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We derive an approximate analytical formula for the spectral density of the q-body

Sachdev-Ye-Kitaev model obtained by summing a class of diagrams representing leading

intersecting contractions. This expression agrees with that of Q-Hermite polynomials with

Q a non-trivial function of q ≥ 2 and the number of Majorana fermions N . Numerical

results, obtained by exact diagonalization, are in excellent agreement with this approxi-

mate analytical spectral density even for relatively small N ∼ 8. For N � 1 and not

close to the edge of the spectrum, we find that the approximate analytical spectral den-

sity simplifies to ρasym(E) = exp[2 arcsin2(E/E0)/ log η] where η(N, q) is the suppression

factor of the contribution of intersecting Wick contractions relative to nested contractions.

This spectral density reproduces the known result for the free energy in the large q and

N limit at arbitrary values of the temperature. In the infrared region, where the Sachdev-

Ye-Kitaev model is believed to have a gravity-dual, the analytical spectral density is given

by ρ(E) ∼ sinh[2π
√

2
√

(1− E/E0)/(− log η)]. It therefore has a square-root edge, as in

random matrix ensembles, followed by an exponential growth, a distinctive feature of black

holes and also of low energy nuclear excitations. Results for level-statistics in this region

confirm the agreement with random matrix theory. Physically this is a signature that, for

sufficiently long times, the SYK model and its gravity dual evolve to a fully ergodic state

whose dynamics only depends on the global symmetry of the system. Our results strongly

suggest that random matrix correlations are a universal feature of quantum black holes and

that the SYK model, combined with holography, may be relevant to model certain aspects

of the nuclear dynamics.
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I. INTRODUCTION

Majorana fermions in zero spatial dimensions with q−body infinite-range random in-

teractions in Fock space, commonly termed Sachdev-Ye-Kitaev (SYK) models [1–11], are

attracting a great deal of attention as one of the simplest strongly interacting system with

a gravity dual [12]. Previously, a closely related model with Majorana fermions replaced by

Dirac fermions at finite chemical potential was intensively investigated in nuclear physics

[13–18] and later in the study of spin-liquids [19].

In the limit of a large number N of Majorana fermions there is already a good un-

derstanding of many features of the model including thermodynamic properties [1, 2, 20],

correlation functions [2, 8, 20], generalizations to non-random coupling [21], higher spa-

tial dimensions and different flavors of Majorana fermions [10]. All evidence points to a

gravity-dual interpretation [12] of the model in the low-temperature strong-coupling limit.

More specifically, it is believed that, in this limit, the gravity dual of the SYK model is

related to an Anti-deSitter (AdS) background in two bulk dimensions AdS2 [5, 11, 22]

which likely describes the low-energy sector of a string-theory dual to a gauge theory in

higher dimensions. Related recent work can be found in Refs. [23–34].

One of the main appeals of the SYK model is the possibility to study explicitly finite

N effects which are holographically dual to quantum-gravity corrections [1, 12]. Indeed,

evidence for the existence of a SYK gravity dual is not restricted to large N features such

as a finite entropy at zero temperature or a finite specific heat coefficient but also includes

properties controlled by subleading effects such as the exponential growth of the spectral

density [2, 35], the pattern of conformal symmetry breaking or, for intermediate times

of the order of the Ehrenfest time (a time scale of order log ~ when quantum corrections

start to affect substantially the classical motion. It is closely related to the scrambling time

[52] originally introduced in the context of black hole physics), the universal exponential

growth of certain out-of-time-ordered correlators [1, 2, 36]. The latter is also a well known

feature [37] of quantum chaos, namely, quantum features of classically chaotic systems.

Exponential growth of the spectral density together with random matrix correlations

of the eigenvalues is a feature that is also well-known in nuclear physics (see [38, 39]),

in particular for compound nuclei. These are excited nuclei where the energy of the

incoming channel has been distributed over all nucleons. Because the dynamics is chaotic
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all information on the formation of the compound nucleus is lost, and the quantum state

is determined by the total energy and the exact quantum numbers. In this sense, a

compound nucleus has no hair. However, it has “quantum hair” in the form of resonances

which have been measured experimentally [40]. It turns out that fluctuations of the

compound nucleus cross-section obtained from these experiments agree well with random

matrix theory predictions [41]. This implies that the S-matrix distribution is determined

by causality or analyticity, ergodicity and the maximization of the information entropy

[42].

Interestingly, qualitatively similar features have recently been found [35, 43, 44] for

the SYK model. More specifically, the quantum chaotic nature of the model has been

confirmed by showing that for long times scales, of the order of the Heisenberg time,

level statistics are well described by random matrix theory [45, 46]. The relation of this

finding with features of the gravity dual has yet to be explored as the analysis of spectral

correlations carried out in these papers concerns the bulk of the spectrum and not the

infrared tail related to the physics of the gravity dual. Moreover the exponential growth

of the SYK spectral density, a strong indication of the existence of a gravity dual, is based

[1, 2] on a perturbative 1/N calculation that may be spoiled by non-perturbative effects.

Here we address these two problems simultaneously. We obtain an analytical form

for the spectral density of the q−body SYK model, for any q, by explicit evaluation of

the moments for a large number of fermions taking into account the leading intersecting

contractions. The combinatorial factors are evaluated explicitly by using the Riordan-

Touchard formula [47–49], derived originally in the theory of cords diagrams. We find

that the moments of the density are equal to those of Q-Hermite polynomials [50] with

Q(N, q) a non-trivial function of N and q that we compute explicitly. Agreement with

exact numerical results for N ≤ 34 is excellent in spite of the N � 1 approximation

involved in the analytical calculation. Our calculation follows the steps outlined in Ref.

[51] for a closely related spin-chain model and in Ref. [35] of the SYK model, but we

keep q ≥ 2 fixed and N � 1 rather than considering the scaling limit N → ∞ with

q2/N fixed. In the infrared limit, the spectral density has a square root singularity, as in

random matrix theory. Indeed a detailed analysis of level statistics in this spectral region

confirms excellent agreement with random matrix theory predictions. This suggests that,

for sufficiently long times, a quantum black hole, characterised by fast scrambling [52],
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an exponential growth of low energy excitations [53] and a finite Lyapunov exponent [36],

reaches a fully ergodic and universal state which only depends on global symmetries of

the system.

Finally we note that the particular case q ∝
√
N fix and N →∞ was recently studied

[35] for the SYK model where the techniques of Ref. [51] were also employed to compute

the infrared limit of the spectral density. In our result for the spectral density, which

agrees with those of [35] in this limit, we do not take this double scaling limit for the

contribution of the non-intersecting diagrams. Despite the approximations involved in

the analytical result the agreement with numerical results for q = 4, obtained by exact

diagonalization for values of N as small as N = 8, is excellent.

Next we introduce the model, compute analytically the spectral density and compare it

with numerical results. We close with concluding remarks and a discussion of our results.

II. MODEL AND CALCULATION OF THE SPECTRAL DENSITY

We study N strongly interacting Majorana fermions, introduced in Ref.[1], with infinite

range q-body interactions. For q = 4, the Hamiltonian is given by,

H =
1

4!

N∑
i,j,k,l=1

Jijkl χi χj χk χl , (1)

where χi are Majorana fermions that verify

{χi, χj} = δij , (2)

we note that this is the same algebra as Dirac γ matrices which will facilitate the analytical

evaluation of the moments. For that reason we will use in many instances the notation γ

to refer to the fields χ.

The coupling Jijkl is a Gaussian random variable with probability distribution,

P (Jijkl) =

√
N q−1

2(q − 1)!πJ2
exp

(
−

N q−1J2
ijkl

2(q − 1)!J2

)
, (3)

where J sets the scale of the distribution.

The average spectral density can be evaluated from the moment generating function

ρ(E) =
1

2π

∫ ∞
−∞

e−iEt
〈
TreiHt

〉
, (4)
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where the brackets denotes averaging over the probability distribution (3). Since the

ensemble is invariant under J → −J we have that ρ(−E) = ρ(E) so that the odd moments

vanish. The moment generating function, given by

〈
TreiHt

〉
=
∞∑
k=0

(it)2k

(2k)!

〈
TrH2k

〉
, (5)

and therefore follows from the moments

M2p(d) = 〈TrH2p〉. (6)

If we use the shorthand notation for the Hamiltonian

H =
∑
α

JαΓα, (7)

where Γα is the product of four γ matrices, the moments are〈
Tr

(∑
α

JαΓα

)2p〉
. (8)

Since we have a Gaussian distribution, the calculation of the average requires to consider

all possible Wick contractions. After averaging, the result is given by a product of pairs

of two factors Γα. If the factors are adjacent we can use that

Γ2
α = 1. (9)

If the factors are not adjacent we have to commute the factors using that [44]

ΓαΓβ − (−1)rΓβΓα = 0 (10)

where r is the number of γ matrices that Γα and Γβ have in common. Generally, this is a

difficult task because we have to also keep track of correlations with other factors Γα, but

the fourth sixth and eighth moments can be evaluated exactly [44].

The simplest case is the limit N →∞ for fixed p. To leading order in N , there are no

common γ matrices, the Γα commute and the moments are simply given by

〈J2
α〉p2N/2(2p− 1)!!, (11)

which are the moments of a Gaussian distribution [44].

For large N � 1 but finite N , different Γ’s have some γ matrices in common. An exact

analytical evaluation or an arbitrary high moment is a hard combinatorial task. We show
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below that the calculation is substantially simplified if one employs Eq. (10) to commute

Γ factors but ignores correlations. Although we cannot justify rigorously the exact range

of validity of the approximation, it is worth mentioning that for the low moments, where

an explicitly calculation is possible, this approximation is exact up to 1/N2 corrections.

It is also exact [51] in the large N limit with q ∝ Nα and α > 1/2. Moreover we shall see

that it leads to a spectral density that agrees well with exact diagonalization results even

for small N ≥ 10.

Let us consider

Tr ΓαΓβ · · ·ΓαΓβ · · · , (12)

where the dots denote additional factors Γγ . We keep α fixed and consider the contribution

from the sum over β. Commuting Γα and Γβ gives a factor

q∑
r=0

(−1)r
(
q

r

)(
N − q
q − r

)
, (13)

where r is the number of common χ fields which, as was mentioned previously, are repre-

sented by Dirac γ matrices. Choosing them out of the q γ matrices of Γα gives a factor(
q
r

)
. The remaining (q − r) γ matrices in Γβ still have to be all different from those in

Γα. This gives a factor
(
N−q
q−r
)

resulting in the combinatorial factor of Eq. (13). If Γα and

Γβ were commuting the sum over β would give a factor
(
N
q

)
. Therefore, the suppression

factor is given by

ηN,q =

(
N

q

)−1 q∑
r=0

(−1)r
(
q

r

)(
N − q
q − r

)
. (14)

For large N , at fixed q only the r = 0 and r = 1 terms contribute to the sum of the

suppression factor Eq. (14) resulting in

ηN ∼ e−2q2 , (15)

where we have used that for N � q we can make the expansion

Γ2[N − q]
Γ[N ]Γ[N − 2q]

= 1− q2

N
+O(1/N2). (16)

This corresponds to the Poisson distribution used in Ref. [35].

The contractions contributing to the 2p-th moment can be characterized according to

the number of crossings αp. If there are αp crossings the diagram is suppressed by a factor
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η
αp
N,q. The sum over all crossings is evaluated by means of the Riordan-Touchard formula

[47, 48] resulting in the following expression for the moments,

M2p

Mp
2

=
∑
αp

η
αp
N,q =

1

(1− ηN,q)p
p∑

k=−p
(−1)kη

k(k−1)/2
N,q

(
2p

p+ k

)
. (17)

These are the moments of the spectral density ρQH corresponding to the Q-Hermite poly-

nomials with Q = η [49–51]. Therefore, there is no need to calculate the Fourier transform

of the moment generating function in order to compute the spectral density Eq. (4). The

final result for the spectral density [51] of the SYK model Eq. (1) is,

ρ(E) = ρQH(E) = cN
√

1− (E/E0)2
∞∏
k=1

[
1− 4

E2

E2
0

(
1

2 + ηk + η−k

)]
, (18)

where ηN,q ≡ η is the suppression factor defined in Eq.(14), cN is a normalization constant

determined by imposing that the total number of states is 2N/2, and

E2
0 =

4σ2

1− η
, (19)

is the average value of the square of the ground state energy per particle, i.e. the ground

state energy is NE0, with the variance σ [44] given by,

σ2 =

(
N

q

)
J2(q − 1)!

2qN q−1 . (20)

We note that the product in Eq. (18) can also be expressed in terms of a q-Pochhammer

symbol.

A natural question to ask is the precise requirements for the validity of Eq. (17).

Corrections to this result arise when three or more factors Γα have one or more γ matrices

in common. Since this is a condition on two summation indices, this correction is expected

to be of order 1/N2. We have worked out the exact analytical result for the fourth moment,

which is identical to the Q-Hermite result, the sixth moment M6/M
3
2 (see Ref. [44]) and

M8/M
4
2 for arbitrary q and verified that indeed the difference with the moments (17) is

of order q3/N2 and increases with the order of the moments (this scaling occurs for large

values of N � q2 where the moments are close to Gaussian). Exact results for higher

order moments are not known, but the results below indicate the moments (17) are close

to the exact results. For example, for N = 34, the numerical result for the 10th moment

differs by only two percent from the Q-Hermite result. However N = 34 is still far from

the large N limit where the density is Gaussian: the eight moment is only 25 as opposed

to 105 for a Gaussian distribution.
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In principle, large corrections to the analytical prediction above are still possible when

the order of the moments becomes of order N . In general, high order moments can have

a strong impact on extreme eigenvalues which control the zero temperature entropy and

specific heat coefficient. However, as we will discuss below, our analytical results agree

for all temperatures with the large N , large q limit of the partition function previously

derived in Ref. [2].

Finally we note that in Ref. [35], instead of using the exact suppression factor Eq. (14),

η was approximated by a Poisson distribution which is valid in the scaling limit where

q2/N is kept fixed [51] for N →∞ but not for general q.

Below we will show, by comparison to exact numerical results, that the above expression

for the spectral density, with η given by Eq. (14), is close to the exact numerical result

for q = 4, even for values of N as low as N = 8, where the suppression factor is negative.

Before that we work out simplifications of the spectral density Eq. (18) valid in the tail

and the bulk of the spectrum.

III. SIMPLE FORM OF THE SPECTRAL DENSITY FOR N � 1

In this section we derive a simple asymptotic form for the spectral density. The deriva-

tion follows the steps in Ref. [35], but we keep q ≥ 2 fixed and do not take the limit

E → E0. In this way we obtain an analytical form that can be applied to the entire

spectrum of the Hamiltonian, except very close to the edge, and for any q with the only

assumption of N � 1. For completeness we reproduce the steps given in Ref. [35].

Writing the product in Eq.(18) as the exponent of a sum of logarithms, we obtain after

a Poisson resummation

ρQH(E) = cN exp

[
1

2

∞∑
n+−∞

∫
dxe2πinx log

[
1− E2

E2
0

(
1

cosh2 x/2 log η

)]]
. (21)

The integral over x can be performed analytically resulting in

ρQH(E) = cN exp

[
−1

2

∞∑
n=−∞

1− cosh[ 4nπlog η arcsin(E/E0)]

n sinh(2nπ2/ log η)

]
. (22)

The n = 0 term in the sum has to be treated separately as the limit n→ 0. For N →∞

we have that η → 1 so that for n 6= 0, we can approximate the hyperbolic functions by a

single exponent leading to

ρBethe(E) = cN exp

[
2 arcsin2(E/E0)

log η
+ log

(
1− exp

[
− 2π

log η
(| arcsin(E/E0)| −

π

2
)

])]
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= cN exp

[
2 arcsin2(E/E0)

log η

](
1− exp

[
− 4π

log η
(| arcsin(E/E0)| −

π

2
)

])
. (23)

For N → ∞ the second factor can be ignored for |E| < |E0| resulting in a very simple

asymptotic form for the spectral density

ρasym(E) = cN exp

[
2 arcsin2(E/E0)

log η

]
, (24)

which for finite N � 1 is an excellent approximation of the spectral density except in the

region close to the edge E0. Here a different a asymptotic expression can be worked out

by simply noticing that for E → E0, arcsin(x) is approximated by

arcsin[E/E0] =
π

2
−
√

2
√

1− (E/E0). (25)

Inserting this in Eq. (23) gives

ρsinh(E) ≈ cN exp

[
π2

2 log η
−

2π
√

2
√

1− (E/E0)

log η

](
1− exp

[
4π

log η

√
2
√

1− (E/E0)

])

= 2cN exp

[
π2

2 log η

]
sinh

[
2π
√

2
√

1− (E/E0)

− log η

]
. (26)

For the limiting case q,N →∞ with q2/N fixed, and still E → E0, this expression of the

spectral density was also obtained in Ref. [35].

We stress this asymptotic form is an expected feature of field theories with a gravity

dual as this exponential growth is observed in both systems with conformal symmetry and

black-holes [53]. The same exponential growth has also been predicted for the low energy

excitations of nuclei [54].

Having derived the approximate analytical result we now proceed to compare the spec-

tral densities, Eqs. (23), (24), with the exact Q-Hermite form Eq. (18). Results depicted

in Fig. 1 for different sizes N show that the simple asymptotic expression Eq. (24) agrees

reasonably well with the exact result even for comparatively small N = 18. Indeed it is

barely distinguishable from the exact result Eq. (18) for N = 32 while for N = 64 it can

be used all the way to the edge of the spectrum.

We now proceed to compare these approximate analytical results with numerical results

from exact diagonalization of the Hamiltonian Eq. (1). By using standard exact diago-

nalization routines in MATLAB we have obtained the full spectrum of the Hamiltonian

Eq. (1) for many disorder realization so that, for a given size N ≤ 34, the total number

of eigenvalues was more than 107. In Fig. 2 we show the exact numerical spectral density
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FIG. 1. We compare the Q-Hermite spectral density ρQH(E) Eq. (18) (black), of the SYK Hamil-

tonian to two different asymptotic forms, ρBethe(E) Eq.(23) (red dashed) and ρasym(E) Eq.(24)

(blue dotted) all normalized to area one. Results are given for N = 18, N = 24, N = 32 and

N = 64. For N ≥ 32 the three curves are barely distinguishable. In all plots the spectral density

is normalized to 1 and J = 2/3. We note that this is also the value of J in our previous paper [44].

(red) and compare it to the analytical result Eq. (18) for N = 16, N = 24, N = 32 and

N = 34. The agreement is excellent. For N = 32 and N = 34 we also show the large

N limit of ρQH(E) denoted by ρasym(E) and the form obtained from the expansion about

E = E0 which is denoted by ρsinh(E). We find that ρasym(E) is very close to the Q-Hermite

result while ρsinh(E) is only accurate for the extreme tail of the spectral density. Note

that the analytical results do not have fitting parameters.

In order to further clarify the extent of the accuracy of the analytical spectral density,

we extend the comparison, left plot of Fig. 3, to the deep infrared part of the spectrum

where finite size effects are expected to be more relevant.

The numerical density is still very close to the analytical prediction but we have found

some deviations. For instance the hard edge, predicted analytically, is replaced by a

smooth tail. Remarkably, the analytical edge of the spectrum Eq. (19), is still surprisingly
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FIG. 2. Comparison of the numerical spectral density (red) of the SYK Hamiltonian Eq. (1) for

N = 16, N = 24, N = 32 and N = 34, obtained by exact diagonalization, with the analytical

prediction ρQH(E) Eq. (18) (black). In the bottom two figures we also included ρasym(E) (see Eq.

(24)), which is the large N limit of ρQH(E), and ρsinh(E) (see Eq. (26)) which the expansion of

ρQH(E) near the edge of the spectrum. The agreement is excellent. Even though there is no free

parameters the curves are almost indistinguishable. As in the previous figure the spectral density

is normalized to 1 and J = 2/3.

close to the numerical result. Since not all sub-leading 1/N corrections were included in

the derivation of the spectral density, stronger discrepancies were expected for the values

of N we work with. It is actually rather unexpected that the analytical result is so close

to the numerical calculation.

Still we would like to understand why a tail, and not an edge, is observed in the

numerical spectral density. We shall see in next section that the level statistics of the

model in this infrared region are still described by random matrix theory. We note that

because of the stiffness of the spectrum, eigenvalues in random matrix theory fluctuate

“collectively”, which, due to ensemble average, smoothes out the edge of the spectrum.

This is particularly true for the lowest eigenvalue E0, which is a stochastic variable, while
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FIG. 3. The tail of the spectral density for N = 32 and 400 disorder realizations. In the right

figure, E0 − 〈E0〉 has been subtracted from all eigenvalues, while in the left figure no subtractions

have been made. The agreement is excellent despite the fact finite N effects, not fully captured

in our theoretical analysis, should be stronger in this region. Even without this subtraction the

agreement is still very good.

the theoretical prediction Eq. (19) is the ensemble average. In order for a more accurate

comparison one has to either take into account the distribution of E0 or simply remove

the fluctuations of E0. We choose the latter. In the right plot of Fig. 3 we show the

spectral density relative to the first eigenvalue. To have the same scale on the x-axes we

have added the ensemble average of the first eigenvalue to all eigenvalues. This clearly

reveals the square root edge of the average spectral density predicted theoretically.

This finding leads us to the prediction that the distribution of E0 is the one given by

random matrix theory for the distribution of the smallest eigenvalue, namely, the Tracy-

Widom distribution [55]. In Fig. 4 we show the distribution of the smallest eigenvalue of the

SYK model and compare it to the Tracy-Widom distribution of the corresponding random

matrix ensemble. Results are given for N = 24 (left), which is in the universality class

of the Gaussian Orthogonal Ensemble and N = 28 (right), which is in the universality

class of the Gaussian Symplectic Ensemble. There are no fitting parameters but the

numerical data have been shifted and rescaled to reproduce the average and variance of

the Tracy-Widom distribution. We find good agreement which is another indication that

the spectrum of the SYK Hamiltonian has a square root edge.

We now employ the analytical form of the spectral density to study the free energy. We

start with the density Eq. (24) which is valid everywhere except in the tail. The partition
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FIG. 4. Distribution of the lowest eigenvalue for N = 24 (left) and N = 28 (right) for an ensemble

of 50, 000 and 15, 000 disorder realizations, respectively, compared to the random matrix prediction

for the Tracy-Widom distribution. The numerical data have been shifted and rescaled to reproduce

the average and variance of the Tracy-Widom distribution. The agreement is excellent which

confirms that the low energy limit of the SYK model is fully ergodic and well described by random

matrix theory.

function in this case is given by

Z(β) =

∫ E0

−E0

cNe
−βE+

2 arcsin2(E/E0)
log η . (27)

For log η → 0, the partition function can be evaluated by a saddle point approximation

resulting in the free energy

βF = βĒ − 2 arcsin2(Ē/E0)

log η
(28)

where Ē satisfies the saddle point equation

β =
4

E0 log η

arcsin(Ē/E0)√
1− (Ē/E0)2

. (29)

If we define the new variable

arcsin
Ē

E0
=
πv

2
, (30)

the saddle point equation can be written as

βJ =
πv

cos πv2
(31)

with J = (E0/2) log η. In terms of these variables, the free energy at the saddle point is

given by

βF =
2

log η
πv tan

πv

2
− (πv)2

2 log η
. (32)
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In the large N limit we have that log η → −2q2/N and this expression together with

Eq. (31) reduces to the result obtained in Ref. [2] which is obtained in the large q limit

for arbitrary values of the temperature. In the low-temperature limit, the fluctuations

about the saddle point gives a factor 1/β3/2 resulting in the low-temperature limit of the

partition function [2]

Z(β) ∝ β−3/2 exp

[
β|E0|+

N

2
log 2 +

π2

2 log η
+

2π2

β|E0| log2 η

]
. (33)

We note that the analytical evaluation of the partition function related to the tail of the

spectrum Eq. (26), that includes 1/N corrections, reproduces this result identically.

In conclusion, the analytical form of the spectral density, which includes a class of 1/N

corrections that results in moments which differ only at order 1/N2 from the exact result,

agrees very well with exact numerical results. This is especially surprising close to the

edge of the spectrum where higher order 1/N effects, which have not been included in

the theoretical analysis, are expected to be more relevant. We can only speculate that

in systems with infinite range interactions a mean field approach becomes exact in the

large N limit and therefore, for finite N , fluctuations may be weaker than in systems with

short-range interactions.

IV. APPLICATIONS IN NUCLEAR PHYSICS AND HOLOGRAPHY

The SYK and related models have been employed to study different aspects of nuclear

physics, condensed matter and, more recently, holographic dualities. We now discuss how

the results of the previous section help understand better these systems. We start with

holographic dualities. It was previously known [1, 22] that 1/N corrections, combined

with the saddle point approximation, lead to a spectral density that grows exponentially

for energies close, but not too close, to the ground state energy. This is considered to be a

distinctive feature of quantum black holes in the semi-classical limit and also in conformal

field theories through the Cardy formula. Our results confirm this feature for any q,

beyond the perturbative approach of [1, 2]. In addition it predicts, also for any q > 2, that

ρ(E) ∼
√
E − E0 for E → E0. This square root edge, typical of random matrix ensembles

has been found in Ref. [35, 51] but only in the slightly unphysical limit of q ∝
√
N .

In mesoscopic physics or quantum chaos the occurrence of random matrix theory is

related to full quantum ergodicity in the long time limit [46], namely, the system evolves,
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FIG. 5. Level spacing distribution P (s) resulting from exact diagonalization of the SYK Hamilto-

nian Eq. (1) for N = 32 and 400 realizations (squares) and N = 24 and 10000 realizations (circles).

We only consider the infrared part of the spectrum, about 1.5%, which is related to the gravity

dual of the model. As in the bulk of the spectrum [43, 44], we observe excellent agreement with the

Gaussian Orthogonal Ensemble (GOE) result. This strongly suggests that full ergodicity, typical

of quantum systems described by random matrix theory, is also a universal feature of quantum

black holes.

for sufficiently long times, to a structureless and fully entangled state where only global

symmetries characterize the dynamics. These are dynamical features while the spectral

density is only related to thermodynamical properties which requires further checks to

confirm quantum ergodicity of the SYK model and its gravity dual. For that purpose we

have studied level statistics in the infrared region where the spectral density is given by

Eq. (26).

We note that level statistics of the SYK model already have been studied previously

[35, 43, 44]. However these papers focus only in the central part of the spectrum that

it is not related to properties of the gravity dual. By contrast, we have studied the

statistics of the low lying eigenvalues, namely, the infrared part of the spectrum. Since we

are interested in long time dynamics of the order of the Heisenberg time, we investigate

the level spacing distribution P (s), defined as the probability to find two neighboring

eigenvalues separated by a distance s = (Ei+1−Ei)/∆ where ∆ is the mean level spacing

∆ (see [44] for details of the calculation like the unfolding procedure). In Fig. 5 we depict
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results for P (s) for N = 24 and N = 32 considering only 1.5% of the lowest eigenvalues.

As in the central part of the spectrum [43, 44], it follows closely the prediction of the

Gaussian Orthogonal Ensemble (GOE). The good agreement shows that the eigenvalues

of the SYK Hamiltonian fluctuate according to random matrix theory all the way to the

ground state region. This shows that the SYK Hamiltonian is chaotic in the infrared

domain. This is a further confirmation of the full ergodicity of the SYK model in the long

time limit and, in agreement with the result of the previous section, that the distribution

of the smallest eigenvalue is given by the Tracy-Widom distribution.

This is a strong indication that not only the SYK model but also its gravity dual, a

certain type of quantum black hole, are systems whose long time dynamics only depends on

global symmetries and always lead to a completely featureless and ergodic quantum state.

It is well known that random matrix ensembles are characterized by global symmetries

only. It would be interesting to explore whether a similar classification characterizes the

long time dynamics of quantum black holes.

Nuclear physics is another area in which our results are of potential interest. A central

feature of the excitations of complex nuclei is captured by Bethe’s [54] expression that

predicts an exponential growth of the density of states for energy close, but not too

close, to the edge of the spectrum. Interestingly, the exponential growth predicted by

the Bethe formula is very similar to that of Eq. (26). Experimental results agree, at

least qualitatively, with this simple analytical expression. This is not fully understood

because interactions are typically strong while Bethe’s expression is derived assuming

non-interacting fermions in a mean-field potential. Our results help explain this puzzle

as the exponential growth also occurs in the SYK model, and likely in generalizations

thereof, in which fermions are strongly interacting. This is also a strong indication that

holography may be a powerful tool to model certain aspects of the physics of strongly

interacting nuclei.

V. CONCLUSIONS

We have obtained an approximate analytical form for the spectral density of the SYK

model which reproduces the large q and large N result for the partition function and

agrees very well with numerical results for q = 4 and N as small as 8. This result was
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obtained by an explicit evaluation of the energy moments taking into account exactly

a class of intersecting diagrams combined with the use of the Riordan-Touchard formula

[47, 48]. For moments of order 2p� N this approximation only differs at order 1/N2 from

the exact result for the SYK model. For N � 1, and E not close to the ground state,

the spectral density simplifies to ρasym(E) = exp[2 arcsin2(E/E0)/ log η]. In the infrared

limit, the analytical expression for the spectral density has a square root singularity, as

in random matrix ensembles, followed by an exponential growth. Agreement with exact

numerical results is excellent and is consistent with moments that are accurate including

order 1/N corrections. Our results also agree with the free energy in the large N, q limit

studied in [2] by completely different methods.

Although we do not make the assumption in our analysis that q � 1, we do not claim

that the analytical spectral density, Eq. (18), is exact for any q > 2 up to corrections of

order 1/N2 because moments of order N may have have a different large N scaling, and

may contribute significantly to the tail of the spectrum. Nevertheless, we reproduce the

zero temperature entropy and low-temperature limit of the specific heat to leading order

in 1/q2. Apparently, in the large q limit, the correction to the large order moments is

suppressed. We hope to address this issue in a future publication.

We have also shown that level statistics in the infrared region are well described by

random matrix theory for energy separations of the order of the Heisenberg time. Provided

that the SYK model has a gravity dual in this quantum limit, our results indicate that,

for sufficiently long times, quantum black holes relax universally to a fully ergodic and

structureless state where the dynamics is only dependent on the global symmetries of the

system. These are exactly the properties of compound nuclei which have a long history of

being described in terms of random matrix theory.
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