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Abstract

We explore the low energy phenomenology of an F-theory based SU(5) model which, in

addition to the known quarks and leptons, contains Standard Model (SM) singlets, and

vector-like color triplets and SU(2) doublets. Depending on their masses and couplings,

some of these new particles may be observed at the LHC and future colliders. We discuss

the restrictions by CKM constraints on their mixing with the ordinary down quarks of the

three chiral familes. The model is consistent with gauge coupling unification at the usual

supersymmetric GUT scale, dimension five proton decay is adequately suppressed, while

dimension-six decay mediated by the superheavy gauge bosons is enhanced by a factor of

5-7. The third generation charged fermion Yukawa couplings yield the corresponding low-

energy masses in reasonable agreement with observations. The hierarchical nature of the

masses of lighter generations is accounted for via non-renormalisable interactions, with the

perturbative vacuum expectation values (vevs) of the SM singlet fields playing an essential

rôle.
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1 Introduction

Models originating from string theory constructions often contain SM singlets and vector-like

fields which can mix with the light spectrum and therefore are natural candidates for predicting

rare processes that might be discovered in future experiments at the LHC and elsewhere. F-

theory models [1], in particular, have the necessary ingredients to describe in a simple and

convincing manner a complete picture of such new phenomena. One of the most appealing

grand unified theories incorporating these features in an F-theory context, is SU(5) 3. Indeed,

on breaking F-SU(5) to SM symmetry, one ends up with the MSSM spectrum augmented by

scalar fields and vector-like states, which are remnants of the underlying GUT representations.

In this framework, it is possible to retain gauge coupling unification even in the presence of

some additional fields, provided that these form complete multiplets of SU(5). In view of the

ongoing experimental searches and possible future signatures, in this work we reconsider some

issues regarding the exotic part of these models.

We start with a brief review of the basic features of an SU(5) model [12] derived in an F-

theory framework and, in particular, in the context of the spectral cover. We derive an effective

theory model by imposing a Z2 monodromy and identify the complex surfaces where the chiral

matter and Higgs can be accommodated in the quotient theory. We assume a hypercharge flux

breaking of the SU(5) symmetry down to the SM one, and proceed with a specific assignment

of the MSSM representations on these matter curves and then work out the spectrum and

the superpotential. After fixing the necessary free parameters (such as flux units and singlet

vevs), we proceed with the investigation of the exotic massless spectrum left over from higher

dimensional fields. We then derive their superpotential couplings and analyse the implications for

baryon number violating decays as well as other rare processes. We examine the possibility that

these states remain massless at low energies being consistent with gauge coupling unification,

and discuss the physics implications of the TeV scale exotic states.

2 F-SU(5)

We consider the elliptically fibred case where the highest smooth singularity in Kodaira’s clas-

sification is associated with the exceptional group of E8 [20, 21]. We assume 7-branes wrapping

an SU(5) divisor and interpret this as the GUT symmetry of the effective model. Under these

assumptions

E8 ⊃ SU(5)GUT × SU(5)⊥ , (1)

where the first factor is interpreted as the well known SU(5)GUT and the second factor is usually

denoted as SU(5)⊥.

The MSSM spectrum and possible exotic fields descend from the decomposition of the E8 adjoint

3For F-theory model building reviews and early references see [2, 3, 4, 5]. For an incomplete list including

more recent research papers see [6]-[37].
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which, under the assumed breaking pattern (1), decomposes as follows:

248 → (24, 1) + (1, 24) + (10, 5) + (5, 10) + (5, 10) + (10, 5) . (2)

Thus, matter transforms in bi-fundamental representations, with the GUT 10-plets lying in the

fundamental of SU(5)⊥, and the 5̄, 5-plets lying in the antisymmetric representation of SU(5)⊥.

We note in passing that the flipped SU(5) can also be obtained within the same context, by

splitting SU(5))⊥ to U(1)X × SU(4)⊥. In this case the hypercharge is defined by the formula

Y = 1
5

(

x+ 1
6y
)

where x denotes the U(1)X charge and y that of the abelian factor inside SU(5).

If we recall that the flipped model SU(5)× U(1)X is embedded in SO(10), the analogue of the

decomposition of (2) can be expressed with respect to the breaking pattern

E8 ⊃ SO(10) × SU(4)⊥ → SU(5) × SU(4)⊥ × U(1)X

as follows

248 → (45, 1) + (16, 4) + (1̄6, 4̄) + (10, 6) + (1, 15)

→ (24, 1)0 + (1, 15)0 + (1, 1)0 + (1, 4)−5 + (1, 4̄)5 + (10, 4)−1 + (10, 1)4

+(10, 4̄)1 + (10, 1)−4 + (5̄, 4)3 + (5̄, 6)−2 + (5, 4̄)−3 + (5, 6)2 (3)

Returning to the SU(5) model, we choose to work in the Higgs bundle picture (the spectral

cover approach). In this context the properties of the GUT representations with respect to the

spectral cover are described by a degree-five polynomial [6]

C5 :
5
∑

k=0

bks
5−k = 0 , (4)

where the bk coefficients carry the information of the internal geometry and their homologies,

are given by [bn] = η − nc1, (with η = 6c1 − t), where c1 = c1(S) is the first Chern class of

the tangent bundle and −t that of the normal to the surface S. The roots of the equation are

identified as the weight vectors t1,...,5 satisfying the standard SU(N) constraint (N = 5 in the

present case)
5
∑

i=1

ti = 0 . (5)

Under ti the matter curves acquire specific topological and symmetry properties inherited by

the fermion families and Higgs fields propagating there. We denote the matter curves accommo-

dating the 10-plets, 5-plets of SU(5) and singlets emerging from SU(5)⊥ adjoint decomposition

as Σ10ti
,Σ5ti+tj

,Σ1ti−tj
. Correspondingly, the possible representations residing on these matter

curves are denoted by

Σ10ti
: 10ti , 10−ti , Σ5ti+tj

: 5ti+tj , 5−ti−tj , Σ1ti−tj
: 1ti−tj ,

where, as far as 5-plets and singlets are concerned, we must have ti 6= tj .

2



Working in the framework of spectral cover, while assuming distinct roots ti of (4), one may

further consider the breaking SU(5)⊥ → U(1)4⊥. Then, the invariant tree-level superpotential

couplings are of the form

W ⊃ h1 10ti10tj5−ti−tj +h2 10ti 5̄tj+tk 5̄tl+tm +h3 1ti−tj5−ti−tk 5̄tj+tm +h4 1ti−tj 1tj−tk 1tk−ti , (6)

where h1,2,3,4 represent the Yukawa strengths. In each of the above terms, the sum of the ti

‘charges’ should add up to zero. Hence, in the second term ti + tj + tk + tl + tm = 0, which

unambiguously implies that all indices in the term proportional to Yukawa coupling h2 should

differ from each other (due to the fact that t1 + t2 + t3 + t4 + t5 = 0).

Returning to the polynomial (4), although its coefficients bn belong to a certain field (holo-

morphic functions), the roots ti do not necessarily do so. Solutions, in general, imply branch

cuts and, as a result, certain roots might be interrelated. The simplest case is if two of them

are subject to a Z2 monodromy, say, 4

Z2 : t1 = t2 . (7)

From the point of view of the effective field theory model, the appearance of the monodromy is

a welcome result since it implies rank-one mass matrices for the fermions. Indeed, under the Z2

monodromy, the coupling

W ⊃ 10t110t25−t1−t2
Z2−→ 10t110t15−2t1 (8)

ensures a top-quark mass at tree-level, while the remaining mass matrix entries are expected to

be generated from non-renormalisable terms. After this brief description of the basic features,

we proceed in the next section with the analysis of the implications of the hypercharge flux on

the symmetry breaking and the massless spectrum of SU(5).

3 Hypercharge Flux breaking of SU(5)

The Z2 monodromy implies that the spectral cover polynomial factorises as follows:

b0s
5 + b2s

3 + b3s
2 + b4s+ b5 = (a1 + a2s+ a3s

2)(a4 + a5s)(a6 + a7s)(a8 + a9s), (9)

where all ai are assumed in the same field as bn’s. Thus, while the roots of the three monomials

on the right-hand side of (9) are rational functions in this field, it is assumed that the two roots

of the binomial (a1 + a2s+ a3s
2) cannot be written in terms of functions in the same field.

The bn(ai) relations are easily extracted by identifying coefficients of the same powers in s and

are of the form bn =
∑

aiajakal, where the indices satisfy i+ j+k+ l+n = 24. Therefore, given

the homologies [bn], the corresponding ones for the ai coefficients satisfy [ai]+ [aj ]+ [ak]+ [al] =

[bn]. Solving the resulting simple linear system of equations, it turns out that these can be

determined in terms of the known classes c1,−t and three arbitrary ones (dubbed here χ6,7,8),

4For various choices of monodromies, see [7, 8, 10, 11].
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which will be treated as free parameters [10]. Each matter curve is associated with a defining

equation involving products of ai’s and, as such, it belongs to a specific homological class which

subsequently is used to determine the flux restriction on it. If FY represents the hypercharge

flux, we will require the vanishing of FY · c1 = FY · (−t) = 0, so that all can be expressed in

terms of three free (integer parameters) defined by the restrictions

N7 = FY · χ7, N8 = FY · χ8, N9 = FY · χ9 . (10)

To construct a specific model, we start by assuming that a suitable U(1)X flux (where the abelian

factor U(1)X lies outside SU(5) GUT) generates chirality for the 10 and 5̄ representations. Next,

the hypercharge flux breaks SU(5) down to the SM and, at the same, time it splits the 10, 10

and 5, 5̄’s into different numbers of SM multiplets. If some integers M10,M5 are associated with

the U(1)X flux, and some linear combination Ny of N7,8,9 represents the corresponding hyperflux

piercing a given matter curve, the 10-plets and 5-plets split according to:

10ti =























Representation flux units

n(3,2)1/6
− n(3̄,2)

−1/6
= M10

n(3̄,1)
−2/3

− n(3,1)2/3
= M10 −Ny

n(1,1)+1
− n(1,1)−1

= M10 +Ny

, (11)

5ti =











Representation flux units

n(3,1)−1/3
− n(3̄,1)+1/3

= M5

n(1,2)+1/2
− n(1,2)−1/2

= M5 +Ny ·
(12)

As already discussed, depending on the restrictions of the flux on the matter curves Σj, there

are certain conditions on the corresponding hypercharge flux, denoted as Nyj (for the specific

matter curve Σj). These are deduced from the topological properties of the coefficients ai as

well as the fluxes.

For a given choice of the flux parameters Mi, Nyj , the most general spectrum and its proper-

ties under the assumption of a Z2 monodromy are exhibited in Table 1. The first column shows

the available matter curves and the assumed chiral state propagating on it. The chirality is fixed

by the specific choice of Mi, Nyj flux coefficients shown in the last two columns of Table 1. The

second column shows the ‘charge’ assignments, ±ti for the 10-plets, and ±(ti+ tj),±(ti− tj) for

5-plets and singlets respectively. For this particular arrangement, the structure of the fermion

mass matrices exhibits a hierarchical form, consistent with the experimentally measured masses

and mixings [12]. In the present work, we will explore other interesting phenomenological im-

plications of this model. The defining equations are shown in the fourth column where, for

brevity, the notation aijk... = aiajak · · · is used. The next column indicates the homologies, the

sixth column their associated integers expressing the restrictions of flux on the corresponding

matter curves, and the last column lists a choice of Mi values consistent with a chiral SU(5)

spectrum. Notice that the flux integers are subject to the restrictions [10] N = N7 +N8 + N9

and
∑

i M5i +
∑

j M10j = 0. In the minimal case n = 0 and there are no extra 5 + 5̄ pairs.

Furthermore, the multiplicities Mij ,Mδ of singlet fields are not determined in the context of the

spectral cover and are left arbitrary.
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Curve Field U(1)i defining eq. homology U(1)Y -flux U(1)-flux

Σ10(1) : 103 t1 a1 η − 2c1 − χ −N = 0 M101 = 1

Σ10(2) : 101 t3 a4 −c1 + χ7 N7 = −1 M102 = 1

Σ10(3) : 102 t4 a6 −c1 + χ8 N8 = 1 M103 = 1

Σ10(4) : 10′2 t5 a8 −c1 + χ9 N9 = 0 M104 = 0

Σ5(0) : 5Hu −2t1 a578 + a479 + a569 −c1 + χ N = 0 M5Hu
= 1

Σ5(1) : 5̄2 t1 + t3 a1 − c(a478 + a469) η − 2c1 − χ −N = 0 M51 = −1

Σ5(2) : 5̄3 t1 + t4 a1 − c(a568 + a469) η − 2c1 − χ −N = 0 M52 = −1

Σ5(3) : 5x −t1 − t5 a1 − c(a568 + a478) η − 2c1 − χ −N = 0 M53 = n

Σ5(4) : 5̄1 t3 + t4 a56 + a47 −c1 + χ− χ9 N −N9 = 0 M54 = −1

Σ5(5) : 5̄Hd
t3 + t5 a58 + a49 −c1 + χ− χ8 N −N8 = −1 M5Hd

= 0

Σ5(6) : 5̄x̄ t4 + t5 a78 + a49 −c1 + χ− χ7 N −N7 = 1 −n− 1

θ12 0 − − − M12

Σ5(6) : θij ti − tj − − − Mij

θδ 0 − − − Mδ

Table 1: Field content under SU(5), their ‘charges’ under the ‘perpendicular’ U(1)ti ’s,

their homology class and flux restrictions. For convenience, only the properties of 10, 5 are

shown. 10, 5 are characterised by ti → −ti. Note that the fluxes satisfy N = N7 +N8 +N9 and
∑

iM10i +
∑

j M5j = 0, while χ = χ7 + χ8 + χ9.

4 Spectrum of the effective low energy theory

A comprehensive classification of the resulting spectrum is shown in Table 2 where, in the first

column, the SU(5) properties are shown. The third column shows the accommodation of the SM

representations with their corresponding ti ‘charges’ (associated with the perpendicular U1)’s)

given in column 2. Column 4 includes the exotics which, for the specific choice of parameters,

involves the triplet pair D + Dc and, in principle, n copies of 5 + 5̄ representations. In the

minimal case we set n = 0, but perturbativity allows values up to n ≤ 4. In the modified

version of the model we allow for n 6= 0 and explore the phenomenological implications. note

that restrictions on the number of vector-like 5-plets arise when the model is embedded in an

E6 framework [26]-[28]. In the last column of the Table, we have also introduced a Z2 matter

parity to the MSSM field as well as the singlets.

Before proceeding with the main part of our paper we present a few remarks about R-parity

in supersymmetric models. A discrete Z2 R-parity is often invoked in four dimensional supersym-

metric SU(5) models in order to eliminate rapid proton decay mediated by the supesrymmetric

partners of the SM quarks and leptons. If left unbroken, this discrete symmetry also yields an

attractive candidate for cold dark matter, namely the lightest neutralino. It is perhaps worth

noting that this Z2 symmetry naturally appears if we employ an SO(10) GUT which is broken

down to SU(3)c × U(1)em by utilizing only tensor representations [38].
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The question naturally arises: how do string theory based unified models avoid rapid proton

decay? In the ten-dimensional E8 × E8 heterotic string framework [39], the compactification

process utilizes Calabi-Yau manifolds which typically yields non-abelian discrete symmetries

that may contain the desired R-parity ([40] and references therein.)

In F-theory models discrete symmetries including R-parity may arise from a variety of

sources. They can emerge from Higgsing U(1) symmetries in F-theory compactifications, or

from a non-trivial Mordell-Weil group associated with the rational sections of the elliptic fibra-

tion, first invoked in [29] and further discussed in several works including [30, 31, 32, 33]. More

generally, Zn symmetries are associated with Calabi-Yau manifolds whose geometries are associ-

ated with the Tate-Shafarevich group [34]. Finally, they may appear as geometric properties of

the construction in the spectral cover picture [36]. Based on the existence of such possibilities,

in the present model we implement the notion of R-parity assuming that it is associated with

some symmetry of geometric origin.

4.1 Matter curves and Fermion masses

Returning to the description of the emerging effective model, for further clarification we include

a few more details. Initially, in the covering theory there are five matter curves 5 but due

to monodromy Z2 : t1 = t2, two of them are identified and thus they are reduced to four.

Similarly, the ten Σ5ti+tj
reduce to seven matter curves. Furthermore, there are 24 singlets from

the decomposition of the adjoint of SU(5)⊥ denoted with θij, i, j = 1, 2 . . . , 5, and 20 of them

live on matter curves defined by ti − tj while four are ‘chargeless’. However, because of the

Z2 monodromy among the various identifications, θi1 ≡ θi2 and θ1j ≡ θ2j , the following two

singlets:

θ12 = θ21 → S (13)

are equivalent to one singlet S with zero charge. The remaining singlets with non-zero ‘charges’

are

θ13, θ14, θ15, θ34, θ35, θ45, and θ31, θ41, θ51, θ43, θ53, θ54

The following singlets acquire non-zero vevs which help in realising the desired fermion mass

textures:

〈θ14〉 ≡ V1 ≡ v1MGUT 6= 0, 〈θ15〉 ≡ V2 ≡ v2MGUT 6= 0, 〈θ43〉 ≡ V3 ≡ v3MGUT 6= 0 . (14)

All other singlets (designated with θ⊥ij in Table 2) have zero vevs. Using the SM Higgs and

singlet vevs given by (14), we obtain hierarchical quark and charged mass textures

Mu ∝







v21v
2
3 v21v3 v1v3

v21v3 v21 v1

v1v3 v1 1






〈Hu〉, Md,ℓ =







v21v
2
3 v1v

2
3 v1v3

v21v3 v1v3 v1

v1v3 v3 1






〈Hd〉 , (15)

where, the Yukawa couplings are suppressed for simplicity.

5Recall from (2), Σ10i , i = 1, 2, . . . , 5 that the 10-plets transform in the fundamental and 5-plets in the anti-

symmetric representation of SU(5)⊥.
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4.1.1 Neutrino sector

The tiny masses accompanied by the relatively large mixings of the neutrinos, as indicated by

various experiments, can find a plausible solution in the context of the see-saw mechanism and

the existence of family symmetries. In the present F-SU(5) GUT model, the SM singlet fields

such as θij form Yukawa terms invariant under the additional family symmetries described above

and could be the natural candidates for the right handed neutrinos. Furthermore, observing

that the right-handed neutrino mass scale is of the order of the Kaluza-Klein scale in string

compactifications, a minimal scenario would be to associate the right handed neutrinos with

the KK-modes [7] of these singlet fields, θKK
ij → NR. An obstruction to this interpretation is

that in the covering theory these singlets θij transform in the complex representation, so that

θKK
ij = NR, θ

KK
ji = N c

R and the mass term becomes MKKNRN
c
R, but there are no corresponding

Dirac mass terms for both NR, N
c
R. However, in the quotient theory under the Z2 monodromy

t1 = t2, the KK-modes θKK
12 ≡ θKK

21 transform in the real representation, so that for any KK-level

the corresponding modes NRk
= N c

Rk
→ νck are identified and a see-saw mechanism is possible.

Hence, the non-renormalisable term 5−t1−t2 5̄t1+t4θ14θ
KK
21 under the Z2 monodromy is identified

with 5−2t1 5̄t1+t4θ14θ
KK
21 → 5hu 5̄3θ14ν

c and so on. Therefore, under the above assumptions, the

KK-modes corresponding to right-handed neutrinos couple to the following combination of the

left-handed neutrino components

5Hu(5̄1θ
2
14θ43 + 5̄2θ14θ43 + 5̄3θ14) . (16)

The interesting fact is that the right-handed neutrinos are associated with a specific class of

wavefuctions [7] such that the emerging mass hierarchy is milder than that of the charged

leptons and quarks. It is shown that the mass matrix obtained this way [7] can accommodate

the two large mixing angles observed in atmospheric and solar neutrino experiments.

5
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:
2Z

SU(5)SO(12)

X

5

n
q< >

h

h
d

u

t
t

t

t t
t+

+
2

3
4

5

1

2

tt1 2=

5

t
1

2

t_
_

m-term

E
6

Figure 1: The trilinear top and bottom Yukawa couplings at the triple intersections of the matter

curves with symmetry enhancements E6 and SO(12) respectively. Under a Z2 monodromy we

obtain identifications such as 10t1 = 10t2 so that a ‘diagonal’ top Yukawa coupling can be realised.

A µ-term emerges only from non-renormalisable (suppressed) contributions. 〈θ〉n stands for the

ratio of singlet vevs divided by the high (compactification) scale.
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Irrep U(1)i SM spectrum Exotics R-parity

101 t3 Q1, u
c
1, u

c
2 − −

102 t4 Q2, e
c
1, e

c
2 − −

103 t1 Q3, u
c
3, e

c
3 − −

5̄1 t3 + t4 dc1, ℓ1 − −
5̄2 t1 + t3 dc2, ℓ2 − −
5̄3 t1 + t4 dc3, ℓ3 − −
5Hu −2t1 Hu D +

5̄Hd
t3 + t5 Hd − +

5x −(t1 + t5) − (Hui ,Di)i=1,...,n +

5̄x̄ t4 + t5 − Dc + (Hdi ,D
c
i )i=1,...,n +

θ12,21 0 S (singlet) −
θ14 t1 − t4 〈θ14〉 = V1 ≡ v1MGUT +

θ15 t1 − t5 〈θ15〉 = V2 ≡ v2MGUT +

θ43 t4 − t3 〈θ43〉 = V3 ≡ v3MGUT +

θ⊥ij ti − tj 〈θ⊥ij〉 = 0 +

Table 2: Field content under SU(5) × U(1)ti . The third column shows the MSSM spectrum

and the fourth column displays the predicted exotics. The R-parity assignments appear in the

last column. We use assignments 10ti , 5−ti−tj whith 10, 5 characterized by opposite values, ti →
−ti etc. The fluxes eliminated components of the SU(5) multiplets, giving rise to incomplete

representations. There are also n copies, of 5 + 5̄ multiplets.
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4.2 Mass terms for the doublets and triplets

Returning to the content of Table 2, we observe that there is still freedom to accommodate

additional vector-like 5-plets which respect all the required conditions. Hence, aiming to ac-

commodate potential diphoton resonances and other possible experimental signatures of exotic

matter beyond the MSSM spectrum, in the present construction we assume the existence of

5 + 5̄ pairs and discuss possible implications of the exotic states. As already explained, the Z2

monodromy allows a tree-level coupling for the top quark 1031035Hu . Furthermore, from the

specific accommodation of the fermion generations listed in Table 2, we observe that a tree-level

coupling for the bottom quark is also available. A geometric perspective of the Yukawa couplings

in the internal manifold is depicted in figure 4.1.1. All other mass entries are generated from

non-renormalisable terms [12].

Regarding the 5-plets accommodating the MSSM Higgs, we observe that the flux splits the

doublet from the triplet in the Higgs sector. As a result, the MSSM µ term

θ14θ43θ15
M2

GUT

5̄t3+t55−2t1 → V1V2V3

M2
GUT

HuHd → µHuHd. (17)

does not involve masses for the triplet fields. Fermion mass hierarchies require at least that the

singlet vev V1 = 〈θ14〉 & O(10−1)MGUT , so that the MSSM µ parameter can be kept light for

v2 · v3 ≪ v1.

In the general case, we need to take into account the extra doublet pairs emerging from

the 5-plets remaining in the zero-mode spectrum. As an illustrative example, we take only one

additional vector-like pair of 5-plets, that is n = 1. In this case the available coupling are

5Hu 5̄Hd
θ14θ43θ15/M

2
GUT + 5Hu 5̄x̄θ14θ15/MGUT + 5x5̄Hd

θ14θ43/MGUT + 5x5̄x̄θ14 .

The Higgs mass matrix in the basis L ⊃ (Hd,H
′
d)MH

(

Hu

H′
u

)

is

MH ∝ V1

(

v3v2 v3

v2 1

)

, (18)

where the Yukawa couplings are suppressed to avoid clutter. This implies a light Higgs mass

term µ ∼ V1v2v3 and a heavy one MH ∼ V1.

The triplet mass terms emerge from different couplings

θ14θ15 5̄t4+t55−2t1/MGUT + ǫθ14 5̄t4+t55−t1−t5 → θ14θ15 5̄x̄5Hu/MGUT + ǫθ14 5̄x̄5x · (19)

Hence, written in a matrix form

LD ⊃ (5Hu , 5x)MD

(

5̄Hd
5̄x̄

)

,

where the triplet mass matrix is MD = V1

(

v2 ǫ

ǫ′v2 1

)

, and the parameters ǫ ≃ ǫ′ . 1 stand

for corrections when more than one matter multiplets are on the same matter curve. The
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eigenmasses also depend on the singlet vevs and will be discussed in conjunction with proton

decay in the subsequent sections.

In addition to these superpotential couplings, the vector pairs 5 + 5̄ generate superpotential

terms with the matter fields

1035̄x̄5̄2, 1035̄x̄(5̄1θ14+5̄3θ34), 1015̄x̄(5̄1θ14θ43+5̄2θ43+5̄3)θ14, 1025̄x̄(5̄1θ14+5̄2+5̄3θ34)θ14 · (20)

where the non-renormalisable terms are assumed to be scaled by appropriate powers of MGUT .

In the next sections we will explore possible phenomenological consequences of (20). However,

we note that it is feasible to eliminate such couplings from the lagrangian by introducing a

different R-parity assignment for the colour triplets.

It is worth mentioning some differences and similarities with models arising in the context of

orbifolds and heterotic strings. In [41], for example, the hierarchy of fermion families results from

the number of powers of Yukawa couplings allowed under certain selection rules and suitable

assumptions on the vevs, while here the textures of Yukawa matrices display a Froggatt-Nielsen

form. On the other hand, there are similarities in obtaining the doublet-triplet splitting mass

matrix of the Higgs sector.

5 Gauge Coupling Unification

The presence of additional vector-like pairs of colour triplets and higgsinos with masses in

the TeV range affect the renormalisation group running of the gauge couplings and the fermion

masses. The existence of complete 5+5̄ SU(5) multiplets at the TeV scale may enhance processes

that could be observed in future searches, while they can be consistent with perturbative gauge

coupling unification as long as their number is less than four. Threshold corrections from

Kaluza-Klein (KK) modes and fluxes play a significant rôle [42, 43, 44] too. Under certain

circumstances [43], (for example when the matter fields are localised on genus one surfaces) the

KK threshold effects can be universal, resulting to a common shift of the gauge coupling constant

at the GUT scale. This has been analysed in some detail in ref [43] and will not be elaborated

further. However, in F-theory constructions, there are additional corrections associated with

non-trivial line bundles [45, 46]). More precisely, assuming that the SU(5) is generated by

D7-branes wrapping a del-Pezzo surface, gauge flux quantization condition [47] implies that

D7-branes are associated with a non-trivial line bundle La. On the other hand, the breaking of

SU(5) occurs with a non-trivial hypercharge flux LY supported on the del Pezzo surface, (but

with a trivial restriction on the Calabi-Yau fourfold so that the associated gauge boson remains

massless). The flux threshold corrections to the gauge couplings associated with these two line

bundles can be computed by dimensionally reducing the Chern-Simons action. If we define

y =
1

2
ReS

∫

c21(La), x = −1

2
ReS

∫

c21(LY ) , (21)

where, c1(L) denotes the first Chern class of the corresponding line bundle and S = e−φ+ iC0 is

the axion-dilaton field (and g
IIB

= eφ), the flux corrections to the gauge couplings are expressed

10



as follows

1

a3(MU )
=

1

aU
− y (22)

1

a2(MU )
=

1

aU
− y + x (23)

1

a1(MU )
=

1

aU
− y +

3

5
x , (24)

where aU represents the unified gauge coupling. From (22-24) we observe that the corrections

from the La line bundle are universal and therefore y can be absorbed in a redefinition of aU .

On the other hand, hypercharge flux thresholds expressed in terms of x, are not universal and

destroy the gauge coupling unification at the GUT scale MU . Notice that in order to eliminate

the exotic bulk states (3, 2)5 + (5̄, 2)−5 emerging from the decomposition of 24, we need to

impose
∫

c21(LY ) = −2, and therefore we find the simple form x = e−φ = 1
g
IIB

. The value of

the gauge coupling splitting has important implications on the mass scale of the color triplets

discussed in the previous section. In the following we will explore this relation within the matter

and Higgs field context of the present model.

We assume that the color triplets D +Dc ∈ 5H + 5̄H receive masses at a scale MX , while

the complete 5 + 5̄ extra multiplets obtain masses at a few TeV. The renormalisation group

equations take the form

1

ai(MU )
=

1

ai(MU )
+

bxi
2π

log
MU

MX

+
bi
2π

log
MX

µ
· (25)

It can be readily checked that the GUT values of the gauge coupling satisfy

5

3

1

a1(MU )
=

1

a2(MU )
+

2

3

1

a2(MU )
· (26)

Assuming nD pairs of (D +Dc) and nV vector-like 5-plets, the beta functions are

bx3 = −3 + nV + nD, b
x
2 = 1 + nV , b

x
1 =

33

5
+

2

5
nD + nV (27)

b3 = −3 + nV , b2 = 1 + nV , b1 =
33

5
+ nV · (28)

Using (22,23) and (26) we find

log
MU

MX

=
2π

βx

1

A − β

βx
log

MX

µ
(29)

where we introduced the definitions

β =
5

3
(b1 − b3) + (b3 − b2) (30)

βx =
5

3
(bx1 − bx3) + (bx3 − bx2) (31)

1

A =
5

3

1

a1
− 1

a2
− 2

3

1

a3
=

1− 2 sin2 θW
ae

− 2

3

1

a3
· (32)

11



Notice that for the particular spectrum, βx, β are equal, βx = β = 12, and independent of the

number of multiplets nD and nV . Then, from (29) we find that the unification scale is

MU = e
2π
12AMZ ≈ 2.04 × 1016GeV , (33)

i.e., independent of nV , nD and the intermediate scale MX .

To unravel the relation between the scale MX and the parameter x, we proceed as follows.

First, we subtract (23) from (22)

x =
1

a2
− 1

a3
+

bx3 − bx2
2π

MU

MX

+
b3 − b2
2π

MX

µ
(34)

=
1

a2
− 1

a3
− 4− nD

2π

MU

MX

− 4

2π

MX

µ
·

Using (29) and the fact that in our model nD = 1, we find

log
MX

µ
= 2π

(

6 sin2 θW − 1

4ae
− 5

6

1

a3
− x

)

· (35)

This determines the relation between the parameter x = e−φ and the scale MX where the Higgs

triplets become massive. We can use the expression for MU to express the MX scale as follows

log
MX

MU
= 2π

(

5 sin2 θW − 1

3ae
− 7

9

1

a3
− x

)

· (36)

To determine the value of the GUT coupling aU we use (22,29) and (34) to find

1

aU
+ x =

1

a2
− bx2

βx

1

A =
1

a2
− 1 + nV

12

1

A · (37)

For the present application, we allow three pairs of 5-plets, nV = 3, and we obtain the relation

1

aU
=

5 sin2 θW − 1

3a3
+

2

9

1

a3
− x · (38)

Substitution of (38) in (36) gives an elegant and very suggestive formula:

MX = e
2π

(

1
aU

− 1
a3

)

MU · (39)

We observe that in order to have MX ≤ MU , we always need aU ≥ a3 ≈ 1
8.5 . We depict the

main results in the figures that follow. In fig.2 we show the variation of the color triplets’

decoupling scale versus the range of values of the dilaton and, in fig.3, we plot the inverse SM

gauge couplings taking into account the thresholds of the color-triplets.

5.1 RGEs for Yukawa Couplings

These modifications in the gauge sector and, in particular, the large gU value compared to that of

the standard MSSM unification scenario (gU ∼ 1/25 in MSSM) are expected to have a significant

impact on the evolution of the Yukawa couplings. On the other hand, in F-theory constructions

12
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Figure 2: Variation of MX scale with respect to the dilaton field. For the chosen range of

φ ∈ (0,∞), (strong gIIB coupling regime) there is a lower bound MX ∼ 1013 GeV.
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Figure 3: Gauge coupling running in the presence of flux thresholds and the triplet’s decoupling

scale MX .

the Yukawa coupling strengths at the unification scale are computed analytically and can be

expressed in terms of the geometric properties of the internal six-dimensional compact space

and the fluxes of the particular construction. For the sake of argument, we assume that all three

5 + 5̄ surplus matter fields receive masses in the TeV range, with tan β values ∼ 48 − 50 and

MGUT ∼ 2 × 1016 GeV. Then, according to [48], the top mass, in particular, is achieved for

Yukawa coupling ht(MGUT ) & 0.35 which is significantly lower than the value ∼ 0.6 obtained in

the case of RG running with the beta-functions for the MSSM spectrum.

Turning now to F-theory predictions, as we have seen, the Yukawa couplings are realised at

the intersections of three matter curves. The properties of the corresponding matter fields in

a given representation R are captured by the wavefunction ΨR whose profile is obtained by

solving the Equations of Motion (EoM) [1]. It is found that the solution exhibits a gaussian

profile picked along the matter curve supporting the particular state, ΨR ∝ f(zi)e
Mijziz̄j . Here
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z1,2 are local complex coordinates, the ‘matrix’ Mij takes into account background fluxes, and

f(zj) is a holomorphic function. The value of the Yukawa coupling results from integrating over

the overlapping wavefunctions. Thus, for the up/down Yukawa couplings,

ht ∝
∫

Ψ10Ψ10Ψ5Hu
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2, hb ∝

∫

Ψ10Ψ5̄Ψ5̄Hd
dz1 ∧ dz̄1 ∧ dz2 ∧ dz̄2 . (40)

The top Yukawa coupling is realised at the intersection where the symmetry is enhanced to E6,

while the bottom and τ Yukawa couplings are associated with triple intersections of SO(12)

enhancements. We note in passing that the corresponding solution of the EoM providing the

wavefunction for the up-type quark coupling is rather involved because of the monodromy and

must be solved in a non-trivial background where the notion of T-brane is required [49]. Using

appropriate background fluxes, we can break E6 to SU(5), while the latter can break down to

the SM gauge group with the hypercharge flux. To estimate the top Yukawa coupling, one has to

perform the corresponding integration (40). Varying the various flux parameters involved in the

corresponding wavefunctions, it is found that the top quark Yukawa takes values in the interval

ht ∼ [0.3 − 0.5], in agreement with previous computations [50, 51], and hence the desired value

ht ∼ 0.35 can be accommodated 6.

In the present approach, the bottom and τ Yukawa couplings are formed at a different point

of the compact space where the symmetry enhancement is SO(12). Proceeding in analogy with

the top Yukawa, one can adjust the flux breaking mechanism to achieve [50, 51]) the successive

breaking to SU(5) and SU(3) × SU(2) × U(1). Further, for certain regions of the parameter

space, one can obtain hb,τ values in agreement with those predicted by the renormalisation group

evolution [52].

6 Decay of Vectorlike Triplets

While analysing the spectrum in section 4, we have seen that the existence of vector-like triplets

is a frequently occurring phenomenon. They can be produced in pairs at LHC through their

gauge couplings to gluons. However, such exotic particles are not yet observed and must decay

through higher dimensional operators through mixing with the MSSM particles.

We start with the minimal model by setting n = 0, in which case the only states beyond the

MSSM spectrum are Dc,D found in the 5̄x̄ and 5Hu respectively. We will consider the case

of their mixing with the third family which enhances their decays, due to the large Yukawa

coupling compared to the two lighter generations. The available Yukawa couplings which mix

the down-type triplets are

W ⊃ λ10t1 5̄t1+t4 5̄t3+t5 + λ110t1 5̄t4+t5 5̄t3+t5θ15/MGUT + λ25̄t4+t55−2t1θ14θ15/MGUT

→ λ1035̄35̄Hd
+ λ11035̄Hd

5̄x̄ v2 + λ25̄x̄5Hu v1 v2 , (41)

6Notice that the predicted values gU ∼ 0.1, ht ∼ 0.3 − 0.5 differ from those in minimal MSSM unification

scenario. In view of these modifications it would be interesting to reconsider the stability of the Higgs vacuum,

such an analysis, however, goes beyond the objectives of the present work.
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where the non-renormalisable terms are scaled by the appropriate powers of the compactification

scale or the GUT scale. These terms generate a mixing matrix of the third generation down

quark and Dc,D which can be cast in the form

LY ⊃ (Q3,D)MD

(

bc

Dc

)

, MD ∝
(

λ√
2
vd

λ1√
2
v2vd

0 λ2v1v2

)

,

where vd stands for the down Higgs vev scaled by the GUT scale. This non-symmetric matrix

MD is diagonalised by utilizing the left and right unitary matrices

M δ
D = V †

LMDVR,

implying

M δ
D

2
= V †

LMDM
†
DVL = V †

RM
†
DMDVR

where

MDM
†
D =

(

1
2λ

2v2d +
1
2λ

2
1v

2
2v

2
d

λ1λ2√
2
v1v

2
2vd

λ1λ2√
2
v1v

2
2vd λ2

2v
2
1v

2
2

)

(42)

and

M †
DMD =

(

1
2λ

2v2d
1
2λλ1v2v

2
d

1
2λλ1v2v

2
d

1
2λ

2
1v

2
2v

2
d + λ2

2v
2
1v

2
2

)

· (43)

Following standard diagonalisation procedures, in the limit v1,2 ≫ vd, we find that the left

mixing angle is

tan 2θL =

√
2λ1λ2v1v

2
2vd

−1
2λ

2v2d − 1
2λ

2
1v

2
2v

2
d + λ2

2v
2
1v

2
2

≈
√
2λ1vd
λ2v1

, (44)

and for the right-handed mixing we obtain

tan 2θR =
λλ1v2v

2
d

−1
2λ

2v2d +
1
2λ

2
1v

2
2v

2
d + λ2

2v
2
1v

2
2

≈ λλ1v
2
d

λ2
2v

2
1v2

. (45)

From these, we find

tan(2θR) ≈
λvd√

2λ2v1v2
tan(2θL) ·

For the assumed hierarchy of vevs we see that the left-mixing prevails. The mixing is restricted

by CKM constraints and the contributions of the heavy triplets to the oblique parameters

S, T which have been measured with precision in LEP experiments (For detailed computations

see [53].). A rough estimate would give the upper bounds tan 2θL ∼ 0.1, tan 2θR ∼ 0.3 which

can be easily satisfied for the v1, v2 values used in this work.

6.1 Proton decay

In this model the dimension-five proton decay R-parity violating tree-level couplings of the

form 10f 5̄f 5̄f are absent due to the ti charge assignments of matter fields. However, non-

renormalisable terms that could lead to suppressed baryon and lepton number violating processes

may still appear. A class of these operators have the general structure

λeff10i5̄tj+tk 5̄tl+tm , ;λeff ∼ 〈θnpq〉, i, i, j, l,m 6= 5 , (46)
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where θnpq represents products of singlet fields required to cancel the non-vanishing combinations

of ti,j... charges. Notice, however, that for the particular family assignment in this model none of

ti,j,k,l,m in (46) is t5 and therefore, to fulfil the condition
∑5

k=1 tk = 0 some singlet θ5s ≡ 1t5−ts ,

with s = 1, 2, 3, 4, always must be involved. 7 In the present model no singlet of this kind

acquires a non-zero vev, namely 〈θ5s〉 ≡ 0, and hence dimension four operators are suppressed.

However, as already pointed out, additional Yukawa terms give rise to new tree-level graphs

mediated by color triplets. Such graphs induce dimension-5 operators of the form 1
Meff

QQQℓ,
1

Meff
ucucdcec, where Meff is an effective colour triplet mass Meff ≥ MGUT ∼ 2.0 × 1016

GeV[54, 55, 56, 57]. Here, because of the missing triplet mechanism described in the previous

section, the D,Dc triplets develop masses through mixing with other heavy triplets Di,D
′
i

emerging from the decomposition of the additional 5 + 5̄-pairs. Besides, several couplings are

realised as higher order non-renormalisable terms so that, in practice, an effective triplet mass

Meff is involved which, with suitable conditions on the triplet mixing, could be of the order of

the GUT scale. For the case of the Higgsino exchang diagram, for example, with a Higgsino

mass identified with the supersymmetry breaking scale MS , the proton lifetime is estimated to

be [57]

τp ≈ 1035(
√
2 sin 2β)4

(

0.1

CR

)2( MS

102TeV

)2( MDeff

1016GeV

)2

, (47)

where the coefficient CR ≥ 0.1, taking into account the renormalisation group effects on the

masses. From (47) we infer that with an effective triplet mass & MGUT and a relatively high

supersymmetry breaking scale, proton decay can be sufficiently suppressed in accordance with

the Super-Kamiokande bound on the proton lifetime.

To estimate the effects of these operators in this model, we consider the triplet mass matrix

derived in the previous section

MT =

(

λθ14θ15 ǫ′θ14θ15
ǫθ14 θ14

)

θ14 →
(

λv2 ǫ′ v2
ǫ 1

)

〈θ14〉, (48)

with v2 = 〈θ15〉
MGUT

and v1 = 〈θ14〉
MGUT

as defined in (14). As before, the left and right uni-

tary matrices VL, VR, as well as the eigenmasses are determined by M δ
T

2
= V †

LMTM
†
TVL =

V †
RM

†
TMTVR where, in general, MTM

†
T and M †

TMT are Hermitian but, for simplicity, we

will take to be symmetric, M2 ∼
(

a b

b d

)

〈θ14〉2, with real entries and triplet eigenmasses

M2

1,2 = 1

2

(

a+ d±
√

4b2 + (a− d)2
)

〈θ14〉2.

In figure 4 a representative graph is shown mediated by the colour triplets leading to the

dominant proton decay mode p → K+ν̄. The mass insertion (red bullet) in the graph is

λ
〈θ14θ15〉
MGUT

≡ 〈Φ〉 .

7Notice however, that all possible higher order R-parity violating terms

1015̄1(5̄1θ14θ53 + 5̄2θ53 + 5̄3θ54)θ13 + 1015̄2(5̄2θ43 + 5̄3)θ53 + 1025̄35̄3θ54

can be eliminated due to the R-parity assignment of the singlets θij shown in Table 2.
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After summing over the eigenstates, one finds that the effective mass involved is

1

M0
eff

∝
∑

j

V1j
〈Φ〉
M2

j

V †
j2 →

(

λ
v2
v1

1

MGUT

)

b

ad− b2
, (49)

while there is an additional suppression factor v1 = 〈θ14〉/M from the non-renormalisable term

(yellow bullet in the graph). Finally 1
Meff

∼ v1
M0

eff
.

For the VL mixing, assuming reasonable values for the parameters ǫ, ǫ′ < 1, while taking

v1 ∼ O(10−1) and λ ∼ 1 we find

Meff ∼ v2
v1

MGUT .

For the VR case we find

Meff ∼ MGUT

ǫ
.

For a supersymmetry breaking scale MS in the TeV region, we conclude that the lifetime of the

proton is consistent with the experimental bounds for an effective mass Meff a few times larger

than MGUT which can be satisfied for 8 v2 > v1 and ǫ < 1.
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Figure 4: Diagram leading to proton decay. Red and yellow circles represent non-renormalisable

couplings discussed in the text.

There are implications for the µ term given by µ ∼ v1v2v3 (see Eq. 17). Since v1, v2 cannot

be small, in order to sufficiently suppress this term we must have v3 = 〈θ43〉/MGUT ≪ 1. On

the other hand, the smallness of v3 suppresses also the mass scale of the lighter generations and

might lead to inconsistences with the experimental values. We should recall, however, that there

are significant contributions to the fermion masses from one-loop gluino exchange diagrams [58]

implying masses of the order mu/d ∝ a3

4πAq
mq̃mt/b

m2

g̃
for the up/down quarks, where Aq,mg̃,mq̃ are

respectively the trilinear parameter, the gaugino and squark masses.

We have already stressed that the presence of additional vector-like 5-plets in the model

under consideration, is compatible with a smaller value of the unified gauge coupling gU ∼ 10−1

at the GUT scale. This has significant implications for the proton decay rate which occurs

through the exchange of the gauge bosons (dimension six operators). For the well known case

8Since the mass insertion 〈Φ〉5H 5̄x̄ ∝ v2 one would expect that for v2 ≪ 1 the contribution of the graph to

Proton Decay would be small. However, the element b cancels the effect because it is also proportional to b ∝ v2.
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p → e+π0 the life-time is estimated to be [57, 59, 61]

τ(p → e+π0) ≈ 8× 1034years ×
(

a0U
aU

× 2.5

AR

× 0.015GeV3

aH

)2

×
(

MV

1016GeV

)4

· (50)

The various quantities in the above formula are as follows: a0U = 1
25 is assumed to be the value

of the unified gauge coupling in the minimal SU(5), while aU stands for its value for the present

model which is taken to be aU ≈ 1
8.5 (see section 5). The factor AR takes into account the

various renomalisation effects, aH is the hadronic matrix element and MV denotes the mass of

the gauge boson mediating the process p → e+π0. Comparing with the recent experimental

limit [60] τ(p → e+π0) ≥ 1.6×1034 years, we find a lower bound on the mass of the gauge boson

MV ≥ 1.14 × 1016 GeV, which is reciting since it just below the GUT scale predicted in this

model MU ≈ 2.04 × 1016 GeV. Note, however, that by invoking discrete symmetries (such as a

Z4R of references [62]), dimension 5 operators contributing to proton decay are automatically

removed.

6.2 Variation with new physics predictions accessible at LHC

In this section we consider the possibility of predicting new physics phenomena (such as diphoton

events) from relatively light (∼ TeV) scalars and triplets. The model discussed so far cannot

accommodate a process such as the diphoton event, since there is no direct coupling DcDS with

a light singlet S. Indeed, the only singlet coupled to Dc,D is θ14 which acquires a large vev and

decouples. To circumvent this we briefly present a modification of the above model by assuming

the following non-zero vevs,

v1 = 〈θ13〉, v2 = 〈θ34〉, v3 = 〈θ43〉 , (51)

and we maintain the same assignments for the fermion generations listed in Table 2. The mass

matrices for the up, down quarks and charged leptons, are given by

mu ∼







v21 v21v2 v1

v21v2 v21v
2
2 v1v2

v1 v1v2 1






ht〈Hu〉 , md,ℓ ∼







v21 v1v3 v1

v21v2 v1 v1v2

v1 v3 1






hb〈Hd〉, (52)

where, as before, we have suppressed the Yukawa couplings expected to be of O(1). We observe

that the matrices exhibit the expected hierarchical structure. Assuming a natural range of the

vevs and Yukawa couplings we estimate that the fermion mass patterns are consistent with the

observed mass spectrum.

With this modification, the singlet θ14 is not required to acquire a large vev and it can remain

as a light singlet θ14 = S′. Through its superpotential coupling

θ145̄x̄5x → S′(D′′cD +H ′
uH

′
d) ,

where D′′c stands for the linear combination D′′c = cosφDc + sinφD′c, S′ could contribute to

diphoton emission.
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7 Summary

F-theory appears to be a natural and promising framework for constructing unified theories

with predictive power. The SU(5) GUT model in particular, appears to be the most economic

unified group containing all those necessary ingredients to accommodate vectorlike fermions

that might show up in future experiments. Therefore, in the light of possible new physics at

the LHC experiments, in this letter, we reconsidered a class of F-theory SU(5) models aiming

to concentrate on the specific predictions and low energy implications.

In the F-theory framework, after the SU(5) breaking down to the Standard Model gauge sym-

metry, we end up with the MSSM chiral mass spectrum, the Higgs doublet fields and usually a

number of vector-like exotics as well as neutral singlet fields. We point out that we dispense with

the use of large Higgs representations for the SU(5) symmetry breaking since the latter takes

place by implementing the mechanism of the hypercharge flux. The corresponding U(1)Y gauge

field remains massless by requiring the hypercharge flux to be globally trivial. As a result of

these requirements, the spectrum of the effective theory and the additional abelian symmetries

accompanying the GUT group, are subject to certain constraints. In addition to the SU(5)

GUT group, the model is subject to additional symmetry restrictions emanating from the per-

pendicular ‘spectral cover’ SU(5)⊥ group, which in the effective theory reduces down to abelian

factors according to the ‘breaking’ chain

SU(5)⊥ ⊃ U(1)4⊥
Z2−→ U(1)3⊥

where Z2 is the monodromy action, chosen for this particular class of models under discussion 9.

A suitable choice of fluxes along these additional abelian factors is responsible for the chirallity

of the SU(5) GUT representations and their propagation on the specific matter curves presented

in this paper.

In practice, the effects of the remaining spectral cover symmetry in the low energy effective theory

are described by a few integers (associated with fluxes) and the ‘charges’-roots ti, i = 1, 2, . . . , 5

of the spectral cover fifth-degree polynomial where two of them, namely t1,2, are identified under

the action of the monodromy Z2 : t1 ↔ t2 applied in this work.

The implementation of the hyperflux symmetry breaking mechanism has additional interesting

effects. As is known, chiral matter and Higgs fields reside on the intersections (i.e., Riemann

surfaces, dubbed here as matter curves and characterised by the remaining U(1) factors through

the ‘charges’ ti) of seven branes with those wrapping the SU(5) singularity. In general the

various intersections are characterised by distinct geometric properties and as a consequence

flux restricts differently on each of them, while implying splittings of the SU(5) representation

content in certain cases. As a result, in the present model doublet Higgs fields are accommodated

on matter curves which split the SU(5) representations realising an effective doublet-triplet

splitting mechanism in a natural manner. More precisely, this ammounts to removing one

9For the SU(5)⊥ spectral cover symmetry, the possible monodromies fall into a discrete subgroup of the Weyl

group W (SU(5)⊥) ∼ S5, with S5 being the permutation symmetry of five objects.
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triplet from the initial Higgs curve with the simultaneous appearance (excess) of another one on

a different matter curve. This displacement however is enough to allow a light mass term for the

Higgs doublets while heavy triplet-antitriplet mass terms originate from different terms leading

to suppression of baryon number violating processes. Chiral fermion generations are chosen

to be accommodated on different matter curves, so that a Froggatt-Nielsen type mechanism is

implemented to generate the required hierarchy. Furthermore, certain Kaluza-Klein modes are

associated with the right-handed neutrino fields implementing the see-saw mechanism through

appropriate mass terms with their left-handed counterparts.

The additional spectrum in the present model consists of neutral singlet fields as well as colour

triplets and Higgs-like doublets comprising complete SU(5) vector-like pairs in 5+ 5̄ multiplets,

characterised by non-trivial ti-‘charges’. Some singlet fields are allowed to acquire vevs at the

TeV scale inducing masses of the same order for the vector-like exotics through the superpotential

terms. Such ‘light’ exotics contribute to the formation of resonances producing excess of diphoton

events which could be discovered in future LHC experiments. A RGE analysis shows that the

resulting spectrum is consistent with gauge coupling unification and the predictions of the third

family Yukawa couplings.
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