3 . . .
)

. (74b)

In the δSEE in eq. (74), a contribution ∝ δE can only possibly come from the terms involving δg
(3)
xx ,

so the terms involving δg
(2)
xx represent violations of the FLEE of eq. (2). On the other hand, both

δE and δSEE are independent of t and ~x, so a FLOER involving any CFT coordinate is trivially

obeyed, as advertised.
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Appendix A: Holographic Renormalization of Massless Scalar

In this appendix we present results for the holographic renormalisation of a massless scalar field

φ coupled to an asymptotically AdS4 or AdS5 metric Gmn. A massless scalar field φ and metric Gmn

are dual to a marginal scalar operator O and the stress-energy tensor Tµν , respectively. For a scalar

of any mass coupled to gravity, a convenient form of Einstein’s equations appear in ref. [24]. For

a massless scalar, we solve the Einstein’s equations in ref. [24] asymptotically3, and then compute

〈O〉 and 〈Tµν〉 and the diffeomorphism and Weyl Ward identities in terms of the coefficients of φ

and Gmn’s asymptotic expansions in eqs. (53) and (7), respectively. We use the results for 〈Tµν〉
and T µ

µ in sub-section VA, to compute the change in energy inside a CFT sub-region due to a

t-linear source for O.

In contrast to the body of the paper, in this appendix we choose units with L ≡ 1, and we use

notation
√
−G ≡

√

−det(Gmn), and similarly for other metrics.

d. Boundary Dimension d = 3: For a massless scalar field φ coupled to an asymptotically

AdS4 metric Gmn, we find

φ2 =
1

2
∇2φ0, (A1a)

g(2)µν = −Rµν [g
(0)] +

1

4
R[g(0)] + 8πGN∂µφ0∂νφ0 − 2πGNg

(0)
µν (∂φ0)

2, (A1b)

Tr g(2) = −1

4
R[g(0)] + 2πGN (∂φ0)

2, (A1c)

Tr g(3) = 0, (A1d)

∇νg(2)µν = ∂µTrg
(2) + 16πGNφ2∂µφ0, (A1e)

∇νg(3)µν = 16πGNφ3∂µφ0, (A1f)

where ∇µ is with respect to g(0), indices are raised and lowered with g(0), and Trg(N) ≡ g
(0)
µν g(N)µν .

The renormalised action is

Sren = lim
ǫ→0

{

1

16πGN

[
∫

d4x
√
−G (R + 6) + 2

∫

z=ǫ
d3x

√

−g̃ K[g̃]

]

− 1

2

∫

d4x
√
−GGmn∂mφ∂nφ

+
1

16πGN

∫

z=ǫ
d3x

√

−g̃ (4 +R[g̃]− 8πGN g̃
µν∂µφ∂νφ)

}

, (A2)

where g̃µν is the induced metric on a regulating cutoff surface z = ǫ, with extrinsic curvature K[g̃]

and Ricci scalar R[g̃]. The final line of eq. (A2) consists of counterterms at z = ǫ. Varying Sren in

3 In our conventions the Riemann tensor has the opposite sign compared to that in ref. [24].
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eq. (A2) with respect to sources, we obtain the one point functions

〈O〉 = 3φ3, (A3a)

〈Tµν〉 =
3

16πGN
g(3)µν , (A3b)

although the values of φ3 and g
(3)
µν cannot be fixed by our near-boundary analysis alone. Eqns. (A1d)

and (A1f) yield the diffeomorphism and Weyl Ward identities, respectively,

∇µ〈Tµν〉 = 〈O〉∂νφ0, (A4a)

〈T µ
µ〉 = 0. (A4b)

e. Boundary Dimension d = 4: For a massless scalar field φ coupled to an asymptotically

AdS5 metric Gmn, we find, with the same conventions as in eq. (A1),

φ2 =
1

4
∇2φ0, (A5a)

ψ4 = − 1

32
(∇2)2φ0 +

1

8

1
√

−g(0)
∂µ(

√

−g(0) g(2)µν∂νφ0)

− 1

16
∂µTr g

(2) g(0)µν∂νφ0 −
1

16
Tr g(2) ∇2φ0, (A5b)

g(2)µν = −1

2
Rµν [g

(0)] +
1

12
g(0)µν R[g

(0)] + 4πGN∂µφ0∂νφ0 −
2πGN

3
g(0)µν (∂φ0)

2, (A5c)

h(4)µν = +
1

4
Rµν [g

(2)] +
1

2
g
(2)
µλ g

(2)λ
ν −

1

8
g(0)µν Tr [(g

(2))2]− 1

4
πGNg

(0)
µν (∇2φ0)

2

− 1

2
πGN (∂µφ0∂ν∇2φ0 + ∂µ∇2φ0∂νφ0), (A5d)

Trh(4) = 0, (A5e)

∇νh(4)µν = 4πGNψ4∂µ∇2φ0, (A5f)

Tr g(4) =
1

4
Tr[(g(2))2]− 1

2
πGN (∇2φ0)

2, (A5g)

∇νg(4)µν = −1

4
∂µTr[(g

(2))2] + 16πGNφ4∂µφ0 −
1

2
πGN (∇2φ0)∂µ(∇2φ0), (A5h)

where ψ4 is the coefficient of the z4 log z2 term in φ’s asymptotic expansion. The renormalised

action is

Sren = lim
ǫ→0

{

1

16πGN

[
∫

d5x
√
−G(R + 12) + 2

∫

z=ǫ
d4x
√

−g̃ K[g̃]

]

− 1

2

∫

d5x
√
−GGmn∂mφ∂nφ (A6)

+
1

16πGN

∫

z=ǫ
d4x
√

−g̃
(

6 +
1

2
R[g̃] + 4πGN g̃

µν∂µφ∂νφ+ a(4)ǫ
2 log ǫ

)

}

,
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where the final line consists of counterterms at z = ǫ, and

a(4) ≡
1

ǫ2

(

−1

4
Rµν [g̃]Rµν [g̃] +

1

12
R[g̃]2+4πGNR

µν [g̃]∂µφ∂νφ

− 136

9
π2G2

N (g̃µν∂µ∂νφ)
2 − πGN (∇2

g̃φ)
2

)

, (A7)

where Rµν [g̃] is the Ricci tensor of g̃µν , and ∇2
g̃ is with respect to g̃µν . Varying Sren in eq. (A6)

with respect to sources, we obtain the one point functions

〈O〉 = 4φ4 + 6ψ4 + φ2Trg
(2), (A8a)

〈Tµν〉 =
1

8πGN

(

2g(4)µν + 3h(4)µν − g
(2)
µλ g

(2)λ
ν +

1

2
g(2)µν Tr g

(2)

+
1

2
g(0)µν Tr[(g

(2))2]− 1

4
g(0)µν [Trg

(2)]2 − g(0)µν Tr g
(4)

)

. (A8b)
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