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Abstract

We evaluate one-loop amplitudes of N = 4 supergravity in D dimensions using the double-copy

procedure that expresses gravity integrands in terms of corresponding ones in Yang–Mills theory. We

organize the calculation in terms of a set of gauge-invariant tensors, allowing us to identify evanes-

cent contributions. Among the latter, we find the matrix elements of supersymmetric completions

of curvature-squared operators. In addition, we find that such evanescent terms and the U(1)-

anomalous contributions to one-loop N = 4 amplitudes are tightly intertwined. The appearance of

evanescent operators in N = 4 supergravity and their relation to anomalies raises the question of

their effect on the known four-loop divergence in this theory. We provide bases of gauge-invariant

tensors and corresponding projectors useful for Yang–Mills theories as a by-product of our analysis.

PACS numbers: 04.65.+e, 11.15.Bt, 11.25.Db, 12.60.Jv
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I. INTRODUCTION AND REVIEW

Recent explicit calculations have shown that gravity theories still have perturbative se-

crets waiting to be revealed. We have learned a number of surprising lessons from these

calculations: results in gravity theories can be obtained directly from their Yang–Mills

counterparts via a double-copy procedure [1–4]; of a curious disconnect between the leading

two-loop divergence of graviton amplitudes [5, 6] and the corresponding renormalization-

scale dependence [7, 8]; and about the surprisingly tame ultraviolet behavior of certain

supergravity theories [9–12]. These lessons augur more surprises to come. In this paper

we investigate the role of evanescent effects in the one-loop four-point amplitude of N = 4

supergravity, along with its relation to the U(1) anomaly in the duality symmetry of this

theory [13–15].

Evanescent effects arise from operators whose matrix elements vanish when working

strictly in four dimensions, but give rise to nonvanishing contributions in dimensional regu-

larization. Such contributions originate from the cancellation of poles against small devia-

tions in the four-dimensional limit; that is, they are due to ǫ/ǫ effects, where ǫ = (4−D)/2 is

the dimensional regulator. Although such effects might at first appear to be a mere techni-

cality, they turn out to play an important role [7] in understanding ultraviolet divergences of

Einstein gravity in the context of dimensional regularization [5, 6]. In particular, the Gauss–

Bonnet operator is evanescent and appears as a one-loop counterterm whose insertion at two

loops contaminates the ultraviolet divergence, but results in no physical consequences in the

renormalized amplitude. An important question therefore is whether a supersymmetric ver-

sion of the Gauss-Bonnet operator appears in the matrix elements of N = 4 supergravity. If

such an operator exists it would be important to determine its effects on the known four-loop

divergence [16] of the theory.

On the other hand, the N = 4 supergravity theory has an anomaly in its U(1) duality

symmetry [13]. The anomaly manifests itself in the failure of certain helicity amplitudes

which vanish at tree level to persist in vanishing at loop level. In the context of dimensional

regularization these anomalous amplitudes arise from ǫ/ǫ effects, in much the same way as

the usual chiral anomaly arises in the ’t Hooft–Veltman scheme [17]. Refs. [14, 16] have

suggested that the U(1) duality anomaly plays a key role in the four-loop divergence of the

theory [14, 16], although a detailed explanation is still lacking. In contrast to the anomaly
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terms, it is unlikely that evanescent effects can alter any physical quantity derived from

scattering amplitudes [7, 8]. Nevertheless, one may wonder if there any connections between

the two phenomena, given that both arise from ǫ/ǫ effects.

In order to investigate these questions we compute the one-loop four-point amplitude of

N = 4 supergravity in arbitrary dimensions, using the double-copy procedure based on the

duality between color and kinematics [1, 18]. The corresponding helicity amplitudes were

previously calculated using various methods [19–21]. Here, we use formal polarizations in

order to study evanescent effects, which are hidden when four-dimensional helicity states

are used. The conclusion of our study is two-fold: an evanescent contribution of the Gauss–

Bonnet type does appear in the pure graviton amplitude of N = 4 supergravity; and its

effects are indeed intertwined with the U(1) duality anomaly.

We argue that the main evanescent contributions to the amplitude correspond to the

supersymmetric generalization of the curvature-squared terms. Off-shell forms of curvature

square operators are known for N = 1 and N = 2 supergravity [22, 23]; but no explicit form

is known off shell in N = 4 supergravity. Nonetheless their matrix elements can be computed

directly using standard amplitude methods, even without knowing their off-shell forms. In

contrast to the nonsupersymmetric case, the coefficients of these matrix elements are finite.

This turns out to be a consequence of the same ǫ/ǫ cancellation that generates the anomaly.

As we will see, in the context of the double-copy construction there is a single object that

has matrix elements that contribute to both the anomaly and evanescent curvature-squared

terms.

The double-copy structure implies that we can write the one-loop four-point amplitude

of N = 4 supergravity in terms of pure-Yang–Mills theory building blocks, up to an overall

factor. We can therefore employ a set of gauge-invariant tensors written in terms of formal

gluon polarization vectors to carry out the calculation. We present the results in terms of

linearized field strengths, which is natural for connecting to operators in a Lagrangian and

making manifest on-shell gauge invariance. In order to explore the evanescent properties

we also construct tensors with definite four-dimensional helicity properties. We provide the

tensors in a form natural for use in color-ordered Yang–Mills theory, as well as in a fully

crossing-symmetric form natural in N = 4 supergravity. Similar gauge-invariant tensors

have recently been discussed Boels and Medina [24].

In the Appendix we give details of the gauge-invariant tensors and describe the con-
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struction of projectors for determining the coefficient of the tensors in a given amplitude.

These projectors and tensors are useful not only for N = 4 supergravity but can be applied

to four-gluon amplitudes at any loop order in any Yang–Mills theory, including quantum

chromodynamics (QCD). Because of their more general usefulness we attach a Mathematica

file [25] that includes the two sets of tensors with different symmetry properties, alongside

the corresponding projectors.

This paper is organized as follows. In Sect. II we give the construction of the four-

loop four-point amplitude of N = 4 supergravity and describe the gauge-invariant tensors

in terms of which the amplitudes are constructed. In Sect. III we give the results for the

one-loop supergravity amplitudes. Then in Sect. III we identify evanescent curvature-square

terms in the amplitude. We show the connection of these terms to the U(1) anomaly in

Sect. V. We give our conclusions in Sect. VI. An appendix describing the gauge-invariant

tensors and projectors is included.

II. CONSTRUCTION OF THE ONE-LOOP AMPLITUDE

In this section we construct the one-loop four-point amplitude of N = 4 supergravity.

Details of the gauge-invariant tensors used for expressing the results are found in the ap-

pendix.

A. Color-Kinematics Duality and the Double Copy

We apply the double-copy construction of gravity amplitudes based on the duality be-

tween color and kinematics [1, 18]. This has previously been discussed in some detail in

Ref. [21] for the one-loop amplitudes of N = 4 supergravity. In contrast to the earlier con-

struction, we use D-dimensional external states instead of four-dimensional ones, in order

to have access to evanescent effects.

Amplitudes of half-maximal supergravity in D dimensions can be obtained through a

double copy, where one factor is derived from maximally supersymmetric Yang–Mills theory

(MSYM), and the other from pure Yang–Mills (YM) theory. In four dimensions, this gives us

amplitudes in N = 4 supergravity in terms of a product of N = 4 and pure Yang–Mills the-

ory. Alternatively, one may also construct N = 4 supergravity amplitudes using two copies
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FIG. 1: Box diagrams of the one-loop four-point amplitude of N = 4 supergravity.

of N = 2 super-Yang–Mills (SYM) theory, as shown in Ref. [26]. This latter construction

is, however, more complicated, and furthermore includes unwanted matter multiplets. We

use the simpler construction.

The double-copy construction starts from the integrands of two Yang–Mills gauge-theory

amplitudes, written in terms of purely cubic diagrams. In a Feynman-diagram language,

four-point vertices can always be “blown up” into a product of three-point vertices, possibly

with the exchange of a fictitious tensor field. The representation of one-loop amplitudes is,

A1-loop
m = igm

∫

dDp

(2π)D

∑

j∈ICD

1

Sj

njcj
∏

αj
p2αj

, (2.1)

where the sum runs over the independent cubic diagrams (ICD) labeled by j, while the

cj and nj are the color factors and kinematic numerators associated with each diagram.

The factor 1/Sj accounts for the usual diagram symmetry factors and the product over αj

runs over the Feynman propagators 1/p2αj
for diagram j. If the kinematic numerators can

be arranged to satisfy the same algebraic properties as adjoint representation color factors,

that is so that Jacobi relations hold,

ci + cj + ck = 0 ⇒ ni + nj + nk = 0 , (2.2)

along with all anti-symmetry properties, then we can obtain gravity integrands and thence

amplitudes by replacing the color factors cj in Eq. (2.1) by the second Yang–Mills theory’s

kinematic numerators,

ci → ñi . (2.3)

We do this while keeping the original kinematic factors nj of the first Yang–Mills theory. A

similar procedure holds for particles in the fundamental representation [27].

The one-loop four-point amplitude of N = 4 supergravity is easy to construct via the

double-copy construction, because the N = 4 MSYM numerators are especially simple [28].
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The numerators of triangle and bubble diagrams vanish, and the box integrals illustrated in

Fig. 1 have kinematic numerators proportional to the tree amplitude,

n1234 = n1342 = n1423 = s tAtree
N=4(1, 2, 3, 4) , (2.4)

where we define the usual Mandelstam invariants,

s = (k1 + k2)
2 , t = (k2 + k3)

2 , u = (k1 + k2)
2 . (2.5)

These numerators trivially satisfy the dual Jacobi identities in Eq. (2.2). Thus, the N = 4

supergravity one-loop amplitude is

M1-loop

N=4,SG(1, 2, 3, 4) = istAtree
N=4(1, 2, 3, 4)

(

I1234[n1234,p] + I1342[n1342,p] + I1423[n1423,p]
)

, (2.6)

where we have stripped the gravitational coupling, and where

I1234[n1234,p] ≡

∫

dDp

(2π)D
n1234,p

p2(p− k1)2(p− k1 − k2)2(p+ k4)2
, (2.7)

is the first box integral in Fig. 1 and n1234,p is the pure Yang–Mills kinematic numerator

given in Eq. (3.5) of Ref. [29]. We can restore the coupling to the supergravity amplitude

via,

Mtree
N=4,SG(1, 2, 3, 4) =

(κ

2

)2

M tree
N=4,SG(1, 2, 3, 4) , (2.8)

at tree level, and

M1-loop
N=4,SG(1, 2, 3, 4) =

(κ

2

)4

M1-loop
N=4,SG(1, 2, 3, 4) , (2.9)

at one loop. The coupling is related to Newton’s constant via κ2 = 32πGN . An alternate

form of Eq. (2.6) is,

M1-loop
N=4,SG(1, 2, 3, 4) =istA

tree
N=4(1, 2, 3, 4)

×
(

A1-loop(1, 2, 3, 4) + A1-loop(1, 3, 4, 2) + A1-loop(1, 4, 2, 3)
)

, (2.10)

where A1-loop(1, 2, 3, 4) is the color-ordered one-loop amplitude of pure Yang–Mills theory.

The difference between Eqs. (2.6) and (2.10) cancels in the permutation sum. The second

form makes gauge invariance manifest, as the building blocks are gauge-invariant color-

ordered amplitudes. We use the form in Eq. (2.6) to evaluate the amplitude explicitly.
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B. Gauge-Invariant Building Blocks

The relatively simple double-copy structure of the one-loop four-point N = 4 supergravity

amplitude displayed in Eq. (2.10) makes manifest a factorization into the product of an

MSYM tree amplitude and a sum over the three distinct permutations of the one-loop color-

ordered amplitude of pure Yang–Mills theory. This suggests that we can obtain a convenient

organization of the supergravity amplitude by first decomposing the Yang–Mills amplitudes

into gauge-invariant contributions. We do so using bases of local on-shell ‘gauge-invariant

tensors’. By gauge-invariant tensors here we mean polynomials in (εi · εj), (ki · εj) and

(ki · kj) that vanish upon replacing εi by ki. These tensors are distinct only if they differ

after imposing on-shell conditions. We can build such tensors by starting with tree-level

four-point scattering amplitudes for external gluons, for example, or with four-point matrix

elements of local gluonic operators, and then multiplying by appropriate factors of s, t, or

u to make the quantities local. Boels and Medina [24] have also recently constructed such

tensors.

In the Appendix we present two different bases. In the first, we impose definite cyclic

symmetry; this yields a basis natural for color-ordered Yang–Mills amplitudes. In the sec-

ond, we impose definite symmetry under crossing, making them natural for supergravity.

Associated with each gauge-invariant tensor is a projector built out of momenta and conju-

gate polarization vectors. When applied to an integrand, it yields the coefficient of the given

tensor. Integrating the coefficient then yields the coefficient of the tensor in the amplitude.

This type of projection to a basis of gauge-invariant tensors has been used in Ref. [30]. We

stress that the first of these bases is directly useful in gauge-theory calculations. We refer the

reader to the Appendix for more details about the bases, their properties, their construction

and the projection techniques. We also make these tensors and projectors available in a

ancillary Mathematica file [25].

We apply this projection technique to the integrand in Eq. (2.6). This reduces the numer-

ators to sums of products of inverse propagators and external kinematics. The integrand

is then expressed as a sum over tensors, with each coefficient expressed in terms of the

scalar box and simpler triangle and bubble integrals that are easy to evaluate (via Feynman

parameterization, for example). The scalar box integral is taken from Ref. [31]. As a cross-

check we also evaluated the tensor integrals prior to applying the projectors, following the
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(a) (b)

FIG. 2: Representative diagrams for (a) three- and (b) four-point F 3 insertions.

methods of Refs. [32] that express every tensor integral in terms of Schwinger parameters.

These integrals are in turn expressed in terms of scalar integrals with shifted dimensions and

higher powers of propagators. We use FIRE5 [33] to reduce these integrals to elements of

the standard basis of scalar integrals. The integrals are then shifted back to four dimensions

using dimension-shifting formulas [32, 34]. Both methods yield identical results.

We introduce linearized field strengths corresponding to each external particle,

Fi µν ≡ ki µεi ν − ki νεi µ , (2.11)

in order to organize the results obtained from the projection technique. We express our

results using Lorentz-invariant combinations of these linearized field strengths. For four-

point scattering in a parity-even theory, the only combinations at the lowest mass dimension

are [35],

(FiFjFkFl) ≡ F µν
i Fj νρF

ρσ
k Fl σµ , (2.12)

(FiFj)(FkFl) ≡ F µν
i Fj µνF

ρσ
k Fl ρσ . (2.13)

These quantities are not symmetrized over the indices i, j, k, and l.

We need only one additional tensor for four-point scattering. This tensor can be expressed

as a linear combination of terms of the formD2F 4. It is, however, more convenient to express

this tensor as a matrix element with an insertion of an F 3 operator,

F 3 ≡
1

3
TrF µ

νF
ν
ρF

ρ
µ , (2.14)

where the trace is over color. The gauge-invariant tensor is given by

TF 3 ≡ −istAtree
F 3 (1, 2, 3, 4) , (2.15)

using the four-point tree-level color-ordered amplitude with a single insertion of the operator

(2.14), as depicted in Fig. 2. As we see below, after applying the double-copy procedure,

this element of our basis is the one giving rise to the curvature-squared matrix elements, as

well as some of the anomalous ones.
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III. RESULT AND MAPPING TO SUPERGRAVITY

Using the tensors in Eqs. (2.12), (2.13) and (2.15), we can write the supergravity ampli-

tude as follows1,

M1-loop
N=4,SG(1, 2, 3, 4) = cΓstA

tree
N=4(1, 2, 3, 4)

×

[

t8F
4

stu

(

−
2

ǫ2

3
∑

i<j

sij

(−sij
µ2

)−ǫ

+L1(s, t, u)

)

+
TF 3

stu
+

(

4

3
(F1F2F3F4)

(

1

st
+ L2(s, t, u)

)

+ (F1F2)(F3F4)

(

1

s2
+ L3(s, t, u)

)

+ cyclic(2,3,4)

)

]

,

(3.1)

where µ is the usual scale parameter, s12 = s, s23 = t, s13 = u; where

cΓ =
Γ(1 + ǫ)Γ2(1− ǫ)

(4π)2−ǫΓ(1− 2ǫ)
, (3.2)

is the usual one-loop prefactor,

L1(s, t, u) = −s ln
(−s

µ2

)

−
(2s2 + st+ 2t2)

2u

(

ln2
(−s

−t

)

+ π2

)

+ cyclic(s, t, u) , (3.3)

L2(s, t, u) = −
2s

t2u
ln
(−s

−u

)

+
1

4u2

(

ln2
(−s

−t

)

+ π2

)

+
(s− 2t)

t3

(

ln2
(−s

−u

)

+ π2

)

+ (s↔ t) , (3.4)

L3(s, t, u) =
1

stu

(

−s ln
(−s

µ2

)

− t ln
(−t

µ2

)

− u ln
(−u

µ2

)

)

+
(t− u)

s3
ln
(−t

−u

)

+
(2s2 − tu)

s4

(

ln2
(−t

−u

)

+ π2

)

, (3.5)

and where we have used the combination

t8F
4 = 2(F1F2F3F4)−

1

2
(F1F2)(F3F4) + cyclic(2, 3, 4) , (3.6)

familiar from the four-point one-loop type I superstring amplitude. The rank-8 tensor t8

arises from the trace over the fermionic zero-modes (see for instance2 Ref. [36]). The com-

bination in Eq. (3.6) is crossing symmetric and is related to the Yang–Mills tree amplitude

1 We write our results in the unphysical region where s, t, u < 0; one can analytically continue to the

physical region where s > 0 and t, u < 0 using ln(−s) → ln(s)− iπ.
2 The t8 tensor used here differs from the one in Ref. [36] by an overall factor of 4.
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via

t8F
4 = −istAtree(1, 2, 3, 4) = −isuAtree(1, 2, 4, 3) = −ituAtree(1, 3, 2, 4) . (3.7)

The amplitude in Eq. (3.1) is ultraviolet-finite; the poles in ǫ in Eq. (3.1) are infrared ones.

We have carried out a number of checks of the amplitude. A simple check is that the

infrared singularity in Eq. (3.1) matches the known form [37],

M1-loop

N=4,SG

∣

∣

∣

IR
= −M tree

N=4,SG

2cΓ
ǫ2

3
∑

i<j

sij

(−sij
µ2

)−ǫ

. (3.8)

To see this we express the factors in front of the 1/ǫ2 in Eq. (3.1) in terms of the supergravity

tree amplitude,

stAtree
N=4(1, 2, 3, 4)

t8F
4

stu
= − isAtree

N=4(1, 2, 3, 4)A
tree(1, 2, 4, 3) =M tree

N=4,SG(1, 2, 3, 4) , (3.9)

where the last step uses the Kawai–Lewellen–Tye (KLT) relation [38] between tree-level

gravity and Yang–Mills amplitudes. We have also compared the finite parts of all the am-

plitudes with external scalars and gravitons to the results in Ref. [14, 19, 21] and found

agreement. The remaining fermionic amplitudes are related by supersymmetry Ward identi-

ties. We have checked that, prior to specializing to D = 4, the ultraviolet divergence cancels

for D < 8, as expected [11]. In D = 8, we match the prediction from the heterotic string

(see section 3.A.1 of Ref. [39]) as well as the calculation in Ref. [11]. It may also be possi-

ble to compare our D-dimensional expression to the recent D = 10 prediction in Ref. [40]

obtained from M-theory. However, performing this comparison would be nontrivial as the

divergences are quadratic in this dimension and hence depend on the regulator. It would be

interesting to study this connection further.

The form in which we presented the amplitude in Eq. (3.1) makes the supersymmetry

completely manifest, because it acts only on the MSYM side of the double copy. In addition,

this form makes the translation to gravity transparent.

We now show in some detail how this works for the case of external gravitons. In the

double-copy construction, amplitudes with four external gravitons can be built from inte-

grands with purely gluonic external states on both sides of the double copy. As discussed

in the previous section, it is convenient to use linearized field strengths in Eqs. (2.12) and

(2.13) to write the answer. In order to translate to gravity we do this on both sides of the

double copy. From this form, we can easily convert the linearized field strengths F in our
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formulas to a linearized Riemann tensor R using the relation,

2

κ
Ri µνρσ = Fi µνFi ρσ = (ki µεi ν − ki νεi µ) (ki ρεi σ − ki σεi ρ) , (3.10)

where the index i refers to the particle label, just as in Eq. (2.11). In this equation the

product of Yang–Mills polarization vectors is identified as a graviton polarization tensor via

the replacement εi µεi ν → εi µν . The graviton is related to the metric via gµν = ηµν + κhµν ,

as in Ref. [35]. The factor of 2/κ is included in Eq. (3.10) so that Ri µνρσ is given by the

linearized Riemann tensor with the field hµν replaced by a polarization tensor εi µν .

The contribution from the pure-gluon factor from MSYM is always a factor of stAtree =

it8F
4. Once we multiply the tensors from both sides of the double-copy we then obtain the

following combinations,

t8F
4t8F

4 → t8t8R
4 , (3.11)

t8F
4(FiFjFkFl) → t8(RiRjRkRl) , (3.12)

t8F
4(FiFj)(FkFl) → t8(RiRj)(RkRl) , (3.13)

where

(RiRj)
µ1µ2µ3µ4(RkRl)

µ5µ6µ7µ8 ≡ Ri
µ1µ2νλRj

µ3µ4
νλRk

µ5µ6ρσRl
µ7µ8

ρσ , (3.14)

(RiRjRkRl)
µ1µ2µ3µ4µ4µ5µ6µ7µ8 ≡ Ri

µ1µ2νλRj
µ3µ4

λρRk
µ5µ6ρσRl

µ7µ8
σν . (3.15)

In ten dimensions Eq. (3.11) is a component of the only N = 2 superinvariant, whereas

Eqs. (3.12) and (3.13) are components of the two N = 1 superinvariants [40, 41].

The mapping of the final TF 3 tensor to gravity may appear more complicated than for

the F 4-class tensors, because the former is generated from a scattering amplitude with an

F 3 insertion, as previously illustrated in Fig. 2. A relatively simple way to obtain this

tensor is to use KLT relations for amplitudes extended to include insertions of this higher-

dimensional operator [42, 43]. This extension is in line with expectations from string-theory

KLT relations [44, 45], where the operator appears in the low-energy effective action. In

Refs. [42, 43] it was established that the KLT relations apply to F 3 operators as,

sAtree(1, 2, 3, 4)×Atree
F 3 (1, 2, 4, 3) = iM tree

R2 (1, 2, 3, 4) , (3.16)

where all particles are gluons on left-hand side of the equation, and all are gravitons on the

right-hand side when the helicities of each pair of gluons align. Direct checks using Feynman
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diagrams, starting from the Einstein action, confirm that the Gauss–Bonnet insertion into

a four-point gravity tree amplitude indeed satisfies Eq. (3.16) [46]. Hence we see that the

tensor TF 3 maps into the curvature-squared matrix elements in gravity as follows,

stAtree(1, 2, 3, 4)TF 3 = −isuAtree(1, 2, 4, 3)stAtree
F 3 (1, 2, 3, 4) = stuM tree

R2 (1, 2, 3, 4) , (3.17)

where we used the crossing symmetry of stAtree(1, 2, 3, 4) and the KLT relation in Eq. (3.16).

After the complete map to linearize Riemann tensors, the graviton amplitude takes the

form,

M1-loop
N=4,SG = cΓ

[

M tree
N=4,SG

(

−
2

ǫ2

3
∑

i<j

sij

(−sij
µ2

)−ǫ

+L1(s, t, u)

)

+M tree
R2 +

(

4

3
t8(R1R2R3R4)

(

1

st
+ L2(s, t, u)

)

+ t8(R1R2)(R3R4)

(

1

s2
+ L3(s, t, u)

)

+ cyclic(2, 3, 4)

)

]

.

(3.18)

The same construction works for any supergravity state. For all states in the supergrav-

ity multiplet, the same pure Yang–Mills tensors feed into the corresponding supergravity

expressions; the differences are solely on the MSYM side of the double copy.

It is remarkable that the coefficient of the curvature-squared matrix element M tree
R2 ap-

pearing in Eq. (3.18) is just a simple number. If the theory had a nonvanishing trace

anomaly [47], the coefficient of M tree
R2 would have contained a 1/ǫ divergence [5, 7, 48]. In

our calculation the divergences are suppressed by an explicit factor of D − 4 = 2ǫ, (see, for

example, Eq. (2.11) of Ref. [49]) leaving a finite rational contribution. From the perspective

of the double copy, this ǫ/ǫ effect also generates the nonvanishing all-plus and single-minus

one-loop amplitudes associated with the U(1) duality anomaly [14]. We comment on this

below.

IV. CURVATURE-SQUARED MULTIPLETS AND DIVERGENCES IN SUPER-

GRAVITY

In the previous section we found curvature-square contributions to the effective action.

In this section we describe these contribution in more detail.
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A. Curvature-Squared Multiplets with Half-Maximal Supersymmetry

In the full superamplitude, we find a term proportional to,

sAtree
N=4(1, 2, 4, 3)A

tree
F 3 (1, 2, 3, 4) , (4.1)

which, as described in the previous section, contains the evanescent matrix element of cur-

vature operators. In general dimensions there exist several off-shell curvature-squared oper-

ators in gravity theories. The two most important ones are the Gauss–Bonnet density and

the square of the Weyl tensor3, which respectively are given by,

E4 = RµνρσR
µνρσ − 4RµνR

µν +R2 , (4.2)

W 2 =Wµνρσ W
µνρσ = RµνρσR

µνρσ − 2RµνR
µν +

1

3
R2 . (4.3)

The difference between the two is,

W 2 − E4 = 2(RµνR
µν −

1

3
R2) , (4.4)

which vanishes on shell. The single on-shell independent operator is usually chosen to be the

Gauss–Bonnet combination (4.3). It is however a total derivative in four dimensions, which

implies that all curvature-squared matrix elements are evanescent in this dimension [50]. A

consequence of this is the finiteness of pure graviton amplitudes at one loop [50] in Einstein

gravity, as these operators are the only available counterterms. (When matter is added to

the theory—even supersymmetric matter multiplets—generic divergences do appear at one

loop starting with amplitudes for four matter particles [51].)

Off-shell R2 supermultiplets were constructed long ago for N = 1 supergravity in four

dimensions [22], and more recently for N = 2 supergravity [23] using a version of N = 2

superspace. Very recently an N = 4 supersymmetric completion of the Weyl-squared op-

erator has been discussed in Ref. [15] in terms of linearized superfields in four dimensions.

However, at the nonlinear level no fully off-shell versions have been constructed to date for

any of the curvature-squared multiplets. This is unsurprising in light of the more general

unsolved problem of constructing an off-shell N = 4 superspace.

3 There is another interesting curvature-square operator, the Pontryagin density ∗RµνρσR
µνρσ; but it is

parity odd and hence it cannot appear in the amplitudes of parity-conserving theories.
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Eq. (4.1) also contains matrix elements related by supersymmetry to the one correspond-

ing to curvature-squared operators. These must arise from the N = 4 supersymmetric com-

pletion of the curvature operators in Eq. (4.3). Therefore the existence of such matrix

element implies the existence of the corresponding N = 4 curvature-squared multiplets. In

particular, these matrix elements should correspond to the single insertion of the operator

discussed in Ref. [15] in four dimensions as all curvature-squared operators are equivalent on

shell. However, we cannot analyze such matrix elements strictly in four dimensions, because

they will vanish identically.

The double-copy construction provides additional information, because it implies that

completions of curvature-squared operators with half-maximal supersymmetry should exist

in any integer dimension D ≤ 10 and that their on-shell matrix elements are given by the

KLT product of the F 3 operator insertion and ordinary MSYM amplitudes. The restriction

to D ≤ 10 arises because that is the maximum dimension for a super-Yang–Mills theory.

The double-copy perspective also shows that an N ≥ 5 supersymmetric completion of

curvature-squared operators [52] cannot exist. We have an overall factor of stAtree
N=4 from

the MSYM amplitude on the one side of the double copy. On the other side we would have

an N ≥ 1 super-Yang–Mills amplitude. From the double-copy perspective, in any dimen-

sion the R2 terms correspond to an F 3 operator on this latter side. We would then need a

supersymmetric completion of the F 3 operator, to make it compatible with N = 1 super-

symmetry. We know, however, that no such completion exists in four dimensions because

F 3 matrix element contributes only to all-plus and single-minus helicity configurations; and

these are forbidden by a supersymmetric Ward identity [53]. This also rules out supersym-

metric completions for these theories in any dimension D > 4 because on shell there is only

a single independent curvature-square invariant and one can choose the external momenta

and states to live in a four-dimensional subspace, and hence the same argument applies.

B. Possible Effects at Higher Loops

In the context of dimensional regularization, evanescent R2 contributions such as the ones

described here play a crucial role in the two-loop divergences of pure gravity [5, 6]. This

happens because the evanescent R2 terms appear at one loop with a divergent coefficient

proportional to the trace anomaly. While such terms do not contribute in four dimensions,
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FIG. 3: Representative diagram for the insertion of the evanescent R2 counterterm, affecting the

two-loop divergence in pure graviton amplitudes [7].

(a) (b)

FIG. 4: Representative diagrams for insertions of the supersymmetric R2 operator at three loops

that could affect the four-loop divergence.

they do appear at two loops as subdivergences in the dimensionally regulated amplitude,

directly affecting the value of the two-loop divergence [7]. One must then subtract a one-

loop R2 counterterm insertion, as illustrated in Fig. 3. This evanescent contribution becomes

nonvanishing in dimensional regularization where it modifies the two-loop divergence. The

net result is a curious a disconnect between the coefficient of the dimensionally-regulated

two-loop R3 ultraviolet divergence of these theories and the corresponding renormalization-

scale dependence. The coefficient of the divergence depends on details of the regularization,

while the renormalization scale dependence is simple and robust [7, 8].

As shown in Eq. (3.18), in N = 4 supergravity the R2 contribution appears with a finite

coefficient, so it cannot contribute to possible two-loop divergences. One may nonetheless

expect it to modify divergences at yet-higher loops. Explicit calculation reveal no divergences

in N = 4 supergravity through three loops [9], but unveil them at four loops [16]. The

addition of supersymmetrization of a curvature-squared operator as a local counterterm to

the action is not expected to have any physical consequences in the scattering amplitudes,

because it is evanescent. The analysis in Ref. [7] shows that it can however affect divergences.

It would be interesting to study the effect of such local counterterms on the known four-loop

divergence calculated in Ref. [16]. One may wonder whether such a finite counterterm can

be used to modify or even remove the four-loop divergence. The answer to this question

would require a three-loop computation with insertions of this operator, as illustrated in
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Pure YM N = 4 MSYM N = 4 Supergravity

〈g−g−g+g+〉 ⊗ 〈g−g−g+g+〉 〈h−−h−−h++h++〉

〈g−g+g+g+〉 ⊗ 〈g−g−g+g+〉 〈h−−φ−+h++h++〉

〈g+g+g+g+〉 ⊗ 〈g−g−g+g+〉 〈φ−+φ−+h++h++〉

TABLE I: Top components of three of the five independent superamplitudes. The other two are

obtained from CPT conjugation.

Fig. 4.

V. EVANESCENT EFFECTS AND THE U(1) ANOMALY

We now show that from the vantage point of the double copy that the U(1) anomalous

contributions cannot be separated from the evanescent R2 matrix elements, described in

the previous section. We first review the anomaly and its manifestation in one-loop matrix

elements [14], before explaining how these effects are intertwined.

In order to describe the anomaly we recall some basic facts about the spectrum of four-

dimensional N = 4 supergravity and the associated superamplitudes. We focus here on

pure N = 4 supergravity with no matter multiplets. The states of pure N = 4 supergravity

fall into two supermultiplets. One contains the positive-helicity graviton and its superpart-

ners [54]:

(h++, ψ+
a , A

+
ab, χ

+
abc, φ

−+) , (5.1)

where h++ is the positive-helicity graviton, ψ+
a are the four positive-helicity gravitinos, and

so forth until the complex scalar φ−+. The indices a, b, c are SU(4) R symmetry indices.

The other supermultiplet is the CPT conjugate to the one above, containing the negative-

helicity graviton h−− and the conjugate scalar φ+−. Seen through the lens of the double-copy,

each multiplet corresponds to the supermultiplet of MSYM multiplied by either a positive-

or negative-helicity gluon on the pure Yang–Mills side. For instance the positive-helicity

graviton arises from a positive-helicity gluon on both sides of the double copy, and the

complex scalars come from negative-helicity gluons on one side and positive-helicity gluons

on the other side.

Because not all the states of this theory are in a single supermultiplet, the amplitudes are
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organized into different sectors not directly related by supersymmetry. For each one of these

sectors there is an associated superamplitude. A simple way to understand this organiza-

tion is via the double-copy construction. The supersymmetry Ward identities imply that

the only nonvanishing helicity amplitudes in MSYM are those in the maximally-helicity-

violating (MHV) sector corresponding to amplitudes with two negative-helicity and two

positive-helicity gluons (g−g−g+g+) and their superpartners, which all sit in a single su-

peramplitude. On the pure Yang–Mills side of the double copy, however, there are three

distinct types of amplitudes: all-plus (g+g+g+g+), single-minus (g−g+g+g+), and two-minus

or MHV (g−g−g+g+), together with their parity conjugates. Hence there are three distinct

sectors of supergravity super-amplitudes, inherited from each of the pure-Yang–Mills he-

licity configurations. In the all-plus and single-minus pure Yang–Mills sectors the gluons

do not have the same number of negative or positive helicities as the gluons in the MSYM

amplitude. Because of this the corresponding N = 4 supergravity superamplitudes do not

contain four-graviton amplitudes, but have mixed graviton–scalar amplitudes as their top

components, as illustrated in Table I.

Ref. [13] showed that there exists an anomaly in an abelian U(1) subgroup of the SU(1, 1)

duality group of N = 4 supergravity. This anomaly is manifested in the nonvanishing of the

amplitudes,

MN=4(1h−−, 2φ−+, 3h++, 4h++) =
i

(4π)2
〈1 2〉2 〈1 3〉2 [2 3]2 [3 4]4

stu
,

MN=4(1φ−+ , 2φ−+, 3h++, 4h++) =
i

(4π)2
[3 4]4 , (5.2)

as well those related by supersymmetry [14]. The spinor inner products 〈a b〉 and [a b] follow

the standard conventions in Ref. [55]. The scalars carry a charge under the U(1) subgroup

whereas the gravitons are uncharged and hence these amplitudes violate conservation of this

charge. At tree level the charges are conserved because the amplitudes all vanish, but at

loop level they do not. This anomaly can be traced back to O(ǫ) terms which interfere with

a would-be 1/ǫ divergence, leaving behind a rational term. This is similar to the way the

chiral anomaly arises in dimensional regularization [17].

As explained above, our calculation reveals evanescent contributions in Eq. (4.1), which

are related to the supersymmetric completion of the R2 operator. Mixed graviton–scalar

amplitudes also receive non-evanescent contributions from the same terms. A simple way

to see this is by expressing the F 3 matrix element in a basis of gauge-invariant tensors that
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N = 4 Supergravity −isAtree
N=4(1, 2, 4, 3)A

tree
F 3 (1, 2, 3, 4)

〈h−−h−−h++h++〉 0

〈h−−φ−+h++h++〉 −i
〈1 2〉2〈1 3〉2[2 3]2

stu
δ(8)(Q)

〈φ−+φ−+h++h++〉 2i δ(8)(Q)

TABLE II: Top components of the three independent sectors in four dimensions and corresponding

superamplitudes.

has definite four-dimensional helicity properties. We give two such bases in the Appendix.

In the basis with tensors that have definite crossing-symmetry properties, we find that the

F 3 matrix element is given by,

TF 3 =
2stu

(s2 + t2 + u2)
H(++++)−H(−+++)+

2(s− t)(s− u)(t− u)

3(s2 + t2 + u2)2
Hev1−

6stu

(s2 + t2 + u2)2
Hev2.

(5.3)

This decomposition explicitly shows that TF 3 has nonvanishing contributions to the all-plus

and single-minus helicity configurations, with the rest of the tensor being evanescent in four

dimensions. This gives some additional insight into the evanescent nature of the R2 matrix

element in gravity. The only nonvanishing amplitudes on the MSYM side of the double

copy have an MHV helicity configuration (− − + +), whereas Eq. (5.3) shows that the F 3

matrix element does not contribute to MHV amplitudes on the pure Yang–Mills side. This

implies that the pure-graviton matrix elements vanish in four dimensions. More importantly,

we see that this matrix element contributes to the all-plus and single-minus helicities, thus

generating anomalous mixed graviton-scalar matrix elements after applying the double-copy

construction.

An alternative way to understand the different contributions of this matrix element is to

recall that in general dimension, a pair of gluons is mapped via the double copy to a graviton,

a dilaton and an antisymmetric tensor. In four dimensions the antisymmetric tensor is dual

to a pseudoscalar that together with the dilaton combines into the complex scalar discussed

above. The intertwining of the anomalous and evanescent contributions in Eq. (3.16) there-

fore follows from the entanglement of the graviton, dilaton and an antisymmetric tensor in

the double-copy construction.

From the discussion above, we conclude that the F 3 KLT product in Eq. (3.16) not

only gives the evanescent curvature-squared matrix elements, but it necessarily results in an
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anomalous contribution to the amplitude. It is striking that contributions to both can be

traced back to precisely the same term in the double copy. The anomalous contributions

arising from TF 3 are summarized in Table II. In this table the supermomentum delta function

can be expanded as [56]

δ(8)(Q) =
(

4
∑

j=1

λ̃α̇j η̃ja

)

=
4
∏

a=1

4
∑

i<j

[i j] η̃iaη̃ja, (5.4)

where we take the top component to be the one containing the factor [3 4]4. Comparing

these to the anomalous amplitudes in Eq. (5.2) we see that, while the amplitudes in the

single-scalar sector are fully contained in this term, those in the two-scalar sector are off by

an overall factor and receive additional contributions that change the overall coefficient.

Finally, it is interesting to note that such anomalous and evanescent effects will not

appear in the one-loop amplitudes of N ≥ 5 supergravity. The lack of anomalous one-loop

amplitudes in N ≥ 5 supergravity has been recently explained from the vantage point of

super-invariants [15]. This, together with the absence of evanescent effects, is understood

in the double-copy procedure as a consequence of the vanishing of the one-loop all-plus and

single-minus amplitudes in super-Yang–Mills theories.

VI. CONCLUSION

In this paper we identified terms in the dimensionally regulated one-loop four-point am-

plitude of pure N = 4 supergravity that can be written as insertions of curvature-squared

operators into matrix elements. Such terms are evanescent and vanish for four-dimensional

external states. We also showed that these evanescent terms are intertwined with contri-

butions generated by the U(1) duality anomaly [13, 14]. These two effects both arise from

rational pieces that result from an ǫ/ǫ cancellation, where ǫ = (4−D)/2 is the dimensional

regularization parameter.

Both the anomaly and the evanescent curvature-square terms may play a central role in

the ultraviolet properties of gravity theories. As explained in Ref. [14] the anomaly in N = 4

supergravity gives contributions with a poor ultraviolet behavior. We also know that beyond

one loop, evanescent effects contribute to dimensionally regulated ultraviolet divergences in

gravity theories [7].
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We carried out our analysis using the double-copy construction [1, 18] of N = 4 super-

gravity [21] in terms of the corresponding pure Yang–Mills and N = 4 MSYM amplitudes.

The double-copy construction makes the on-shell supersymmetry manifest, because N = 4

supergravity inherits the well-understood on-shell superspace of MSYM theory. By using

formal polarization vectors on the pure-Yang–Mills side of the double copy, we were able to

evaluate all one-loop four-point amplitudes of N = 4 supergravity simultaneously. In the

graviton sector we gave explicit conversion formulas from gauge theory to gravity, using rela-

tions between linearized Riemann tensors and Yang–Mills field strengths. The double-copy

construction implies that completions of curvature-squared operators with half-maximal su-

persymmetry should exist in any dimension with D ≤ 10 and that their on-shell matrix

elements are given by the KLT product of the F 3 operator insertion and ordinary MSYM

amplitudes.

There are a number of interesting avenues for future research. Although it is is not known

how to write the super-Gauss–Bonnet or Weyl-squared terms in an off-shell superspace,

our paper provides all components of four-point matrix elements of single insertions of

these operators. For the pure-graviton amplitude the Gauss–Bonnet operator is the correct

one for generating these matrix elements. For amplitudes with other external states, one

would first need to systematically write down a set of evanescent operators of the same

dimension, feed them through a tree-level matrix-element computation and then match

them to our evanescent matrix elements. Once the combination of operators leading to our

evanescent matrix elements are found, one can try to appropriately package the components

into superfields.

We organized the one-loop amplitude in terms of gauge-invariant tensors. These and

their associated projectors are described in the appendix and given in the Mathematica

attachement [25]. They are useful, not only for N = 4 supergravity, but for any gauge-

theory four-gluon amplitude at any loop order.

In pure gravity the evanescent one-loop curvature-squared terms enter with a coefficient

proportional to 1/ǫ. Because of this, when inserted as counterterms in a two-loop calculation

they affect the leading ultraviolet divergence [7]. In N = 4 supergravity these evanescent

terms appear with a finite coefficient. This means that they cannot affect divergences until

three loops or higher. Direct calculations show that the three-loop divergences cancel [9]

and the first divergence occurs at four loops [16]. It is important to understand the effect of

20



evanescent and anomalous contribution on higher-loop amplitudes, especially to see whether

their contributions can account for the four-loop divergence of N = 4 supergravity. A direct

study requires a three-loop computation. An important step in this direction would be

to analyze the anomalous sector at two loops in N = 4 supergravity and its relation to

evanescent effects. In the longer term, understanding the role of anomalies and evanescent

effects more generally at higher loops appears to be crucial in order to unravel the ultraviolet

properties of supergravity theories.
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Appendix A: Gauge-Invariant Tensors for Yang–Mills Four-Point Amplitudes

In this appendix, we describe two independent sets of Yang–Mills kinematic tensors built

out of physical polarization vectors εi and on-shell momenta ki. In both sets, the tensors are

constrained to be on-shell gauge invariant, that is vanishing under the substitution εi → ki

for each external leg independently. The tensors are polynomials in the dot products ki · εj,

εi·εj , and the Mandelstam invariants s and t. They are thus free of poles by construction. We

also organize the tensors to have definite symmetry properties under a relevant symmetry,

and to be diagonal in a four-dimensional helicity basis. The tensors are dimension-agnostic,

and so the sets are not in general diagonal in a basis of external states outside of four

dimensions. Both sets have seven tensors.

In the first set, each tensor represents kinematic parts of a color-ordered amplitude, up

to a function of s and t. Such amplitudes are invariant under a cyclic permutation of the

external indices, i → (i + 1) mod 4, so we choose the tensors to have definite symmetry

properties under the cyclic shift. An arbitrary function can be split up into symmetric and

antisymmetric combinations, f±(s, t) = 1
2
[f(s, t) ± f(t, s)], so we choose the tensors to be

symmetric or antisymmetric. It might seem simpler to choose them to be symmetric; but

for some of them, an antisymmetric form is simpler. In an amplitude, such antisymmetric

tensors would then appear multiplied by an antisymmetric function of s and t. We present

this set in the first subsection.

For the second set, each tensor represents one Yang–Mills copy in a double-copy construc-

tion of an N = 4 supergravity amplitude, where the other copy is given by the tree-level

tensor. These tensors then suffice to construct the N = 4 supergravity four-point amplitude

at one and two loops. These tensors are required to have definite symmetry properties un-

der the full permutation group acting on the external indices. We are interested only in the

one-dimensional representations of this group, so again each tensor will either be completely

invariant, or will change sign according to the signature of a permutation. We present this

set in the second subsection.

In the third subsection, we describe set of projection operators that can be applied to

an expression given in terms of polarization vectors and momenta to obtain the (scalar)

coefficients of the different basis tensors.
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1. Tensors with Definite Cyclic Symmetry

We take the first element of the set of tensors with definite cyclic properties to be the

tensor of engineering dimension 4 that appears in the tree amplitude,

T tree = t8F
4 = s (s+ t) ǫ1 ·ǫ4 ǫ2 ·ǫ3 − s t ǫ1 ·ǫ3 ǫ2 ·ǫ4 + t (s+ t) ǫ1 ·ǫ2 ǫ3 ·ǫ4

− 2 (s+ t) ǫ1 ·ǫ4 k1 ·ǫ2 k1 ·ǫ3 − 2 (s+ t) ǫ1 ·ǫ4 k1 ·ǫ2 k2 ·ǫ3

− 2 s ǫ1 ·ǫ3 k1 ·ǫ2 k2 ·ǫ4 − 2 t ǫ1 ·ǫ2 k1 ·ǫ3 k2 ·ǫ4 − 2 (s+ t) ǫ1 ·ǫ2 k2 ·ǫ3 k2 ·ǫ4

− 2 t ǫ2 ·ǫ4 k1 ·ǫ3 k3 ·ǫ1 − 2 t ǫ2 ·ǫ4 k2 ·ǫ3 k3 ·ǫ1 − 2 s ǫ2 ·ǫ3 k2 ·ǫ4 k3 ·ǫ1

− 2 (s+ t) ǫ1 ·ǫ3 k1 ·ǫ2 k3 ·ǫ4 − 2 (s+ t) ǫ1 ·ǫ2 k2 ·ǫ3 k3 ·ǫ4

− 2 (s+ t) ǫ2 ·ǫ3 k3 ·ǫ1 k3 ·ǫ4 − 2 (s+ t) ǫ3 ·ǫ4 k1 ·ǫ2 k4 ·ǫ1

− 2 t ǫ2 ·ǫ4 k1 ·ǫ3 k4 ·ǫ1 − 2 (s+ t) ǫ2 ·ǫ4 k2 ·ǫ3 k4 ·ǫ1

− 2 (s+ t) ǫ2 ·ǫ3 k3 ·ǫ4 k4 ·ǫ1 − 2 s ǫ1 ·ǫ4 k1 ·ǫ3 k4 ·ǫ2 − 2 s ǫ1 ·ǫ3 k2 ·ǫ4 k4 ·ǫ2

− 2 t ǫ3 ·ǫ4 k3 ·ǫ1 k4 ·ǫ2 − 2 s ǫ1 ·ǫ3 k3 ·ǫ4 k4 ·ǫ2 − 2 (s+ t) ǫ3 ·ǫ4 k4 ·ǫ1 k4 ·ǫ2 .

(A1)

It vanishes, of course, for the ( + + + + ) and (− + + + ) classes of helicities, and is

nonvanishing for MHV helicities ( − − + + ). It is invariant under cyclic shifts of the

external legs. We choose the remaining tensors to have definite helicity properties as well.

We can give compact expressions for the tensors in terms of the following combinations of

the linearized field-strength tensors defined in Eq. (2.11),

F 4
st ≡ (F1F2F3F4) , F 4

tu ≡ (F1F4F2F3) , F 4
us ≡ (F1F3F4F2) ,

(F 2
s )

2 ≡ (F1F2)(F3F4) , (F 2
t )

2 ≡ (F1F4)(F2F3) , (F 2
u )

2 ≡ (F1F3)(F4F2) ,
(A2)
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Tensor Dimension Symmetry Nonvanishing D = 4 Helicity D = 4 Value

T tree 4 +
(− − + +) 〈1 2〉2 [3 4]2

(− + − +) 〈1 3〉2 [2 4]2

T (++++) 4 + (+ + + +) [1 3]2 [2 4]2

T (−+++) 6 + (− + + +) 〈1 2〉2 [2 3]2 [2 4]2

T (−−++) 4 − (− − + +) 〈1 2〉2 [3 4]2

T (−+−+) 4 + (− + − +) 〈1 3〉2 [2 4]2

T ev1 6 + — 0

T ev2 6 − — 0

TABLE III: Nonvanishing helicities and values for the color-ordered tensor basis. Each tensor is

also nonvanishing on the cyclic permutations and parity conjugates of the indicated helicity states.

The evanescent tensors vanish for all four-dimensional helicities but are included in the table.

along with the TF 3 tensor defined in Eq. (2.15). In terms of these quantities, the basis

tensors have the following expressions,

T tree = −
1

2
((F 2

s )
2 + (F 2

t )
2 + (F 2

u )
2) + 2 (F 4

st + F 4
tu + F 4

us) = t8F
4 ,

T (++++) = −2F 4
st +

1

2
((F 2

s )
2 + (F 2

t )
2 + (F 2

u )
2) ,

T (−+++) = −TF 3 − (F 4
tu − F 4

us) (s− t) + (F 4
st −

1

4
((F 2

s )
2 + (F 2

t )
2 + (F 2

u )
2)) (s+ t) ,

T (−−++) = (F 2
s )

2 − (F 2
t )

2 + 2 (F 4
tu − F 4

us) ,

T (−+−+) = 2F 4
st −

1

2
((F 2

s )
2 + (F 2

t )
2 − (F 2

u )
2) ,

T ev1 = −(2F 4
st +

3

2
((F 2

s )
2 + (F 2

t )
2 + (F 2

u )
2)) (s+ t) + 2 (F 4

us (3 s+ t) + F 4
tu (s+ 3 t))

= −4 (F 4
tu s+ F 4

us t)− (s+ t) (8F 4
st − 3 T tree) ,

T ev2 = −(2F 4
st −

1

2
((F 2

s )
2 + (F 2

t )
2 + (F 2

u )
2)) (s− t) + 2 (F 4

tu − F 4
us) (s+ t)

= 4 (F 4
tu s− F 4

us t)− (s− t) T tree .

(A3)

The first tensor is the tree-level tensor given above in Eq. (A1). The subsequent four

tensors each are labeled by the class of four-dimensional helicity configuration on which

they are nonvanishing. The final two tensors are nontrivial formal objects, but vanish for
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all four-dimensional helicities. Outside of four dimensions, they do not vanish, however, as

demonstrated, for example, by the nonvanishing value of the sum over states of each tensor

multiplied by its conjugate. They represent the kinematic part of evanescent operators in

Yang–Mills theory. In a slight abuse of language, we will therefore call them evanescent

tensors. Three other gauge-invariant tensors can be constructed, but these do not have the

correct symmetry properties to appear in color-ordered physical amplitudes. The properties

of all the tensors, as well as their values in four-dimensional helicity are summarized in

Table III. The expressions for the tensors are also given in a companion Mathematica file,

tensors-ym.m. The notation there is,

ee[i,j] = εi · εj , ke[i,j] = ki · εj , dot[i,j] = ki · kj . (A4)

The seven tensors in Eq. (A3) sequentially correspond to T[[i]] in the file for i = 1, . . . , 7. The

spinor-valued expressions for the tensors in four dimensions are also given that file, with the

seven values for each four-dimensional helicity configuration recorded in value[helicity-string ],

for example value[“++++”]. These expressions employ the notation,

spa[i,j] = 〈i j〉 , spb[i,j] = [i j] . (A5)

Conversely, we can express the linearized combinations (A2) in terms of the color-ordered

tensors,

F 4
st = −

T ev1

8 (s+ t)
−

(s− t) T ev2

8 (s+ t)2
+

1

4
T tree −

s t T (++++)

2 (s+ t)2
,

F 4
tu =

T ev2

4 (s+ t)
+

1

4
T tree +

t T (++++)

2 (s+ t)
,

F 4
us = −

T ev2

4 (s+ t)
+

1

4
T tree +

s T (++++)

2 (s+ t)
,

(F 2
s )

2 = −
T ev1

4 (s+ t)
−

(3 s+ t) T ev2

4 (s+ t)2
+

1

2
T tree +

1

2
T (−−++) −

1

2
T (−+−+) +

s2 T (++++)

(s+ t)2
,

(F 2
t )

2 = −
T ev1

4 (s+ t)
+

(s+ 3 t) T ev2

4 (s+ t)2
+

1

2
T tree −

1

2
T (−−++) −

1

2
T (−+−+) +

t2 T (++++)

(s+ t)2
,

(F 2
u )

2 = T (−+−+) + T (++++) ,

TF 3 = −
(s− t) T ev2

2 (s+ t)
− T (−+++) −

2 s t T (++++)

s+ t
.

(A6)

25



2. Tensors with Definite Permutation Symmetry

In this subsection, we present four-gluon kinematic tensors with definite properties under

the full permutation group. These are ultimately useful for decomposing N = 4 supergravity

amplitudes at one and two loops in a double-copy approach. The tree tensor (A1) is already

fully crossing invariant, so we take it to be the first tensor in this set as well, here calling

it Htree. The remaining tensors are either invariant under all permutations of external

labels, or are multiplied by the signature of the permutation (±1). We will call the latter

signature-odd.

A signature-odd tensor will be multiplied by a signature-odd polynomial in s and t in

any physical amplitude. Any invariant polynomial can also appear as a tensor prefactor in

an amplitude, of course. All invariant polynomials are products of two basic polynomials,

σ2(s, t, u) = s2 + t2 + u2 = 2(s2 + st+ t2) = −2(st + tu+ us) ,

σ3(s, t, u) = s3 + t3 + u3 = 3stu ,
(A7)

with a constant prefactor. Any signature-odd polynomial is a product of an invariant poly-

nomial and the basic signature-odd polynomial,

α(s, t, u) = −(s− t)(t− u)(u− s) = (s− t)(2s+ t)(s+ 2t) . (A8)

This polynomial satisfies the identity

2α2 = σ3
2 − 6 σ2

3 , (A9)

so that we need not consider powers of α.

We can again express the tensors in terms of the linearized-field strength quantities defined

in Eq. (A2),

Htree = −
1

2
((F 2

s )
2 + (F 2

t )
2 + (F 2

u )
2) + 2 (F 4

st + F 4
tu + F 4

us) = t8F
4 ,

H(++++) =
3

2
((F 2

s )
2 + (F 2

t )
2 + (F 2

u )
2)− 2 (F 4

st + F 4
tu + F 4

us) ,

H(−+++) = −TF 3 −
4

3
(F 4

tu s+ F 4
us t− F 4

st (s+ t)) ,

Hmhv1 = −((F 2
s )

2 + 2F 4
tu) s− ((F 2

t )
2 + 2F 4

us) t+ (2F 4
st + (F 2

u )
2) (s+ t) ,

Hmhv2 = (F 2
u )

2 (s− t) (s+ t) + (F 2
t )

2 t (2 s+ t)− (F 2
s )

2 s (s+ 2 t) ,

Hev1 = 4 (F 4
st (s− t) (s+ t) + F 4

us t (2 s+ t)− F 4
tu s (s+ 2 t)) ,

Hev2 = ((F 2
s )

2 + (F 2
t )

2 + (F 2
u )

2) (s2 + s t+ t2)− 4 (F 4
tu t (s+ t)− s (F 4

st t− F 4
us (s+ t))) .

(A10)
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The second and third tensors are again labeled by the four-dimensional helicity class

for which they are nonvanishing; the fourth and fifth are both nonvanishing for all MHV

helicities. The last two are again “evanescent”, in the sense that they are nonvanishing

outside of four dimensions but vanish for all four-dimensional helicity configurations. (As in

Sect. A 1, they do not include factors of 1/ǫ that would be needed to yield a nonvanishing

result in four dimensions.)

Tensor Dimension Signature Nonvanishing D = 4 Helicity D = 4 Value

Htree 4 even (− − + +) 〈1 2〉2 [3 4]2

H(++++) 4 even (+ + + +) [1 4]2 [2 3]2 + [1 3]2 [2 4]2 + [1 2]2 [3 4]2

H(−+++) 6 even (− + + +) 〈1 2〉2 [2 3]2 [2 4]2

Hmhv1 6 even (− − + +) 〈1 2〉3 [1 2] [3 4]2

Hmhv2 8 odd (− − + +) (s+ 2 t) 〈1 2〉3 [1 2] [3 4]2

Hev1 8 odd — 0

Hev2 8 even — 0

TABLE IV: Nonvanishing helicities and values for the pregravity tensor basis. Each tensor is

also nonvanishing on the permutations and parity conjugates of the indicated helicity states. The

evanescent tensors vanish for all four-dimensional helicities but are included in the table.

The expressions for the tensors are also given in a companion Mathematica file, tensors-

neq4gr.m, with H[[i]], i = 1, . . . , 7 corresponding in order to the tensors in Eq. (A10).

The spinor-valued expressions for the tensors in four dimensions are also given in that

file; as in Sect. A 1, the seven values for each four-dimensional helicity configuration given

by value[helicity-string ]. The notation follows Eqs. (A4) and (A5). The properties of the

tensors are summarized in Table IV.

Because these tensor have definite properties under permutations, we can connect them

straightforwardly to matrix elements of corresponding operators after the double copy. A

few examples would be,

σ2t8F
4t8F

4 ↔ t8t8D
4R4 ,

t8F
4(uF 4

st + sF 4
tu + tF 4

us) ↔ t8tr(D
2R4) ,

σ2t8F
4((F 2

s )
2 + (F 2

u )
2 + (F 2

t )
2) ↔ t8(tr(DR)

2)2 .

(A11)
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3. Projectors for Basis Tensors

In this subsection, we present a set of projectors that can be used to obtain the scalar

coefficients of the basis tensors for an expression given in terms of polarization vectors

and momenta. When applied to an integrated expression for an amplitude, the resulting

decomposition will reproduce the original expression; when applied to an integrand, there

may be a total-derivative discrepancy that will integrate to zero.

We define an inner product ⊙ of a polarization vector and its conjugate to be given by

the sum over states,

ǫ∗µi ⊙ ǫνi =
∑

states h

ǫ
∗(h),µ
i ǫ

(h),ν
i = −gµν +

kµi q
ν + qµkνi
q · ki

, (A12)

where q is a null reference vector not collinear to any external momentum. (It is similar to

a lightcone-gauge vector.) In four dimensions, the state sum becomes,

∑

states h

ǫ
∗(h),µ
i ǫ

(h),ν
i =

∑

h=±

ǫ
∗(h),µ
i ǫ

(h),ν
i =

∑

h=±

ǫ
(−h),µ
i ǫ

(h),ν
i , (A13)

where the sum is over vector helicities.

In all dimensions, the projector onto the jth tensor is then given by,

Pj = cjiT
∗
i , (A14)

where the matrix c is the inverse of the (symmetric) inner product matrix m, whose elements

are given by,

mij = T ∗
i ⊙ Tj . (A15)

The coefficient of Tj in an expression X is given by Pj ⊙X.

Each basis has a corresponding set of projectors; the projectors for the cyclicly-organized

basis described in Sect. A 1 are given alongside the tensors and helicity values in tensors-

ym.m, where the projector Pj onto Tj is given by P[[j]]. The expressions make use of the

following notation in addition to that in Eq. (A4),

cc[i,j] = ε∗i · ε
∗
j , kc[i,j] = ki · ε

∗
j , chi = t/s , d = D . (A16)

In four dimensions, m has rank 5, as expected from the nature of T5 and T6. In six dimen-

sions, it has rank 7, showing indirectly that there are some helicities with non-vanishing
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values for these two tensors. The corresponding projectors for the basis of Sect. A 2 orga-

nized under the full crossing symmetry are given in tensors-neq4gr.m. The projector matrix

again has rank 5 in four dimensions, and rank 7 in six dimensions.
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