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Abstract

We investigate the validity of the equivalence principle near horizons in string theory, analyzing

the breakdown of effective field theory caused by longitudinal string spreading effects. An exper-

iment is set up where a detector is thrown into a black hole a long time after an early infalling

string. Light cone gauge calculations, taken at face value, indicate a detectable level of root-

mean-square longitudinal spreading of the initial string as measured by the late infaller. This

results from the large relative boost between the string and detector in the near horizon region,

which develops automatically despite their modest initial energies outside the black hole and the

weak curvature in the geometry. We subject this scenario to basic consistency checks, using these

to obtain a relatively conservative criterion for its detectability. In a companion paper, we exhibit

longitudinal nonlocality in well-defined gauge-invariant S-matrix calculations, obtaining results

consistent with the predicted spreading albeit not in a direct analogue of the black hole process.

We discuss applications of this effect to the firewall paradox, and estimate the time and distance

scales it predicts for new physics near black hole and cosmological horizons.



1 Introduction

In black hole physics, there is a large relative boost between early matter and late-infalling

observers at the horizon. This must be taken into account in estimating the breakdown of

effective field theory (EFT) in string theory (or any UV completion of gravity), in order to

reliably describe the interactions of a late infaller near the horizon, as explained recently in [1] in

the context of a particular string production effect.1 In particular, the small curvature in Planck

and string units does not a priori bound the level of EFT violation in string theory: the long

time evolution can build up large effects even in a weakly curved background such as the exterior

of a Schwarzschild black hole.

Specifically, the relative boost in the near-horizon Rindler region between two time-translated

but otherwise identical observers is given by a rapidity ∆η = ∆t/2rs, where ∆t is the time transla-

tion in Schwarzschild coordinates, and rs is the Schwarzschild radius. Although the Schwarzschild

geometry is weakly curved outside and near the horizon, the black hole functions as a powerful

accelerator: given fixed Schwarzschild energy E ∼ m at which two observers of mass m are

dropped or thrown into the black hole, they reach the near horizon region with a large center

of mass energy ECM, Rindler ∼ m exp(∆η/2) at late times. In the Rindler region, the presence

of such a large energy in the problem raises the important question of whether extended-string

effects could be significant in describing the fate of the late infaller. This question is especially

urgent given existing evidence for enhanced string-theoretic non-adiabatic and spreading effects

[1][2] at large relative boost.

As an approach to quantum gravity, string theory has passed many consistency checks, in-

cluding providing a count of black hole microstates in special calculable examples [5]. It therefore

seems reasonable to check carefully if it might contain the dynamics required to resolve other

questions in black hole physics – especially given the substantial theoretical uncertainty just

noted in estimates of the breakdown of effective field theory in the regime ∆η � 1.2 In this and a

companion paper, we take several steps towards addressing this question, applying the approach

of [1] to fundamental strings.

This question is especially timely in light of recent work sharpening the paradoxes arising

from black hole thought experiments [7] which involve a late-infalling observer. The AMPS

paradox [7] confirms the incompatibility of a complete quantum mechanical description and the

approximation of low-energy EFT in black hole physics, a longstanding problem. We will present

concrete evidence that string theory intrinsically provides ‘drama’ for a late observer of the kind

required to avoid more drastic resolutions of the AMPS paradox such as ad hoc modifications of

gravity or violations of quantum mechanics. Since string theory provides a good candidate for a

UV completion of gravity respecting ordinary quantum mechanics, it would be very satisfying,

1See e.g. [2], [3] and [4], among many others, for earlier discussions raising the question of the role of relative

boosts and nonlocality in the black hole problem, albeit focused more on information transfer than on horizon

‘drama’.
2There has been much interesting work on string theory scattering and black hole dynamics (see e.g. [6]), with

the ambitious goal of describing black hole formation in string theory (or obstructions to it). Here we are concerned

the string-theoretic interactions of a late probe sent into the black hole at a time ∆t� 2rs after early string matter.

The latter may be thought of as a proxy for the matter that formed the black hole, but for our present purposes

we can analyze the much simpler problem of early and late string probes of an existing black hole background.
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albeit somewhat less revolutionary, if it simply contains the required physics.

In this paper we will show using simple kinematics that if the longitudinal string spreading

obtained via worldsheet calculations in light-cone gauge [2] is accurate, then string theory provides

interactions (hence violation of EFT) for the late infaller over a broad range of parameter space.

Along the way, we will refine our understanding of the longitudinal spreading prediction and its

detectability, resolving various puzzles associated with the distinction between the longitudinal

and transverse directions.

Although we view string-theoretic drama as a relatively conservative prospect, we cannot

regard it as the null hypothesis for the purposes of the present work aimed at assessing whether it

is a viable possibility. In particular, we must address the validity of longitudinal spreading beyond

the gauge-fixed calculation [2], a subtle problem [8][3]. Using concrete scattering experiments in a

companion paper, we will exclude the null hypothesis – approximate local EFT for string probes

of black holes – at reasonable significance by exhibiting, among other things, a time advance which

indicates non-local string interactions in the presence of large relative boosts. This is contingent

on the logarithmic behavior of the relatively well-established transverse string spreading.

It is worth noting that the effects we find are not sharply localized at the horizon, since the

large relative boost pertains once the probes reach the near-horizon regime |r − rs| � rs. As

such, it may be a concrete example of less-violent nonlocality than the specific proposal for a

‘firewall’ in the AMPS paper [7], although spreading-induced interactions between early string

matter and (regular or mined) Hawking modes may introduce additional effects. Being stringy,

our effect does not correspond to [9] either. There are two ways in which EFT might break down

as delineated in the list of incompatible postulates described in [7], depending on whether the

effects extend outside the stretched horizon; on the face of it, our effect violates both. Because

of this and the relatively short timescale in the problem, it is interesting to explore whether

it may ultimately be testable similarly to the scenario explored in [10]. We will also address

the constraints from observational cosmology, where certain aspects of horizon physics are well

tested. We will conclude with a summary of our results and some important caveats as well as a

discussion of future directions.

2 The size of strings

2.1 Longitudinal spreading in light-cone gauge

Ideally, one would measure the size of strings (or any other extended object) using on-shell scat-

tering experiments. In this section we will instead review how to compute the root mean square

variation of the spacetime coordinates of the string in the worldsheet CFT [2, 11]. Although

this calculation is both gauge-fixed and off-shell, it provides useful intuition for why strings are

extended. We will work in the light-cone gauge on the worldsheet, which has the advantage of

being a Hamiltonian quantum mechanical system with local interactions [12] (in contrast to the

conformal gauge).

It would be interesting to understand how to reproduce the same results in the conformal

gauge, where there is no a priori separation of the target space coordinates into light cone

and transverse directions. Although we will not present detailed calculations in this covariant
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gauge, we will address the essential puzzle it raises below in Section 2.3 which will lead us to an

identification of the light cone directions with the direction of relative motion between a string and

a detector. It would also be interesting to generalize the calculations to static gauge, particularly

since this would line up with ‘nice slice’ coordinates in black hole backgrounds.3 However, the

ultimate (thought-)experimental test comes from gauge-invariant observables, such as S-matrix

elements. In a companion paper [13], we report on an analysis of four and five-point string

amplitudes which exhibits concrete evidence for longitudinal nonlocality in the string S-matrix.

We define the light-cone coordinates as x± = x0 ± x1. Choosing the light cone gauge X− =

x− + α′p−τ , the mode expansions of the transverse fields of the closed string are

Xi(τ, σ) = xi + α′piτ + i

(
α′

2

)1/2∑

n6=0

1

n

(
αine

−in(τ−σ) + α̃ine
−in(τ+σ)

)
. (2.1)

We can compute the average transverse deviation away from the center of mass of the string at

time τ = 0,

〈(∆Xi)2〉 = 〈(Xi(0, σ)− xi)2〉 = α′
∑

n>0

1

n
. (2.2)

This sum is formally infinite, but should be physically cut off at the maximum mode number

nmax that can be probed by the detector. The size then becomes

〈(∆Xi)2〉 ∼ α′ log nmax. (2.3)

In this expression we have assumed that nmax is large, so that the detector has a very good time

resolution.

Now let us repeat the same analysis for the longitudinal coordinate X+, which has the mode

expansion

X+(τ, σ) = x+ + α′p+τ + i

(
α′

2

)1/2∑

n6=0

1

n

(
α+
n e
−in(τ−σ) + α̃+

n e
−in(τ+σ)

)
. (2.4)

Here the α+
n oscillators can be expressed in terms of the αin oscillators by solving the Virasoro

constraints. They satisfy the Virasoro algebra,

[α+
m, α

+
n ] =

(
2

α′

)1/2 1

p−
(m− n)α+

m+n +
4m3

α′(p−)2
δm+n. (2.5)

The size of the longitudinal coordinate is then

〈(∆X+)2〉 ∼ 1

(p−)2

∑

n>0

n ∼ n2
max

(p−)2
. (2.6)

Note that the correlation functions of X+ do not satisfy a Gaussian distribution, in contrast to

those of X⊥. In order to understand the distribution of X+ in more detail, one would need to

3We thank J. Polchinski for discussions.
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compute the higher moments 〈(∆X+)2n〉. We were not able to do this calculation, but fortunately

the root-mean-square size of the string is sufficient for our purposes.

The constraint relating the transverse and longitudinal variables has helped obscure the role

of the latter, since X+ is not an independent variable. It is worth emphasizing that there are

many familiar situations in which such constraints apply, but the analogue of the longitudinal

variables plays a crucial role in the physics. Perhaps the most basic is the Hamiltonian constraint

in gravity which relates the expansion of the universe to stress energy sources which are analogous

to the transverse degrees of freedom here. Although the scale factor is constrained, the expansion

of the universe is obviously a physical effect. On the string worldsheet, similarly the expansion

and contraction of the string in the direction of its extent are physical (as in the ‘yo yo’ solutions

we review in [13]).

It is instructive to repeat the calculation for open strings. In this case one finds

〈(∆Xi)2〉 ∼ α′
∑

n>0

1

n
cos2(nσ) (2.7)

〈(∆X+)2〉 ∼ 1

(p−)2

∑

n>0

n cos2(nσ). (2.8)

At the endpoints of the string the results are the same as for closed strings. On the other hand,

the midpoint of the string at σ = π/2 does not fluctuate at all.

The decomposition into X± and the transverse directions obscures the Lorentz invariance of

the theory. This raises the question of whether the difference in length scales obtained above for

longitudinal (2.6) versus transverse (2.3) string spreading is consistent with Lorentz invariance.

In a 2→ n scattering process, the relative motion of the two incoming legs picks out a preferred

direction. The difference in length scales found above for longitudinal and transverse spreading

is consistent with Lorentz invariance if the longitudinal direction is identified roughly with the

direction of relative motion between the string and detector. After developing the notion of the

detector and its resolution further in the next section, we will attempt to make this identification

precise.

As the relative boost between the source string and the detector increases, the detector

resolution improves, giving it sensitivity to more of the modes contributing to the spreading (2.3-

2.6). This improved sensitivity follows from the time dilation between the detector and source

clocks. In the context of parton physics in [14], the limiting case of this is known as the infinite

momentum frame, where one boosts the hadron to infinite momentum so that its internal motions

are arbitrarily slow due to the time dilation.

2.2 Strings as detectors

Now that we have derived the size of strings in terms of the detector parameter nmax, we specialize

to the case where the detector is itself is a string. We now will determine the shortest time scale

that a string can probe, which is the inverse of the maximum frequency nmax in units of α′.
Let us assume that the detector is a string with momentum p2, and that the string being

probed has momentum p1. Under time evolution with the light-cone Hamiltonian, the state of
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String 2 evolves as

|pµ2 , X−〉 = e−ip
+
2 X
− |pµ2 〉 (2.9)

The natural oscillation time on the detector is then

∆X− ∼ 1

p+
2

. (2.10)

In terms of the light-cone time on the string being measured, τ = X−/(α′p−1 ), this gives an

oscillation time

∆τ ∼ 1

α′p+
2 p
−
1

. (2.11)

This oscillation time acts as an internal clock, which cannot probe times that are far shorter than

the scale (2.11). It follows that the largest mode number the detector could potentially probe is

nmax .
1

∆τ
∼ α′p+

2 p
−
1 . (2.12)

As we will see shortly, the frequency cutoff of a given scattering process can be smaller than

(2.12), so (2.12) represents an upper bound on nmax.

For p−2 6= 0, it is instructive to write (2.12) as

nmax . α′
p−1
p−2

(p2
2⊥ +m2). (2.13)

Note that this mode number increases with the relative longitudinal boost between the two

strings. This is a consequence of the fact that the time dilation slows down the internal motion

of String 1, which gives the detector a finer time resolution as the boost increases.

Let us now compare the frequency cutoff (2.12) to the maximum mode number probed in

the Regge limit s � t of string scattering amplitudes, as analyzed in [15]. Specifically, we will

quote the results of Section 4 of [15], translated to our notation and conventions. Consider the

s-channel diagram for 2 → 2 scattering (p1, p2) → (p3, p4) in light-cone gauge, in a “brick wall”

frame where p+
1 ≈ 0, p+

1 = p+
3 , and p+

2 = p+
4 . We also restrict to external states of negligible

mass for now, although we will briefly discuss the role of the mass below. This diagram can be

expressed as an integral over the time T = ∆X− between the joining and splitting interaction

vertices, with integration measure

dµ(T ) =
1

T 2
ep

+
2 T . (2.14)

This measure factor is integrated against the contribution from the oscillators, after performing

the Gaussian integral over the modes X⊥n of the transverse embedding coordinates of the string.

The latter explicitly produces a factor

exp

(
−
∑

n

k2
⊥α
′

n+ Tn2/(2α′p−1 )

)
(2.15)

5



where |k⊥| = 2|p⊥,r|, r = 1, . . . , 4 is the absolute value of the momentum transfer. See equations

(4.19)-(4.20) of [15] for more details (note that we have different conventions for the light cone

coordinates and the incoming and outgoing string labels). The maximum mode number that

contributes to the oscillator sum on String 1 is then

nmax =
2α′p−1
|T | . (2.16)

This is very precise, since
nmax∑

n=1

1

n
=
∞∑

n=1

1

n+ n2/nmax
. (2.17)

For s � −α′t � 1 the integral over T , defined by analytic continuation as described in [15], is

dominated at a saddle point,

T ∼ −α
′p2
⊥

p+
2

. (2.18)

on It follows that the frequency cutoff is at

nmax ∼
p−1 p

+
2

p2
⊥

. (2.19)

Since p2
⊥ � 1/α′ in this saddle point calculation, the mode cutoff is bounded above by the right

hand side of (2.12).

As the momentum transfer k2
⊥ approaches zero, the validity of the saddle point (2.18) is lost.

It would be very interesting to understand the detectability of longitudinal string spreading in

that regime.

Using the results of the previous section, we find that if

nmax ∼
p+

2 p
−
1

p2
⊥
� 1, (2.20)

then the size of String 1 as seen by String 2 is

〈(∆Xi)2〉 ∼ α′ log(s/t) (2.21)

〈(∆X+)2〉 ∼
(
p+

2

p2
⊥

)2

. (2.22)

In the first expression we used that p⊥ is of order the momentum transfer in the brick wall frame

defined in [15]. We again emphasize that the computation has been done for negligible string

mass. Note that these expressions have the correct transformation laws under the subgroup of

Lorentz transformations that are preserved by the light-cone gauge.

It would be interesting to generalize this computation of [15] to higher oscillator levels of the

external strings, to capture the case of massive detectors or source strings. Folding in Hermite

polynomials as a function of the modes of the transverse embedding coordinates X⊥ introduces

nontrivial mass dependence, which according to our preliminary calculations can introduce a

term ∝ m2 added to the p2
⊥ in the above expressions, although we have not established whether
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or not this is general.4 As we will see, the case of massive detectors will be of interest in the black

hole problem. To make use of existing calculations, we can consider as an example the particular

situation where the string mass comes from transverse Kaluza-Klein momentum in some extra

dimension, and use the results just presented with the Kaluza-Klein momentum playing the role

of p⊥. The generalization to oscillators could also enhance the effect in a different way, via the

Hagedorn density of available final string states which played a role in [1]. We will not need that

to establish an interesting breakdown of EFT in the present work, but it would be interesting to

incorporate in a more general analysis of scattering in the massive case.

The condition (2.20) is necessary to justify the approximations that we have made in the

mode sums (2.3) and (2.6). This inequality involves the source string 1 and can be satisfied

by increasing the relative boost between the strings. The formula (2.22) for the detectable

longitudinal spreading also has an interesting structure. In Section 2.3 below, we will argue

based on basic features of the geometry of the trajectories that there is an intuitive reason

that the detected spreading is not in fact determined solely by p+
2 ∼ 1/∆X−: instead, this

putative spreading is only actually measurable by the detector string if the longitudinal direction

is chosen to be the direction of relative motion between the source and detector. The brick wall

frame defined in [15] gives the only notion of longitudinal direction which is invariant under time

reversal symmetry, as we describe below around equation (2.24).

It is interesting to consider the implications of (2.22) in different frames. First suppose that

the energy of the detector is held fixed as the energy of the string being probed increases, as

would be the case in the lab frame. Then the maximum detectable longitudinal size (2.22)

remains constant with the energy of String 1. Said differently, the string being measured fails

to Lorentz contract as emphasized in [2]. On the other hand, if we work in the center of mass

frame, then the size of String 1 grows linearly with the energy, ∆X+ ∼ α′E/k2
⊥.5

Combining (2.10) and (2.22), and for t ∼ −p2
⊥ of order 1/α′, one finds6

∆X+ ∆X− ∼ α′. (2.23)

This is reminiscent of the stringy uncertainty principle ∆T ∆X ≥ α′ [18].

2.3 Longitudinal versus transverse directions

The computations [2], as reviewed above, derived the maximum potentially detectable longitudi-

nal spreading as α′p+
2 , but did not establish under what circumstance String 2 actually interacts

4In the brick wall frame, each transverse momentum p⊥r of the external strings carries half of the momentum

transfer k⊥. Partly because of this ambiguity between the dependence on momentum transfer and on the transverse

momentum carried by the external states, it is not immediately clear whether the result must be to replace p2⊥
with the relativistic combination p2⊥ +m2

2, with m2 the mass of the detector string (although below in Section 2.3

we will present a somewhat different argument that this provides a conservative estimate for the spreading).
5The nonlocality of scattering in string theory has previously been analyzed in [16] in the context of the hard

scattering limit. In that work it was pointed out that the worldsheet saddle point for the string scattering amplitude

in conformal gauge takes the form Xµ(z, z) = i
∑
i k
µ
i log(z−zi). This scales linearly with the longitudinal momenta

of the strings, which resembles the result (2.22). A longitudinal interaction region that grows linearly with energy

has also been proposed in the context of hadronic physics [14, 17].
6We thank S. Giddings for suggesting this.
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(a)

x+x�

(b)

x+

↵0E
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Figure 1: Two configurations in which we assess the detectability of the spreading of the red string by the blue

detector, as described in the text. In the left panel (a), the direction of relative motion is along the prescribed light

cone directions x±. In the right panel (b), the direction of relative motion is transverse to x±.

would endow String 2 with the necessary resolution to detect String 1, with the p2
? factor in the

denominator in (2.22) replaced with 1/↵0. But in case (b), the strings are moving with large

center of mass energy in the transverse y direction. If we had taken the light cone directions

to be y± = T ± y, their large separation in x would be in a transverse direction, in which they

only spread logarithmically according to (2.21). As such, from that point of view one would not

expect a significant interaction between the two strings.

It is clear that in order to resolve this puzzle, there must be a way to uniquely define the

longitudinal and transverse directions for a given scattering process. This is not inconsistent with

the spacetime symmetries since the direction of relative motion of the source string and detector

breaks the rotational symmetry. As mentioned above, the “brick wall” frame where p�1 ⇡ 0,

p+
1 = p+

3 , and p+
2 = p+

4 is a particularly natural choice for computations in light-cone gauge

[15]. In this frame the worldsheet lengths of the incoming strings are equal to the lengths of

the outgoing strings, and the scattering amplitude reduces to a quantum mechanical expectation

value in the ground state of the string, with a frequency cuto↵ at (2.19) for mass m = 0. This

gives an operational meaning to the above computation of h(�X?)2i and h(�X+)2i.
The puzzle is therefore plausibly resolved by choosing the longitudinal direction so that p+

1 =

p+
3 and p+

2 = p+
4 . For example, for a scattering process where the initial particles are traveling in

the ±x direction in the center of mass frame and scatter by an angle ✓, the longitudinal direction

is

x+ = T + x cos(✓/2) + y sin(✓/2). (2.24)

For small angle scattering, this is roughly aligned with the relative direction of motion of

the incoming states. Note that x cos(✓/2) + y sin(✓/2) is one of two directions in the plane

of scattering that is invariant under time reversal, the other being the transverse direction

y cos(✓/2) + x sin(✓/2). With this taken into account, the prediction of distinct scales for longi-

tudinal and transverse spreading is internally consistent.

So far, we have not established whether the spreading (2.21) and (2.22) is detected by any

observer with the correct time resolution if the longitudinal direction is chosen as above, although

we have established this for massless strings using [15]. More generally, there may be additional

9

Figure 1: Two configurations in which we assess the detectability of the spreading of the red string by the blue

detector, as described in the text. In the left panel (a), the direction of relative motion is along the prescribed light

cone directions x±. In the right panel (b), the direction of relative motion is transverse to x±.

with String 1 at that distance with an appreciable amplitude. The calculation of [15] just re-

viewed established the cutoff (2.19) for the case where the masses are negligible and the detection

proceeds via 2 → 2 massless string scattering, revealing a suppression factor of 1/α′p2
⊥. If the

formula (2.22) did not depend on p⊥ in the brick wall frame it would have been puzzling, since

without that factor the measured spreading would depend only on the motion of the detector

string (although the source string comes into the requirement (2.20)).

Taking a step back, having light cone time resolution of at least ∆X− ∼ 1/p+
2 is a necessary

condition that String 2 must satisfy in order to measure a spreading of the source string 1 of order

∆X+ ∼ α′/∆X−. Whether it does so may depend on additional factors, such as p⊥ in the case

of 2→ 2 ultrarelativistic string scattering just discussed. On general grounds, the answer to this

question must respect the underlying Lorentz invariance of the theory, reconciling this symmetry

with the distinct scales of longitudinal and transverse spreading suggested by (2.21)-(2.22).

This question ultimately requires a gauge-invariant treatment, something we analyze explicitly

using S-matrix amplitudes in [13]. However, we can understand the essential features physically

within the scope of our present analysis, as follows. Consider the two configurations illustrated

in Figure 1. These raise the following puzzle.

Configuration (a) describes a pair of strings in relative motion along the x± = T±x directions,

with energy E � m. Configuration (b) describes a pair of strings with zero relative velocity in the

x± directions, with energy E =
√
p2
y +m2 coming from a combination of transverse momentum

and mass. These strings are separated by a distance α′E in x.

Before incorporating any details of the interaction between the source string and the detector,

the light cone time resolution of String 2 is ∆X− ∼ 1/p+
2 ∼ 1/E in both cases. This in itself

would endow String 2 with the necessary resolution to detect String 1, with the p2
⊥ factor in the

denominator in (2.22) replaced with 1/α′. But in case (b), the strings are moving with large

center of mass energy in the transverse y direction. If we had taken the light cone directions

to be y± = T ± y, their large separation in x would be in a transverse direction, in which they

only spread logarithmically according to (2.21). As such, from that point of view one would not

8



expect a significant interaction between the two strings.

It is clear that in order to resolve this puzzle, there must be a way to uniquely define the

longitudinal and transverse directions for a given scattering process. This is not inconsistent with

the spacetime symmetries since the direction of relative motion of the source string and detector

breaks the rotational symmetry. As mentioned above, the “brick wall” frame where p−1 ≈ 0,

p+
1 = p+

3 , and p+
2 = p+

4 is a particularly natural choice for computations in light-cone gauge

[15]. In this frame the worldsheet lengths of the incoming strings are equal to the lengths of

the outgoing strings, and the scattering amplitude reduces to a quantum mechanical expectation

value in the ground state of the string, with a frequency cutoff at (2.19) for mass m = 0. This

gives an operational meaning to the above computation of 〈(∆X⊥)2〉 and 〈(∆X+)2〉.
The puzzle is therefore plausibly resolved by choosing the longitudinal direction so that p+

1 =

p+
3 and p+

2 = p+
4 . For example, for a scattering process where the initial particles are traveling in

the ±x direction in the center of mass frame and scatter by an angle θ, the longitudinal direction

is

x+ = T + x cos(θ/2) + y sin(θ/2). (2.24)

For small angle scattering, this is roughly aligned with the relative direction of motion of

the incoming states. Note that x cos(θ/2) + y sin(θ/2) is one of two directions in the plane

of scattering that is invariant under time reversal, the other being the transverse direction

y cos(θ/2) + x sin(θ/2). With this taken into account, the prediction of distinct scales for longi-

tudinal and transverse spreading is internally consistent.

So far, we have not established whether the spreading (2.21) and (2.22) is detected by any

observer with the correct time resolution if the longitudinal direction is chosen as above, although

we have established this for massless strings using [15]. More generally, there may be additional

obstructions to the measurement. For example, let us take the detector to be a massive string

moving in the x direction, performing a measurement on a string moving in the −x direction at

scattering angle θ = 0. The trajectory of the detector satisfies

dx+

dx−
=

1 + v

1− v =
(p+

2 )2

m2
, (2.25)

where we used p+ = γm(1+v) with v = dx/dT . It follows that in a resolution time ∆X− ∼ 1/p+
2 ,

the detector string propagates along the light-cone space direction x+ a distance of order 1/(α′m2)

times the maximal detectable spreading radius α′p+
2 . More generally, at nonzero scattering angle

we will have nonzero momentum transfer p⊥, and the denominator in (2.25) then contains a term

∼ p2
⊥.

For large m2 + p2
⊥ � 1/α′, the detector therefore only traverses a small fraction of the

spreading region in a resolution time. This should be contrasted with detectors with p2
⊥ +

m2 � 1/α′, which propagate through the entire spreading region during a resolution time. We

have not performed a complete analysis of the mass dependence of the cutoff nmax using the

S-matrix, although one can estimate this by folding Hermite polynomials into the calculation [15]

as discussed above. In any case, it seems possible that the difference in trajectories implies that

9
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Figure 2: Two illustrative processes from the paper [13]. They exhibit properties which fit with longitudinal

spreading and are di�cult to interpret purely in terms of transverse string spreading as described in the text.

At four points, one of the open string orderings exhibits a nonzero peak impact parameter

b, as indicated in Figure 2a. This fits with an explicit string ‘yo yo’ solution describing an

intermediate string created in the process, which reproduces the peak impact parameter and

time delay. Tracing back the peak trajectories, they meet nontrivially in all dimensions, with the

intermediate string solution fitting precisely into the resulting rhombus. Further, at five points we

find Bremsstrahlung radiation which traces back to the turning points in this process, providing a

check on the simple picture resulting from the meeting of the traced-back trajectories. Altogether,

in an overconstrained problem, a very simple (a priori naive) picture of the intermediate scattering

process fits the facts in a highly nontrivial way.

This structure does not jibe with a purely transverse process of string joining and splitting,

assuming that works as in [2][15], since the joining at nonzero impact parameter would be sup-

pressed. Early joining induced by longitudinal spreading does fit nontrivially with the structure

of the amplitude, suggesting that it does play a role.

In the diagram just described, the turning of each incoming string into an outgoing one occurs

after the putative center of mass collision; there is a net time delay. However, another diagram

at five points – a perturbation of a diagram which at four points has zero time delay or ad-

vance – exhibits advanced emission of one of the outgoing strings (this is depicted in Figure 2b).

This indicates an early interaction, requiring longitudinal nonlocality. Again, this statement is

predicated on the limited transverse interaction derived in [2][15]. For these reasons, derived in

extensive detail in [13], we conclude that longitudinal string spreading provides the simplest ex-

planation that fits the ‘data’ obtained from a wavepacket analysis of string amplitudes (including

their phases).

3 Interactions of strings near black hole horizons

3.1 Notation and kinematics

We now turn from flat space string theory to string theory on a black hole background. The

metric takes the standard form, depicted in Figure 3,

ds2 = �
⇣
1 � rs

r

⌘
dt2 +

⇣
1 � rs

r

⌘�1
dr2. (3.1)

Here rs = 2GNMBH is the Schwarzschild radius of the black hole and we have suppressed the

transverse coordinates.
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Figure 2: Two illustrative processes from the paper [13]. They exhibit properties which fit with longitudinal

spreading and are difficult to interpret purely in terms of transverse string spreading as described in the text.

highly massive detectors can see less of the spreading region.7 One possible modification of the

result (2.22) that would take this difference into account is if a detector could only measure the

portion of the spreading radius that it traverses in a resolution time. For a detector with mass

m2 > 1/α′, this would imply that

〈(∆X+)2〉 =
(p+

2 )2

(p2
2⊥ +m2)2

. (2.26)

We regard (2.26) as a conservative estimate of the spreading seen by a massive string. When we

apply this to the black hole problem, we will find that it still allows a substantial breakdown of

effective field theory for a late-infalling detector.

2.4 Comparison to scattering amplitudes: summary of [13]

As already mentioned, although the spreading mechanism introduced in [2] and refined above is

physically appealing, it is very important to determine whether the longitudinal RMS spreading

has a measurable effect on gauge-invariant quantities. Reconstructing the detailed finite-time

dynamics within an S-matrix amplitude is not in general possible, but one can test for the effect

in various ways. For example, one can try to formulate precise tests for early interaction that

could be induced by longitudinal spreading, taking as given the logarithmic transverse spreading

in the X⊥ directions (which we describe in detail to the required precision in [13]).

In [13] we take this approach, analyzing 2 → 2 and 2 → 3 scattering. Working in a Regge

(or double Regge) regime at four (and five) points, we derive the phases in the amplitudes. With

the inclusion of wavepackets to localize the incoming and outgoing strings, the phases determine

their peak trajectories, including the peak impact parameter and time delays or advances.

At four points, one of the open string orderings exhibits a nonzero peak impact parameter

b, as indicated in Figure 2a. This fits with an explicit string ‘yo yo’ solution describing an

intermediate string created in the process, which reproduces the peak impact parameter and

time delay. Tracing back the peak trajectories, they meet nontrivially in all dimensions, with the

intermediate string solution fitting precisely into the resulting rhombus. Further, at five points we

7This may be related to an interesting question raised by Don Marolf about the interrogation time, which is

the time over which the experiment occurs.
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find Bremsstrahlung radiation which traces back to the turning points in this process, providing a

check on the simple picture resulting from the meeting of the traced-back trajectories. Altogether,

in an overconstrained problem, a very simple (a priori naive) picture of the intermediate scattering

process fits the facts in a highly nontrivial way.

This structure does not jibe with a purely transverse process of string joining and splitting,

assuming that works as in [2][15], since the joining at nonzero impact parameter would be sup-

pressed. Early joining induced by longitudinal spreading does fit nontrivially with the structure

of the amplitude, suggesting that it does play a role.

In the diagram just described, the turning of each incoming string into an outgoing one occurs

after the putative center of mass collision; there is a net time delay. However, another diagram

at five points – a perturbation of a diagram which at four points has zero time delay or ad-

vance – exhibits advanced emission of one of the outgoing strings (this is depicted in Figure 2b).

This indicates an early interaction, requiring longitudinal nonlocality. Again, this statement is

predicated on the limited transverse interaction derived in [2][15]. For these reasons, derived in

extensive detail in [13], we conclude that longitudinal string spreading provides the simplest ex-

planation that fits the ‘data’ obtained from a wavepacket analysis of string amplitudes (including

their phases).

3 Interactions of strings near black hole horizons

3.1 Notation and kinematics

We now turn from flat space string theory to string theory on a black hole background. The

metric takes the standard form, depicted in Figure 3,

ds2 = −
(

1− rs

r

)
dt2 +

(
1− rs

r

)−1
dr2. (3.1)

Here rs = 2GNMBH is the Schwarzschild radius of the black hole and we have suppressed the

transverse coordinates.

The near horizon region |r−rs| � rs is approximately flat, reducing to a portion of Minkowski

spacetime; in this region the geometry is nearly identical to the near-horizon region of Rindler

space. We will be interested in the behavior of early and late-infalling trajectories when they

reach this region.

It will be useful to use Kruskal coordinates,

ds2 = −2rs

r
e1−r/rsdx+ dx−. (3.2)

obtained for r > rs from the transformation

x± = ±
√

2rs(r − rs) exp

(
r − rs ± t

2rs

)
. (3.3)

This makes manifest that a translation in Schwarzschild time acts as a Lorentz boost in the near

horizon region,

x±(t+ ∆t) = exp

(
±∆t

2rs

)
x±(t). (3.4)
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Figure 3

The near horizon region |r�rs| ⌧ rs is approximately flat, reducing to a portion of Minkowski

spacetime; in this region the geometry is nearly identical to the near-horizon region of Rindler

space. We will be interested in the behavior of early and late-infalling trajectories when they

reach this region.

It will be useful to use Kruskal coordinates,

ds2 = �2rs

r
e1�r/rsdx+ dx�. (3.2)

obtained for r > rs from the transformation

x± = ±
p

2rs(r � rs) exp

✓
r � rs ± t

2rs

◆
. (3.3)

This makes manifest that a translation in Schwarzschild time acts as a Lorentz boost in the near

horizon region,

x±(t + �t) = exp

✓
±�t

2rs

◆
x±(t). (3.4)

This boost becomes large for long time separations �t � rs.

The setup of our thought experiment consists of an observer stationed at a constant Schwarzschild

radius R � rs. The observer sends in two strings, separated by a long time interval �t � rs.

Because of (3.4), the center of mass energy of the two strings is very large in the near horizon

region, so the nonlocal e↵ects of the previous section may become important. On the other hand,

the strings are separated by a significant interval x+
2 � x+

1 along the horizon, which we should

compare to the detectable spreading radius.

In our analysis, we will assume that when String 1 reaches the near horizon region, it has

evolved into the standard single-string state in flat spacetime. Given that, in the near horizon

region we can use the refined calculation of [2] explained in the previous section. As developed

above in (2.22) and Section 2.3, under these conditions, the criterion for second string to feel the

presence of the first is

x+
21,h <

p+
2,h

p2
? + m2

2

. (3.5)
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Figure 3

This boost becomes large for long time separations ∆t� rs.

The setup of our thought experiment consists of an observer stationed at a constant Schwarzschild

radius R � rs. The observer sends in two strings, separated by a long time interval ∆t � rs.

Because of (3.4), the center of mass energy of the two strings is very large in the near horizon

region, so the nonlocal effects of the previous section may become important. On the other hand,

the strings are separated by a significant interval x+
2 − x+

1 along the horizon, which we should

compare to the detectable spreading radius.

In our analysis, we will assume that when String 1 reaches the near horizon region, it has

evolved into the standard single-string state in flat spacetime. Given that, in the near horizon

region we can use the refined calculation of [2] explained in the previous section. As developed

above in (2.22) and Section 2.3, under these conditions, the criterion for second string to feel the

presence of the first is

x+
21,h <

p+
2,h

p2
⊥ +m2

2

. (3.5)

where x+
21,h = x+

2,h−x+
1,h is the coordinate separation along the null direction x+ between Strings

1 and 2 as they cross the horizon, and p⊥ is the momentum transfer. A subscript ‘h’ signifies

that the quantity should be evaluated at the horizon. It is worth noting that this is not a strict

inequality, in that one can relax this condition by an order one factor on the right hand side,

although the falloff at large X+ in the distribution of the nominal spreading (2.6) would induce

a corresponding penalty in amplitude.8

As described above, the saddle point analysis leading to (2.18) requires p2
⊥ > 1/α′, or a similar

scale of transverse Kaluza-Klein momentum which enters our formulas as a mass term. We do

not have an explicit understanding of the cutoff nmax away from this regime. We will therefore

mostly have in mind masses and/or transverse momenta above the string scale, but its precise

8We have not computed this distribution precisely. Because the constraint relating the longitudinal embedding

coordinate to the Gaussian-distributed transverse modes is ∂σ±X
+ ∼ (∂σ±X⊥)2, we suspect that at large X+ the

distribution may be linear in the exponent, i.e. of the form exp(−|X+|/
√
〈(∆X+)2〉) for sufficiently large ∆X+.
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r = R

Figure 4: A cartoon of the proposed thought experiment. The early and late strings are displayed in red and blue

respectively. The zigzag lines indicate the spreading of the early string as detectable by the late string, which only

develops su�cient resolution to see it in the near horizon region. The dotted line is a constant r locus from which

both detector and string may be dropped at di↵erent times.

where x+
21,h = x+

2,h �x+
1,h is the coordinate separation along the null direction x+ between Strings

1 and 2 as they cross the horizon, and p? is the momentum transfer. A subscript ‘h’ signifies

that the quantity should be evaluated at the horizon. It is worth noting that this is not a strict

inequality, in that one can relax this condition by an order one factor on the right hand side,

although the fallo↵ at large X+ in the distribution of the nominal spreading (2.6) would induce

a corresponding penalty in amplitude.8

As described above, the saddle point analysis leading to (2.18) requires p2
? > 1/↵0, or a similar

scale of transverse Kaluza-Klein momentum which enters our formulas as a mass term. We do

not have an explicit understanding of the cuto↵ nmax away from this regime. We will therefore

mostly have in mind masses and/or transverse momenta above the string scale, but its precise

value will not play an important role in our basic results. The mass m2 here could be made up of

Kaluza-Klein momentum from extra dimensions, or possibly oscillator contributions to the string

mass, following the conservative criterion (2.26).

More elaborate scenarios in which String 2 emits a third string 3 in the near-horizon region

lead to a similar condition for detecting a violation of e↵ective field theory,

x+
31,h <

p+
3,h

p2
? + m2

3

. (3.6)

This generalization will be important below.

In order for the interaction to be nontrivially generated by the longitudinal spreading –

as opposed to an e↵ect that is basically contained within e↵ective field theory – we need the

separation x+
21,h to be large enough that the two worldsheets do not directly intersect according

to their fiducial sizes. The fiducial proper size of a string is of order the string length
p
↵0 for

a string-scale mass, of order (m
p
↵0)1/2

p
↵0 for a typical massive string state, and of order ↵0m

for special elongated states in the string spectrum. For a string of proper size L, its worldsheet

8We have not computed this distribution precisely. Because the constraint relating the longitudinal embedding

coordinate to the Gaussian-distributed transverse modes is @�±X+ ⇠ (@�±X?)2, we suspect that at large X+ the

distribution may be linear in the exponent, i.e. of the form exp(�|X+|/
p

h(�X+)2i) for su�ciently large �X+.
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Figure 4: A cartoon of the proposed thought experiment. The early and late strings are displayed in red and blue

respectively. The zigzag lines indicate the spreading of the early string as detectable by the late string, which only

develops sufficient resolution to see it in the near horizon region. The dotted line is a constant r locus from which

both detector and string may be dropped at different times.

value will not play an important role in our basic results. The mass m2 here could be made up of

Kaluza-Klein momentum from extra dimensions, or possibly oscillator contributions to the string

mass, following the conservative criterion (2.26).

More elaborate scenarios in which String 2 emits a third string 3 in the near-horizon region

lead to a similar condition for detecting a violation of effective field theory,

x+
31,h <

p+
3,h

p2
⊥ +m2

3

. (3.6)

This generalization will be important below.

In order for the interaction to be nontrivially generated by the longitudinal spreading –

as opposed to an effect that is basically contained within effective field theory – we need the

separation x+
21,h to be large enough that the two worldsheets do not directly intersect according

to their fiducial sizes. The fiducial proper size of a string is of order the string length
√
α′ for

a string-scale mass, of order (m
√
α′)1/2

√
α′ for a typical massive string state, and of order α′m

for special elongated states in the string spectrum. For a string of proper size L, its worldsheet

intersects the horizon along a locus stretched out in x+ by an amount ∆x+ = Leη, where

η = log(dx+/dx−)/2 is its rapidity. We therefore impose that the separation in x+ as Strings 1

and 2 cross the horizon is much bigger than the fiducial size of String 1 along the horizon:

L1e
η1 � x+

21,h. (3.7)

See Figure 5 for illustration.

Before proceeding, it is important to understand the role string theory plays in the effect we

are discussing, so let us explicitly contrast it with the behavior of ordinary particles in a black hole

background. A particle with Schwarzschild energy E1 dropped into the black hole increases the

black hole mass MBH ∼ rs/GN ∼ rs/(g
2
effα
′) by ∆MBH = E1, where g2

eff = g2
c/Vol(Minternal) is the

13



Figure 5: Proportions in our setup. The separation between 1 and 2 is much larger than the intersection of String

1’s worldsheet with the horizon, our condition (3.7).

intersects the horizon along a locus stretched out in x+ by an amount �x+ = Le⌘, where

⌘ = log(dx+/dx�)/2 is its rapidity. We therefore impose that the separation in x+ as Strings 1

and 2 cross the horizon is much bigger than the fiducial size of String 1 along the horizon:

L1e
⌘1 ⌧ x+

21,h. (3.7)

See Figure 5 for illustration.

Before proceeding, it is important to understand the role string theory plays in the e↵ect we

are discussing, so let us explicitly contrast it with the behavior of ordinary particles in a black hole

background. A particle with Schwarzschild energy E1 dropped into the black hole increases the

black hole mass MBH ⇠ rs/GN ⇠ rs/(g2
e↵↵

0) by �MBH = E1, where g2
e↵ = g2

c/Vol(Minternal) is the

e↵ective four-dimensional closed string coupling squared. So a later probe feels a Schwarzschild

geometry with mass

MBH

�
1 + O(g2

e↵↵
0E1/rs)

�
(3.8)

Thus these corrections are controlled by a factor which for E1 ⌧ rs/↵
0 is parametrically smaller

than the closed string coupling (which itself is parametrically smaller than the open string cou-

pling in theories with open strings).

3.2 Symmetric trajectories

First let us review the form of the trajectories of massive geodesics in a Schwarzschild black hole.

The conserved energy of a radial geodesic satisfies

✓
E

m

◆2

=
⇣
1 � rs

r

⌘2
✓

dt

d⌧

◆2

=

✓
dr

d⌧

◆2

+ 1 � rs

r
, (3.9)

where m is the mass of the particle and ⌧ is its proper time. For geodesics that start at rest at

some R � rs, it follows that the energy is

E = m

r
1 � rs

R
. (3.10)
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Figure 5: Proportions in our setup. The separation between 1 and 2 is much larger than the intersection of String

1’s worldsheet with the horizon, our condition (3.7).

effective four-dimensional closed string coupling squared. So a later probe feels a Schwarzschild

geometry with mass

MBH

(
1 +O(g2

effα
′E1/rs)

)
(3.8)

Thus these corrections are controlled by a factor which for E1 � rs/α
′ is parametrically smaller

than the closed string coupling (which itself is parametrically smaller than the open string cou-

pling in theories with open strings).

3.2 Symmetric trajectories

First let us review the form of the trajectories of massive geodesics in a Schwarzschild black hole.

The conserved energy of a radial geodesic satisfies

(
E

m

)2

=
(

1− rs

r

)2
(
dt

dτ

)2

=

(
dr

dτ

)2

+ 1− rs

r
, (3.9)

where m is the mass of the particle and τ is its proper time. For geodesics that start at rest at

some R� rs, it follows that the energy is

E = m

√
1− rs

R
. (3.10)

These trajectories have energy E < m, as a result of the redshift
√−g00 =

√
1− rs/r. The other

family of geodesics satisfy E > m, and correspond to particles that are sent into the black hole

at a nonzero velocity. Using (3.4), if two particles are sent in on the same trajectory with time

separation ∆t, then the ratio of their longitudinal positions at the horizon is

x+
2,h

x+
1,h

= exp

(
∆t

2rs

)
. (3.11)
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It follows that at large time separations ∆t, the null separation of the particles on the horizon is

x+
21,h ∼ x+

1,h exp

(
∆t

2rs

)
. (3.12)

In order to determine the detected longitudinal size of the early string, we will need to compute

the momentum of the late infaller and any secondary probes it emits in the near horizon region.

Using the conservation laws

E

m
=
(

1− rs

r

) dt
dτ

(3.13)

1 = −gµν
∂xµ

∂τ

∂xν

∂τ
(r = rs) = 2

∂x+

∂τ

∂x−

∂τ
(r = rs), (3.14)

along with the transformation (3.3), one finds

p+
h = m

dx+
h

dτ
=

m2

4rsE
x+

h . (3.15)

Let us start with the simplest situation described above where the trajectories of the two

strings differ by an overall time translation, i.e. E1 = E2 = E and m1 = m2 = m. We will also

take into account the possibility noted above in (3.6) that the detector may be an offshoot of

String 2. The spreading of String 1 as seen by the detector is then

∆X+
1 ∼

p+
det,h

m2
det

∼
(
p+

det,h

p+
2,h

)
m2x+

1,h

m2
detrsE

exp

(
∆t

2rs

)
, (3.16)

where we used (3.11) along with the assumption of large relative boost ∆t � 2rs. Here the

detector (labeled “det”) may a priori be either String 2 itself, or a secondary probe which we will

call String 3. The latter possibility substantially relaxes the conditions for drama, since one can

for example have m3 � m2 and p+
3 close to p+

2 , effectively removing the 1/(α′m2
det) suppression

in the detectable spreading in (2.26) relative to the nominal light cone time resolution [2]. Below

in Section 3.3 we will carefully analyze the kinematics of such secondary probes to ensure their

consistency and lay out the general conditions for a breakdown of EFT. In the rest of this section

we will first apply the estimate (3.16) for m2
det = m2

3 & 1/α′ and p+
3 of order p+

2 . (This is a regime

for which the saddle point analysis (2.18) is marginal, but in the next section, we will see that

the basic results are robust when we allow for a larger m3, consistent with the saddle point.) In

this case, (3.16) reduces to

∆X+
1 ∼ α′p+

2,h ∼
α′m2x+

1,h

rsE
exp

(
∆t

2rs

)
, m2

det = m2
3 & 1/α′, p+

3 ∼ p+
2 . (3.17)

This is equivalent to the original estimates in [2], but here for the secondary detector. We will

find an interesting breakdown of EFT very simply from this.

We will then address the case where mdet = m2 which will not lead to a breakdown of

EFT according to the conservative spreading condition (2.26). In the following sections we will

generalize our analysis of EFT violations detected by secondary probes, and also address the case

of asymmetric trajectories (which will relax the constraints on the mass of String 1).
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Comparing (3.12) with (3.17), the condition for the late offshoot string (3) to detect the early

string becomes simply

m2 >
rsE

α′
. (3.18)

Taking E < m and using (3.10), this translates into a constraint on the radius R from which the

strings 1 and 2 are dropped into the black hole:

m >
rs

α′

√
1− rs

R
. (3.19)

We also need to satisfy the constraint (3.7). The rapidity of a trajectory with Schwarzschild

energy E is

eη =

√
p+

h

p−h
=

√
2p+

h

m
=

√
2m

4rsE
x+

h , (3.20)

so (3.7) becomes

mL1

rsE
� exp

(
∆t

2rs

)
(3.21)

One simple way to satisfy the inequality (3.19) is to take m > rs/α
′ and R→∞, so that the

strings are dropped in from far outside the black hole. This is a somewhat strong condition on

the mass m. However, the strings can still be taken to be small perturbations to the black hole,

since

rs/α
′

MBH
= g2

eff � 1. (3.22)

Also, the size of a typical string of this mass is much smaller than the Schwarzschild radius of

the black hole background, m
1/2
2 α′3/4 ∼ r1/2

s α′1/4 � rs.

We should also check that the process is under perturbative control, and dominated by the

tree level interaction. Of course, it is possible that the RMS spreading (2.21) and (2.22) is still

accurate once loops are taken into account, but the analysis of [15][13] is restricted to tree-level

physics. To begin with, we should impose that the self-interactions as well as mutual interactions

of the strings are controlled by a perturbative expansion, so that loop effects are suppressed

relative to the tree level processes. In order to estimate this, one must take into account the low

density of string in a typical massive state: a super-Planckian mass is perfectly controllable if

distributed sufficiently dilutely, as in real-world astrophysics as well as cosmic string theory. For

a typical single-string state with mass m ∼ r/α′ in four dimensions, this implies that [19]

geff �
(
α′

r2
s

)3/4

. (3.23)

For a pair of strings at rest, the condition would be similar since it involves the local density of

interacting string.
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One could impose a stronger condition, as follows. The center of mass energy squared in the

near horizon region is

sh ∼ 2p+
2,hp

−
1,h ∼ m2 exp

(
∆t

2rs

)
. (3.24)

If we insist that this be smaller than M2
P, for m ∼ rs/α

′ it would imply that

g2
eff �

α′

r2
s

, ∆t� 2rs log
(
α′/(g2

effr
2
s)
)
. (3.25)

Since this is a stronger condition, it is overly conservative in some regimes since it conflicts with

(3.23) [19]. However, it can be imposed as a sufficient condition for perturbative control, adjusting

geff accordingly, and as we will see below this still leads to a breakdown of effective field theory.

We still need to check the condition (3.21). For a mass of order m ∼ rs/α
′, the typical state

has length r
1/2
s α′1/4, so (3.21) becomes

(
α′

r2
s

)1/4

� exp

(
∆t

2rs

)
. (3.26)

This is automatically satisfied for macroscopic black holes.

Another strategy for satisfying (3.19) is to take R→ rs, which leads to the inequality

R− rs <
(α′m)2

rs
. (3.27)

In order to exhibit a nontrivial breakdown of effective field theory, the strings must be dropped

in from R− rs >
√
α′, which implies the condition

m2 >
rs

α′3/2
. (3.28)

This is a weaker condition than m > rs/α
′.

Next let us discuss how the results are modified if we do not make use of the secondary probe,

String 3. If mdet = m2 = m in (3.16), the condition for drama for m2 > 1/α′ becomes rsE < 1.

For a trajectory with E < m, this implies that

m
√

1− rs/R <
1

rs
⇒ R− rs <

R

m2r2
s

<
α′R
r2

s

�
√
α′, (3.29)

where we used that r2
s � α′. As a result, this trajectory requires acceleration at greater than the

string scale, and hence fails to exhibit a breakdown of effective field theory. In the processes in-

volving secondary probes, there is drama as we have seen. We will next spell out more completely

the consistency conditions for the processes involving secondary probes.

3.3 Drama from secondary probes: more details on the kinematics

In applications to black hole (thought) experiments, the late infaller may perform detailed ex-

periments to access the physics in the near horizon region. For example, 2 can send a pulse that

detects the longitudinal spreading of String 1. We can model this as a decay process, 2→ 2′+ 3.
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This may also include the possibility an outgoing probe that could detect the spreading, in ad-

dition to probes which fall into the black hole.

Let us warm up with the simplest case, where 3 is an outgoing massless string with Rindler

energy p+
3 . Kinematically this process requires the energy-momentum conservation conditions

(with no transverse momentum for simplicity)9

p+
2,h = p+

2′,h + p+
3,h,

p+
2,h

m2
2

=
p+

2′,h

m2
2′
. (3.30)

Solving for p+
3,h, one finds

p+
3,h = p+

2,h

(
1− m2

2′

m2
2

)
. (3.31)

The condition for the probe to detect String 1 is then

x+
21,h ∼

rsE2p
+
2,h

m2
2

< α′p+
3,h. (3.32)

This condition is satisfied when

m2

(
1− m2

2′

m2

)
>
rs

α′
E2

m2
. (3.33)

Note that this result is still true even given the conservative estimate discussed above around

equation (2.26), since String 3 is massless and hence traverses a spreading radius within the

light cone resolution time. For the case m2′ of order m2 (but not tuned to agree precisely), this

reproduces (3.18) as anticipated above. It applies equally well to a slightly massive secondary

probe with m3 ∼ 1/
√
α′ � p+

3 .

More generally, the secondary probe 3 could be a massive string state, with mass m2
3 > 1/α′.

The conservative condition for drama is then

x+
21,h ∼

rsE2p
+
2,h

m2
2

<
p+

3,h

m2
3

(3.34)

In order for the probe to detect the spreading that 2 could not (assuming the conservative estimate

(2.26)), we must have
p+

3,h

m2
3

≡ 1

ε

p+
2,h

m2
2

, ε� 1. (3.35)

We will now determine the conditions on our trajectory parameters in order to obtain sufficiently

small ε for this detection, taking R � rs as above to avoid strong acceleration. Conservation of

momentum implies that

p+
2,h = p+

2′,h + p+
3,h (3.36)

m2
2

p+
2,h

=
m2

2′

p+
2′,h

+
m2

3

p+
3,h

. (3.37)

9Again we note, however, that we do not have a precise calculation along the lines of [15] for this case, since there

the derivation of the saddle point in T described above in (2.18) depended on the nonzero transverse momentum

transfer p2⊥ � 1/α′. We will see shortly that the results are similar for a significant range of m2
3 (equivalently

p2⊥,3).
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Plugging (3.35) into the conditions (3.36)-(3.37) and solving for m2
2′ , we obtain

m2
2′

m2
2

= (1− ε)
(

1− 1

ε

m2
3

m2
2

)
. (3.38)

In order for this to give a consistent solution for m2′ , we require the right hand side to be positive,

so in our regime m2
3 > 1/α′ we have

1

α′
< m2

3 < εm2
2 ⇒ m2

2 >
1

α′ε
. (3.39)

Finally, we can determine the required ε. The drama condition (3.34) requires rsE2 < 1/ε.

Putting this together with (3.39) we have

√
r2

s

α′ε
< m2rs <

1

ε

m2

E2
(3.40)

This in turn implies

ε <
α′

r2
s

(
m2

E2

)2

⇒ m2 >
rs

α′
E2

m2
. (3.41)

This is the same condition as above, (3.33).

Let us make two more basic consistency checks. The center of mass energy squared is

sh ∼ 2p+
2,hp

−
1,h ∼ m2

2 exp

(
∆t

2rs

)
. (3.42)

This can easily be smaller than MP, a sufficient condition to avoid backreaction and maintain

perturbativity, as noted above. With the secondary probe 3 making the detection, we should also

check that nmax is still large; this is

nmax,3 = −2α′p3,h · p1,h ∼
(

1

ε

m2
3

m2
2

)
α′p+

2,hp
−
1,h ∼

(
1

ε

m2
3

m2
2

)
α′m2

2 exp

(
∆t

2rs

)
. (3.43)

The factor in parentheses must be less than one by (3.39), but this still leaves a wide window

with nmax � 1.

It would be interesting to generalize this analysis to the potential detection of String 1 by

emitted Hawking radiation. We will leave a careful analysis of that to future work.

3.4 Black hole as accelerator and the breakdown of EFT (it’s not just Rindler

dynamics)

The expression (3.42) illustrates one of the main features of the black hole problem that we

reviewed in the introduction: although the Schwarzschild geometry is weakly curved, it generates

an enormous center of mass energy in the near horizon region, motivating a more careful study

of the breakdown of EFT in string theory. The evolution of the trajectories with energy E = m,

separated by a Schwarzschild time ∆t, accelerates a system of a given external center of mass

energy squared

sext ∼ m2 (3.44)
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far outside the black hole to one with the large center of mass energy squared (3.42), boosted

exponentially in the Schwarzschild time. Note that this effect is different from the large acceler-

ations and direct collisions generated in [20], an effect that may be interesting to combine with

our study here.

This feature is absent in flat spacetime physics; the drama we obtain in this way is very

naturally generated by the black hole. Of course there are manifestations of string spreading

effects in the flat space S-matrix, as is well known in the case of transverse spreading and which

we analyze for evidence of longitudinal spreading in [13]. In that context, the large center of

mass energy is introduced from the start. In the application to black hole physics, the black hole

functions as a very effective accelerator, generating the large relative boost required for string-

theoretic effects to introduce a breakdown of effective field theory. This occurs despite the weak

curvature of the Schwarzschild geometry in the exterior and near-horizon regions. In this sense,

the black hole naturally produces conditions leading to the breakdown of effective field theory,

given that it is UV completed by string theory.

3.5 Causality

It is also important to emphasize that the effect we are finding is perfectly consistent with

causality; it is just nonlocal. According to [2] as reviewed above, a string is generally spread

out. This is only detected when a second probe has sufficient resolution to interact with the high

(∼ nmax) modes of the string. The late detector does not cause the spreading of the early string

(or vice versa), since the strings are always spread out.

As mentioned above, there is a caveat to this last statement: we are treating the string that

arrives in the near horizon region is in a standard flat space single-string state, as entered into

the calculations [2] and above. There is a logical possibility that the curvature of the geometry

obstructs this during the infall process.

3.6 Asymmetric trajectories

Let us now allow for distinct trajectories, E1 6= E2,m1 6= m2.

For trajectories with Ej < mj , with string j dropped in from rest at r = Rj , we must require

Rj − rs �
√
α′ ⇒

(
mj

Ej

)2

− 1� rs√
α′

(Ej < mj) (3.45)

in order to avoid string-scale acceleration. Here we used the relation (3.10).

As with the symmetric trajectories, let us start with the simplest case analogous to (3.17),

with mdet = m3 ∼ 1/α′, p+
3 ∼ p+

2 . We have the condition for String 2’s offshoot, String 3, to

detect String 1 via longitudinal spreading:

x+
21,h <

α′m2
2

E2rs
x+

2,h mdet = m3 ∼ 1/α′, p+
3 ∼ p+

2 (3.46)

In general, it is useful to work in terms of the near-horizon rapidities (3.20), which are determined

by

η =
1

2

(
R

rs
− 1 +

√
R/rs − 1(2 +R/rs) tan−1

√
R/rs − 1

)
+ tR/2rs, (3.47)
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for the E < m trajectories in which a string is dropped from rest at r = R at time t = tR. We

note that as R→∞, at fixed tR the rapidity η at the horizon blows up. This is because it takes

a longer time to fall in from further out. But correspondingly if we take tR sufficiently negative

then η can remain finite at the horizon. In terms of this, our condition for drama (3.46) combined

with the inequality (3.7) takes the form

L1e
η1 � rs

(
E2

m2
eη2 − E1

m1
eη1
)
< α′m2e

η2 . (3.48)

We obtain two more conditions as follows. Using p+ = m
√
dx+/dx−/

√
2 = meη/

√
2 and

p− = m2/(2p+), we can write the squared center of mass energy in the near-horizon region as

sh ∼ −2p1,h · p2,h ∼ m1m2

(
eη2−η1 + eη1−η2

)
≈ m1m2e

η2−η1 . (3.49)

The condition nmax � 1 (2.20) requires s � 1/α′. But another lower bound arises from the

following considerations. Let us compare this near horizon sh to that we start with externally,

outside the black hole. The latter is

sext ∼ −2p1ext · p2ext ∼ m1m2

(
eη2,ext−η1,ext + eη1,ext−η2,ext

)
= m1m2

(
E1m2

m1E2
+
E2m1

m2E1

)
. (3.50)

If we wish to ensure that the drama we obtain is particular to the black hole problem, as opposed

to just exhibiting string-theoretic effects which would also be present in Minkowski spacetime,

we should insist that

sext � sh (for black hole− induced drama) (3.51)

Of course in flat spacetime, string theory goes beyond EFT, as can be seen in scattering ampli-

tudes (including those exhibiting longitudinal nonlocality plausibly related to longitudinal string

spreading [13]). But for our present purposes, we would like to focus on the breakdown of EFT

arising in black hole physics as a result of the evolution of the trajectories in the black hole

geometry, as discussed above for symmetric trajectories in Section 3.4.

This gives a lower bound on s. On the other hand, we can impose that the center of mass

energy not exceed the Planck scale, a sufficient condition for perturbative control (although as

discussed above this is sometimes overly conservative, as sufficiently dilute super-massive objects

can be described reliably in perturbation theory without strong gravity or string loops). These

two conditions require the window (taking η2 > η1)

E1m2

m1E2
+
E2m1

m2E1
� eη2−η1 � M2

P

m1m2
(3.52)

It is useful to define the quantity

∆th ≡ 2rs log(x+
2,h/x

+
1,h) = 2rs

(
η2 − η1 + log

(
E2m1

m2E1

))
(3.53)

which is the difference in Schwarzschild times between the horizon crossing of the early and

later infallers. For the symmetric trajectories, this is proportional to the relative boost, while in
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the asymmetric case it is offset from this by the logarithmic term. This difference ∆th is finite

(generically) in our system, although of course the Schwarzschild time coordinate t diverges near

the horizon. As reviewed in [3], nice slice coordinates can be formuated which are smooth across

the horizon and asymptote to t at infinity, with (3.53) the time difference in these coordinates.

The condition (3.51) (the first inequality in (3.52)) implies

∆th � 2rs. (for black hole− induced drama) (3.54)

That is, when the drama is generated by the black hole, it sets in beyond the timescale ∼ 2rs

regardless of whether the trajectories are symmetric or asymmetric. We will discuss this further

below in Section 4.

Given the condition (3.54), the condition for drama (3.46) is satisfied when

m2
2 >

rsE2

α′
. (3.55)

This is identical to (3.18), but without a constraint on m1. This strengthens the significance

of amplitude of the string-theoretic effect relative to the pure general-relativistic effects in (3.8),

which become more important as the mass of the early perturbation increases. One could also

consider the case where (3.54) is not satisfied, so that (3.46) becomes

m2
2 >

E2rs

α′

(
1− exp

(
−∆th

2rs

))
. (3.56)

This relaxes the bound on m2 by the factor in parentheses. However, the second term is negligible

if we require that the black hole generates the large relative boost.

As in the symmetric case, the asymmetric trajectories do not give drama for the conserva-

tive spreading estimate (2.26) without a secondary probe. It is straightforward to generalize to

asymmetric trajectories the detailed analysis of the kinematics with secondary probes, verifying

the condition (3.55).

4 Strings and the firewall paradox: the UV sensitivity of horizon

dynamics

The work [7] gives a precise argument confirming the longstanding problem that effective field

theory near the horizon of a late black hole is incompatible with unitary quantum mechanics,

despite previous arguments to the contrary, and speculates that the conflict is resolved via a

sharp ‘firewall’ developing just inside the horizon.10 Our analysis combined with [13] has provided

strong evidence for the breakdown of effective field theory for probes falling across the horizon

much later than early matter, if the latter includes strings. Given this, among the incompatible

postulates delineated by AMPS, string theory appears to automatically violate the validity of

EFT outside the horizon, as well as the ‘no drama’ condition for an infaller.

This provides a good candidate for the dynamics behind the required breakdown of effective

field theory anticipated in [7]. However it is worth emphasizing that the effect we found so above

10For a sample of additional references also sharpening the black hole information problem in important ways,

see [21] and of course [22].
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is not precisely a ‘firewall’, as the effect we find in string theory sets in as soon as the strings

reach the near-horizon region, once the large relative boost is generated. (However, as we will

note momentarily, there is potential for additional effects if the Hawking radiation can detect the

spreading.) It is also not obtained from any straightforward generalization of EFT to a non-local

version [9], in that the effect is clearly dependent on the basic microphysics in string theory – the

extended nature of the fundamental strings. Our effect shares features of both of these scenarios,

but arises in a somewhat clearer framework which produces a more specific mechanism for the

breakdown of EFT.

It is worth emphasizing that we established a breakdown of EFT despite at various points

imposing potentially overly conservative conditions, and without invoking additional effects such

as the sum over early matter strings and the Hagedorn density of available final string states. Kerr

geometries also introduce additional acceleration effects, which we have not yet applied to string

spreading. Finally, we stayed away from the regime where loops might become important, and

we do not know whether the effect persists in some form in the presence of stronger interactions,

and if so whether it enhances the effect or suppresses it.

We believe that this breakdown of EFT strongly motivates further analysis of black hole

thought experiments with string-theoretic effects included, in order to determine whether residual

paradoxes remain, as well as to explore information transfer in string theory. For now, we will

make some preliminary remarks.

First, it is worth noting that one may be able apply our estimate for detectable spreading

by the light secondary probe, String 3 above, to outgoing Hawking particles in the vicinity. A

symmetric arrangement of early and late Hawking particles would be analogous to our two-body

symmetric trajectories above, giving no detection. But the interaction between early matter and

late outgoing Hawking particles is more analogous to the setup with the secondary probe, and

could be sensitive to spreading for some range of parameters. It is also interesting to ask whether

the early string could disrupt the vacuum entanglement between modes, if one member of the

entangled pair can detect the spreading. If such an effect occurs, it could produce a firewall in the

spirit of [7]. However, vacuum fluctuations are not long-lived and do not immediately fit into our

analysis. Presumably they should not be disrupted in pure flat spacetime physics, which should

constrain the effect in the near horizon region of the black hole. However, the mining processes

involving high partial waves described in [7] might introduce real high-energy quanta that can

detect the spreading of the early matter. We will leave this very interesting analysis of the effect

of longitudinal string spreading on the Hawking emission to future work.

In any case, let us consider the timescale at which black hole-induced drama sets in. We have

considered a process where String 1 falls into a pre-existing black hole horizon, and found that

after a time ∆th ∼ 2rs (3.54), an infalling String 2 – more precisely its offshoot String 3 – can

detect the longitudinal spreading of String 1. Our string 1 is ultimately intended as a proxy for

early matter forming the black hole, but our analysis has focused on the toy problem where it

falls into a large Schwarzschild black hole.

One timescale of interest is the scrambling time [23], which is much shorter than the Page

time [24]. For the original black hole plus our perturbation by String 1, this time is tscrambling ∼
rs log(r2

sM
2
P) ∼ β logS where β is the inverse temperature of the black hole and S its entropy.

From (3.52), the condition for control of perturbative string theory, combined with (3.54), the
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condition that the black hole induce the drama, we have

2rs � ∆th � 2rs

(
log(r2

sM
2
P)− log(r2

sm
2
2E1/E2)

)
(4.1)

For symmetric trajectories, the upper bound on this timescale is always less than the scrambling

time, but for extremely asymmetric ones there is a wider range of possibilities that satisfy the

condition for perturbative control. The thought experiments require drama by the Page time

∼ r3
sM

2
P, and we find it well below that timescale.

Let us make one final remark about this window. The upper bound in (4.1) ensures per-

turbative string control, and it is interesting to consider what happens beyond that timescale.

The fact that in its regime of control perturbative string theory automatically provides drama

suggests that this will continue to happen in the non-perturbative regime, for any consistent

UV-completion of gravity. That is, it is natural to expect that any consistent theory of quantum

gravity will produce the required dynamics, much as it should produce an accurate microstate

count for black holes. Our analysis of this question within perturbative string theory gives a

controlled example of what is likely a more general phenomenon.

In [2], the combination of transverse and longitudinal spreading provided an appealing picture

of information spreading onto a ‘stretched horizon’. In that work, aimed at providing evidence

for the idea of black hole complementarity, it was suggested that a late infaller would not detect

anything unusual while crossing the horizon. Although we find instead that the same underlying

physics – the longitudinal spreading – leads to drama for the late observer, it may be that the

information transfer in the system proceeds along the lines outlined in [2]. We will leave it for

future work to flesh this out.

Another application of spreading is to thermal AdS/CFT dynamics, as analyzed recently

in [25], where the transverse spreading played an important role. Longitudinal spreading, if

present, was argued to be consistent with what is known about thermalization. However, it

would be interesting to pursue further the dynamics of thermalization contained in the detection

of 1 by 2 and its secondary probes in our system.

4.1 Observational tests??

Moving beyond the realm of thought experiments, it is interesting to consider the possibility

that this effect could yield signatures in astrophysical observations, either in fundamental string

theory or hadron physics.11 This was explored recently in [10] in the context of an approach

to modeling potential nonlocalities in a generalized effective field theory description [9]. This

work proposed to test the resulting deviations from general relativity using the Event Horizon

Telescope [26]; see [27] for a recent overview of observational black hole physics.

Since in the perturbative string regime, we find a short timescale for drama, it may be

worthwhile to examine potential observational signatures of our mechanism (after generalizing

to the Kerr geometry). Of course, the main challenge in this program involves disambiguating

apparent deviations from ordinary astrophysical nonlinearities, and it is an interesting program

of research in itself to develop methods for controlling this and providing realistic forecasts for

the resulting sensitivity. Since most previous approaches to exploiting this upcoming data refer

11We note that although question-titles are always answered in the negative, this one is a double negative.
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to other types of theoretical corrections to general relativity, it may be interesting to develop

more specific strategies aimed at testing the effects of near-horizon drama. This is a challenging

problem in itself; we will leave a joint analysis of the combined constraints from real and thought

experiments for future work.

5 Consistency with constraints from cosmology

Strong relative boosts also arise in cosmological horizons between early and late-infalling trajec-

tories. Having argued that string spreading produces a breakdown of effective field theory leading

to horizon drama, we must check its basic consistency with cosmological data.

The standard model of cosmology describes structure formation via a process of frozen-out

super-horizon modes continually entering the observable horizon. In inflationary theory, these

modes originate as quantum fluctuations of the scalar perturbation. In the early universe, there is

compelling evidence from the CMB for the presence of super-horizon perturbations [28], and the

standard ΛCDM model is a good fit to cosmological data [29]. Although the data still admit the

possibility of deviations such as tensor modes, residual structure in the power spectrum or higher

order correlations, quantitatively these are small perturbations even though they would have

important implications. Any dramatic departure from the standard model would be immediately

ruled out.

In the late universe, matter is distributed homogeneously along approximately flat spatial

slices of the spacetime geometry. In the rest of this section, we will derive the conditions for

cosmology-induced drama in this setting. As for black holes, de Sitter spacetime can function

effectively as an accelerator, generating large near-horizon center of mass energy. The kinematics

in cosmology is somewhat different, involving a homogeneous distribution of matter stretching

across each observer horizon, as opposed to the above setup with the early and late infallers into

the black hole event horizon. Nonetheless much of the analysis is similar, as we will see shortly.

We are interested in a spatially homogeneous distribution of matter, including our source

string 1 and detector 2. For simplicity, let us consider de Sitter spacetime in global coordinates

ds2 =
L2

cos2 γ

(
−dγ2 + dθ2 + sin2 θ dΩ2

2

)
(5.1)

with −π/2 < γ < π/2. Let us distribute our matter uniformly along the spatial directions here,

but consider the system at very late times (so that the positive curvature of these spatial slices

is unimportant – we use these slices just for simplicity).

de Sitter spacetime has observer-dependent horizons. Let us consider an observer at θ = 0,

and suppose that the source string 1 at θ = θ1 and detector 2 at θ = θ2 are falling across that

observer’s horizon at late times, γ ≈ π/2 (see Figure 6). This requirement that they cross the

horizon at late times implies θ1, θ2 � 1, and we will specialize to this regime after deriving the

fixed-θ trajectories below.

It is useful to work with static coordinates adapted to this observer’s patch, along with
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Figure 6: Trajectories 1 and 2 in the late de Sitter universe. For small values of the global spatial coordinate ✓,

the trajectories fall across the indicated observer horizon at a late global time, so that the spatial slices are nearly

flat as in our observed universe. Within that regime, the hierarchy ✓2
✓1

⌧ 1 leads to a large relative boost at the

horizon, generated by the cosmological background.

with �⇡/2 < � < ⇡/2. Let us distribute our matter uniformly along the spatial directions here,

but consider the system at very late times (so that the positive curvature of these spatial slices

is unimportant – we use these slices just for simplicity).

de Sitter spacetime has observer-dependent horizons. Let us consider an observer at ✓ = 0,

and suppose that the source string 1 at ✓ = ✓1 and detector 2 at ✓ = ✓2 are falling across that

observer’s horizon at late times, � ⇡ ⇡/2 (see Figure 6). This requirement that they cross the

horizon at late times implies ✓1, ✓2 ⌧ 1, and we will specialize to this regime after deriving the

fixed-✓ trajectories below.

It is useful to work with static coordinates adapted to this observer’s patch, along with

Kruskal-like coordinates for de Sitter spacetime.12 These are given by

ds2 = �
✓

1 � r2

L2

◆
dt2 +

dr2

1 � r2

L2

+ r2 d⌦2
2 (5.2)

and

ds2 =
1

(1 � x+x�/L2)2
�
�4dx+dx� + L2(1 + x+x�/L2)2 d⌦2

2

�
(5.3)

with the relation

x± = ±Le±t/L

r
L � r

L + r
. (5.4)

It follows that the ratio of the x+ coordinates of 1 and 2 at the horizon r = L grows exponentially

with the time separation,

x+
2,h = exp

✓
�t

L

◆
x+

1,h. (5.5)

12See [30] for a pedagogical description of coordinate systems in dS.
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Figure 6: Trajectories 1 and 2 in the late de Sitter universe. For small values of the global spatial coordinate θ,

the trajectories fall across the indicated observer horizon at a late global time, so that the spatial slices are nearly

flat as in our observed universe. Within that regime, the hierarchy θ2
θ1
� 1 leads to a large relative boost at the

horizon, generated by the cosmological background.

Kruskal-like coordinates for de Sitter spacetime.12 These are given by

ds2 = −
(

1− r2

L2

)
dt2 +

dr2

1− r2

L2

+ r2 dΩ2
2 (5.2)

and

ds2 =
1

(1− x+x−/L2)2

(
−4dx+dx− + L2(1 + x+x−/L2)2 dΩ2

2

)
(5.3)

with the relation

x± = ±Le±t/L
√
L− r
L+ r

. (5.4)

It follows that the ratio of the x+ coordinates of 1 and 2 at the horizon r = L grows exponentially

with the time separation,

x+
2,h = exp

(
∆t

L

)
x+

1,h. (5.5)

The conserved energy in the static patch is

(
E

m

)2

=

(
1− r2

L2

)2(
dt

dτ

)2

=

(
dr

dτ

)2

+ 1− r2

L2
, (5.6)

so trajectories that start at rest at r = R satisfy

E = m

√
1− R2

L2
. (5.7)

12See [30] for a pedagogical description of coordinate systems in dS.
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The analogue of (3.15) becomes

p+
h = m

dx+

dτ
(r = L) =

m2

2EL
x+

h . (5.8)

Given these kinematics, we can proceed similarly to our above analysis of the black hole

case, taking symmetric trajectories for simplicity. The condition for detectable spreading with a

secondary probe is

x+
21,h < α′p+

2,h, (5.9)

and the condition that the cosmological background induce the drama by generating a large

relative boost is
x+

2h

x+
1h

∼ exp

(
∆t

L

)
� 1. (5.10)

Putting these together, (5.9) then becomes

m2 >
LE

α′
. (5.11)

For E ∼ m, this is solved by m > L/α′. This is analogous to the condition m > rs/α
′ in the

black hole case. It is straightforward to repeat this analysis for secondary probes and asymmetric

trajectories, and one again finds the condition m2 > L/α′.
For the reasons discussed above, we are interested in strings that are sent in at small θ in

global coordinates. For a trajectory at fixed θ in (5.1), one finds

sinh(t/L) =
1

sin θ

√
r2 − L2 sin2 θ

L2 − r2
(5.12)

This solution is straightforward to check using the energy conservation condition in the static

patch, which is equivalent to

dr

dt
=

(
1− r2

L2

)√
1− m2

E2

(
1− r2

L2

)
(5.13)

Our trajectories trace back to ones that start from rest at t = 0 from radial position r = R =

L sin θ, with

E

m
=

√
1− R2

L2
= cos θ. (5.14)

Therefore the trajectories with small θ correspond to geodesics in the static patch with E ∼ m,

which requires m2 > L/α′ for drama.

As such, in order to measure de Sitter-induced drama by the mechanism we have outlined in

this paper, our detector must be super-massive. The scale (5.11) is of order

g2
eff1060MP ∼ g2

eff1020Msun, (5.15)

where geff = (MP

√
α′)−1 ∼ gs/

√
Vol(Minternal) is the ratio of the string and four-dimensional

Planck mass scales (here gs is the fundamental string coupling and Vol(Minternal) is the volume
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of the extra dimensions in string theory). For geff ∼ 1/10, the mass scale (5.11) is higher than

super-cluster masses. However, for smaller geff, which can arise from larger internal dimensions,

the mass scale (5.15) is reduced accordingly. Cosmic strings could naturally exhibit this scale of

mass, but since these have not been detected this is no contraint on our mechanism as it stands.

Even in the more exotic scenarios where detectors satisfying (5.11) arise, the timescale required

by (5.10) is greater than a Hubble time H−1 ∼ L. The late universe is only now entering an

accelerating phase, and thus this condition is only marginally satisfied at best. It is tempting

to entertain this as being potentially related to the ‘why now’ problem, but for now we simply

note this is not a constraint on the mechanism as applied to the observed universe, and we leave

further applications to later work.

The mechanism is even less constrained in the early universe. In inflationary theory, there is

no reason for infallers to exist to produce or detect drama, as all measurements are consistent with

an effective initial condition described by the Bunch-Davies vacuum. As in the late universe, more

exotic scenarios which contain additional matter, such as [31], may in principle be constrained.

To summarize, because of the conditions on the detector mass and timescales required for

detectable, de Sitter-induced drama, our mechanism is not significantly constrained by cosmolog-

ical observables in the ‘vanilla’ scenarios for early and late universe cosmology. More elaborate

theories may be subject to interesting constraints, and we noted a potential connection to the

‘why now’ problem.

6 Conclusions, caveats, and future directions

In this work, we first refined our understanding of the longitudinal spreading effect proposed in

the light cone calculations [2]. In particular, we noted that for the case of string-detected string

spreading, the 2 → 2 calculation in [15] in the regime s � −t � 1/α′ exhibits very precisely a

mode cutoff of the kind anticipated in [2]. We found that a factor of α′t suppresses the detectable

spreading relative to the original estimate [2] which was based on the nominal resolution time of

the detector. Perhaps not surprisingly, this indicates that other aspects of the detection process

figure into the detected spreading.

With this understanding, we applied the criterion for detectable longitudinal spreading to a

late infalling detector in a black hole background which also contains early-infalling string matter.

In the near horizon region, the metric is flat and the calculation [2] can be applied to the early

string wavefunction. As the time separation between the two infallers grows, they develop a large

relative boost which compensates for their large separation along the horizon. This led us to a

specific range of parameters (a lower bound on the mass of the infaller) for which the detector –

more specifically secondary probes emitted by it – could detect the early string. This range of

parameters includes a window in which the effect constitutes a breakdown of effective field theory,

one that is caused by the large relative boost induced by the long time evolution of trajectories

in the weakly curved black hole geometry.

These estimates for the detected spreading assumes that the early-infalling string evolves into

a standard flat spacetime single-string state in the near horizon region, one satisfying (2.6). If

instead the (mild) curvature of the geometry were to obstruct the longitudinal spreading itself,

28



then the conclusion could be altered. In that case, it might be interesting to start with the strings

satisfying (2.6) in the near horizon region, and evolve them back outside the black hole to see to

what initial state this corresponds, if not the original infalling strings envisioned in our setup.

Flat spacetime S-matrix elements in our companion paper [13] exhibit simple features which

indicate longitudinal nonlocality, assuming the standard transverse distribution is as given by

(2.3). These processes, however, do not share the following basic feature we have in the black

hole problem. Once they reach the near-horizon flat space region, the problem in flat space is as

if the detector and early string materialize in a configuration well separated along the light cone,

moving away from each other. Such an arrangement of source string and detector is consistent

with detectable spreading according to the criteria given above, leading to our estimates in this

paper. But it has not been checked explicitly with an S-matrix calculation, although other S-

matrix amplitudes do exhibit strong evidence for longitudinal nonlocality. It would be interesting

to analyze flat space 6-point amplitudes in order to incorporate this aspect of our problem.

It is also interesting to approach this question using AdS/CFT.13 Pure vacuum AdS is a

setting which is in some sense intermediate between flat spacetime and black holes. The Rindler

horizon in AdS has some properties in common with a black hole [32], such as a relative boost

exponential in the analogue of the Schwarzschild time coordinate for early and late infallers.

In some contexts, such as the non-adiabatic effects explored in [1], the additional symmetry

of Poincaré time translation shuts off the effect, but with more generic source and detector

combinations in the present work, it may be that the process could proceed at the Rindler horizon.

By transforming between a Schwarzschild (thermal) and Poincaré description14 one can set up a

CFT measurement in the thermal system which would in principle be able to make an indirect

detection of the bulk process of the late infaller detecting the early string. The exponential falloff

in time of appropriate late-time thermal CFT correlators can put a general constraint on the

extent to which early matter can be detected late, depending on the type of correlator involved

[25]. However, it is worth noting that our analysis is actually consistent with an exponential

falloff. In the flat spacetime scattering process of [15] which exhibits the explicit mode cutoff

(2.19), the saddle point analysis (2.18) is only valid for momentum transfers that are greater

than string scale. This flat spacetime Regge amplitude is proportional to ∼ sα′t. If we apply this

estimate of the amplitude to a black hole or AdS, since s ∝ e(t2−t1)/2rs (with rs the AdS radius

for the case of the Rindler horizon), this in itself would lead to an exponential suppression at late

times. If this Regge form for the amplitude does apply to the black hole process, the suppression

in amplitude in the regime where the saddle point analysis holds clearly renders the effect less

‘dramatic’ than otherwise,15 but it remains a distinct effect from EFT processes. It would be

very interesting to understand how to extend the analysis to smaller α′t, where the amplitude

could be larger, and to compare carefully with appropriate AdS/CFT calculations. We leave this

to future work.

That said, at various points we made conservative choices in estimating the effect. Its de-

pendence on detector mass in particular remains to be fleshed out more precisely. We found an

effect going beyond EFT in the present work without folding in the plethora of final states (the

13We thank S. Shenker and D. Stanford for preliminary discussions of this.
14See e.g. [33][25] for some of the relevant formulas.
15But see below for other factors that may enhance the effect numerically.

29



Hagedorn density), and the summed contribution of early matter forming the black hole. Espe-

cially in contemplating the possibility of real observations, these should be considered. Finally,

many other aspects of this problem remain to be fleshed out, such as generalization to Kerr black

holes, analysis of the detectability of early string spreading by outgoing Hawking particles, and

exploring potential observational windows as well as further theoretical constraints. For now, we

can conclude that taken at face value, the effect computed in [2] and refined here via [15] leads

to new effects going beyond EFT for late-infalling probes in black hole physics.
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