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Abstract

We use the Holevo information to estimate distinguishability of microstates of a

black hole in anti-de Sitter space by measurements one can perform on a subregion of

a Cauchy surface of the dual conformal field theory. We find that microstates are not

distinguishable at all until the subregion reaches a certain size and that perfect distin-

guishability can be achieved before the subregion covers the entire Cauchy surface. We

will compare our results with expectations from the entanglement wedge reconstruc-

tion, tensor network models, and the bit threads interpretation of the Ryu-Takayanagi

formula.



1 Introduction

In the AdSd+1/CFTd correspondence [1], the eternal black hole of inverse temperature β

described by the anti-de Sitter (AdS) Schwarzschild solution in (d + 1) dimensions is dual

to the thermal ensemble,

ρ =
∑
i

piρi, (1)

where

pi =
e−βEi∑
i e
−βEi

, (2)

and ρi = |ψi〉〈ψi|’s are orthonormal enegy eigenstates in the Hilbert spaceH of the conformal

field theory (CFT) in d dimensions. We assume that the ensemble is in the high temperature

phase β−1 > (d− 1)/2π so that the bulk geometry is dominated by the AdS-Schwarzschild

solution [2].

Consider one of the microstates ρi in some small energy-band around the mass of the

black hole, which is the average energy of the ensemble. By the eigenstate thermalization

hypothesis [3, 4], we expect that it is described by a bulk geometry approximately equal

to the AdS-Schwarzschild solution, in the sense that expectation values of a certain set of

observables that probe outside of the horizon can be evaluated using the solution1. On

the other hand, ρ and ρi are clearly different states. If we are allowed to make arbitrary

measurements on CFT, we should be able to distinguish between them.

The purpose of this paper is to discuss to what degree one can differentiate one microstate

from another under a restricted set of measurements. We will consider measurements that

can be performed on a subregion A of a Cauchy surface Sd−1 of the CFT on Rtime × Sd−1,

which is the boundary of AdS. We will estimate distinguishability between microstates

by using the Holevo information, which gives the upper bound of the mutual information

between any measurement on the region A and microstates [5]. We find that microstates

are not distinguishable at all until the subregion reaches a certain size and that perfect

distinguishability can be achieved before the subregion covers the entire Cauchy surface.

We will compare our results with expectations from the entanglement wedge reconstruction

[6–8], tensor network models [9–12], and the bit threads interpretation [13] of the Ryu-

Takayanagi formula [15].

This paper is organized as follows. In section 2, we introduce the notion of the Holevo

information χ(A) as a measure of distinguishability between microstates. In sections 3, we

compute χ(A) in AdS3/CFT2. As depicted in Figure 1, we find that χ(A) is identically

equal to zero until the subregion A covers one half of the Cauchy surface of CFT2, showing

that there is no mutual information between microstates and measurements on A in this

1We assume that the black hole is spherically symmetric and at the center of AdS. Thus, we restrict

each ρi in the sum (1) to have zero angular momentum. If CFT has additional global symmetry, we assume

that ρi is in its trivial representation.
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Figure 1: The Holevo information χ(A) in AdS3/CFT2, as a function of the radius `A of the subregion A.

Note that χ(A) is identically equal to zero until A covers one half of the Cauchy surface of CFT. Above this

point, χ(A) increases monotonically until it achieves the maximum value, which is the Bekenstein-Hawking

entropy SBH of the black hole, at `crit defined in section 2.

range. As the subregion A becomes larger, χ(A) starts to increase monotonically until it

reaches a critical size, where χ(A) achieves the maximum possible value. We note that this

plateaux phenomena in the context of the difference between the entanglement of a CFT

boundary region and that of its complement was presented in detail in [16]. In section 4,

we generalize these results to AdSd+1/CFTd for arbitrary d. In section 5, we compare our

results with expectations from the pictures of entanglement wedge reconstruction, tensor

network models, and the bit threads interpretation of the holography. We also point out

that one can reduce the critical size of A where χ(A) attains the maximum value, by allowing

A to be disjoint.

2 Holevo Information

As the first step in quantifying distinguishability under measurements on the subregion A,

we consider the relative entropy,

S(ρi,A||ρA) = −tr (ρi,A log ρA) + tr (ρi,A log ρi,A) , (3)

where ρi,A and ρA are partial traces of ρi and ρ over the subspace of the CFT Hilbert space

associated to the complement of A on the spacelike section. The relative entropy is zero

if and only if the two density matrices, ρi,A and ρA, are identical. It turns out that the

average of the relative entropy S(ρi,A||ρA) over the ensemble is related to the von Neumann
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entropies of ρA and ρi,A as,∑
i

piS(ρA,i||ρA) =
∑
i

pi [−tr (ρi,A log ρA) + tr (ρi,A log ρi,A)]

= S(ρA)−
∑
i

piS(ρi,A). (4)

The combination,

χ(A) = S(ρA)−
∑
i

piS(ρi,A), (5)

on the right-hand side of (4) is known as the Holevo information [5]. Though S(ρA) and

S(ρi,A) contain ultraviolet divergences, they cancel with each other in the Holevo informa-

tion. In fact, χ(A) is bounded both below and above as,

0 ≤ χ(A) ≤ SShannon ≡ −
∑

pi log pi. (6)

The lower bound is due to the concavity of the von Neumann entropies, and the upper bound

by the Shannon entropy SShannon is satulated if and only if ρi,A and ρj,A have orthogonal

support for every pair of i and j. Therefore, we can use χ(A) to quantify distinguishability

of black hole microstates by measurements performed on A. Given a specific choice of

a microstate ρX , the Holevo information is known to be the upper bound of the mutual

information (also known as the ”accessible information”) between any measurement on the

region A and identifying information regarding ρX [5].

In preparation for our application of the Holevo information to the black hole in AdS,

let us make a few simple observations. When A is the entire Cauchy surface of the CFT,

we have ρA = ρ, and its von Neumann entropy is equal to the Shannon entropy, which in

this case is the Bekenstein-Hawking entropy SBH,

S(ρ) = −
∑
i

pi log pi = SBH. (7)

On the other hand S(ρi) = 0 since the ρi’s are pure states. Therefore, χ(A) = SBH in

this limit. This is as expected since ρi’s are orthonormal and perfectly distinguishable from

each other. In the opposite limit where A is infinitesimal compared to the total area of

the spacelike section, both density matrices ρA and ρi,A approach the identity, and χ(A) =

S(ρA) −
∑

i piS(ρi,A) → 0. Since the Holevo information is monotonic in A, microstates

become more distinguishable as A become larger and attains maximal distinguishability

when A covers the entire spacelike region of CFT.

In the large N limit, the entanglement entropy S(ρA) for the thermal ensemble can

be evaluated using the Ryu-Takayanagi formula in the AdS-Schwarzschild geometry. We

assume that the black hole is at the center of AdS and that the subregion A is ball-like on

the Cauchy surface Sd−1 of CFT. We normalize the radius `A of A so that `A = π/2 is when

one half of the Cauchy surface Sd−1 is covered by A, and `A = π is when the entire Sd−1
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Figure 2: The Ryu-Takayanagi surfaces for region A for the thermal ensemble ρ =
∑

i piρi.

is covered. Since the black hole is rotationally symmetric, the entanglement entropy S(ρA)

depends only on `A and the temperature β−1 of the black hole. Thus we write,

Sthermal(`A) ≡ S(ρA). (8)

The homology constraint to the Ryu-Takayanagi formula, as depicted in Figure 2, implies

that there is a critical length `crit, where the Ryu-Takayanagi surface of A becomes two

disconnected pieces, one wrapping the black hole and one homologous to Ā. Above `crit, the

entanglement entropy is given by,

Sthermal(`A) = SBH + Sthermal(π − `A), if `crit ≤ `A. (9)

To compute the Holevo information χ(A) = S(ρA)−
∑

i piS(ρi,A), we also need to know

the entanglement entropy for microstates, S(ρi,A). In CFT in (1 + 1) dimensions, this has

been computed in [17] in a set-up of our interest. We will therefore discuss the Holevo

information in AdS3/CFT2 in the next section.

3 Holevo Information in AdS3/CFT2

The Holevo information χ(A) is the difference bewteen the entanglement entropy for the

thermal state S(ρA) and the average entanglement entropy of microstates
∑

i piS(ρi,A).

The former can be computed using the Ryu-Takayanagi formula in the AdS-Schwarzschild

geometry and expressed in terms of the hyperbolic functions of `A. According to [17], when

the central charge is large, the light spectrum is sparse, and ρi corresponds to a heavy state

in CFT2 dual to a black hole microstate in AdS3, its entanglement entropy S(ρi,A) is given

by,

S(ρi,A) =

{
Sthermal(`A), if `A ≤ π/2

Sthermal(π − `A), if π/2 < `A.
(10)
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Combining these results, we obtain

χ(`A) =


0, if `A < π/2

log
[

sinh(2π`A/β)
sinh(2π(π−`A)/β)

]
, if π/2 ≤ `A ≤ lcrit

SBH, if `crit < `A,

(11)

where

`crit =
β

4π
log

(
1 + e(2π)2/β

2

)
. (12)

The behavior of χ(A) is depicted in Figure 1. Until A covers one half of the Cauchy

surface, χ(A) is identically equal to zero. This means that there is no mutual information

between black hole microstates and A, and we cannot distinguish between microstates at all

by measurements on A. Between π and `crit, χ(A) grows monotonically. At `A = `crit, the

Holevo information achieves its maximum value SShannon = SBH. For `A ≥ `crit, microstates

become perfectly distinguishable by measurements on A.

The critical size `crit depends on the size of the black hole and therefore on its temper-

ature. From its explicit form given by (12), we can see `crit → π in the high temperature

limit, β → 0. This can be explained by the fact that the thermal ensemble ρ is maximally

mixed in this limit and we need to observe the whole CFT to be able to distinguish each

microstate.

One loop corrections to the entanglement entropy [14] above the Hawking-Page phase

transition are suppressed by powers of N , and moreover are small and continuous around

`crit. In particular, since the kink at `crit is an O(N2) effect, one loop corrections would not

modify its qualitative feature.

4 Holevo Information in AdSd+1/CFTd

In higher dimensions, we do not have an explicit expression for the entanglement entropy

S(ρi,A) of each microstate. Fortunately, the behavior S(ρA) for the thermal ensemble de-

picted in Figure 2, combined with entropy inequalities that hold for general quantum sys-

tems, puts stringent constraints on
∑

i piS(ρi,A).

To simplify equations, let us denote,

Smicro(`A) ≡
∑
i

piS(ρi,A),

χ(`A) ≡ Sthermal(`A)− Smicro(`A). (13)

The upper and lower bounds on the Holevo information,

0 ≤ χ(`A) ≤ SBH , (14)
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can be expressed as the bounds on Smicro(`A) as,

Sthermal(`A)− SBH ≤ Smicro(`A) ≤ Sthermal(`A) (15)

If `crit ≤ `A, we can apply (9) to rewrite the first inequality of the above as,

Sthermal(π − `A) ≤ Smicro(`A) if `crit ≤ `A. (16)

Since each microstate ρi is pure, S(ρi,A) = S(ρi,Ā) where Ā = Sd−1\A. Therefore, its

ensemble average Smicro(`A) =
∑

i piS(ρi,A) is also reflection symmetric,

Smicro(π − `A) = Smicro(`A). (17)

Using this, we can write (16) as,

Sthermal(`A) ≤ Smicro(`A) if `A ≤ π − `crit. (18)

This is the opposite of the second inequality in (15) that holds for any `A. Combining (15)

and (18), we conclude Smicro(`A) = Sthermal(`A) for `A below π− `crit. Using (9), we can also

equate Smicro(`A) with Sthermal(`A)− SBH in `A above `crit.

To summarize, we have been able to determine Smicro(`) completely for the following

ranges of `A:

Smicro(`A) =

{
Sthermal(`A) if `A ≤ π − `crit,

Sthermal(`A)− SBH if `crit ≤ `A.
(19)

Therefore, the Holevo information in these ranges is given by,

χ(`A) =

{
0 if `A ≤ π − `crit,

SBH if `crit ≤ `A.
(20)

As in the case of AdS3/CFT2, microstates are not distinguishable at all for `A ≤ π − `crit

and are perfectly distinguishable for `crit ≤ `A.

Less is known about S(ρi,A) in the range π− `crit < `A < `crit for general d. Since S(ρi,A)

is not an expectation value of an observable, it is not clear if the eigenstate thermalization

hypothesis implies that the Ryu-Takayanagi formula can be used to compute this quantity.

In the AdS-Schwarzschild solution, there is always a minimal surface that stays outside of

the horizon [18]. However, a microstate may have geometry inside of the horizon that is

different from that of the AdS-Schwarzschild solution, allowing a minimal surface take a

shortcut and making S(ρi,A) smaller. It is also possible that quantum or stringy effects

become enhanced near or inside of the horizon, making large corrections to S(ρi,A). Our

result (19) suggests that such corrections do not take place in the ranges `A ≤ π − `crit and

`crit ≤ `A, perhaps because minimal surfaces subtending A stay sufficiently far away from

the horizon.

A possible argument against the possibility of shortcuts across the horizon region was

given in [19]. Suppose there is such a shortcut. We may then consider reducing the size
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of the boundary domain. In this case, the extremal surface would eventually touch the

horizon. But, according to [19], if an extremal surface is ever even pointwise tangent to the

horizon it must wrap around it, thus precluding the possibility of a shortcut2.

For general d, we can show that such corrections can only increase the Holevo informa-

tion χ(A). Using the definition (5) of χ(A) and the reflection symmetry Smicro(π − `A) =

Smicro(`A), we can express the Holevo information as,

χ(A) = S(ρA)− S(ρĀ) + χ(Ā). (21)

and the ensemble average of S(ρi,A) as,∑
i

piS(ρi,A) = S(ρĀ)− χ(Ā). (22)

Since χ(Ā) ≥ 0, these quantities are bounded as,

χ(A) ≥ S(ρA)− S(ρĀ),
∑
i

piS(ρi,A) ≤ S(ρĀ), (23)

for the entire range of `A for general d. In particular, for `A ≥ π/2, the ensemble average of

S(ρi,A) is bounded above by the naive application of the Ryu-Takayanagi formula to these

microstates, namely any corrections to the minimal surface calculation would decrease the

entanglement entropy.

5 Discussion

We found that black hole microstates become perfectly distinguishable at `A = `crit, where

the Holevo information achieves its maximum value. What information are we missing in

`A < `crit? One may have thought that the missing information is carried by Ā, the comple-

ment of A. However, the mutual information between microstates and measurements on Ā

is bounded above by χ(Ā), which in general is different from the lower bound (SBH−χ(A))

of the missing information. In particular, since χ(Ā) = 0 for `A ≥ π/2 in AdS3/CFT2 as

shown Figure 1, measurements on Ā alone would not provide any information on microstates

in this case.

A useful expression for (SBH − χ(A)) can be obtained by using a purification of ρ,

|Ψ〉 =
∑
i

√
pi |ψi〉 ⊗ |ψ′i〉, (24)

where |ψ′i〉’s are orthonormal states in the purifying Hilbert space H′, which we regard as a

copy of the CFT Hilbert space H. For the eternal black hole, |Ψ〉 is the thermofield double

2We thank Netta Engelhardt for informing us of this argument.
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state expressing the entanglement through the Einstein-Rosen bridge of the black hole [20].

The mutual information I(H′ : Ā) between H′ and Ā for |Ψ〉 is given by,

I(H′ : Ā) = S(ρH′) + S(ρĀ)− S(ρH′∪Ā)

= SBH + S(ρĀ)− S(ρA), (25)

where we used the fact that A is the purification of ρH′∪Ā. Combining (25) and (21), we

can express the lower bound on the missing information as,

SBH − χ(A) = I(H′ : Ā)− χ(Ā). (26)

In particular, in AdS3/CFT2,

χ(A) = S(ρA)− S(ρĀ), SBH − χ(A) = I(H′ : Ā), (27)

for `A ≥ π/2 since χ(Ā) = 0. We can interpret these using the bit threads picture of

the Ryu-Takayanagi formula [13] as follows. In this picture, the minimal surface serves

as a constraint surface upon which the bit threads used to calculate the entropy of the

subtended boundary region are evenly spaced, thus enforcing that the number of bit threads

reproduces the Ryu-Takayanagi entopy. For the black hole thermal ensemble in AdS3/CFT2,

χ(A) = S(ρA)− S(ρĀ) > 0 for `A > π/2 due to the homology constraint. This means that

the number of bit threads that cross the Ryu-Takayangi surface subtending A will be larger

than the number of bit threads that cross the surface subtending Ā. These excess threads

therefore begin to attach on the black hole event horizon. At `A = `crit, the black hole

surface becomes saturated by bit threads, given their even spacing requirement. Above `crit,

all threads with one end on the black hole event horizon must end on A. Therefore, if

we interpret the Holevo information as the number of threads connecting A and the event

horizon, it reproduces its behavior.

However, the situation may become more complicated in higher dimensions. As we

pointed out at the end of the previous section, the ensemble average of the microstate en-

tanglement entropy may be smaller than the one expected from the naive application of

the Ryu-Takayanagi formula due to a shortcut in microstate geometry or enhanced quan-

tum/stringy effects near or inside of the horizon. Such corrections, if any, are captured by

χ(Ā) as shown in (22). It would be interesting if they can also be accounted for by the bit

threads picture.

According to the entanglement wedge reconstruction picture, the subregion A of the CFT

carries information necessary to reconstruct local excitations in the bulk region bounded by

A and the Ryu-Takayanagi surface subtending A. Since the naive application of the Ryu-

Takayanagi formula to a microstate suggests that the entanglement wedge for π/2 ≤ `A ≤
`crit covers the entire black hole region, one may have expected that maximum distinguish-

ablity of microstates should already have been achieved in this range of `A, contradicting

our results shown in Figure 1. However, the entanglement wedge for A can depend on the

choice of the code subspace [21]. If we choose the code subspace to be too small, it may not
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Figure 3: Two possible Ryu-Takayanagi configurations for A1 ∪ A2. The total area of the surfaces on the

left is S(ρA1∪A2
) = S(ρĀ2

) + S(ρA1∪Ā2∪A2
), while that on the right is S(ρA1∪A2

) = S(ρA1
) + S(ρA2

).

carry enough information to distinguish microstates. Our results suggest that, if the code

subspace is large enough to differentiate one microstate from another, the entanglement

wedge for A covers the black hole region only when `A ≥ `crit.

It may also be possible to demonstrate this using tensor network models. Since a black

hole in a tensor network is simply the deletion of tensors in the center of the bulk, one

naturally reproduces the Ryu-Takayanagi surfaces that avoid the event horizon and the

entanglement entropy S(ρA) for the mixed state ρ. It has been conjectured in [21] that

there may exist other choices of the code subspace that would allow the entanglement

entropy S(ρi,A) for a pure state ρi to be given by a Ryu-Takayanagi surface penetrating

the would-be horizon region. This would allow measurements on A to have access to the

interior of the microstate and explain the gradual rise of χ(A) in π − `crit < `A < `crit.

So far, we have considered the case when A is connected. It is possible to decrease the

total size of A necessary for perfect distinguishability by allowing A to be disconnected [22].

Let us consider A for `A < `crit. Suppose we remove from A a region antipodally located to

the center of Ā, label this new region Ā2, and relabel the original Ā to be Ā1. Furthermore,

label the two now disconnected components of A as A1 and A2. A pictorial depiction of

this is in Figure 3. So long as S(ρA1∪Ā2∪A2
) +S(ρĀ2

) ≤ S(ρA1) +S(ρA2), the addition of the

Ā2 Ryu-Takayanagi surface to the original RT surfaces for A will be the minimal surface

homologous to A1∪A2. Thus, the phase transition still happens at `crit, but the total size of

A is decreased by the size of Ā2, ensuring perfect distinguishability with a smaller fraction

of the CFT boundary than the one interval case.

Below the Hawking-Page phase transition, one would expect the Holevo information to

increase monotonically from zero boundary region size. It is possible that it can be computed

directly using the one-loop results of [14], as the leading-order Ryu-Takayanagi pieces should

cancel, though some care must be taken as to how to calculate the entanglement entropy

of microstates of the thermal AdS ensemble. For example, the one-loop contribution to the
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entanglement entropy of A given in [14] would not be the same as that of Ac, something

which should be true for pure microstates.

Acknowledgement

We would like to thank Aidan Chatwin-Davies, Xi Dong, Netta Engelhardt, Daniel Harlow,

Thomas Hartman, Akio Hosoya, Veronika Hubeny, Tomonori Ugajin, and Beni Yoshida

for discussions. This research is supported in part by U.S. Department of Energy grant

DE-SC0011632. N.B. is also supported in part by the DuBridge Fellowship of the Walter

Burke Institute for Theoretical Physics. H.O. is also supported in part by JSPS Grant-in-

Aid for Scientific Research C-26400240 and 15H05895. The Kavli Institute for the Physics

and Mathematics of the Universe is supported in part by the World Premier International

Research Center Initiative, MEXT, Japan.

References

[1] J. M. Maldacena, “The Large N Limit of Superconformal Field Theories and Super-

gravity,” Int. J. Theor. Phys. 38, 1113 (1999) [Adv. Theor. Math. Phys. 2, 231 (1998)]

[hep-th/9711200].

[2] S. W. Hawking and D. N. Page, “Thermodynamics of Black Holes in Anti-de Sitter

Space,” Commun. Math. Phys. 87, 577 (1983).

[3] J. M. Deutsch, “Quantum Statistical Mechanics in a Closed System,” Phys. Rev. A

43, 2046 (1991).

[4] M. Srednicki, “Chaos and Quantum Thermalization.” Phys. Rev. E 50, 888 (1994)

[cond-mat/9403051].

[5] A. Holevo, “Bounds for the Quantity of Information Transmitted by a Quantum Com-

munication Channel,” Problems of Information Transmission 9 (3) (1973) 177183.

[6] M. Headrick, V. E. Hubeny, A. Lawrence and M. Rangamani, “Causality & Holographic

Entanglement Entropy,” JHEP 1412, 162 (2014) [arXiv:1408.6300 [hep-th]].

[7] X. Dong, D. Harlow and A. C. Wall, “Reconstruction of Bulk Operators within the

Entanglement Wedge in Gauge-Gravity Duality,” Phys. Rev. Lett. 117, no. 2, 021601

(2016) [arXiv:1601.05416 [hep-th]].

[8] J. Cotler, P. Hayden, G. Salton, B. Swingle and M. Walter, “Entanglement Wedge

Reconstruction via Universal Recovery Channels,” arXiv:1704.05839 [hep-th].

[9] G. Vidal, “Entanglement Renormalization,” Phys. Rev. Lett. 99, no. 22, 220405 (2007)

[cond-mat/0512165].

10



[10] B. Swingle, “Entanglement Renormalization and Holography,” Phys. Rev. D 86, 065007

(2012) [arXiv:0905.1317 [cond-mat.str-el]].

[11] F. Pastawski, B. Yoshida, D. Harlow and J. Preskill, “Holographic Quantum Error-

Correcting Codes: Toy Models for the Bulk/Boundary Correspondence,” JHEP 1506,

149 (2015) [arXiv:1503.06237 [hep-th]].

[12] P. Hayden, S. Nezami, X. L. Qi, N. Thomas, M. Walter and Z. Yang, “Holographic

Duality from Random Tensor Networks,” JHEP 1611, 009 (2016) [arXiv:1601.01694

[hep-th]].

[13] M. Freedman and M. Headrick, “Bit Threads and Holographic Entanglement,” Com-

mun. Math. Phys. 352, no. 1, 407 (2017) [arXiv:1604.00354 [hep-th]].

[14] T. Barrella, X. Dong, S. A. Hartnoll and V. L. Martin, JHEP 1309, 109 (2013)

doi:10.1007/JHEP09(2013)109 [arXiv:1306.4682 [hep-th]].

[15] S. Ryu and T. Takayanagi, “Holographic Derivation of Entanglement Entropy from

AdS/CFT,” Phys. Rev. Lett. 96, 181602 (2006) [hep-th/0603001].

[16] V. E. Hubeny, H. Maxfield, M. Rangamani and E. Tonni, “Holographic entanglement

plateaux,” JHEP 1308, 092 (2013) [arXiv:1306.4004 [hep-th]].

[17] C. T. Asplund, A. Bernamonti, F. Galli and T. Hartman, “Holographic Entanglement

Entropy from 2d CFT: Heavy States and Local Quenches,” JHEP 1502 (2015) 171

[arXiv:1410.1392 [hep-th]].

[18] V. E. Hubeny, “Extremal Surfaces as Bulk Probes in AdS/CFT,” JHEP 1207, 093

(2012) [arXiv:1203.1044 [hep-th]].

[19] N. Engelhardt and A. C. Wall, “Extremal Surface Barriers,” JHEP 1403, 068 (2014)

[arXiv:1312.3699 [hep-th]].

[20] J. M. Maldacena, “Eternal Black Holes in Anti-de Sitter,” JHEP 0304, 021 (2003)

[hep-th/0106112].

[21] D. Harlow, “The Ryu-Takayanagi Formula from Quantum Error Correction,”

arXiv:1607.03901 [hep-th].

[22] F. Pastawski and J. Preskill, “Code Properties from Holographic Geometries,”

arXiv:1612.00017 [quant-ph].

11


