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Abstract We set up a tree-level six point scattering process in which two strings are separated
longitudinally such that they could only interact directly via a non-local spreading effect such as
that predicted by light cone gauge calculations and the Gross-Mende saddle point. One string,
the ‘detector’, is produced at a finite time with energy E by an auxiliary 2 → 2 sub-process,
with kinematics such that it has sufficient resolution to detect the longitudinal spreading of an
additional incoming string, the ‘source’. We test this hypothesis in a gauge-invariant S-matrix
calculation convolved with an appropriate wavepacket peaked at a separation X between the
central trajectories of the source and produced detector. The amplitude exhibits support for
scattering at the predicted longitudinal separation X ∼ α′E, in sharp contrast to the analogous
quantum field theory amplitude (whose support manifestly traces out a tail of the position-space
wavefunction). The effect arises in a regime in which the string amplitude is not obtained as a
convergent sum of such QFT amplitudes, and has larger amplitude than similar QFT models (with
the same auxiliary four point amplitude). In a linear dilaton background, the amplitude depends
on the string coupling as expected if the scattering is not simply occuring on the wavepacket tail
in string theory. This manifests the scale of longitudinal spreading in a gauge-invariant S-matrix
amplitude, in a calculable process with significant amplitude. It simulates a key feature of the
dynamics of time-translated horizon infallers.



1 Introduction and setup

Light cone [1] and saddle point [2] calculations strongly suggest a significant degree of longitudinal
nonlocality in string theory in the regime of large center of mass energy compared to the string
scale, E � 1/

√
α′. As reviewed in [3, 4], both analyses [1, 2] lead to the relations1

(∆X⊥)2 ' α′ log E
2

k2
⊥

(1.1)

∆X+ ∆X− ' α′ for k2
⊥ > 1/α′ (1.2)

for relativistic 2 → 2 scattering, where k⊥ denotes the transverse momentum transfer in the
process.2 As the resolution in light cone time ∆X− ' k2

⊥/E improves at large center of mass
energy, the nonlocality in the X+ direction increases. A computation in [6], combining light
cone and saddle point techniques, explicitly derives the cutoff on the mode number of worldsheet
vacuum fluctuations which corresponds to the finite light-cone time resolution,3 as explained
recently in [3]. More broadly, the UV softness of string amplitudes in itself implies some spreading
of probability in position space.

However, the quantities computed in [1] are not manifestly gauge-invariant, and the em-
bedding coordinates in [2] are evaluated on complex saddle points and hence are not directly
applicable to the real geometry of the scattering process. Therefore it is of interest to understand
the role of the relations (1.1) in real, gauge-invariant quantities. This has been discussed in a
number of very interesting works such as [7][8][9][10], but the results on the basic question of long-
range interaction were inconclusive. In [4], we began a detailed analysis of this using wavepackets
convolved against four and five point tree-level string scattering amplitudes, exhibiting features
– such as the deflection of the traced-back trajectory of a scattered string wavepacket before its
center of mass would collide – which are difficult to explain purely by the transverse spreading
(∆X⊥)2. Excluding purely transverse non-locality is important, and the arguments in [4] are
subtle, giving only indirect indications of the long range E/k2

⊥ ≤ α′E predicted by (1.1).
More generally, it is crucial to take into account the possibility that fluctuations in the central

positions of strings could account for effects that would otherwise be ascribed to the longitudinal
spreading.4 In this work, we will find that in an appropriate six point scattering process, the large
scale of longitudinal spreading directly emerges at the level of the peak wavepacket separation
of the relevant strings, in a kinematic regime we identify explicitly, improving substantially on
[4]. In this regime, moreover, a simple tree level quantum field theory analogue model would
not interact as strongly at this separation, provided that we identify its four-point couplings

1The Gross-Mende saddle point is slightly larger than the longitudinal spreading scale, ∆X+ ∆X− ' α′2k2
⊥

[4, 5]. This leads to a k2
⊥-dependent suppression factor in the four-point function [4].

2The relevant decomposition into light cone and transverse directions is determined uniquely by requiring that
k⊥ is shared equally among the scattered strings, defining the ‘brick wall frame’ as in [6].

3In the appendix, we clarify the distinction between this detector-dependent cutoff and the subtraction of the
power law divergence in a similar sum over modes that enters into the string mass spectrum in light cone gauge.
We thank Milind Shyani and Ying Zhao for discussions.

4In [4], this was conditional on an assumption that the incoming strings deflect directly into the corresponding
outgoing ones in Regge kinematics, and that scattering can occur at the peak trajectory – the most probable central
value among position wavepackets.
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with the amplitudes of certain sub-processes in the string theory (one of which is Regge-soft).
In order to test the spreading interpretation further, we summarize a result of [11] in a weakly
varying dilaton background, which yields string coupling dependence consistent with scattering
at this peak wavepacket separation. As a result, the longitudinal spreading prediction survives a
substantial test.

Let us summarize the setup in more detail. We will analyze a 3 → 3 scattering process
which directly exhibits the expected scale α′E of longitudinal non-locality. A four-point sub-
process produces a string at finite time (say T = 0) which is kinematically set up to be an
effective detector of the longitudinal spreading of a third incoming source string. According to
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which directly exhibits the expected scale –ÕE of longitudinal non-locality. A four-point sub-
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Figure 1: The setup for our process, showing trajectories of interest which have support in the string amplitude.
The central trajectories of strings A and B collide at T = X = Y = 0, producing outgoing strings Â and B̂. We
introduce the third incoming string C, with kinematics such that string B̂ (and the closely related o�-shell string
D) has optimal light cone time resolution to detect the longitudinal spreading of strings C and Ĉ (shown in blue)
as in (2.23). To simplify the interpretation, we exclude a direct 2 æ 2 interaction BC æ (B + C + Ĉ) + Ĉ by
computing the amplitude for vertex operator orderings such as AÂCĈBB̂ which preclude such a sub-process.

the prediction of (1.1), this third incomer could interact with the putative detector even if its
center crosses the interaction region earlier, by a timescale of up to order –ÕE. With separated
Gaussian wavepackets for the trajectories of A and C, with peak X = XC ≠ XA, longitudinal
spreading would produce contributions supported at X of order –ÕE, a dynamical scale that is
insensitive to the shape of the wavepacket. This is in contrast to the corresponding process in
quantum field theory, for which scattering only occurs for particle C delayed with respect to A;
in that case any contribution with X < 0 is ascribable to scattering a tail of the wavefunction in
position space.

By analyzing the amplitude for scattering between localized external states, we perform a
quantitative test of the prediction that the third incomer interacts with the putative detector at

3

Figure 1: The setup for our process, showing trajectories of interest which have support in the string amplitude.
The central trajectories of strings A and B collide at T = X = Y = 0, producing outgoing strings Â and B̂. We
introduce the third incoming string C, with kinematics such that string B̂ (and the closely related off-shell string
D) has optimal light cone time resolution to detect the longitudinal spreading of strings C and Ĉ (shown in blue)
as in (2.23). To simplify the interpretation, we exclude a direct 2 → 2 interaction BC → (B + C + Ĉ) + Ĉ by
computing the amplitude for vertex operator orderings such as AÂCĈBB̂ which preclude such a sub-process.

the prediction of (1.1), this third incomer could interact with the putative detector even if its
center crosses the interaction region earlier, by a timescale of up to order α′E. With separated
Gaussian wavepackets for the trajectories of A and C, with peak X = XC − XA, longitudinal
spreading would produce contributions supported at X of order α′E, a dynamical scale that is
insensitive to the shape of the wavepacket. This is in contrast to the corresponding process in
quantum field theory, for which scattering only occurs for particle C delayed with respect to A;
in that case any contribution with X < 0 is ascribable to scattering a tail of the wavefunction in
position space.

By analyzing the amplitude for scattering between localized external states, we perform a
quantitative test of the prediction that the third incomer interacts with the putative detector at
a separation in the X+ direction of order α′E.5 With Gaussian wavepackets for the trajectories of

5Below we will be more precise about the factors multiplying α′E in the interaction scales arising in various
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A and C, with peak X = XC −XA and position-space width 1/σ � Eα′, we find a string theory
amplitude A(X) which exhibits a peak of support early in X by the predicted amount. We take
a relatively thin width σ in momentum space in order to optimize the detector kinematics, which
leads to somewhat coarse (but still sufficient) resolution in position space. In sharp contrast, QFT
comparison models instead produce a distribution with width ∼ 1/σ at small X, with Gaussian-
suppressed support at large X consistent with scattering on the tail of the wavepackets. If we
identify the four-point sub-process amplitudes in tree-level QFT and string theory, then string
theory produces parametrically stronger scattering at X ∼ Eα′, and a further analysis using a
linear dilaton background fits with this picture of the scattering geometry [11]. This result arises
in a regime in which the string theory amplitude is not obtained as a convergent sum over QFT
propagators (which we compare and contrast to a special regime with such an expansion).

The predicted long-range longitudinal non-locality could have far-reaching implications, be-
coming particularly interesting when applied to horizon physics [3, 12]. In that context, the
trajectories of test objects time-translated relative to each other by ∆t develop an exponentially
large center of mass energy squared s ∝ e∆t/2rs in the near-horizon region, where rs is the
curvature radius in the geometry. This region, a Rindler patch of flat spacetime, is given by

ds2 ≈ −2dX+ dX− + dX2
⊥ for X+X− � r2

s , X2
⊥ � r2

s . (1.3)

The large near-horizon energy arises even for weakly curved geometries, with the evolution in
the geometry gradually building up a large relative boost. The two trajectories cross the horizon
displaced in the X+ direction by an amount that grows linearly with the center of mass energy.

In this situation, non-locality that grows in a way commensurate with the center of mass
energy can lead to interaction between the two infallers [12]. In [3], we analyzed this explicitly for
the non-locality introduced by longitudinal string spreading, finding a wide window of parameters
where this occurs, given (1.1). This would not occur for weakly interacting particles at the same
order, and we characterized this as a breakdown of effective quantum field theory in horizon
physics. (However, it is an interesting question whether this would occur just as well for field
theories such as QCD which exhibit Regge behavior and may have a string-theoretic formulation,
something we can investigate using holographic large-N gauge theories [20].)

In fact, the process described by our flat spacetime six-point function provides a calculable
simulation of the configuration of early and late infallers in horizon physics. In that problem, the
two strings’ centers never cross paths in the near horizon region; as just noted they are widely
separated in X+, and appear in the near horizon region as if they had already moved past each
other. That means that in the Rindler patch, they are configured just like the source and detector
strings in our six-point process, as shown in Figure 2.6 It will be very interesting to apply this
to articulate more explicit predictions for observables in black hole physics and cosmology.

1.1 Quantum field theory comparison models

We will explicitly compare and contrast the behavior of the string theory amplitude just set
up with two tree-level field theory models, whose amplitudes appear below in (4.26-4.27). The

regimes.
6We thank D. Marolf for early discussions of a setup like this.
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Figure 2: The six-point process naturally simulates horizon physics by producing a detector string D at finite
longitudinal separation �X+ from the source string C. From this perspective strings A,B, and Â (drawn as
dashed lines) are auxiliary external legs, whose only purpose is to collide and produce D.

1.1 Quantum field theory comparison models

We will explicitly compare and contrast the behavior of the string theory amplitude just set
up with two tree-level field theory models, whose amplitudes appear below in (4.26-4.27). The
simplest is a six-point contact interaction, with a coupling ⁄6 ≥ g4

s ; we will refer to this model as
QFT0. The second, QFT1, is a model with four point interactions ⁄ABÂD Ã g2

s and ⁄CDĈB̂ Ã g2
s ,

with D a massless particle. The six point scattering in this theory includes massless D exchange,
and we will focus on this model in making our comparisons.

2 Kinematics, predicted detector resolution, and pole structure

In order to set up the process described in the previous section, we consider 3 æ 3 string
scattering. For simplicity we work in kinematics for which the incoming and outgoing strings
move in three dimensions (T,X, Y ). In general for relativistic string motion the wavefunctions
are linear combinations of vertex operators with momenta

ka = (Êa, pa, qa), a = A,B,C

kj = (≠Êj ,≠pj , qj), j = Â, B̂, Ĉ (2.1)

where
ÊI = +

q
p2
I + q2

I , I = A ≠ C, Â ≠ Ĉ (2.2)

Since we are working in a Minkowski spacetime background, the scattering amplitude contains an
energy-momentum conserving delta function. In the process of interest, the strings are moving
mainly in the X direction. By working with appropriate wavepackets and incorporating the delta
function in the amplitude, we will be able to consistently restrict the momenta to this regime
while still localizing the strings su�ciently in position space to test for longitudinal interaction.

We will work with on-shell wavefunctions (linear combinations of momentum eigenstate vertex
operators) – that are pure momentum eigenstates for the outgoing strings B̂, Ĉ, and Â. We must
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Figure 2: The six-point process naturally simulates horizon physics by producing a detector string D at finite
longitudinal separation ∆X+ from the source string C. From this perspective strings A,B, and Â (drawn as
dashed lines) are auxiliary external legs, whose only purpose is to collide and produce D.

simplest is a six-point contact interaction, with a coupling λ6 ∼ g4
s ; we will refer to this model as

QFT0. The second, QFT1, is a model with four point interactions λABÂD ∝ g2
s and λCDĈB̂ ∝ g2

s ,
with D a massless particle. The six point scattering in this theory includes massless D exchange,
and we will focus on this model in making our comparisons.

2 Kinematics, predicted detector resolution, and pole structure

In order to set up the process described in the previous section, we consider 3 → 3 string
scattering. For simplicity we work in kinematics for which the incoming and outgoing strings
move in three dimensions (T,X, Y ). In general for relativistic string motion the wavefunctions
are linear combinations of vertex operators with momenta

ka = (ωa, pa, qa), a = A,B,C

kj = (−ωj ,−pj , qj), j = Â, B̂, Ĉ (2.1)

where
ωI = +

√
p2
I + q2

I , I = A− C, Â− Ĉ (2.2)

Since we are working in a Minkowski spacetime background, the scattering amplitude contains an
energy-momentum conserving delta function. In the process of interest, the strings are moving
mainly in the X direction. By working with appropriate wavepackets and incorporating the delta
function in the amplitude, we will be able to consistently restrict the momenta to this regime
while still localizing the strings sufficiently in position space to test for longitudinal interaction.

We will work with on-shell wavefunctions (linear combinations of momentum eigenstate vertex
operators) – that are pure momentum eigenstates for the outgoing strings B̂, Ĉ, and Â. We must
also specify wavefunctions for the incoming strings A, B, and C. For reasons that will become
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clear below, in the longitudinal (X) direction we will work with Gaussians of string-scale width
for A and C (with central values in position space separated by a parameter X) and for B we
will specify a wavefunction supported only within a very small range of p̃B of order E. Here and
below, we use a tilde to denote momenta that are integrated over in the wavepackets that we will
explicitly set up below.

Define the total energy-momentum as

ktot = −(kÂ + kB̂ + kĈ) = (ωtot, P,Q). (2.3)

This is constant, fixed by the choice of momentum eigenstates for strings Â, B̂, Ĉ. We will work
in a frame where the total transverse momentum vanishes (Q = 0), and P is of order −E.
We are interested in a regime in which A and C are moving toward negative x with momenta
pA, pC ∼ −E, and B is moving toward positive X with momentum pB ∼ E, as depicted in Figure
1.

We will find it sufficient, and simplest, to work at fixed transverse momenta

qB = 0, qA = −qC ≡ q (2.4)

and will consider separately the cases q = 0 and q 6= 0.
We solve the longitudinal (x-direction) momentum conservation condition with

p̃A = P − p̃B − p̃C (2.5)

Moreover, for all our wavepackets, once we impose energy conservation p̃B will vary, if at all,
within a small enough range that the variation of A and C essentially cancel: δp̃A ' −δp̃C . Thus
δp̃C is conjugate to the longitudinal spatial separation X̃ between C and A.

Next let us consider the energy conserving delta function

δ (f(p̃B, p̃C))) , (2.6)

with

f(p̃B, p̃C) = ωA(p̃B, p̃C) + ωB(p̃B) + ωC(p̃C)− ωtot

=
√

(P − p̃B − p̃C)2 + q2 + |p̃B|+
√
p̃2
C + q2 − ωtot (2.7)

The delta function sets this function to zero.
First consider the case q = 0. Energy conservation fixes p̃B

p̃B = 1
2(ωtot + P ) (q = 0) (2.8)

for 1
2(P − ωtot) < p̃C < 0 (q = 0) (2.9)

For q = 0, if the trajectories of A and C are separated in the longitudinal plane at one time, they
never meet. We will introduce Gaussian wavepackets with support well within the endpoints of
the range (2.9). This case of q = 0 is sufficient for our simplest test of spreading below in §5.1.
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Next let us consider q 6= 0. In this case, there is a meeting point of the A and C trajectories
(as depicted below in figure 4). Let us consider (2.7) as a function of p̃C at fixed p̃B. It has a
minimum at p̃C = (P − p̃B)/2. For sufficiently large p̃B, this minimum is above zero and there is
no solution. For sufficiently small p̃B, there are 2 solutions. In the regime where q � |p| for all
strings, this is given to good approximation by

p̃±C ≡
1
2

(
P − p̃B ±

√
(p̃B − P )2 − 2(p̃B − P )q2

2(ωtot + P − 2p̃B)

)
(2.10)

At one special value of p̃B there is a single solution to f = 0, at which p̃A = p̃C = (P −
p̃B)/2. Losing the solution as we increase p̃B through this point has a simple interpretation: it
corresponds to a kinematic configuration such that A and C cannot meet at a point if they cross
the T = 0 plane at separate positions in x, since they are moving at the same speed in the x
direction. Thus there is no support for a pointlike interaction between them. For q = 0 we will
work with a wavepacket for B with nonzero support only for a small range of p̃B. The amplitude,
including the energy conserving delta function, will then restrict the range of p̃C to be sufficiently
small that we can work in a simple kinematic regime.

In all of our calculations below, the wavepackets will have significant support only for momenta
satisfying ωI ∼ E � |qI | in which the kinematics simplifies to the form

kA = (EA + q2
A/(2EA),−EA, qA) (2.11)

kB = (EB + q2
B/(2EB), EB, qB) (2.12)

kC = (EC + q2
C/(2EC),−EC , qC) (2.13)

kÂ = (−EÂ − q2
Â
/(2EÂ), EÂ, qÂ) (2.14)

kB̂ = (−EB̂ − q2
B̂
/(2EB̂),−EB̂, qB̂) (2.15)

kĈ = (−EĈ − q2
Ĉ
/(2EĈ), EĈ , qĈ), (2.16)

constrained by the energy-momentum conserving delta function, as just discussed. The restricted
support in momentum space will entail a position-space tail, whose effects we will include in our
analysis.

The amplitude depends on kinematic invariants

KIJ = 2α′kI · kJ (2.17)

which provide a useful, albeit redundant, parameterization. These are fixed (of order q2) between
strings moving in the same direction, and large in magnitude (of order ±E2) for strings moving
in opposite directions. The intermediate string D described above,

kD = kC + kB̂ + kĈ = −(kA + kB + kÂ) (2.18)

and specifically the behavior of k2
D as a function of EC , will play an important role. Some of the
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invariants we will refer to in our analysis are explicitly

KAÂ = α′
(qAEÂ − (qA + qB + qC + qB̂ + qĈ)EA)2

EAEÂ
(2.19)

KCĈ = α′
(qCEĈ + qĈEC)2

ECEĈ
(2.20)

k2
D =

KCĈ

α′
+ 4EB̂(EC − EĈ) +

(ECqB̂ + EB̂qC)2

EB̂EC
− (EĈqB̂ − EB̂qĈ)2

EB̂EĈ
(2.21)

2.1 Detector and spreading prediction

The string worldsheet topology and vertex operator ordering allows for a process in which A and
B join to produce Strings D and Â, with D joining C to produce B̂ and Ĉ. In our analysis we
will not assume this sequence of events in spacetime, but in this subsection we will briefly review
the prediction [1, 3] for a spreading-induced interaction between C and D in such a process.

If we view string D as a detector of string C’s spreading, then for α′k+
Dk
−
D ≥ O(1) the light

cone prediction is7 [1, 3]

∆X+
spreading ∼

k+
D

k+
Dk
−
D

∼ EB̂
k+
Dk
−
D

. (2.22)

The last estimate here is applicable in the regime |EC − EĈ | � E, for which String D and its
continuation into string B̂ have light cone energy

− k+
D ' −k+

B̂
'
√

2EB̂. (2.23)

The sign here corresponds to the fact that string B̂ is outgoing, while string D is an incoming
leg of the process CD → ĈB̂ in which it is a putative detector of the spreading of string C.
According to the predictions of longitudinal spreading [1, 3, 4, 6], this implies sufficient light-
cone time resolution for string D or B̂ to detect string C, with a predicted range bounded above
by α′E (at high energy with fixed momentum transfer).

It is important to note, as in [3, 4] that the predicted interaction between the string and
the detector is causal: in the free single-string state, the mode sum which determines the mean
square size of the string is quadratically divergent, cut off by the energy resolution of the detector.
A time advance, in which interaction occurs without the centers of the strings meeting, is not
acausal in this context. In the next subsection we briefly review the manifestation of causality in
the S-matrix, and its limitations.

2.2 Pole structure, causality, and the S-matrix

In tree-level quantum field theory, there is no spreading phenomenon in light cone gauge analogous
to that in string theory, and causality demands that point particles scatter without time advances.
In that case, one can work with gauge-invariant local operators which commute outside the light-
cone to establish causality and hence the absence of time advances.

7See specifically Section 2.3 of [3] for the suppression of the spreading radius for a timelike detector trajectory,
corresponding to α′k+

Dk
−
D ≥ 1 in (2.22). For α′k+

Dk
−
D < 1, the light cone spreading prediction is ∆X+

spreading ∼ α
′E.
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In string theory, we work with the S-matrix because we do not have such simple local ob-
servables. The manifestation of causality in the S-matrix is encoded in the iε prescription at the
poles, in that the Fourier transform of a simple pole in momentum space gives a step function in
position space. The limitations on this arise because the Fourier transform is not exactly what
arises in computing S-matrix amplitudes, since energies are positive and the amplitude includes
the energy-momentum conserving delta function which is not analytic. But since the iε prescrip-
tion is the same in string theory and QFT [14][15], it is important to understand the implications
of S-matrix data alone for scattering advances as a function of the center of mass of each string.

At the level of the momentum space amplitude, string theory does not generally decompose
into a convergent sum of particle propogators. This will play a role in our results below. The
standard limitations on the information contained in S-matrix amplitudes will also enter our
analysis. In general the connection between analyticity and causality is not completely sharp
in the S-matrix [16][17]. Because the energies of the particles are positive, one does not obtain
the full Fourier transform, and hence we do not precisely get a step function in time.8 In some
circumstances, this is a small effect. But assessing that for a given scattering problem requires
analyzing it in detail with explicit wavepackets, taking into account the behavior of the momentum
space amplitude over the range of momenta supported.

A related limitation is the uncertainty principle: imperfect knowledge of the the relative
momenta of scatterers can complicate the determination of their range of interaction. Consider
more specifically the process we are setting up in this work. The trajectories for A and C on
the peak of the wavepackets we will set up in the generic case qA, qC 6= 0 are depicted below in
figure 4 in §5. For pA − pC < 0 as depicted there, scattering at T = 0 would require longitudinal
non-locality; conversely if pA − pC > 0 scattering at T = 0 is delayed, not requiring non-locality.
We will use appropriate wavepackets to restrict the support of pA−pC to be negative, as depicted.
For a class of momentum ranges, the resulting amplitudes exhibit a sharp distinction between
quantum field theory and string theory.

In S-matrix amplitudes with wavepackets, the scattering may appear advanced as a function of
the peak position in the wavefunction, but this may be consistent with purely delayed scattering
on its tail. We will present results that are consistent with this interpretation in our tree-level
QFT comparison models, whose amplitudes track the tails of the position space wavefunctions
and exhibit strong dependence on their parameters. In string theory, we will find rather different
behavior which is consistent with the longitudinal spreading prediction. In a regime where the
amplitude is not obtained as a convergent sum over particle propagators, we will see that its
amplitude is larger than the corresponding QFT one, provided that we identify the four-point
sub-process amplitudes in QFT and string theory. The possibility that the scattering proceeds
via longitudinal spreading (as opposed to only occurring on the wavepacket tail) passes a further
test in [11] that we will summarize.

8We expand on this via toy integrals in the appendix.
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3 Wavepackets

In order to understand aspects of the position space geometry of the scattering process, it is useful
to convolve the momentum-space string amplitude with nontrivial wavepackets for the strings A,
B, and C. That is, we consider linear combinations of on-shell vertex operators for the incoming
strings.

Before discussing our wavepackets in detail, let us briefly review how they fit into the total
probability for scattering, taking into account relativistic normalization factors.9 We will set up
wavepackets for incomers A,B, and C normalized as

∫
d3k

(2π)3 |Ψ(k)|2 = 1. (3.1)

Then the probability for A, B, and C, to scatter into Â, B̂, Ĉ within a momentum range
d3kÂd3kB̂d3kĈ of outgoing momenta kÂ,kB̂,kĈ is given by

P =
∏

j=Â,B̂,Ĉ

d3kj
(2π)3

1
2ωj
|〈kÂ,kB̂,kĈ |S|φAφBφC〉|2 (3.2)

where
|φAφBφC〉 =

∏

a=A,B,C

∫
d3ka

(2π)3√2ωa
ΨA(kA)ΨB(kB)ΨC(kC)|kA,kB,kC〉 (3.3)

In the kinematic regime which will interest us, the factors of ωI in the denominator will not vary
substantially with the kI supported by the wavepackets. As a result, we can pull out those factors
and focus on the behavior of the momentum space amplitude convolved with the wavepackets
ΨI(kI), keeping in mind that the final result for the amplitude includes the inverse powers of ω.
We note that these factors are common to string theory and quantum field theory.

These factors must also be included in considering the implications for black hole physics.10

In that setup, however, the incoming energies ω which enter into the relativistic normalization
in the asymptotically flat region of the black hole geometry are much smaller than the center of
mass energy of time-translated infallers in the near horizon region [3].

3.1 Wavepacket widths

Before getting into any details, let us comment on the width of the wavepackets. The light cone
gauge spreading prediction described above in §2.1 is given in terms of the momentum of the
detector D, so we will work with wavepackets that are supported in a window of momenta for
which longitudinal spreading is expected from that point of view. At the same time, of course, we
wish to resolve aspects of the geometry of the process in position space so we cannot work with
pure momentum eigenstates. We will see that we can use wavepackets that localize sufficiently
in momentum and position space to satisfy both of these requirements.

9See e.g. chapter 4 of [13] for the relevant background and conventions.
10We thank D. Stanford for a discussion of this point.
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Let us spell this out more explicitly, since it is a somewhat subtle aspect of our analysis.
We will include wavepackets for A and C, whose relative position is conjugate to the momen-
tum variable δEC ∼ −δEA (as discussed above, string A will solve the longitudinal momentum
conservation delta function, absorbing the change δEC in C’s longitudinal momentum).

The required resolution in position space is not too stringent in itself: we are interested in
resolving the relative positions of A and C within the large predicted spreading scale ∼ Eα′. In
momentum space, however, requiring that the wavepackets have their support reasonably close
to the optimal detector kinematics leads to a nontrivial condition. In particular, let us require k2

D

to stay of order q2 in magnitude, since according to (2.22) the spreading would degrade strongly
otherwise. We can translate that to a limit on the support of δEC using (2.19)

k2
D = 4EB̂δEC + . . . . (3.4)

Restricting the support of k2
D to within of order q2 restricts δEC to within of order q2/E. This

is a strong constraint on the momenta. Fortunately, it is still within the broad position space
resolution we need, but the corresponding wavepackets are quite wide in position space compared
to string scale. Below, we will find the most interesting results for wavepackets of this kind –
of width ∼ q/E in momentum space (with the order q parameter being specifically √−η ≡√
−kB · kB̂ + kC · kĈ). We will comment further on the role of this parameter below.

3.2 Gaussian wavepackets for A and C

For A and C, we will work with Gaussian wavepackets, centered on trajectories with momentum
p ∼ −E, as in the setup of Figure 1. In momentum space the wavepackets take the form

ΨX,p(p̃) = 1
π1/4σ1/2 exp(−ip̃X) exp(−(p̃− p)2/2σ2) (3.5)

where p̃ is a canonical momentum variable, and the subscripts are parameters of the wavefunction.
The position space wavefunction is

ΨX,p(X̃, T ) =
∫

dp̃

π1/4σ1/2 e
i
√
p̃2+q2T+ip̃(X̃−X)e−(p̃−p)2/2σ2 (3.6)

At T = 0 this is a Gaussian ∝ e−(X̃−X)2/2σ2 centered at X̃ = X with width 1/σ. At other times,
it is approximately Gaussian centered on the trajectory T = −(X̃ − X). The evolved position
space wavepacket also has a contribution with a power-law tail, but this is suppressed by e−p2/2σ2 .
We will center string A such that at the peak of its wavepacket, it crosses T = 0 at XA = 0, and
send C in with a peak trajectory passing through X ≡ XC at T = 0.

3.3 Wavepackets for string B

Let us next discuss wavepackets for string B. In the case q = 0, energy conservation fixes p̃B
(2.8), and we can work with any wavepacket for B with support at that value. The remainder
of this section is not essential for the reader interested in the simplest test of spreading in q = 0
kinematics, which is contained in §5.1 below.
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3.3.1 B wavepackets used in q 6= 0 analysis

For our q 6= 0 analysis below, we will consider wavefunctions which are sharply supported between
two nearby values of p̃B. One example of this is simply the step function

ΨXB ,pB,min,pB,max(p̃B) = 1√
∆pB

exp(−ip̃BXB)θ(pB,max − p̃B)θ(p̃B − pB,min) (3.7)

where we defined
∆pB = pB,max − pB,min (3.8)

Here p̃B is the canonical momentum variable, and the subscripts are parameters of the wavefunc-
tion. In our setup, pB,min and pB,max are both of order E.

This wavepacket for B is sharply cut off in momentum space, which will lead to a power law
tail in position space. This may seem like a counterintuitive choice, given that we would like to
constrain the position space geometry. However, as we will discuss in detail below (see Figure 4
and eqn (5.26)), the resolution we need for B’s trajectory is much weaker than that for A and
C. The utility of the sharp cutoff in p̃B is that this, in combination with the energy-momentum
conservation in the amplitude, sharply ensures that (i) the strings are moving in the intended
direction, and (ii) the range of momentum integrated over is small enough that δp̃C is absorbed
by δp̃A to good approximation. This simplifies the analysis and interpretation, leaving enough
structure in position space to strongly distinguish the behavior of string theory and tree-level
quantum field theory.

If we take B to have zero transverse momentum (an eigenstate with q̃B = 0), the corresponding
position space wavefunction is

ΨX,pB,min,pB,max(X̃B, T ) = i
eipB,min(T−(X̃B−XB)) − eipB,max(T−(X̃B−XB))

√
2π∆pB(T − (X̃B −XB))

(3.9)

Again XB is the peak of the wavefunction, not to be confused with that of a position eigenstate.
The corresponding probability in position space is

|Ψ|2 = 2
π

sin2(∆pB
2 (T − (X̃B −XB)))

∆pB(T − (X̃B −XB))2 (3.10)

This is nearly constant for |T − (X̃B −XB)| � 1/∆pB but drops rapidly beyond that scale. We
will put XB = 0 in our analysis, so that the peak of this wavepacket describes B hitting A at
X = T = 0. A variant of this which is useful is to take a triangular region of support between
pB,min and pB,max,

Ψtri(p̃B) =
√

3
∆pB

(
2

∆pB
(p̃B − pB,0) + 1

)
pB,min < p̃B < pB,0

Ψtri(p̃B) =
√

3
∆pB

(
− 2

∆pB
(p̃B − pB,0) + 1

)
pB,0 < p̃B < pB,max (3.11)

where we defined
pB,0 = pB,min + pB,max

2 (3.12)
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P
a Ễa ≠ Êtot

p̃C

Figure 3: The argument of the energy conserving delta function as a function of p̃C , for a given p̃B . The light
intervals indicate the corresponding ranges of solutions to energy conservation for p̃C , given a small range of p̃B
supported by our wavepacket. This small range of p̃C enforced by energy conservation restrict our calculations to
a simple regime of the momentum-space amplitude, while still localizing the longitudinal separation of A and C
using Gaussian wavepackets with good resolution (1/‡ π –ÕE).

and we work at XB = 0. The Fourier transform to position space gives in this case

�̃tri(X̃B) = 8
p

3�pBÔ
2fi

e≠ipB0(X̃B≠T ) sin2(�pB(X̃B≠T )
4 )

(�pB(X̃B ≠ T ))2
(3.13)

This has a tail Ã 1/(X̃B ≠ T )2, and a finite variance in position and momentum space.
We will analyze the amplitudes for QFT and string theory convolved with these wavepackets.

It will be useful for interpreting the potential contribution from wavefunction tails to check the
sensitivity of these amplitudes to the width ‡ of the Gaussians (3.6) and the di�erence between
the step function and triangular wavefunctions for B.

As mentioned above, we will work with pB,max, pB,min such that the resulting range of pC
values allowed by energy-momentum conservation (2.10) satisfies

�pC π p̃C (3.14)

for all p̃C contributing to the amplitude. The required range of pB can be obtained by di�eren-
tiating the energy conservation condition

P
a Ễa = Êtot, which gives

dp̃C
dp̃B

=
p̃A
ỄA

≠ 1
p̃C
ỄC

≠ p̃A
ỄA

≥ ≠ E3

q2(p̃C ≠ p̃A) (3.15)

The di�erence p̃C ≠ p̃A is the separation between the two solutions to energy conservation (2.10).
Within each range of solutions (Figure 3), we have

�pC ≥ ≠E3

q2(pC ≠ pA)�pB (3.16)
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Figure 3: The argument of the energy conserving delta function as a function of p̃C , for a given p̃B . The light
intervals indicate the corresponding ranges of solutions to energy conservation for p̃C , given a small range of p̃B
supported by our wavepacket. This small range of p̃C enforced by energy conservation restrict our calculations to
a simple regime of the momentum-space amplitude, while still localizing the longitudinal separation of A and C
using Gaussian wavepackets with good resolution (1/σ � α′E).

and we work at XB = 0. The Fourier transform to position space gives in this case

Ψ̃tri(X̃B) = 8
√

3∆pB√
2π

e−ipB0(X̃B−T ) sin2(∆pB(X̃B−T )
4 )

(∆pB(X̃B − T ))2 (3.13)

This has a tail ∝ 1/(X̃B − T )2, and a finite variance in position and momentum space.
We will analyze the amplitudes for QFT and string theory convolved with these wavepackets.

It will be useful for interpreting the potential contribution from wavefunction tails to check the
sensitivity of these amplitudes to the width σ of the Gaussians (3.6) and the difference between
the step function and triangular wavefunctions for B.

As mentioned above, we will work with pB,max, pB,min such that the resulting range of pC
values allowed by energy-momentum conservation (2.10) satisfies

∆pC � p̃C (3.14)

for all p̃C contributing to the amplitude. The required range of pB can be obtained by differen-
tiating the energy conservation condition

∑
a ω̃a = ωtot, which gives

dp̃C
dp̃B

=
p̃A
ω̃A
− 1

p̃C
ω̃C
− p̃A

ω̃A

∼ − E3

q2(p̃C − p̃A) (3.15)

The difference p̃C − p̃A is the separation between the two solutions to energy conservation (2.10).
Within each range of solutions (Figure 3), we have

∆pC ∼
−E3

q2(pC − pA)∆pB (3.16)
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As a result, the integral is only over p̃C in the regime p̃ = p̃C − p̃A ' −(ẼC − ẼA). That is,
for the above kinematics with EI � |qI |, we can satisfy energy-momentum conservation to good
approximation by absorbing a deformation δẼC by δẼA ' −δẼC . This momentum variable is
conjugate to the separation X̃C − X̃A between the two strings in position space at time T = 0.
To sum up, we choose pB,min, pB,max such that over the full range of support in momentum space,
we have the hierarchy

|δEC | ' |δEA| � EA ' EC . (3.17)

This restricted range for p̃A and p̃C is dictated by the amplitude along with the wavepacket for
B, not the wavefunctions for A and C.

4 Momentum space amplitude

In this section, we introduce the momentum space string amplitude and describe some of its
key features within our kinematic regime of interest. We will be interested in two open string
orderings, and two kinematic regimes. We will compare and contrast string theory with QFT,
with the sign of one of the kinematic variables playing an interesting role. In one of the regimes,
the amplitude can be expanded into a convergent sum over QFT propagators 1

k2
D+nD−iε . In the

other regime, the analogous expansion in propagators comes dressed with additional dependence
on the detector kinematics k2

D. This will enable us to distinguish the behavior of string theory
in the latter regime from that of QFT, which scatters on the tail of the wavepacket for X < 0.

Before entering into the details, let us summarize the result of this section. In our regime of
interest, the relevant piece of the amplitude will take the form

A
(1)
4 A

(2)
4 B(α′k2

D, η), (4.1)

with η = BB̂ − CĈ non-integer. (We will discuss the case of integer η below as well; it has a
different pole structure.) Here the first two factors are the amplitude for the auxiliary four point
process in our setup and the four point amplitude describing the process CD → ĈB̂. The last
factor varies strongly with the momentum variable p̃C conjugate to the separation X̃ between
A and C, via its dependence on k2

D. When η > 0, this Beta function can be expanded into a
convergent sum over k2

D propagators, while for η < 0 this is not the case.

4.1 Open string orderings and gauge invariance

We will work with open strings, focusing on particular orderings AÂCĈB̂B and AÂBB̂CĈ. In
each of these cases, strings B and C cannot simply scatter early into strings B + C + Ĉ and Ĉ

as that would violate gauge invariance. This is useful because such scattering would introduce
an extra ambiguity of interpretation: even if the scattering is supported for an early central
trajectory of C relative to A, that could proceed simply via BC → Ĉ(B + C + Ĉ) followed by
(B+C+ Ĉ)A→ B̂Â. This is important because the internal B+C+ Ĉ exchange could generate
a spread amplitude in X = XC −XA, the separation between strings A and C in our setup. As
mentioned above, this separation is conjugate to p̃C , on which k2

D varies strongly. The kinematic
variable (kB + kC + kĈ)2 also varies strongly with p̃C . So spreading in a case with B + C + Ĉ
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exchange would be more difficult to test given this more prosaic interpretation of an early, local
four point interaction involving B and C.

Gauge invariance in the orderings we consider do allow an early 5 point interaction CB →
B̂Ĉ(A+ Â) followed by a 3 point interaction A(A+ Â)→ Â. A local field theory with constant 3
and 5 point vertices joined by an AÂ propagator would not produce spreading in X, as AÂ does
not vary strongly with p̃C . String spreading could introduce an interaction between Â and D at
large X.

4.2 Simplification near a pole

We would like to work with a complete expression for the amplitude that we convolve with
a wavepacket. At five points, the integral over vertex operator positions yields a closed form
expression in terms of Beta functions and a 3F2 hypergeometric function. At six points this
is not the case, but we can obtain a complete expession if we work sufficiently near a pole,
factorizing the amplitude into a 3 point function times a five point function. We will first work
this out for bosonic open string tachyon scattering in the relativistic regime E � 1/

√
α′, and

then describe the generalization to the superstring, for which the external states and the leading
poles are massless.

In the bosonic case, factorizing near the leading pole in A+ Â is a good approximation for

1 +KAÂ �
1

log(α′E2) (4.2)

as can be seen as follows from the generalized OPE analysis in [6]. Sufficiently near the pole,
the integral over worldsheet vertex operator positions yI is dominated by the regime in which
the vertex operators for String A and String Â approach each other, yAÂ → 0. In this regime,
including the leading correction to the OPE gives [6]

eikAX(yA)eikÂX(ŷA) ∼ ei(kA+kÂ)X(yA)+ikAyÂA∂yX(yA) (4.3)

Contracting the correction term in the exponent with other vertex operators in the amplitude,
one finds that it is of order yAÂKAI , where I indexes the other vertex operators. The leading
KAI that contribute are of order α′E2 (for I = B̂, B). This leads to an integral of the form

∫
d log(yAÂ)eiyAÂα′E2

e(1+KAÂ) log(yAÂ) (4.4)

The dominant contribution to this integral is at yAÂ of order 1/(α′E2) (beyond which it is
suppressed by the oscillatory factor). Plugging back in and expanding in KAÂ gives a series of
the form

∑
cn(1 +KAÂ) log(α′E2). The condition for this to be a valid expansion is (4.2).

We must respect this condition consistently with the linear combination of momentum eigen-
states we take for our wavepacket. In particular, by varying the first line of (2.19) with respect
to δEA ' −δEC , we find that since we keep |δEA| ' |δEC | � EA ' EC (3.17), the variation of
KAÂ is negligible.

Given this, we can derive a closed form expression for the amplitude [18, 19], as we will discuss
in the following subsections. We should emphasize that we will not work right on the pole, but
will keep a small but finite distance away from it. We describe this kinematic regime in detail in
Appendix B.
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4.3 Simplified amplitude from the vertex operator integral

As we will discuss shortly, near one pole the amplitude is given explicitly in terms of Beta
functions and hypergeometric functions [18, 19]. In this section we will derive the simplified
amplitude (4.1) in our kinematic regime via the vertex operator integrals. Let work for simplicity
in the bosonic theory, and define

IJ = 1 + 2α′kI · kJ = 1 +KIJ (4.5)

In this section, we will take these kinematic invariants large (aside from AÂ � 1), neglecting
order one offsets that arise in the exact amplitude.

For the ordering AÂBB̂CĈ, the integral over vertex operator positions can be written as11

1
AÂ

∫ 1

0
dyĈ

∫ yĈ

0
dyAÂ y

α′k2
D

AÂ
yBĈ
Ĉ

(1− yAÂ)AÂC(1− yĈ)CĈ(yĈ − yAÂ)AÂĈ . (4.6)

where we have set yB = 0, yC = 1, and yB̂ =∞.
We will estimate the yĈ integral in two regimes of the yAÂ integral. In our kinematics,

BĈ ∼ 4E2α′, which is very large. As a result, the factor yBĈ
Ĉ

implies that the yĈ integral is
dominated by yĈ = 1. In more detail, the saddle point equation for yĈ is

BĈ

yĈ
− CĈ

1− yĈ
+ AÂĈ

yĈ − yAÂ
= 0 (4.7)

In our kinematics (described in detail in appendix B), the numerator of the third term is para-
metrically smaller than the second, which is parametrically smaller than the first. When yAÂ is
not close to yĈ , the third term is negligible and this equation has a solution

yĈ '
1

1 + CĈ/BĈ
(4.8)

This reduces the integral to

1
AÂ

BĈ−CĈ
∫ 1

0
dyAÂ y

α′k2
D

AÂ
(1− yAÂ)AÂC+AÂĈ . (4.9)

The final exponent can be simplified,

CAÂ+AÂĈ = (kA + kÂ + kC + kĈ)2 − CĈ −AÂ = BB̂ − CĈ −AÂ = η −AÂ, (4.10)

Given AÂ � 1, what remains is the integral expression for B(k2
Dα
′, η) times two four-point

amplitudes, one of which is near a pole and one in a Regge regime. This is the contribution
of interest in our application, as it varies strongly with variations in δpC ∼ −δpA, the variable
conjugate to the longitudinal separation of A and C. We will comment on the contour integral for
B(k2

Dα
′, η) further below in §5.1.1 in a more specific kinematic regime of interest; its dominant

contribution indeed comes from yAÂ far from 1 ∼ yĈ .
The remaining contribution comes from the region x = yAÂ/yĈ ∼ 1 in the integral. This

leads to weak dependence on δpC ∼ −δpA, since the factor depending on k2
Dα
′ in (4.6) is now

close to 1. This extra term is given explicitly below in (4.22)-(4.23).
11See e.g. [14] for the relevant background on tree-level string scattering and the integral expression for the

momentum space amplitude.
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4.4 The closed form string theory amplitude for two orderings

Let us now enter into further details of the momentum space string amplitude. We will start
with the bosonic theory. At the end of this section, we briefly describe the small shifts (removing
the tachyon pole) arising in the superstring case. Finally, we will comment on the size of the
amplitude in different versions of our basic process depending on the identification of the auxiliary
process.

4.4.1 Ordering AÂCĈB̂B

One useful form of this amplitude is

AST = 1
AÂ

B(α′k2
D − 1, BB̂)B(CĈ, B̂Ĉ)3F2(1−BĈ, α′k2

D − 1, CĈ;α′k2
D − 1 +BB̂, B̂Ĉ +CĈ; 1)

(4.11)
with the standard iε prescription, where we have used (4.5). This is equal to the following sum

1
AÂ

∞∑

n=0

(1−BĈ)n
n! B(α′k2

D − 1 + n,BB̂)B(CĈ + n, B̂Ĉ) (4.12)

We can collect the factors in the nth term in the sum as

Γ(B̂Ĉ)
Γ(1−BĈ)

Γ(1−BĈ + n)
Γ(B̂Ĉ + n+ CĈ)

Γ(CĈ + n)
n!

Γ(α′k2
D − 1 + n)Γ(BB̂)

Γ(α′k2
D − 1 + n+BB̂)

(4.13)

The sum here converges as long as

BB̂Ĉ ≡ BB̂ +BĈ + B̂Ĉ > 1. (4.14)

For comparison with QFT, it is interesting to expand this in terms of k2
D propagators by

expanding B(α′k2
D− 1 +n,BB̂) in terms of its poles. We work in the regime where the sum over

n converges as in (4.14). This gives

Γ(B̂Ĉ)
Γ(1−BĈ)

∑

m

(1−BB̂)m
m!

∑

n

Γ(1−BĈ + n)
Γ(B̂Ĉ + n+ CĈ)

Γ(CĈ + n)
n!

1
k2
D,0 + (n+m)/α′ − iε (4.15)

If we perform the sum over m first, it converges (giving back the original B(α′k2
D − 1 + n,BB̂)).

However, the sum over n does not generally converge if performed first; that requires BĈ + B̂Ĉ

sufficiently large.
For special choices of kinematics, this amplitude simplifies further. One useful example is to

apply Saalschutz’s theorem

3F2(a, b,−N ; d, 1 + a+ b− d−N ; 1) = (d− a)N (d− b)N
(d)N (d− a− b)N

(4.16)

with

N = BĈ − 1, BB̂Ĉ = 2, a = α′k2
D − 1, b = CĈ, d = α′k2

D − 1 +BB̂ (4.17)

(with N a positive integer).
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We can write this simplified amplitude in two useful forms. First define

η ≡ BB̂ − CĈ (4.18)

The sign of this variable will play an interesting role in the dynamics. In terms of this we can us
(4.16) to write the amplitude as

B(CĈ, B̂Ĉ)
AÂ

B(α′k2
D−1, BB̂)Γ(α′k2

D − 1 +BB̂)Γ(η)
Γ(BB̂)Γ(α′k2

D + η)
× Γ(α′k2

D − 1 + η +N)Γ(BB̂ +N)
Γ(α′k2

D − 1 +BB̂ +N)Γ(η +N)
(4.19)

This further simplifies to

B(CĈ, B̂Ĉ)
AÂ

B(α′k2
D − 1, η)× Γ(α′k2

D − 1 + η +N)Γ(BB̂ +N)
Γ(α′k2

D − 1 +BB̂ +N)Γ(η +N)
(4.20)

Within the kinematic regime of our setup, N ∼ BĈ ∼ E2α′ is much greater than the other
variables in the arguments of the Γ functions, so the last factor in (4.19-4.20) is approximately 1.

In this regime, the amplitude is approximately given by

B(CĈ, B̂Ĉ)
AÂ

B(α′k2
D − 1, η) (4.21)

For η > 0, the last Beta function has a convergent expansion in terms of massive D propagators.
For η < 0 it does not, but the function B(α′k2

D − 1, BB̂) in the equivalent form (4.19) can be
expanded in propagators, dressed by additional k2

D dependence.

4.4.2 Ordering AÂBB̂CĈ

For the ordering AÂBB̂CĈ, we obtain a similar form of the amplitude without as many special
kinematic choices. It is simplest to write the five-point function as the sum of two terms,

A = B(CB̂,BB̂)B(AĈÂ,−η)3F2(BB̂,AĈÂ, α′k2
D − 1 + η, 1 + η, CB̂ +BB̂; 1)

+B(CB̂,CĈ)B(α′k2
D − 1, η)3F2(CĈ, α′k2

D − 1, AĈÂ− η, 1− η, CB̂ + CĈ; 1) (4.22)

If η is not an integer, the hypergeometric functions reduce to 1 and the answer is approximately

A = CB̂−BB̂B(AĈÂ,−η) + CB̂−CĈB(α′k2
D − 1, η). (4.23)

The second term is similar to the simple form (4.21) above. The first term will not vary strongly
as we integrate over the momentum variable p̃C conjugate to the separation between A and C.

In this ordering, the case where η is a negative integer works out as follows. The hypergeo-
metric function on the first line of (4.22) has poles at negative integers η, while the poles in the
second line of (4.22) come from the beta function out in front. The remaining finite part comes
from expanding the B(CB̂,BB̂) around negative integer η,

− log(CB̂)
∞∑

n=0

(−1)n
n!

Γ(BB̂ + n)Γ(AĈÂ+ n)Γ(α′k2
D − 1 + η + n)

Γ(BB̂)Γ(AĈÂ)Γ(α′k2
D − 1 + η)Γ(1 + η + n)

(CB̂)−BB̂−n. (4.24)

The first surviving term is at n = −η,

− (−1)η
(−η)! log(CB̂)Γ(CĈ)Γ(AĈÂ− η)

Γ(BB̂)Γ(AĈÂ)
Γ(α′k2

D − 1)
Γ(α′k2

D − 1 + η)CB̂
−CĈ . (4.25)
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4.4.3 Integer η

Let us briefly comment on the special case of integer η. For positive integer η, the function
B(α′k2

D, η) reduces to a finite sum of propagators, and for negative integer η, the function
B(α′k2

D, η) reduces to a polynomial in α′k2
D of order −η. However, the full amplitude contains a

logarithmic factor (4.25) which also depends on pC .
The amplitude (4.25) is interesting, but physically distinct from that of our main setup aimed

at simulating black hole infallers: it does not exhibit k2
D poles corresponding to production of

the putative detector. We will focus on non-integer η < 0, although some of the analysis below
goes through in either case. The integer η < 0 case may be useful for separating issues using the
absence of k2

D poles in that case.

4.4.4 Superstring

In order to avoid dealing with tachyon kinematics, let us briefly mention the analog of our
amplitude for massless vector open superstrings. There, from extra structure in the vertex
operators for the massless external states, one obtains a sum of terms with two or three of
the kinematic invariants IJ (4.5) shifted by −1, which among other things removes the tachyon
pole in k2

D. The amplitude also contains a kinematic factor [19] which is a function of the external
momenta and polarization vectors, and is independent of α′. It will not substantially affect the
shape of the amplitude in position space.

4.4.5 The size of the amplitude

For the application to black hole physics, the ABÂ system is auxiliary, as explained in the
introduction. This means that we should strip off the four-point amplitude corresponding to the
ABÂD subprocess in order to estimate the size of the effect in the black hole. In the form of the
amplitude we have analyzed here, this means we strip off the KAÂ pole, which leaves us with a
Regge-suppressed interaction from the first factor in (4.19-4.20). (It is less suppressed than in
hard scattering, but still soft.)

To potentially obtain a more dramatic effect, we can instead work in a kinematic regime
where the auxiliary process is Regge suppressed. This can be obtained in two ways. One would
be to work with KCĈ rather than KAÂ near a pole, so that the AB → DÂ sub-process is Regge
suppressed.

However, we can obtain the equivalent situation simply by time-reversing the above setup,
considering Â, B̂, and Ĉ as incoming strings. Then the auxiliary process is B̂Ĉ → DC and the
predicted spreading-induced interaction is ÂD → BC. In both our orderings AÂCĈB̂B and
AÂBB̂CĈ, gauge invariance again prevents an early interaction between strings B̂ and Â in this
time reversed version. In this version, the Regge suppressed factor B(CĈ, B̂Ĉ) ∼ (−CĈ/B̂Ĉ)CĈ
is auxiliary.

It is important to note that although KAÂ � 1, the amplitude is not strictly on the AÂ pole.
In the appendix we elaborate on the relevant aspects of our kinematic regime. Specifically, eqn
(B.5) shows that η 6= 0 requires KAÂ ∼ δq2α′ 6= 0.
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Finally, we note that there may be effects in curved spacetime which affect the range of
spreading. A linear dilaton gradient has an interesting calculable effect discussed in [11], and
something similar may arise in curved spacetime. As in [3], one may most directly relate flat
spacetime results to those in a black hole in the near-horizon Rindler region, putting the strings in
their light cone ground state there. Having made this choice of intermediate state, the geometry
may have a nontrivial effect as we evolve the state back through the outside geometry of the
black hole. The effect of the curved geometry and the form of our scattering states evolved back
toward the boundary is also important to understand in the context of AdS/CFT.

4.5 QFT comparison amplitudes

It will be useful to compare and contrast this with the tree-level quantum field theories defined
above, with the following amplitudes. First, the six point contact interaction alone gives

AQFT0 ∼ λ6δ
(3)(
∑

k̃I) (4.26)

Four point couplings with a massless D particle has the amplitude

AQFT1 ∼ λ(1)
4 λ

(2)
4

1
k2
D − iε

δ(3)(
∑

k̃I) (4.27)

We could consider more general QFT models with a finite number of poles at various mass scales.
In string theory, the amplitude has richer structure as a function of k2

D. As noted above, it
is not always expressable as a convergent sum over QFT propagators. This will lead to the key
difference in their behavior. (Even when there is a convergent sum over propagators, it involves
an infinite sum over higher spin intermediate states, leading to softer behavior than any QFT
truncation.)

4.6 Note on pole structure and open string gauge symmetry

It is worth emphasizing an interesting subtlety in our analysis. As explained at the beginning
of this section, we work with open string orderings precluding the possibility of an early BC

collision producing an intermediate B + C + Ĉ string plus Ĉ. If we had allowed that, then the
analogue of our simplified form of the amplitude

A
(1)
4 A

(2)
4 B(α′k2

D, η), (4.28)

would be (e.g. for ordering AÂBCĈB̂)

A
(1)
4 A

(2)
4 B(α′k2

D, α
′(kB + kC + kĈ)2), (4.29)

This has poles in B + C + Ĉ as well as in k2
D. Implementing the standard iε prescription, these

sets of poles are on opposite sides of the axis in the complex pC plane.
In going from that ordering to our orderings of interest, we lose the B + C + Ĉ poles. The

remaining poles in k2
D are on one side of the axis within the kinematic regime of momenta in our

setup, the same side as the pole in our QFT1 comparison model. In the QFT model, this pole
structure is tied to the purely delayed interactions.
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As discussed above in §2.2, this alone does not imply locality. What we will find below is
that for η > 0, the amplitude can be written as a convergent sum over particle propagators
(a finite sum if η is integer) and it leads to results consistent with local scattering, with early
support as a function of the peak separation X = XC −XA of the position space wavefunction
indistinguishable from scattering on the tail of the wavefunction. In contrast, for η < 0, the
amplitude (4.29) has a rich structure in momentum space. It grows like |k2

D|−η at large |k2
D|

within a broad window of pC in our regime. For a window of small k2
D, it decomposes into two

terms with strongly varying phases that generate strong support for early (and late) interactions
at a scale |XC −XA| ∼ Eα′.

4.7 Combining the orderings

A complete calculation includes all the orderings of open strings. These contain different sets of
poles, and generically do not cancel out. For example, the two orderings we evaluated above have
a common factor B(k2

D, η), but a different pole structure in B̂Ĉ in one of the auxiliary factors.

5 Results in QFT and String Theory

In this section, we integrate the wavepackets in Section 3 against the string (4.11) and tree level
field theory (4.26-4.27) amplitudes in Section 4. We work in transverse momentum eigenstates,
evaluating the amplitude on q̃A = −q̃C = q, q̃B = 0.

We will start by focusing on the case with q = 0, and then generalize to q 6= 0. To begin with
we will analyze wavepackets with support over a particular range of p̃C for which the momentum-
space amplitude contains the structure relevant for spreading. In §6 we will generalize to a larger
family of wavepackets.

5.1 The q = 0 case

The geometry and kinematics is particularly simple if we set qA = qC = 0. In that case, the central
trajectories never meet in position space. In momentum space the structure is also simplified, as
discussed above in (2.8-2.9). Energy conservation sets pB to a specific value at which p̃C (and
p̃A = P − pB − p̃C) can vary widely while still satisfying energy-momentum conservation. In
this section, we will analyze Gaussian wavepackets for A and C that constrain the momentum
p̃C within an interesting regime for which the momentum space amplitude (4.1) exhibits a rich
structure that will play a key role in our test of string spreading.

For this case, we simply use Gaussian wavepackets forA and C, with width σ. After convolving
the amplitude with the wavepackets and imposing energy-momentum conservation, the amplitude
takes the form

A(X)pC ,σ0 ∼
∫
dp̃C
σ0

e−(p̃C−pC)2/2σ2
0e−ip̃CXÂ(p̃C)

(5.1)

where 1
σ2

0
= 2
σ2 (5.2)
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and Â is the momentum-space amplitude with the energy-momentum conserving delta function
stripped off.

Let us work with the ordering of §4.4.2, for which the form of the amplitude takes the very
simple form (4.23) to good approximation for general q, including q = 0.12 The second term in
in this amplitude varies strongly with k2

D. We will also specify

η < 0, (5.3)

which leads to a simple structure relevant for our test of longitudinal spreading. In the range

0 < α′k2
D < −η (5.4)

it is useful to express this as

B(CĈ, B̂Ĉ)
AÂ

sin π(α′k2
D + η)Γ(α′k2

D)Γ(−α′k2
D − η)

Γ(−η) sin πη

= A
(1)
4 A

(2)
4 ×

sin π(α′k2
D + η)Γ(α′k2

D)Γ(−α′k2
D − η)

Γ(−η) sin πη . (5.5)

This has several important features. The sinusoidal factor expands into two phases e±iπ(η+k2
D) ∼

e±iπηe±i(4EB̂δpC+... ). These vary strongly with pC : in each term this phase combines with the
e−ipCX factor to shift the support in X by a large scale ±4πEB̂α′. To assess the effect of the
other factors, we start by noting that the function Γ(α′k2

D)Γ(−η − α′k2
D) has a minimum at

α′k2
D = −η/2. The width of this minimum is of order

∆Ak
2
Dα
′ ∼ √−η ⇒ ∆ApC ∼

√−η
4EB̂α′

(5.6)

where the subscript A indicates that this is the width of the extremum in the amplitude (as
opposed to the wavepacket). We will use a Gaussian wavepacket which introduces a maximum
in the integrand at this point.

In particular, we specify the center and width of Gaussian wavepackets for A and C as follows.
We will use the same prescription in string theory and QFT so that we can directly compare the
shape and size of the resulting amplitude A(X) in the QFT1 model and string theory. For
simplicity, let us center our Gaussian wavepackets at α′k2

D = −η/2. Let us further specify a
sufficiently small width for the wavepackets in momentum space that the Gaussian maximum
dominates over the amplitude minimum at α′k2

D = −η/2, producing a net maximum. Including
all numerical factors, if we define

σ0 ≡
√
cσ(−η)

4EB̂α′
, cσ <

1
4 (5.7)

in terms of a numerical factor cσ, then the integrand has a net maximum at α′k2
D = −η/2.

We obtain a stronger condition if we require that this be a global maximum (where for k2
D < 0

we replace the poles by half their residues). At k2
D = 0 or −η, the wavepacket suppression is

12This is not the case for our derivation above of the simplification of the the AÂCĈB̂B ordering, whose reduction
to the form (4.21) involved taking BB̂Ĉ = 2); from (B.6) this requires q 6= 0.
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∼ eη/8cσ and the amplitude is unsuppressed; this is smaller than the amplitude 2η at the maximum
of the wavepacket as long as

cσ <
1

8 log(2) (5.8)

Imposing the above conditions, we can still satisfy

1
σ0
� X∗ = 4πEB̂α

′. (5.9)

These choices simplify our analysis, while being sufficient to distinguish string theory from QFT.
The narrow width in momentum space was anticipated in our discussion at the beginning of §3:
it ensures that support for k2

D is limited to a window for which longitudinal spreading is expected
according to (2.22).

We can now put this together with all amplitude factors and integrate the amplitude against
the wavepacket, expanding the sin π(α′k2

D + η) into its two phase terms. This gives one term
with the central trajectory of C advanced13 (centered at X = −X∗ = −4πEB̂α′)

e
− (X+X∗)2σ2

0
2(1−4cσ)

B(CĈ, B̂Ĉ)
AÂ

2η, (5.10)

as well as a similar delayed term centered at +4πEB̂α′.
Let us finally compare this to the QFT1 model with propagator 1

k2
D−iε

, which gives approxi-
mately

e−X
2σ2

0/2 1
AÂ

λCDĈB̂
(−η/2) (5.11)

Here there are no phase terms and the Gaussian is centered at X = 0, consistently with QFT
scattering on the tail of the Gaussian wavepacket. This shape is very different from the string
theory case, which as just noted is peaked at X = ±4πEB̂α′.

Let us also compare the magnitude of the amplitude of the two theories at X ∼ ±X∗ =
±4πEα′. As discussed above in §4.4.5, the appropriate comparison involves stripping off the
auxiliary process amplitude, which we may take to be λCDĈB̂ ≡ B(CĈ, B̂Ĉ). The remaining
QFT amplitude is

1
AÂ

1
(−η/2) exp(−X2

∗σ
2
0/2) ∼ 1

AÂ

1
(−η/2) exp(−16π2E2α′2σ2

0/2) (5.12)

This is > 1
−(η/2)e

π2η (the price we paid for forcing the Gaussian width small enough to focus on
the simple extremum of the amplitude), but is still exponentially suppressed.

In terms of (5.7), the ratio of the magnitudes of the string and QFT amplitudes at X ∼
−4πEB̂α′ is

AQFT
AST

' 1
(−η/2)

(
2

eπ2cσ/2

)−η
(5.13)

Altogether, this exhibits a window 2 log(2)
π2 < cσ <

1
8 log(2) in which the QFT result is parametrically

suppressed (as we increase −η) compared to string theory. Thus the size as well as the shape of
13Again we emphasize that the interaction itself is consistent with causality: the interaction between the endpoints

of string C and the detector D may be purely delayed.
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the string theory amplitude indicates physics beyond this tree level QFT model, even within the
simplified regime of parameters defined above. Again, we should emphasize that this comparison
involves stripping off a Regge-soft four point amplitude in string theory (identifying it with the
corresponding four point coupling in the QFT1 model).

The shape and amplitude of the string theory result suggests that it is not scattering on the
tail, but this could be subtle. One could ask whether it is scattering on the tail of the wavefunction
with only delayed interactions with respect to the central positions of C and A, at a momentum
with enhanced amplitude compensating for the suppression on the tail of the wavefunction. The
momentum space amplitude, including the residues of the poles for non-integer η, grows like
|α′k2

D|−η for |α′k2
D| � −η. But the Gaussian wavepacket ∝ e−δp̃

2
C/2σ2

0 strongly suppresses the
contributions from this region, so they cannot compete with the amplitude given in (5.10) at
X = −X∗.

One way to assess this is to introduce a varying dilaton background as a tracer of the inter-
actions [11]. We can introduce a linear dilaton background φ ∼ V · X = −V −X+ in the X+

direction (for a wide range of X+) to distinguish purely delayed scattering from advanced scat-
tering (in terms of the central positions of A and C). The string coupling in this region behaves
as

gs(X+) = g0e
V ·X = g0e

−V −X+ = g2
O (5.14)

where gO is the open string coupling. The advanced scenario depicted in figure 1 involves C + Ĉ

splitting off early, which implies a relative factor of gO(∆X+
∗ ) compared to scattering at the

origin, with ∆X+
∗ = X∗/

√
2 = 2

√
2πEB̂α′. We analyze this in [11], finding agreement with

this prediction. Moreover, the linear dilaton affects the spreading prediction in a calculable way,
degrading it for sufficiently large V −p+

D ∼
√

2V −EB̂. The scattering amplitude in the linear
dilaton background confirms this prediction as well.

5.1.1 Contour integral, light cone evolution, and interaction scales

In this subsection, we will note an interesting feature of the vertex operator integral generating
the factor B(α′k2

D, η) in our amplitude. This can be written
∫ 1

0
dy y−1+α′k2

D(1− y)−1+η (5.15)

The upper end of this integral is modified in the full amplitude; there are no poles in η.
For simplicity, let us work with our amplitude between the poles of the function (5.15), at

negative half-integer values of η = (2k + 1)/2 (for integer k). We will also take α′k2
D,−η and

−α′k2
D − η to be large and positive, as is the case near the center of the wavepacket above. In

this regime, the Beta function reduces to

B(α′k2
D, η) ' cos(πα′k2

D)B(α′k2
D,−α′k2

D − η) (5.16)

The integrand of (5.15) has a maximum at

ys = e±iπ
∣∣∣∣

α′k2
D

α′k2
D + η

∣∣∣∣ . (5.17)

23



The integrand has a cut which we can take to run from −∞ to 0, and a square root branch cut
from y = 1 to y = ∞. (The latter is a square root branch cut because we took η half-integral.)
Now integrate from 0 to 1 along the following contour. We split it into two pieces: the first is
1/2 times the integral from y = 0 to −∞ above the first cut, around the upper half plane to
+∞, and back to y = 1 above the second cut. The second piece is 1/2 times the reflection of
the first across the real line (i.e. going below the cuts). Since α′k2

D + η � −1, the integrand is
highly suppressed at infinity. The two contours between y = 1 and y = ∞ cancel each other,
since we obtain a factor of −1 crossing the square root branch cut. The contours between y = 0
and y = −∞ get contributions from the saddles (5.17). Altogether we get

1
2(eiπα′k2

D + e−iπα
′k2
D)|ys|α

′k2
D(1 + |ys|)η (5.18)

times the width of the saddle. In the regime defined above, this is a good approximation to the
amplitude.

It is interesting to express this as follows. Let us write y = e−iτ and X+ = α′p+
Bτ , as in light

cone gauge quantization (now taking the light cone ‘time’ variable in the X+ rather than the X−
direction). We can write (5.15) as

∫

γ
dX+

(
1− e−iX+/(α′p+

B)
)η
e−iX

+k2
D/p

+
B , (5.19)

with the contour γ for X+ corresponding to the one explained above for y = e−iX
+/(α′p+

B). The
saddles are generically at the complex values

X+
s = ±α′πp+

B + iα′p+
B log |ys|. (5.20)

However, if we specialize to k2
D ∼ −η/2, where we centered the wavepackets above, then |ys| ∼ 1,

so this is a purely real saddle, corresponding to Lorentzian time evolution. The last factor in the
integrand in (5.19) is then

e
−2iX+

s (p−
C+Ĉ

+...) = e
∓2πiα′p+

B(p−
C+Ĉ

+...) (5.21)

where the . . . denote terms that vary weakly with EC . This could be viewed as evolving string
C + Ĉ for a time ∆X+ = ±2πα′p+

B, or

∆X =
√

2∆X+ = ±4πα′EB = ±X∗.

This interpretation fits quantitatively with the possibility that the effect derived above is not
on the tail of the wavepackets, but occurs at the peak value ±X∗. Although it is not possible
to read off real-time physics from S matrix amplitudes, it may be possible to extract gauge-
invariant information from time differences such as the one just noted, perhaps in combination
with a background field such as the linear dilaton described above. In the latter analysis [11], a
single power of the open string coupling gO evaluated at the peak (early) trajectory of C. This
is consistent with an early 3 point interaction in which C → C + Ĉ. That lines up with the
evolution along X+ just described.
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5.1.2 More specific comparison to light cone prediction

To finish this analysis, let us briefly comment on the comparison of this result to the refined light
cone predictions reviewed above in §2.1. The result (5.10) fits with (2.22) given a distribution of
the form

exp
(
−const× ∆X+

∆X+
spreading

)
∼ exp

(
−const× EB̂α

′

EB̂/k
+
D0k

−
D0

)
∼ 2η (5.22)

where we used that the leading contribution to (5.10) came from k2
D0 = −η/2, and that as

explained in our appendix B, the detector has negligible transverse motion: kD⊥ = qD is small,
of order

√
KAÂ ∼ δq. Such a distribution linear in the exponent for the longitudinal direction

is suggested by the linear dependence of the worldsheet action S ∼ 1
α′
∫
∂X+∂X− on X+, in

contrast to the Gaussian distribution for transverse spreading arising from S ∼ 1
α′
∫

(∂X⊥)2. See
[3, 4] for more discussion of this point.

More generally, it would be interesting to better understand the role of η vis a vis the light
cone gauge calculations. From the point of view of the light cone gauge calculations reviewed in
§2.1, the spreading estimate (2.22) is given in terms of the momentum of the detector. This is
based on a simple estimate of the resolution required, refined by the 1/k+

Dk
−
D factor as discussed

in [3]. But the state of the detector D has more parameters (in principle an infinite number). As
we have seen, the structure of the amplitude is strongly dependent on the sign of η: in particular,
this determines whether it can be written as a convergent sum of propagators 1/(k2

D +n− iε). It
is possible that additonal detector parameters (such as η) enter into the efficiency of the detection
of string spreading. This would be interesting to explore further.

5.2 Generalization to q 6= 0

Next, we will analyze the case with q̃A = −q̃C = q, q̃B = 0. The geometry of the A and C

trajectories is more involved here, in that they meet at a finite (but very late) time. For this
analysis, we will localize string B using a wavepacket (3.7) that sharply restricts the range of p̃B,
leading via energy-momentum conservation to a sharp restriction on the range of p̃C . This entails
a broad position-space tail for B, which we study in detail below. For the A and C wavepackets,
we may use Gaussians of width σ, for example taking σ of order string scale.

5.2.1 Momentum basis

Performing the integral over p̃A absorbs the longitudinal momentum conserving delta function.
For the square wavepacket for string B (3.7), this gives

A(X)pA,pB,min,pB,max,pC ,q,σ ≡
∫
dp̃C

∫ pB,max

pB,min

dp̃B√
∆pB

e−(P−p̃B−p̃C−pA)2/2σ2
e−(p̃C−pC)2/2σ2

e−ip̃CX

× δ(
∑

ω̃a − ωtot) Â(p̃C) (5.23)

where again X is the peak value of the separation between A and C, pA is the peak value of A’s
momentum, and so on; Â denotes the amplitude with the energy-momentum conserving delta
function stripped off. Below, we will also present results for the case of the triangular wavepacket
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for string B (3.11). In all of our cases of interest, Â varies significantly only in the p̃C direction
in the range of momenta supported by the wavepackets and energy-momentum conservation.

Next we perform the integral over p̃B, absorbing the energy-conserving delta function (2.6).
Denoting these solutions p̃B∗(p̃C), and suppressing the parameters aside from X, we are left with

A(X) =
∫

dp̃C

|∂p̃Bf [p̃B∗(p̃C)]|
√

∆pB
θ(p̃B∗(p̃C)−pB,min)θ(pB,max−p̃B∗(p̃C))e−(p̃C−pC)2/σ2

e−ip̃CXÂ(p̃C)

(5.24)
where f was defined in (2.7). Given pB,min and pB,max, we have two ranges of support for p̃C
as depicted in Figure 3; we can use the former to tune the latter, keeping all contributions
|p̃C − pC | � |pC |.

The derivative f ′ varies weakly with p̃C :

∂p̃Bf [p̃B∗(p̃C)] = − p̃A
ω̃A

+ p̃B
ω̃B
|pB∗ ' 2 (5.25)

where in the last step we used that the integral is restricted to the regime we have discussed
where −p̃A ∼ p̃B ∼ ω̃I ∼ E. We are left with a relatively simple integral over a pair of tunable,
finite ranges of p̃C . We will evaluate this numerically. For simplicity we consider a single range
of p̃C , since each behaves similarly, and we treat f ′ as a constant (5.25).

Let us work in a range of p̃C which does not overlap with the D poles, but starts close to
the massless pole and extends further into the regime of spacelike kD. This gives very distinct
results in string theory as compared to all the QFT comparison models, as we will see.

Before moving to that, we will further map out the geometry of the process, setting up an
equivalent calculation of A(X) in a position basis. This will be very useful in assessing the
contribution from the tail of the B wavepacket.

5.2.2 Position basis

As depicted in Figure 4, for pC 6= pA the trajectories of A and C meet at a very late, but finite,
timescale:

Tmeet = 2
q2X

p2
Ap

2
C

p2
C − p2

A

(5.26)

In our integral, the values of pA and pC that are supported are such that this quantity is of order
E3X/(q2(pA − pC)), given 1/

√
α′ ∼ |∆pC | � |pC | ∼ E. If q = 0, the trajectories never meet as

we discussed above in subsection §5.1.
This point of direct intersection of the trajectories, and the subsequent region where C is

delayed relative to A, is accessible on the tail of the position space ΨB wavefunction (3.9) or
(3.11), which is a power law. Since the wavepackets localizing A and C are Gaussian with width
1/σ ∼

√
α′, if we assume local interactions then the tail of ΨB takes over at a value of X satisfying

e−X
2σ2/2 ∼ 1

∆pBTmeet
= 1
X

q2|p2
A − p2

C |
p2
Ap

2
C

√
2π∆pB

(5.27)

for the square wavepacket; they meet further out in X for the triangular wavepacket.
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T = 0

T = Tmeet

C A

C

A

delays

Figure 4: At the very late time Tmeet ≥ E3X/(q2(pC ≠ pA) (5.26), the central trajectories of strings A and C
meet. After this time, the interaction is purely delayed (not requiring any nonlocality). This region is accessible to
the strings out on a highly suppressed power law tail of the wavefunction �B , as discussed in the text. String B
propagates to the right in this picture, and the B wavefunction is peaked such that B meets A at T = 0.

It will be useful to compute A(X) (5.23) also in a position basis. Specifically, we can write it
as

A(X) =
Z

dX̃B�̃B(X̃B)g(X̃B;X) (5.28)

where
g(X̃B;X) ƒ

Z
dp̃C ÂC,X(p̃C) e≠ip̃Bú(p̃C)X̃B Â(p̃Bú(p̃C), p̃C) (5.29)

where as above, p̃Bú(p̃C) denotes a solution to the energy conserving delta function, and Â is the
momentum-space amplitude with the energy-momentum conserving delta functions stripped o�.
This is given explicitly by

p̃Bú = 1
2
q2 + (P ≠ p̃C)2 ≠ (ỄC ≠ Êtot)2

ỄC ≠ Êtot + P ≠ p̃C
(5.30)

(as long as p̃B Ø 0). In this form, we can determine the range of X̃B that contributes.
The integral (5.28) is explicitly

A(X) =
Z

dX̃B
sin(�pBX̃B/2)p

�pBX̃B

Z
dp̃C e≠iXp̃Ce≠iX̃B(p̃Bú(p̃C)≠pB0)e≠”p̃2C/(2‡2)Â(p̃C) (5.31)

say for our first version (3.9) of the B wavepacket (a square step in momentum space).

5.2.3 QFT model results

The QFT0 model is a simple contact interaction, and its amplitude A(X) directly tracks the tail
of the wavepacket, as in figure 5 below.
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Figure 4: At the very late time Tmeet ∼ E3X/(q2(pC − pA) (5.26), the central trajectories of strings A and C
meet. After this time, the interaction is purely delayed (not requiring any nonlocality). This region is accessible to
the strings out on a highly suppressed power law tail of the wavefunction ΨB , as discussed in the text. String B
propagates to the right in this picture, and the B wavefunction is peaked such that B meets A at T = 0.

It will be useful to compute A(X) (5.23) also in a position basis. Specifically, we can write it
as

A(X) =
∫
dX̃BΨ̃B(X̃B)g(X̃B;X) (5.28)

where
g(X̃B;X) '

∫
dp̃C ψC,X(p̃C) e−ip̃B∗(p̃C)X̃B Â(p̃B∗(p̃C), p̃C) (5.29)

where as above, p̃B∗(p̃C) denotes a solution to the energy conserving delta function, and Â is the
momentum-space amplitude with the energy-momentum conserving delta functions stripped off.
This is given explicitly by

p̃B∗ = 1
2
q2 + (P − p̃C)2 − (ω̃C − ωtot)2

ω̃C − ωtot + P − p̃C
(5.30)

(as long as p̃B ≥ 0). In this form, we can determine the range of X̃B that contributes.
The integral (5.28) is explicitly

A(X) =
∫
dX̃B

sin(∆pBX̃B/2)√
∆pBX̃B

∫
dp̃C e

−iXp̃Ce−iX̃B(p̃B∗(p̃C)−pB0)e−δp̃
2
C/(2σ2)Â(p̃C) (5.31)

say for our first version (3.9) of the B wavepacket (a square step in momentum space).
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5.2.3 QFT model results

The QFT0 model is a simple contact interaction, and its amplitude A(X) directly tracks the tail
of the wavepacket, as in figure 5 below.

Let us next calculate A(X) for the QFT1 model, which will provide a very useful model
to compare and contrast with string theory in various regimes. Let us start by analyzing this
explicitly in the regime where the range ∆pC is somewhat smaller than the Gaussian width σ,
so the latter can be neglected to good approximation.

Given this, the momentum basis expression for A(X) in the QFT1 model is given to good
approximation by the integral (using integration variable yC = −δp̃C −∆pC/2)

A(X) ' e−ipC0X

√
∆pB4EB̂α′

∫ ∆pC

0
dyC

1

yC + k2
Dmin

4EB̂α′
e−iXyC

= 1
4Eα′

√
∆pB

e
iX(− k

2
Dmin
4E
B̂
−pC0)

(
Γ(0, iX

k2
Dmin
4EB̂

)− Γ(0, iX(
k2
Dmin
4EB̂

+ ∆pC))
)

(5.32)

where k2
Dmin is the minimal value of k2

D in the supported range of momenta.
In figure 5 we plot A(X) for the QFT models (including there the dependence on σ computed

numerically). The essential physics is contained in the analytic result (5.32). It is peaked at the
origin and falls off away from there. This suggests that its support for X < 0 is accounted for by
scattering on the tail of the wavepacket, as expected from causality.

ΨB tail contributions
Indeed, we can explicitly reproduce this formula from the tail part of the ΨB wavefunction,

using the position basis representation of A(X). Starting from (5.31), we can perform the integral
in various orders. Let us first Fourier transform the amplitude Â(p̃C), giving a step function.
Then inverting the Fourier transform, this leads to the position space expression for A(X) in the
QFT1 model:

e−ipC0X
∫

dX̃

4EB̂α′
θ(X̃)f

(
X̃
) ∫

dX̃B
sin ∆pBX̃B

2√
∆pBX̃B

∫
dδp̃C e

−δp̃2
C/2σ2

eiδp̃C(X̃−X)e−i(p̃B∗−pB0)X̃B

(5.33)
where

f(X̃) = e
−iX̃(

k2
Dmin
4E
B̂

+ ∆pC
2 )

(QFT1) (5.34)

We will first analyze the tail, i.e. the contribution from X̃B < −2Tmeet. For this purpose, it
is useful to perform the δp̃C integral starting from (5.33). First, we Taylor expand p̃B∗ to second
order in δp̃C , finding

p′B ≡ dp̃B
dp̃C
|pB∗ = q2

4

(
1
p2
A

− 1
p2
C

)
≈ q2(pC − pA)

2p3
C

= q2(pA − pC)
2E3 = X

2Tmeet

p′′B ≡ d2p̃B
d2p̃C

|pB∗ = q2

p3
C

' − q
2

E3 , (5.35)
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with higher derivatives negligible in our kinematics. At this order, the δp̃C integral is now just a
Gaussian. Evaluating that leads to

∫
dX̃

4EB̂α′
θ(X̃) ˜̂

A(X̃)eipC0(X̃−X)
∫

tail
dX̃B

sin ∆pBX̃B
2√

∆pBX̃B

exp
(
−

1
2 (X̃−X−p′BX̃B)2

1
σ2 +ip′′BX̃B

)

√
1
σ2 + ip′′BX̃B

(5.36)

The variance in the denominator of the exponent here is

1
σ2 + ip′′BX̃B '

1
σ2 + i

X

(pA − pC)
X̃B

Tmeet
(5.37)

Since we are integrating X̃B out on the tail, the second term here is larger in magnitude than
X/(pA − pC). This is much larger than 1/σ2 in our calculation of A(X).

Next, expand the sin(X̃B∆pB/2) factor into its two phase terms. From the Gaussian factor
and one term in this expansion of the sin factor, along with the ∆pC part of the phase in (5.34),
we obtain

e
i
2 (βX̃B+ (X̃−X)2

p′′
B
X̃B

)
e
−i X̃2 (∆pC+2 p

′
B
p′′
B

)
(5.38)

where
β = ±∆pB + p′2B

p′′B
(5.39)

From (5.38) we derive resonant contributions to the X̃B integral

XB∗ = ±(X̃ −X)√
βp′′B

(5.40)

with width

∆X̃B∗ '
√
p′′BX̃

3/2
B∗

X̃ −X (5.41)

Since our tail contribution has an endpoint of integration, we should check if the width is smaller
than the distance to this endpoint. We find that the resonance is well within the contour of
integration if we integrate over a somewhat larger range of X̃B (still very large in magnitude),
say X̃B < −Tmeet as opposed to −2Tmeet. This larger integral includes the purely delayed tail. 14

Note that the ± in (5.39) and (5.40) are independent: we have two resonances, and within
each resonance there are two terms from expanding the sin into phases. Plugging back in, the
phase becomes

eiX̃(±
√
β/p′′B−∆pC/2−p′B/p′′B) (5.42)

Next let us work in the regime ∆pB/2 � |p′2B/p′′B|, which corresponds to (5.48) below. Given
that, we can expand the square root in the ∆pB term. Then (5.42) becomes

eiX̃(±p′B/p′′B±∆pB/(2p′B)−∆pC/2−p′B/p′′B) (5.43)
14Alternatively, we could work just on the tail X̃B < −2Tmeet and obtain a portion of the width of the resonance

for some range of X̃.

29



From this, we note that there is a term for which the signs are such that this exponent will cancel.
In the resulting integral over X̃, the remaining phase is exp(−iX̃k2

Dmin/4EB̂).
Plugging in the resonance and width appropriately, and including all parametric factors, the

two resonant contributions to the X̃B integral are

Res1 = e
−i(pC0+ ∆pC

2 +
k2
Dmin
4E
B̂

)X

4EB̂α′
√

∆pB

∫ ∞

0

dX̃

X̃ −Xe
−i(X̃−X)

k2
Dmin
4E
B̂

(
1− e−i∆pC(X̃−X)

)
(5.44)

and

Res2 = e
−i(pC0+ ∆pC

2 +
k2
Dmin
4E
B̂

+2 p
′
B
p′′
B

)X

4EB̂α′
√

∆pB

∫ ∞

0

dX̃

X̃ −Xe
−i(X̃−X)(

k2
Dmin
4E
B̂

+2 p
′
B
p′′
B

) (
1− e−i∆pC(X̃−X)

)
(5.45)

The first resonance is on the tail X̃B < −2Tmeet.
Using the integral ∫ ∞

x

dw

w
eiβw = Γ(0,−iβx) (5.46)

valid for x > 0, we find that the first resonance reproduces the result for A(X) calculated in
momentum space above in (5.32), valid in the regime outside of the width of the Gaussian
wavepacket. The second resonance gives a phase times

1
4Eα′

√
∆pB

(
Γ(0, iX(

k2
Dmin
4EB̂

+ 2p′B/p′′B))− Γ(0, iX(
k2
Dmin
4EB̂

+ 2p′B/p′′B + ∆pC))
)

(5.47)

The hierarchy we took above, which amounts to

∆pC �
p′B
p′′B
∼ |pA − pC | (5.48)

means that we can expand the second argument in ∆pC . As a result, the second resonance gives
a subdominant contribution. Altogether, this reproduces our momentum basis result for A(X)
in the QFT1 model, from a contribution on the B wavepacket tail at large negative X̃B.

QFT1 summary
We have computed A(X) quantitatively in both a momentum and position basis, obtaining

results consistent with the expectation that the QFT models are scattering on the tail for X < 0.
In figure 5, we plot A(X) for the QFT comparison models.

5.2.4 String Theory with q 6= 0

Next, we analyze A(X) in string theory in two interesting kinematic regimes. In order to clarify
the distinction between string theory and QFT, we focus on the expression for the amplitude as
a sum over k2

D propagators.
First, we treat the case with η = BB̂−CĈ > 0. In that case, A(X) is spread out to the extent

predicted by light cone calculations. However, the amplitude (4.20) has a convergent expansion
in terms of QFT propagators, for each of which we may ascribe scattering at early values of X
to the tail of the wavefunction.
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Figure 5: The shape of the distribution A(X) for the two QFT comparison models. The first two plots, B is in
the square wave packet for B described in the text. First, we plot the six point contact interaction (our QFT0
comparison model), plotted for σ = 1/

√
α′ in blue and σ = 1/(2

√
α′) in yellow. Its width is 1/σ, the width of

the wavepacket, and does not extend out to ∼ α′E. We plot the numerical integral for the other example with a
single massless D pole (QFT1) for σ = 1/

√
α′. The parameters are within the regime described above, with EB̂

of order 100. In the third plot, we replace the step wavepacket by the triangular step ΨB,tri described in the main
text. This wavepacket has a more suppressed power law tail in position space. Comparing this to the second plot
in Figure (5), we see that A(X) changes consistently with the system scattering on this reduced tail once it takes
over from the Gaussian tail of the A and C wavefunctions.

Next, we treat η < 0. In that case, we find stronger spreading of A(X), and there is no
such convergent expansion in terms of k2

D propagators. However, we can express it in terms of
propagators dressed with additional k2

D dependence, explicitly showing how the analogous tail
contribution in position space fails to account for A(X) (as it did for the QFT propagators).

η > 0 and a cautionary tail
Let us briefly compare this result with the amplitude in a different regime, including a subspace

with a convergent sum over QFT propagators. For this, we work with (4.20), and in the regime
η > 0.
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Figure 6: The shape of the distribution |A(X)| for tree-level string theory in the regime of §4.4.1 and §5.2.4,
plotted for σ = 1/

√
α′ and two values of the minimal k2

D (1/(10α′) and 10/α′). Its width does not increase as we
decrease σ, in contrast to QFT, but it does depend on E/k2

D as expected from (2.22). Nonetheless, as described
in the text, there is a subset of kinematic parameter space in which this shape arises from a convergent sum of of
QFT propagators.

The shape of A(X) is plotted in figures 6-7. As a function of X, the peak wavepacket separa-
tion between A and C, it is spread out at the level predicted for spreading-induced interactions.
This includes the predicted dependence on k2

D and relative insensitivity to wavepacket parame-
ters.

However, at least in the subset of the kinematic parameter space we are in, this may be a red
herring. The Beta function factor B(k2

Dα
′, η) (in the superstring generalization) has a convergent
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Figure 7: The shape of |A(X)| for string theory in the regime of §4.4.1 and §5.2.4, replacing the step wavepacket
by the triangular step ΨB,tri described in the main text. This wavepacket has a more suppressed power law tail
in position space. Comparing this to the plots in Figure (6), we see that within the spreading range X ∼ α′E
depicted, the shape of A(X) is relatively insensitive to the modified B wavefunction tail. (The size of the amplitude
is suppressed, reflecting the fact that the support in momentum space is weighted toward larger values of k2

D in
the triangular step wavefunction.). Nonetheless, as described in the text, there is a subset of kinematic parameter
space in which this shape arises from a convergent sum of of QFT propagators.

expansion in terms of k2
D propagators. As such, it may be possible to ascribe the scattering at

X < 0 entirely to the tail in this case. So our analysis in this regime does not lead to a clear
identification of the spread shape for A(X) to longitudinal spreading induced interaction, despite
the appearance of the predicted scales. This example is a cautionary tale against over-interpreting
A(X) by itself, although it still illustrates an interesting difference operationally between QFT
and string theory in the same setup.

Since the effect proposed in [1] does not admit an immediate effective field theory description,
it makes sense to search for S-matrix evidence for it from amplitudes not obtained as a convergent
sum over QFT propagators. We turn to that next.

η < 0 and a stronger test of Longitudinal String Spreading
Let us start from the form (4.19) of the amplitude, and expand the B(k2

D, BB̂) in terms of
propagators, giving

B(CĈ, B̂Ĉ)
AÂ

∑

nD

(1−BB̂)nD
nD!

1
k2
D + nD/α′ − iε

sin π(α′k2
D +η)Γ(−α′k2

D−η)Γ(α′k2
D +BB̂) Γ(η)

Γ(BB̂)
(5.49)

Working in the regime BB̂ � −η � 1 reduces this to

B(CĈ, B̂Ĉ)
AÂ

∑

nD

(1−BB̂)nD
nD!

1
k2
D + nD/α′ − iε

sin π(α′k2
D + η)

(
BB̂

−η

)α′k2
D

(5.50)

This exhibits nontrivial k2
D dependence multiplying each propagator 1

k2
D+nD/α′−iε , so we can

make a direct comparison with QFT term by term. Let us expand the sin π(α′k2
D + η) into its

two phase terms, restricting our momentum interval ∆pC to the regime 0 . α′k2
D � −η.

Since k2
D is approximately linear in pC , we get the result for a QFT model with a propagator

(e.g. for nD = 0 the QFT1 model in (5.32)) but with the replacement

X → X ± 4πEB̂α
′ + 4iEB̂α

′ log
(
BB̂

−η

)
(5.51)
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where the ± depends on which term of the expanded sin function we consider.
As a result, the extra exponential dependence on k2

D yields two terms. In each, the support
of the amplitude is spread out and shifted (either early or late) by a scale ∼ Eα′. As a result,
the calculation of the tail contribution X̃B < −2Tmeet to A(X) in our position basis in this case
does not account for the amplitude: the dominant resonance is shifted early relative to the tail
(and the support in X̃B is also spread out as a result of the imaginary part of the shift (5.51)).

Figure 8 illustrates the contrast. The string theory result is spread by the predicted amount
∼ Eα′ compared to the QFT1 model with amplitude 1

k2
D−iε

(which scatters on the tail of the
wavepacket).

Figure 8: The string theory amplitude near the nD = 0 pole has a contribution shifted and spread out by order
∼ Eα′ compared to the QFT1 model in the kinematic regime described in the text. Given that the latter is on the
tail, the former is not. Here we depict one term of the expansion of the sinπ(k2

D + η) factor in the amplitude in
terms of phases; there is a similar term shifted to larger X by ∼ 4πEB̂ and similarly spread out.

This analysis has focused on the terms in the deformed propagator expansion. We should make
sure that the effect does not cancel out among the propagators. We have numerically calculated
A(X), revealing that the advanced and delayed contributions at the wide scale ∼ 4πEB̂α′ survive
in the amplitude summed over nD.
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Figure 9: For η < 0, the full string theory amplitude (summed over nD) pole is spread out by order ∼ 4πEBα′
compared to the QFT1 model in the kinematic regime described in the text. The term by term spreading described
in the text and in figure 8 survives the sum over the (deformed) propagators.

Altogether, we find that the prediction of long range interactions via longitudinal string
spreading passes a significant test. This occurs in a regime where the amplitude decomposes into
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our auxiliary process, a factor that fits with CD → B̂Ĉ, and an additional factor with structure
in k2

D. The effect arises most strongly (and most unambiguously) in a kinematic regime where
the amplitude does not arise as a convergent sum over propagators. It is notable that this result
is somewhat delicate, depending on kinematic regime choices (such as η < 0 versus η > 0 in the
present examples). As we discussed above in the q = 0 case, this can be viewed as a parameter
of the state of the off-shell detector D, one which evidently enters into the process in a nontrivial
way.

6 A family of more general wavepackets

We have focused thus far on a small range of momentum within which the string theory amplitude
contains interesting structure generating advanced interactions, using relatively narrow wavefunc-
tions in momentum space. Let us finally analyze the problem with more generic wavepackets.
To be specific, we will work at q = 0, with Gaussian wavepackets for A and C of width σ in
momentum space.

We can rewrite the Beta function containing the leading k2
D dependence in the amplitude as

B(k2
D, η) = B(k2

D,K)Γ(η)Γ(k2
D +K)

Γ(k2
D + η)Γ(K) =

∑

nD

(1−K)nD
nD!

1
k2
D + nD − iε

sin π(k2
D + η)Γ(−k2

D − η)Γ(k2
D +K)

sin πηΓ(−η)Γ(K)
(6.1)

in terms of a parameter K > 0 that we can choose. We will convolve this with a wavepacket
term by term in the sum over nD, and then perform the sum.

Each term is similar to the analysis in §5.1 above. We center the wavepacket at

k2
D0 = −K + η

2 , (6.2)

which is the minimum of the factors Γ(−k2
D−η)Γ(k2

D+K) in the amplitude. This relation enables
us to trade the arbitrary parameter K for the central momentum k2

D0. Since the width of this
minimum is of order

√
K − η, we further specify σ ≡

√
cσ(K − η)/4EB̂ �

√
(K − η)/4EB̂ so

that these factors are nearly constant within the range of support of the wavepacket. With these
specifications, the convolution of the amplitude with the wavepacket is approximately given by

B(CĈ, B̂Ĉ)
AÂ

Γ(η)Γ(−α′k2
D0 − η)Γ(k2

D0 +K)
Γ(K)

∑

nD

(1−K)nD
nD!

∫
dδp̃C
σ0

e−δp̃
2
C/2σ2

effeiδp̃C(X+X∗)eiπη

k̃2
D + nD/α′ − iε

(6.3)
plus a similar delay term. Here σ0 is as defined above (5.2) and σeff includes the width of the
minimum of the factors Γ(−k2

D−η)Γ(k2
D+K) in the amplitude; we will specify it explicitly below.

A saddle point estimate for the integral would give a result proportional to exp(−(X+X∗)2σ2
eff/2),

with support at X = −X∗ = −4πEB̂. We would like to determine if this early support survives
the alternating sum over nD.

Before getting to the sum, let us simplify the prefactor in (6.3): using (6.2) we find

Γ(η)Γ(−α′k2
D0 − η)Γ(k2

D0 +K)
Γ(K) ' Γ(η)

(K/2)η 2−K ' Γ(η)(−k2
D0)−η2−K (6.4)
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We will find a compensating factor of 2K in the sum, along with a residual suppression.
Let us work at X = −X∗ for simplicity. If we write the propagator as the Fourier Transform

of a step function,
−i

z + n− iε =
∫ ∞

0
dw e−iw(z+n/α′−iε) (6.5)

and use ∑

n

e−iwn/α
′ (1−K)n

n! =
(

1− e−iw/α′
)K−1

(6.6)

then the sum in (6.3) can be written as
∫ ∞

0
dw

∫
dz

4EB̂α′σ0
e−(z−z0)2/2σ̂2

effe−iwz
(

1− e−iw/α′
)K−1

= 1
4EB̂α′σ0

∫ ∞

0
dw e−w

2σ̂2
eff/2eiw

K+η
2

(
1− e−iw/α′

)K−1

= 2K−1

4EB̂α′σ0

∫ ∞

0
dw e−w

2σ̂2
eff/2eiw

η+1
2

(
sin w2

)K−1

(6.7)

where we have defined
σ̂ ≡ 4EB̂σ0 =

√
cσ(K − η), cσ <

1
4 (6.8)

and 1
σ̂2

eff
= 1
σ̂2 −

4
K − η = 1

σ̂2 (1− 4cσ) (6.9)

with the second term arising from the width of the minimum of the factors Γ(−k2
D−η)Γ(k2

D+K)
in the amplitude. We have also used the fact that the range of δp̃C integration in (6.3) can be
extended to ±∞ to good approximation since the Gaussian strongly suppresses contributions
from the endpoints at δp̃C ∼ ±E.

Next, let us study the conditions for a saddle point ws in the w integral, starting from the
second line of (6.7). Neglecting the Gaussian factor, which generically varies more weakly with
w than the other two factors, we find

− iws = log −(K + η)
K − η (6.10)

If K + η < 0, meaning k2
D0 spacelike (6.2), then ws is imaginary and we find no suppression

from the Gaussian wavepacket factor at the saddle, as in our previous analysis with k2
D0 = −η/2.

There is a crossver at k2
D0 = 0: for K + η > 0 then ws develops a real part, and for large K it is

well approximated by π.
This latter case is relevant for exploring much wider momentum-space wavepackets, for which

we can push to the regime K � |η| > 1. The integral over w has a saddle point near w ∼ π,
which can also be seen as the first maximum of the strongly peaked sinK w

2 factor in the last line
of (6.7). This gives a contribution to the amplitude (including all factors) of order

A ∼ B(CĈ, B̂Ĉ)
AÂ

1
4EB̂α′σ0

e−π
2 σ̂

2
eff
2 (1− 4σ̂2

eff
K

)
(
k2
D0
η

)−η
(6.11)
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The penultimate suppression factor here is approximately given by (taking cσ � 1)

exp
(
−π

2σ̂2

2

[
1− 4σ̂2/K

1− 4σ̂2/(K − η)

])
= exp

(
−X

2
∗σ

2
0

2

[
1− 4σ̂2/K

1− 4σ̂2/(K − η)

])
(6.12)

where in the second expression we used X∗ = 4πEB̂.
To interpret this, recall that we have centered the wavepacket at X = −X∗ = −4πEB̂. If

the expression in square brackets in (6.12) were 1, the factor (6.12) would coincide with the
suppression factor from the position space tail of the Gaussian wavefunction which would apply
if the scattering occurs at the origin (i.e. with no advance between the center of C and the center
of A). For positive η, the factor (6.12) suppresses the amplitude more than this, suggesting
delayed scattering. But for η < 0, this factor is less suppressed than the tail factor for scattering
at the origin or later (and hence the result is enhanced compared to tree-level QFT). This is the
case which exhibited spreading in the previous examples, and which has no convergent expansion
in terms of QFT propagators. Here we see the effect persists in this family of wavepackets with
wider momentum-space width (6.8) centered at (6.2).

7 Conclusions, implications, and future directions

In this work we performed a new S-matrix test of the prediction [1][3][4] that strings with large
center of mass energy

√
s ∼

√
p+

detectorp
−
string can interact at a large separation ∆X+

spreading ∼
1/p−detector. In our six point scattering process, such an interaction is predicted between strings C
and D. Tree-level quantum field theory has no such interaction. With appropriate wavepackets
peaked at a separation X between A and C, we calculated the amplitude A(X) defined in the
main text. In a particular kinematic regime, one in which the string amplitude is not a convergent
sum of QFT propagators, this exhibits the predicted difference between string theory and the
analogous tree-level QFT models. String theory has peaked support for interactions at the scale
α′E, whereas the relevant QFT models exhibit narrow support around X = 0 dictated by the
wavepacket, consistently with scattering on its tail. In the string theory case, the analysis here
combined with [11] provides a nontrivial test of the possibility that the large longitudinal range
in A(X) arises from scattering at that scale as suggested by the longitudinal spreading in the
light cone wavefunction.

We have emphasized that tree-level quantum field theory at the same order would not exhibit
the same effect, but it is a very interesting question whether rich enough QFT interactions could
do so. This question seems particularly sharp in QFTs with string-theoretic holographic duals,
into which we can embed the present calculation [20] in an appropriate kinematic regime. The
warp factor in the geometry makes a significant difference as compare to the flat spacetime
version of the calculation, reproducing essential features of QFT correlators. But one must check
carefully whether any long-range interaction survives. It will be very interesting to see how the
tension between the locality of the QFT and these new tests of the non-locality of fundamental
strings plays out.

This sharpens other questions about the role of this effect in the AdS/CFT correspondence,
in systems with a perturbative string-theoretic gravity side. The dual field theory OPE relations
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constrain the late-time behavior of correlators. In curved spacetime examples such as AdS, the
details we encountered here will also likely prove important. For example, we have seen that the
strength of the amplitude A(X) depends on the kinematic regime supported by the wavepackets,
and we also find that background gradients can affect the spreading [11]. In AdS/CFT, the
wavepackets injected by insertions of local operators on the boundary may or may not support
spreading interactions. It will be interesting to understand how this plays out in AdS, in real-time
processes describing thermalization as well as the out of time order calculables characterizing
chaos [21]. The latter probe near the horizon of the gravity-side black hole, where the most
interesting EFT-violating effects can arise. More generally, in the context of bulk reconstruction
in AdS/CFT, this effect limits the level of locality to be recovered from the CFT; this may be
particularly accessible in approaches based on scattering such as [22].

It will be interesting to apply these results to black hole infallers. There, the role of the
auxiliary process is played by the geometry itself. Our results provide a test of the prediction [3]
that early and late infallers interact parametrically more strongly at a separation ∆X+ ∼ Eα′ in
the near horizon region than is the case for tree-level effective field theory. Determining the level of
EFT breakdown is important for resolving the thought experimental puzzle articulated in [23].15

If the present results correspond to longitudinal spreading induced interactions which translate
to the black hole problem as in §4.4.5, it would indicate a stronger interaction between early and
late infallers than in tree-level quantum field theory. Since this effect sets in on a relatively short
timescale, it will be interesting to see if it could ever lead to observable signatures. The regime
exhibiting an EFT breakdown developed in [3], however, requires a strong condition on the local
energy of the detector. Having further tested the basic effect in the present work, exhibiting
directly the predicted long-range longitudinal spreading scale, it will be interesting to return to
horizon physics to analyze more systematically the scope of the deviations from general relativity
that it could produce.
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A Sums and subtractions in light cone gauge string theory

In this section we clarify a somewhat subtle aspect of the light cone gauge spreading prediction
[1]. This is is somewhat out of the main thread of our analysis of the six point S-matrix amplitude,
but is an interesting consistency check of the physical prediction we are testing. In light cone
gauge X− = (X0 − X)/

√
2 ≡ x− + p−τ , the Virasoro constraint identifies the modes of X+ =

(X0+X)/
√

2 with the Virasoro generators of the D−2 transverse dimensions. In the superstring,
these Virasoro generators include contributions from worldsheet fermions, reviewed in [26]. This
leads to

〈(X+(σ, 0)− x+)2〉 ∝ c⊥
(p−)2

∑

n

n ∼ n2
max

(p−)2 (A.1)

This is divergent, but can be cut off at a mode number nmax corresponding to the light cone time
resolution of a putative detector of the spreading, as reviewed in [3]. It leads to the prediction
noted in (2.22) in the main text.

A similar sum ∝∑n>0 n arises in the mass shell condition determining the string spectrum,
which coming from the zero point energy in the worldsheet Hamiltonian. This quadratic di-
vergence is the contribution of the transverse matter fields to the two dimensional cosmological
constant. A contribution ∼ n2

max in this sum would not reproduce the mass spectrum of the
string, which is obtained in the bosonic theory by subtracting this divergence using a local coun-
terterm. Given this, one might wonder if (A.1) should be cancelled by this subtraction,16 If
there were such a prescription, it would leave intact the transverse spreading prediction (which
is logarithmic, and not removable by such a tuning).

However, it is straightforward to separate issues using the superstring, which explicitly treats
the two sums differently. The calculation of the worldsheet mass spectrum, the leading divergence
cancels between worldsheet bosons and fermions. At the same time, as just noted, no such
cancellation arises in (A.1). This explains why the two infinite sums are not on equal footing,
clarifying the prediction (2.22) from (A.1) [1].

B Kinematic details

As described in the main text, we work in a regime with KAÂ � 1, and focus mainly on transverse
momentum eigenstates with qA = −qC ≡ q 6= 0. We analyze various kinematic regimes for
η = KBB̂ −KCĈ , BB̂Ĉ = KB̂Ĉ +KBĈ +KBB̂ and the range of k2

D. In this appendix, we verify
that these regimes are consistent by verifying that these quantities are independently tunable to
the extent required.

Let us restrict ourselves to a regime for which EB − EB̂, EC − EĈ , and EA − EÂ are all
16We thank Ying Zhao and Milind Shyani for reminding us of this question.
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≤ O(q2)� E2. Then (2.19) simplifies further, and we find

KAÂ = (qB + qC + qB̂ + qĈ)2α′ = (qC + qB̂ + qĈ)2α′ (B.1)
KCĈ = (qC + qĈ)2α′ (B.2)
KBB̂ = (qB + qB̂)2 = q2

B̂
α′ (B.3)

k2
D = KCĈ/α

′ + 4EB̂(EC − EĈ) + 2qB̂(qC + qĈ) +
EB̂
EĈ

(q2
C − q2

Ĉ
) (B.4)

where in the last step we specialized to qB = 0 as in the main text, where we also set Q =
qA + qB + qC = 0.

To ensure KAÂ � 1, let us write qC = −(qB̂ + qĈ) + δq with δq � 1. Then

η = KBB̂ −KCĈ = 2qB̂δqα
′ (B.5)

Similarly, we find that

BB̂Ĉ = 2kC · (kA + kÂ)α′ ' 2(qA + qÂ)
[
qC −

EC
2EA

(qA − qÂ)
]
α′ ' 4qδqα′ (B.6)

where again q = qA = −qC . Thus η and BB̂Ĉ are independently variable.
Meanwhile the dependence of k2

D (B.1) on EC −EĈ enables its range to be separately chosen
as in the examples in the main text. A small variation in p̃C ∼ −ẼC generates a large change in
k2
D via the EB̂-dependence.

Finally, as described in the main text, a regime of interest will be −η � 1, so we are not
working right on the AÂ pole, but can stay near it in order to work with a relatively simple form
for the momentum space amplitude.

C The role of the poles

In this appendix, we use a toy integral to elaborate on why the iε prescription in the S-matrix
does not by itself exclude time advances (measured with respect to the center of a scattering
object), despite the fact that the Fourier transform of a pole is a step function. Consider the
function

fA(p̃) =
(

A

p̃+ a+ iε
+ B

p̃− b− iε

)
(C.1)

with a, b > 0. This is somewhat analogous to a momentum-space scattering amplitude, but with
the energy conserving delta function stripped off; it does not have the square root branch cuts
arising in the full propagator of an intermediate state from the on-shell frequencies ω̃ =

√
p̃2 + q2

of external states. The Fourier transform of this function is

f̃A(x̃) ∼ Ae−i(a+iε)x̃θ(−x̃) +Bθ(x̃)ei(b+iε)x̃ (C.2)

That is, we get a step function contribution for positive x̃ from a pole at positive momentum
p̃ = b, and a step function contribution for negative x̃ from a pole at negative momentum p̃ = −a.

Even before reinstating the missing delta function and frequency dependence, it is worth
noting that (C.2) does not imply that scattering at positive momentum only gets support from
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positive x̃ and vice versa, because of the uncertainty principle. To spell that out, we introduce
a toy model wavefunction gΨ(p̃) = θ(p̃) (with Fourier transform g̃Ψ(x̃) ∼ 1/(x̃ + iε)), supported
only at p̃ > 0. This is supported for the sign of momentum in the pole at p̃ = b that generated
the Bθ(x̃) term in (C.2), while the Aθ(−x̃) term came from the pole at p̃ = a < 0. Nonetheless,
the scattering will depend nontrivially on A. We convolve gΨ against the toy amplitude (C.1),
computing ∫

dp̃ fA(p̃)gΨ(p̃) =
∫
dx̃ f̃A(x̃)g̃Ψ(−x̃) (C.3)

where we have expressed this convolution in both position and momentum space. Plugging in
the above functions, this is

∫ ∞

0
dp̃

(
A

p̃+ a− iε + B

p̃− b− iε

)
=
∫ 0

−∞
dx̃

Bei(b+iε)x̃

x̃+ iε
+
∫ ∞

0
dx̃

Ae−i(a+iε)x̃

x̃+ iε
(C.4)

The contribution proportional to A here, the x̃ < 0 term in (C.2) does not vanish even though
the toy wavefunction only has support at p̃ > 0.

Next let us consider a toy problem which incorporates more of the elements of the scattering
problem analyzed in the bulk of this paper. In the extreme case of a p̃B eigenstate there, the toy
model amplitude would be of the form

FA(p̃) =
(

A

p̃+ a+ iε
+ B

p̃− b− iε

)
δ(
√
p̃2 + q2 +

√
(p̃− 2p0)2 + q2 − ω0) (C.5)

for constant p0, ω0. Denoting the two solutions to the δ function p±, the Fourier transform of
this amplitude is

F̃A(x̃) ∼ eip+x̃

|∂f̂/dp̃|p+ |

(
A

p+ + a
+ B

p+ − b

)
+ (+↔ −) (C.6)

where f̂ is the argument of the delta function. In this expression, the A and B terms are no
longer step functions even at the level of this Fourier transform. A similar statement holds for the
situation worked out in the main text, where the wavefunction for B is given by (3.7); this is not
a momentum eigenstate but restricts its momentum integral to lie between two closeby values.
As discussed in the main text, this gives us sufficient resolution to distinguish the behavior of
our tree-level QFT and string theory amplitudes. In this appendix, we have simply reviewed in
more detail why the iε prescription in the S-matrix, which is common to string theory and QFT,
does not by itself sharply restrict the scattering to a step function contribution.
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