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Abstract

We study solutions of the Klein-Gordon, Maxwell, and linearized Einstein equations

in R1,d+1 that transform as d-dimensional conformal primaries under the Lorentz group

SO(1, d+1). Such solutions, called conformal primary wavefunctions, are labeled by a

conformal dimension ∆ and a point in Rd, rather than an on-shell (d+2)-dimensional

momentum. We show that the continuum of scalar conformal primary wavefunctions

on the principal continuous series ∆ ∈ d
2 + iR of SO(1, d + 1) spans a complete set

of normalizable solutions to the wave equation. In the massless case, with or without

spin, the transition from momentum space to conformal primary wavefunctions is im-

plemented by a Mellin transform. As a consequence of this construction, scattering

amplitudes in this basis transform covariantly under SO(1, d + 1) as d-dimensional

conformal correlators.



1 Introduction

Scattering problems are conventionally studied in momentum space where translation sym-

metry is manifest. However, not all properties of scattering amplitudes are emphasized in this

choice of basis. One famous alternative basis is twistor space [1, 2] where many remarkable

properties of perturbative gauge theory amplitudes are naturally explained.

The Lorentz group in R1,d+1 is identical to the Euclidean d-dimensional conformal group

SO(1, d+1). It is then natural to ask if there is a basis of wavefunctions where scattering am-

plitudes in R1,d+1 admit interpretations as Euclidean d-dimensional conformal correlators.1

For massless scalar and spin-one fields, such wavefunctions were constructed in [3, 4], while

the massive scalar wavefunctions were introduced in [5] for (3 + 1) spacetime dimensions.

However, it had not been established whether these conformal wavefunctions form a com-

plete set of normalizable solutions to the wave equation in each case. In this paper we study

the completeness of these wavefunctions with and without spin and extend the construction

to arbitrary spacetime dimensions.

The search for conformal bases of wavefunctions has its roots in the study of two-

dimensional conformal symmetries in four-dimensional scattering amplitudes. In [3], de Boer

and Solodukhin approached the problem of flat space holography from a hyperbolic slicing of

Minkowski space. Since each slice is a copy of a three-dimensional hyperbolic space H3, the

two-dimensional conformal symmetry naturally arises on the boundary via AdS holography.

It was then conjectured [6–9] that in any four-dimensional quantum gravity, the Lorentz

group SL(2,C) is enhanced to the full Virasoro symmetry. This conjecture was later refined

and verified [4,10,11] for tree-level S-matrices following a new subleading soft graviton theo-

rem [12]. In particular, the authors of [11] gave an explicit construction of a two-dimensional

stress-tensor that generates a complex Virasoro symmetry acting on the celestial sphere at

null infinity. The one-loop correction to the Virasoro stress tensor was recently discussed

in [13, 14] from an anomaly [15–18] of this subleading soft graviton theorem. Furthermore,

it was observed that insertions of soft photons in the amplitude resemble the Kac-Moody

algebra in two dimensions [19–23]. See [24] for a comprehensive review of this subject.

In this paper we introduce a basis of flat space wavefunctions that is natural for the study

of the d-dimensional conformal structure of (d+2)-dimensional scattering amplitudes beyond

the soft limit. We consider on-shell wavefunctions in R1,d+1 with spin that are SO(1, d+ 1)

conformal primaries, extending the construction in [4, 5] beyond (3 + 1) dimensions. These

solutions, called conformal primary wavefunctions, are labeled by a conformal dimension ∆

1By a conformal correlator we mean a function of n points on Rd that transforms covariantly as in (2.26)

(or the spin version thereof), i.e. it is a function with the same conformal covariance as an n-point function

of primaries in conformal field theory (CFT).
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and a point ~w in Rd, as opposed to a (d+2)-dimensional on-shell momentum. Crucially, the

conformal dimension ∆ should be thought of as a continuous label for solutions in this basis,

and is not fixed by the mass of the bulk field. Rather, we require a continuum of conformal

primary wavefunctions to span the solution space of a single bulk field.2

One immediate puzzle about the massive conformal primary wavefunction is that, as

opposed to the massless case, there does not appear to be a canonical way to associate a

point ~w in Rd to the trajectory of a massive particle in R1,d+1. It turns out that the label

~w is not a point in position space, but in momentum space of the massive particle. More

precisely, ~w is a boundary point of the space of (d+2)-dimensional on-shell momenta, which

is a copy of a (d+ 1)-dimensional hyperbolic space Hd+1. See (2.14) for details.

The main objective of this paper is to determine the range of the conformal dimension

∆ for these conformal primary wavefunctions to form a basis of on-shell wavefunctions in

R1,d+1. If such range of ∆ exists, then we can safely translate every scattering amplitude

into this conformal primary basis without loss of information. In both the massive and the

massless scalar cases, we show that the continuum of conformal primary wavefunctions with3

∆ ∈ d

2
+ iR , (1.1)

spans the complete set of delta-function-normalizable solutions with respect to the Klein-

Gordon norm (3.6). This range of ∆ is known as the principal continuous series of irreducible

unitary representations of SO(1, d+ 1), which plays a central role in the harmonic analysis

of the conformal group (see, for example, [25]). We contrast the scalar conformal primary

basis with the momentum basis in Tables 1 and 2. In the massless case, the change of basis is

given by a Mellin transform (or plus a shadow transform). In the massive, on the other hand,

it is implemented by an integral over all the on-shell momenta with the bulk-to-boundary

propagator in Hd+1 being the Fourier coefficient.

We then discuss massless conformal primary wavefunctions with spin. More specifically,

we will construct solutions to the (d + 2)-dimensional Maxwell and vacuum linearized Ein-

stein equation that transform as d-dimensional spin-one and spin-two conformal primaries,

respectively. This extends the study of spin-one conformal primary wavefunctions in (3 + 1)

dimensions of [4]. One qualitative difference between the massless spinning wavefunctions

and the scalar wavefunctions is the presence of gauge or diffeomorphism symmetry. It turns

out that conformal covariance of the on-shell wavefunction selects a particular gauge. We will

also discuss spinning conformal primary wavefunctions that are pure gauge/diffeomorphism

2Therefore in any flat space holographic duality formulated through this construction, the dual putative

conformal theory will be non-compact (like a Liouville theory). This point was also advocated in [3, 4].
3For massive scalar conformal primary wavefunctions, we only require half of the principal continuous

series, i.e. ∆ ∈ d
2 + iR≥0 or ∆ ∈ d

2 + iR≤0. See Section 3 for more details.
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Bases Plane Waves Conformal Primary Wavefunctions

Notations exp [±ip ·X ] φ±
∆(X

µ; ~w)

Labels pµ (p2 = −m2, p0 > 0) ∆ ∈ d
2
+ iR≥0 , ~w ∈ Rd

Table 1: A comparison between the plane wave basis and the conformal primary basis B±

for normalizable, outgoing/incoming solutions to the massive Klein-Gordon equation. The

plane wave is labeled by an on-shell momentum pµ with p2 = −m2, whereas the conformal

primary wavefunction is labeled by ∆ ∈ d
2
+ iR≥0 and ~w ∈ Rd. Here the plus and minus

superscripts denote outgoing and incoming wavefunctions, respectively. There is another

basis B̃± that is shadow to B±.

Bases Plane Waves Conformal Primary Wavefunctions

Notations exp [±ik ·X ] ϕ±
∆(X

µ; ~w) = (−q(~w) ·X ∓ iǫ)−∆

Labels kµ (k2 = 0, k0 > 0) ∆ ∈ d
2
+ iR , ~w ∈ Rd

Table 2: A comparison between the plane wave basis and the conformal primary basis B±
m=0

for normalizable, outgoing/incoming solutions to the massless Klein-Gordon equation. The

plane wave is labeled by a null momentum kµ, whereas the conformal primary wavefunction

is labeled by ∆ ∈ d
2
+ iR and ~w ∈ Rd. There is another basis B̃±

m=0 that is shadow to B±
m=0.

in diverse spacetime dimensions. Finally we show that the plane waves are spanned by spin-

ning conformal primary wavefunctions on the principal continuous series (1.1). The transition

from momentum space to the space of massless spinning conformal primary wavefunctions

is implemented by a Mellin transform (or plus a shadow transform).

Scattering amplitudes written in the conformal primary basis manifestly enjoy the confor-

mal covariance of d-dimensional conformal correlators. For example, the three-point decay

amplitude of a four-dimensional φ3 theory written in this basis was shown to take the form
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of a two-dimensional CFT three-point function in a special mass limit [5]. The soft limit and

collinear singularities of gluon and graviton amplitudes were analyzed in this basis in [4].

The factorization singularity of scattering amplitudes has also been studied in the CFT

language [26, 27]. It will be interesting to explore how other conformal structures can be

translated into statements about scattering amplitudes in this basis.

The construction of conformal primary wavefunctions proceeds naturally via the embed-

ding formalism in CFT [28–35]. Our flat space conformal wavefunctions are expressed in

terms of the hyperbolic space Hd+1 bulk-to-boundary propagators lifted to the embedding

Minkowski space. In the CFT context, the embedding Minkowski space R1,d+1 is merely

a fictitious space one introduces to realize the conformal transformation linearly. By con-

trast, in the current setting the embedding R1,d+1 is the spacetime where physical scattering

processes take place.

The rest of the paper is organized as follows. In Section 2, we review and extend the

definition of massive scalar conformal primary wavefunctions in general spacetime dimen-

sions. In Section 3, we determine the range of the conformal dimension to be the principal

continuous series of SO(1, d + 1). In Section 4, we consider massless scalar conformal pri-

mary wavefunctions and determine the range of their conformal dimensions. In particular,

we show that the change of basis from momentum space to conformal primary wavefunctions

is implemented by a Mellin transform in the massless case. In Sections 5 and 6 we discuss

massless spin-one and spin-two conformal primary wavefunctions, respectively.

2 Massive Conformal Primary Wavefunctions

In this section we construct massive scalar wavefunctions in (d+ 2)-dimensional Minkowski

spacetime R1,d+1 with coordinates Xµ, µ = 0, 1, · · · , d+ 1.

2.1 Massive Scalar Conformal Primary Wavefunctions in General Dimensions

Let us review the massive scalar conformal primary wavefunction defined in [5]. The massive

scalar conformal primary wavefunction φ∆(X
µ; ~w) of mass m in R1,d+1 is a wavefunction

labeled by a “conformal dimension” ∆ and a point ~w in Rd. It satisfies the following two

defining properties:4

4We omit the mass m dependence of the conformal primary wavefunction in the notation φ∆(X
µ; ~w).
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• It satisfies the (d+ 2)-dimensional massive Klein-Gordon equation of mass m,5

(
∂

∂Xν

∂

∂Xν
−m2

)
φ∆(X

µ; ~w) = 0 . (2.1)

• It transforms covariantly as a scalar conformal primary operator in d dimensions under

an SO(1, d+ 1) transformation,

φ∆ (Λµ
νX

ν ; ~w ′(~w)) =

∣∣∣∣
∂ ~w ′

∂ ~w

∣∣∣∣
−∆/d

φ∆(X
µ; ~w) , (2.2)

where ~w ′(~w) is an SO(1, d+ 1) transformation that acts non-linearly on ~w ∈ Rd and

Λµ
ν is the associated group element in the (d + 2)-dimensional representation. More

explicitly, ~w ′(~w) is generated by:

Rd translation : ~w ′ = ~w + ~a ,

SO(d) rotation : ~w ′ = M · ~w , (2.3)

dilation : ~w ′ = λ~w ,

special conformal
transformation : ~w ′ =

~w + |~w|2~b
1 + 2~b · ~w + |~b|2|~w|2

.

Being a solution to the Klein-Gordon equation, the conformal primary wavefunction can

be expanded on the plane waves. The Fourier expansion takes the form of an integral over all

the possible outgoing or incoming on-shell momenta, each of which is a copy of the (d+ 1)-

dimensional hyperbolic space Hd+1. To be more concrete, let y, ~z be the coordinates of Hd+1

with y > 0 and ~z ∈ Rd. The Hd+1 metric is

ds2Hd+1
=

dy2 + d~z · d~z
y2

, (2.4)

with y = 0 being the boundary. This geometry has an SO(1, d+1) isometry ~z → ~z ′(y, ~z) , y →
y′(y, ~z) that is generated by

Rd translation : y′ = y , ~z ′ = ~z + ~a ,

SO(d) rotation : y′ = y , ~z ′ = M · ~z , (2.5)

dilation : y′ = λy , ~z ′ = λ~z ,

special conformal
transformation : y′ =

y

1 + 2~b · ~z + |~b|2(y2 + |~z|2)
, ~z ′ =

~z + (y2 + |~z|2)~b
1 + 2~b · ~z + |~b|2(y2 + |~z|2)

.

5Our convention for the spacetime signature in R1,d+1 is (−++ · · ·+).

5



We can then parametrize a unit timelike vector p̂(y, ~z) satisfying p̂2 = −1 in terms of the

Hd+1 coordinates as,

p̂(y, ~z) =

(
1 + y2 + |~z|2

2y
,
~z

y
,
1− y2 − |~z|2

2y

)
. (2.6)

The map p̂(y, ~z) defines an embedding of the Hd+1 into the upper branch (p̂0 > 0) of the unit

hyperboloid in R1,d+1. We will henceforth use p̂ and (y, ~z) interchangeably to parametrize a

point in Hd+1. The advantage of working with p̂µ is that the non-linear SO(1, d+ 1) action

(2.5) on y, ~z now becomes linear on p̂µ,

p̂µ(y′, ~z ′) = Λµ
ν p̂

ν , (2.7)

where Λµ
ν is the associated group element of SO(1, d+ 1) in the (d+ 2)-dimensional repre-

sentation.

One last ingredient we need is the scalar bulk-to-boundary propagator G∆(p̂; ~w) in Hd+1

[36],

G∆(p̂; ~w) =

(
y

y2 + |~z − ~w|2
)∆

, (2.8)

where ~w ∈ Rd is a point on the boundary of Hd+1. Let us define a map from Rd to a “unit”

null momentum qµ in R1,d+1 as

qµ(~w) =
(
1 + |~w|2 , 2~w , 1− |~w|2

)
. (2.9)

We will use ~w and qµ interchangeably to parametrize a point in Rd. While ~w transforms

non-linearly under SO(1, d+1) as in (2.3), its embedding qµ into R1,d+1 transforms linearly,

qµ(~w ′) =

∣∣∣∣
∂ ~w ′

∂ ~w

∣∣∣∣
1/d

Λµ
νq

ν(~w) . (2.10)

We will often use

∂aq
µ ≡ ∂

∂wa
qµ(~w) = 2(wa , δba , −wa) . (2.11)

In terms of the coordinates p̂µ(y, ~z) and qµ(~w), the bulk-to-boundary propagator can be

written succinctly as [35]

G∆(p̂; q) =
1

(−p̂ · q)∆ . (2.12)
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Under an SO(1, d+ 1) transformation p̂(y, ~z) → p̂′ = p̂(y′, ~z ′) and q(~w) → q′ = q(~w ′), the

G∆ transforms covariantly as

G∆(p̂
′; q′) =

∣∣∣∣
∂ ~w ′

∂ ~w

∣∣∣∣
−∆/d

G∆(p̂; q) . (2.13)

With the above preparation, we can now write down the Fourier expansion of the scalar

conformal primary wavefunction on the plane waves,

φ±
∆(X

µ; ~w) =

∫

Hd+1

[dp̂]G∆(p̂; ~w) exp [±imp̂ ·X ] , (2.14)

with Fourier coefficients being the scalar bulk-to-boundary propagator in Hd+1. We use a

plus (minus) sign for an outgoing (incoming) wavefunction. Here [dp̂] is the SO(1, d + 1)

invariant measure on Hd+1:

∫

Hd+1

[dp̂] ≡
∫ ∞

0

dy

yd+1

∫
dd~z =

∫
dd+1p̂i

p̂0
, (2.15)

where i = 1, 2, · · · , d+1 and p̂0 =
√

p̂ip̂i + 1. The conformal primary wavefunction given in

(2.14) satisfies the defining property (2.2) thanks to the conformal covariance of the bulk-

to-boundary propagator (2.13).

Importantly, the conformal dimension ∆ of the conformal primary wavefunction φ±
∆(X

µ; ~w)

is not related to the mass m. Indeed, ∆ together with ~w ∈ Rd should be thought of as the

dual variables to an on-shell momentum pµ that label the space of solutions to the Klein-

Gordon equation. In particular, we require a continuum of conformal primary wavefunctions

φ∆(X
µ; ~w) to form a basis of normalizable wavefunctions. We will determine the range of ∆

in Section 3.

2.2 Closed-Form Expression

In (2.14) we have provided an integral representation for the massive scalar conformal pri-

mary wavefunction. In this section we will write its closed-form expression in terms of Bessel

functions by directly solving the Klein-Gordon equation.

Let us consider the following ansatz for the wavefunction:

φ∆(X
µ; ~w) =

f(X2)

(−q ·X)∆
, (2.16)
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with qµ = qµ(~w) given in (2.9). The factor 1/(−q · X)∆ solves the massless Klein-Gordon

equation and has the desired conformal covariance (2.2) following from (2.10),6 while the

numerator is invariant under SO(1, d+ 1). Hence the ansatz (2.16) already obeys (2.2) and

we only need to solve for f(X2) such that φ∆ is a solution to the massive Klein-Gordon

equation. The massive Klein-Gordon equation gives the following differential equation for

f(X2):

0 = 4X2f ′′(X2)− 2(2∆− d− 2)f ′(X2)−m2f(X2) , (2.17)

from which we obtain

f(X2) = (
√
−X2)∆− d

2

[
c1 I∆− d

2
(m
√
X2) + c2 I−∆+ d

2
(m
√
X2)

]
(2.18)

where Iα(x) is the modified Bessel function of the first kind. For large spacelike Xµ, the

Bessel function Iα(m
√
X2) grows exponentially as em

√
X2

, so a generic solution (2.18) will

not give rise to normalizable wavefunctions. By requiring a finite Klein-Gordon norm (3.6)

of the wavefunction, we select out a particular linear combination that is proportional to

a modified Bessel of the second kind, Kα(x) = π
2
I−α(x)−Iα(x)

sin(απ)
, which dies off exponentially

as e−m
√
X2

for large X2. We can fix the overall constant by comparing with the integral

expression (2.14) and find7

φ±
∆(X

µ; ~w) =
2

d

2
+1π

d

2

(im)
d

2

(
√
−X2)∆− d

2

(−q(~w) ·X ∓ iǫ)∆
K∆− d

2

(m
√
X2) . (2.19)

We have introduced an iǫ prescription for the denominator.

2.3 Shadow Transform

In this section we show that the conformal primary wavefunction φ±
∆ is the shadow transform

of φ±
d−∆.

8

Given a d-dimensional scalar conformal primary operator O∆(~w), its shadow [37–40]

Õ∆(~w) is a non-local operator defined as

Õ∆(~w) ≡
Γ(∆)

π
d

2Γ(∆− d
2
)

∫
dd ~w ′ 1

|~w − ~w ′|2(d−∆)
O∆(~w

′) . (2.20)

6This implies that 1/(−q ·X)∆ is a massless conformal primary wavefunction, which will be discussed in

full detail in Section 4.
7To obtain the above closed-form expression, we should analytically continue to imaginary m as in [5]

and perform the integral.
8We would like to thank Andy Strominger for pointing this out to us.
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The shadow operator Õ∆ transforms as a scalar conformal primary operator with conformal

dimension d − ∆. The normalization constant is chosen so that our conformal primary

wavefunctions transform nicely under (2.20).

More generally, given a d-dimensional conformal primary Oa1···aJ (~w) in the symmetric

traceless rank-J representation of SO(d) with dimension ∆, its shadow Õa1···aJ (~w) can be

most conveniently computed in terms of its uplift Oµ1···µJ
(~w) to the embedding space R1,d+1

[34]:

Õµ1···µJ
(~w) =

Γ(∆ + J)

π
d

2 (∆− 1)JΓ(∆− d
2
)

∫
dd ~w ′

∏J
n=1

[
δνnµn

(−1
2
q · q′) + 1

2
q′µn

qνn
]

(−1
2
q · q′)d−∆+J

Oν1···νJ (~w
′) ,

(2.21)

where (a)J ≡ Γ(a + J)/Γ(a) and qµ = qµ(~w) as in (2.9). The uplifted operator Oµ1···µJ
(~w)

is transverse to qµ and is defined modulo terms of the form qµiΛµ1···µ̂i···µJ (~w). Note that

−1
2
q · q′ = |~w − ~w ′|2. We recover the d-dimensional primary Oa1···aJ (~w) via the projection:

Oa1···aJ (~w) =
∂qµ1

∂wa1
· · · ∂q

µJ

∂waJ
Oµ1···µJ

(~w) , (2.22)

and similarly for its shadow Õa1···aJ (~w). The shadow operator Õa1···aJ (~w) transforms as a

spin-J conformal primary with dimension d−∆ under SO(1, d+ 1).

To study the shadow transform of our conformal primary wavefunction, let us first note

a useful identity (see, for example, [34])

∫
dd~z

1

|~z − ~w|2(d−∆)

1

(−q(~z) ·X)∆
=

π
d

2Γ(∆− d
2
)

Γ(∆)

(−X2)
d

2
−∆

(−q(~w) ·X)d−∆
. (2.23)

Now the shadow transform of our conformal primary wavefunction (2.19) directly follows

from (2.23):

φ̃±
∆(X ; ~w) = φ±

d−∆(X ; ~w) . (2.24)

Thus the conformal primary wavefunctions φ±
∆ and φ±

d−∆ should not be counted as linearly

independent solutions to the massive Klein-Gordon equation as they are related by a shadow

transform.

2.4 Integral Transform: From Amplitudes to Conformal Correlators

In (2.14) we determined the change of basis from the plane wave e±ip·X to φ±
∆(X

µ; ~w) for

a single wavefunction. This change of basis can be imminently extended to any n-point
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scattering amplitude of massive scalars. Let A(pµi ) be such an amplitude in momentum

space, including the momentum conservation delta function δ(d+2)(
∑

i p
µ
i ). We can then

define an integral transform that takes this amplitude to the basis of conformal primary

wavefunctions,

Ã(∆i, ~wi) ≡
n∏

k=1

∫

Hd+1

[dp̂k]G∆k
(p̂k; ~wk) A(±mip̂

µ
i ) , (2.25)

where we have parametrized an outgoing (incoming) on-shell momentum as pµi = mip̂
µ

(pµi = −mip̂
µ) with p̂2i = −1 as in (2.6). Thanks to the conformal covariance (2.2) of

the wavefunctions φ±
∆(~w), the scattering amplitude in this basis transforms covariantly as a

d-dimensional CFT n-point function of scalar primaries with dimensions ∆i,

Ã(∆i, ~w
′
i(~wi)) =

n∏

k=1

∣∣∣∣
∂ ~w′

k

∂ ~wk

∣∣∣∣
−∆k/d

Ã(∆i, ~wi) . (2.26)

Hence the change of basis (2.25) is implemented as an integral transformation that takes a

scattering amplitude A(pµi ) to a d-dimensional conformal correlator Ã(∆i, ~wi).

3 A Conformal Primary Basis

It is natural to ask for what, if any, range of the conformal dimension ∆ will the set of

conformal primary wavefunctions φ±
∆(X

µ; ~w) form a basis for delta-function-normalizable,

outgoing/incoming solutions of the Klein-Gordon equation.9 In this section we show that

the range of ∆ can be chosen to be the principal continuous series of SO(1, d+ 1).

3.1 Inverse Transform and Principal Continuous Series

We begin by seeking the inverse transform of (2.14), i.e. the expansion of plane waves

into the conformal primary wavefunctions.10 Since the plane waves form a basis, if we can

expand them on a certain set of conformal primary wavefunctions, then the latter also forms a

(possibly over-complete) basis. This is possible if the bulk-to-boundary propagator, which is

the Fourier coefficient in (2.14), satisfies certain orthonormality conditions for some range of

9Throughout this paper, we will consider the space of complex solutions to the wave equation. As usual,

a reality condition is needed if one wants to perform a mode expansion of a real field on these complex

solutions.
10We would like to thank H.-Y. Chen, X. Dong, J. Maldacena, and H. Ooguri for discussions on this point.
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the conformal dimension ∆. Indeed, this is the case if ∆ belongs to the principal continuous

series of the irreducible unitary SO(1, d+ 1) representations,11

∆ ∈ d

2
+ iR . (3.1)

One orthonormality condition we need for the Hd+1 scalar bulk-to-boundary propagator

is [35]:

∫ ∞

−∞
dν µ(ν)

∫
dd ~wG d

2
+iν(p̂1; ~w)G d

2
−iν(p̂2; ~w) = δ(d+1)(p̂1, p̂2) , (3.2)

where δ(d+1)(p̂1, p̂2) is the SO(1, d+1) invariant delta function in Hd+1. The measure factor

µ(ν) is

µ(ν) =
Γ(d

2
+ iν)Γ(d

2
− iν)

4πd+1Γ(iν)Γ(−iν) , (3.3)

which is an even, non-negative function of ν. The second orthonormality condition is [35]:

∫

Hd+1

[dp̂]G d

2
+iν(p̂; ~w1)G d

2
+iν̄(p̂; ~w2) = (3.4)

2πd+1 Γ(iν)Γ(−iν)
Γ(d

2
+ iν)Γ(d

2
− iν)

δ(ν + ν̄)δ(d)(~w1 − ~w2) + 2π
d

2
+1 Γ(iν)

Γ(d
2
+ iν)

δ(ν − ν̄)
1

|~w1 − ~w2|2(
d

2
+iν)

.

Now we are ready to write down the inverse transform of (2.14). Combining (2.14) and

(3.2), we immediately obtain:

e±imp̂·X = 2

∫ ∞

0

dν µ(ν)

∫
dd ~w G d

2
−iν(p̂; ~w) φ

±
d

2
+iν

(Xµ; ~w) , (3.5)

where we have used (2.23) and (2.24) to rewrite the expansion only on wavefunctions with

non-negative ν.

Given that the plane waves form a basis for the normalizable solutions of the Klein-

Gordon equation, it is tempting to conclude from (3.5) that the conformal primary wave-

functions on the principal continuous series with non-negative ν form a basis too. We have

to check the following two conditions, however, in order to prove the above assertion:

11More precisely, the principal continuous series representations are labeled by a conformal dimension

∆ ∈ d
2 + iR and a representation, the spin, of SO(d). In this section we will consider the spin-zero principal

continuous series representations, while in Section 5 and 6 we will encounter spin-one and spin-two (i.e.

symmetric traceless rank-two tensors of SO(d)) representations, respectively.
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• Are the conformal primary wavefunctions φ±
∆(X

µ; ~w) with ∆ ∈ d
2
+ iR≥0 and ~w ∈ Rd

linearly independent of each other?

• Are the conformal primary wavefunctions delta-function-normalizable with respect to

the Klein-Gordon norm?

We will shortly give positive answers to both questions in Section 3.2 by explicit computation

of the Klein-Gordon inner product between conformal primary wavefunctions.

3.2 Klein-Gordon Inner Product

In studying the solution space for the massive Klein-Gordon equation, we focus on wave-

functions that are (delta-function-)normalizable with respect to a certain inner product. A

natural inner product between complex wavefunctions is the Klein-Gordon inner product

defined as

(Φ1,Φ2) = −i
∫

dd+1X i [ Φ1(X) ∂X0Φ∗
2(X)− ∂X0Φ1(X) Φ∗

2(X)] , (3.6)

where i = 1, 2, · · · , d + 1 is an index for the spatial directions in R1,d+1 and ∗ stands for

complex conjugation. Using the Klein-Gordon equation, one can show that the above inner

product does not depend on the choice of the Cauchy surface we integrate over. The plane

waves, for example, are delta-function-normalizable with respect to this inner product:12

(e±ip·X , e±ip′·X) = ±2(2π)d+1 p0 δ(d+1)(pi − pi
′
) . (3.7)

Furthermore, they form a basis of normalizable solutions to the Klein-Gordon equation.

Let us compute the Klein-Gordon inner product of two conformal primary wavefunctions:

(
φ±

d

2
+iν1

(Xµ; ~w1), φ
±
d

2
+iν2

(Xµ; ~w2)
)

= ±2
d+3π2d+2

md

Γ(iν1)Γ(−iν1)
Γ(d

2
+ iν1)Γ(

d
2
− iν1)

δ(ν1 − ν2) δ
(d)(~w1 − ~w2)

± 2d+3π
3d
2
+2

md

Γ(iν1)

Γ(d
2
+ iν1)

δ(ν1 + ν2)
1

|~w1 − ~w2|2(
d

2
+iν1)

, (3.8)

12Strictly speaking, while (3.6) is a positive-definite inner product on the space of outgoing (i.e. positive

energy) wavefunctions, we should use the minus of (3.6) as a positive-definite inner product on the space of

incoming (i.e. negative energy) wavefunctions.
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where we have used the second orthonormality condition (3.4). As we saw in the last section,

conformal primary wavefunctions with negative ν are linearly related to those with positive ν

by the shadow transform. Therefore we only need to consider the inner product between those

with positive ν, in which case the second term in (3.8) drops out. Note that the coefficient of

the surviving term (i.e. the first term) is positive (negative) definite for outgoing (incoming)

wavefunctions, as it should be for an inner product on single particle solutions.

From (3.8), we then conclude that the conformal primary wavefunctions are delta-function-

normalizable with respect to the Klein-Gordon inner product. Furthermore, the set of con-

formal primary wavefunctions φ±
d

2
+iν

(Xµ; ~w) with non-negative ν and ~w ∈ Rd are orthogonal

to each other, and hence are linearly independent.

3.3 The Massive Scalar Conformal Primary Basis

We are finally ready to write down the complete set of linearly independent conformal pri-

mary wavefunctions that span the space of outgoing or incoming solutions to the massive

Klein-Gordon equation. We will call such bases of wavefunctions the outgoing (+) and

incoming (−) conformal primary bases B±.

Let us recap the logic. In (3.5) we showed that the plane waves can be expanded upon

conformal primary wavefunctions on the principal continuous series with non-negative ν,

so the latter must span the whole solution space. In (3.8) we showed that the conformal

primary wavefunctions with non-negative ν and ~w ∈ Rd are delta-function-normalizable and

linearly independent of each other. Thus we conclude that the outgoing/incoming conformal

primary bases B± for the massive Klein-Gordon equation can be chosen to be

B± =
{
φ±

d

2
+iν

(X ; ~w)
∣∣∣ ν ≥ 0, ~w ∈ Rd

}
, (3.9)

where we recall that the plus and minus superscripts denote outgoing and incoming wave-

functions, respectively. We contrast the massive conformal primary bases with the plane

wave bases in Table 1.

Alternatively, the shadows of the bases (3.9) are equally good conformal primary bases

for the massive Klein-Gordon solutions:

B̃± =
{
φ±

d

2
+iν

(X ; ~w)
∣∣∣ ν ≤ 0, ~w ∈ Rd

}
. (3.10)

To sum up, we have identified a pair of bases B+ and B̃+ for the outgoing, normalizable

solutions to the massive Klein-Gordon equation. Similarly, we have identified a pair of bases

13



B− and B̃− for the incoming, normalizable solutions to the massive Klein-Gordon equation.

The four bases are related by complex conjugation and shadow transformation as below:

Outgoing : B+ ←→
shadow

B̃+

xy
c.c

xy
c.c

Incoming : B̃− ←→
shadow

B−

(3.11)

For odd d, there are also principal discrete series irreducible unitary SO(1, d + 1) rep-

resentations with conformal dimension ∆ = d
2
+ Z+. The conformal primary wavefunctions

for the discrete series, however, are not normalizable with respect to the Klein-Gordon inner

product (3.6). To see this, note that the Klein-Gordon inner product between two conformal

primary wavefunctions with conformal dimensions ∆1 and ∆2 is proportional to
∫

Hd+1

[dp̂]G∆1
(p̂; ~w1)G∆∗

2
(p̂; ~w2) , (3.12)

which diverges for positive ∆1 and ∆2. On the other hand, the wavefunction is delta-function-

normalizable if ∆ is on the principal continuous series. Therefore we will not consider the

discrete series representations in this paper.

Recently, a simple solution to the conformal crossing equation of SO(1, d + 1) was

found [41] for all d.13 The spectrum of conformal primaries consists of the whole contin-

uum of principal continuous series representations plus the principal discrete series. It will

be interesting to explore the connection between this conformal crossing solution and scat-

tering amplitudes in R1,d+1.

4 Massless Scalars

So far we have been studying the conformal primary basis of the massive Klein-Gordon

equation. In this section we show how the massless limit of our massive conformal primary

wavefunction reduces to a combination of the Mellin transform of the plane wave and its

shadow. We will then determine the conformal primary basis of solutions to the massless

Klein-Gordon equation with nonvanishing inner product.

4.1 Mellin Transform

Let us consider the massless limit of the massive conformal primary wavefunction written in

the integral representation (2.14). It will be convenient to change the integration variable

13See also [42] for a crossing solution in one dimension on the principal continuous series.
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from y to

ω ≡ m

2y
. (4.1)

The massless limit is taken by sending y = m
2ω
→ 0 (while holding ω fixed) in the bulk-to-

boundary propagator,

G∆(y, ~z; ~w) −→
m→0

π
d

2

Γ(∆− d
2
)

Γ(∆)
yd−∆δ(d)(~z − ~w) +

y∆

|~z − ~w|2∆ + · · · , (4.2)

where · · · are higher order terms in the small y expansion. Note that for our purpose

∆ = d
2
+ iν,14 so the second term above is not smaller than the first one.

The massless limit of the conformal primary wavefunction is

φ±
d

2
+iν

(X ; ~w) −→
m→0

(m
2

)− d

2
−iν π

d

2Γ(iν)

Γ(d
2
+ iν)

∫ ∞

0

dω ω
d

2
+iν−1e±iωq(~w)·X

+
(m
2

)− d

2
+iν
∫

dd~z
1

|~z − ~w|2(d2+iν)

∫ ∞

0

dωω
d

2
−iν−1 e±iωq(~z)·X , (4.3)

where qµ(~w) = (1 + |~w|2, 2~w, 1 − |~w|2) as in (2.9). We see that the massive conformal

primary wavefunction does not have a well-defined massless limit because of the phases

m±iν . Nonetheless, we can extract the massless scalar conformal primary wavefunction from

the coefficients of these phases.

The first term in (4.3) takes the form of a Mellin transform of the plane wave. This is

the massless scalar conformal primary wavefunction, which, up to an overall constant, can

be regularized as [3–5, 43, 44]

ϕ±
∆(X

µ; ~w) ≡
∫ ∞

0

dω ω∆−1 e±iωq·X−ǫω =
(∓i)∆Γ(∆)

(−q(~w) ·X ∓ iǫ)∆
, (4.4)

with ǫ > 0. Since we obtain ϕ±
∆(X

µ; ~w) from the massless limit of the conformal primary

wavefunction, it automatically satisfies the defining properties (2.1) (with m = 0) and (2.2).

The second term in (4.3) is the shadow of ϕ±
∆(X

µ; ~w), and so is not a linearly independent

wavefunction.

In fact, the massless scalar conformal primary wavefunction (4.4) is, up to a normalization

constant, nothing but the Hd+1 bulk-to-boundary propagator G∆(p̂; ~w) (2.8), with the unit

timelike vector p̂ extended to a generic point Xµ in R1,d+1 [4]. Indeed, the bulk-to-boundary

14Strictly speaking we have not justified that the massless conformal primary wavefunctions on the prin-

cipal continuous series form a basis of wavefunctions. We will show this in Section 4.2.
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propagator satisfies the two defining properties (2.1) and (2.2) of the conformal primary

wavefunction. First, from (2.13), it manifestly has the desired conformal covariance (2.2).

Second, when extended to a generic point in R1,d+1, it satisfies the massless Klein-Gordon

equation via a hyperbolic slicing of the d’Alembert operator in flat space [4, 43, 45, 46]. We

will make use of this fact for the spinning conformal primary wavefunctions in later sections.

Let us elaborate more on the properties of the massless conformal primary wavefunction.

For a fixed null momentum qµ, the Lorentz boost along the spatial direction of qµ acts as

Boost : q ·X → λ (q ·X) ⇒ ϕ∆(X
µ; ~w)→ λ−∆ϕ∆(X

µ; ~w) , (4.5)

where we have used (2.10). Hence the dilation of the conformal primary wavefunction ϕ±
∆ is

nothing but a Lorentz boost in R1,d+1.

The change of basis from plane waves to conformal primary wavefunctions is physi-

cally more intuitive in the massless case. Given a null momentum qµ in R1,d+1, it can be

parametrized by a scale ω and a point ~w ∈ Rd as in (2.9). The change of basis is imple-

mented by a Mellin transform on this scale ω, while the point ~w ∈ Rd is directly identified as

the position of the d-dimension conformal primary. The conformal dimension ∆ is the dual

variable for the scale ω. By contrast, there is no direct way to relate a timelike momentum

p̂µ to a point in Rd in the massive case. The change of basis is done by a Fourier transform

integrating over all p̂ to conformal primary wavefunctions labeled by the dual variables ∆, ~w

as in (2.14).

4.2 The Massless Scalar Conformal Primary Basis

Since the massive conformal primary wavefunction does not have a well-defined massless

limit, we should study the completeness question separately for the massless case.

Before we dive into the space of conformal primary wavefunctions, let us note a qualitative

difference between the massless and massive solution spaces to the Klein-Gordon equation.

In the massless case, the constant wavefunction is a solution to the massless Klein-Gordon

equation, which sits at the intersection between the outgoing and the incoming solution

spaces. On the other hand, the massive outgoing and incoming solution spaces are disjoint

from each other. The constant wavefunction has strictly zero-energy and thus vanishing

Klein-Gordon norm (3.7). We will exclude the constant wavefunction from our definition of

either the outgoing or the incoming solution space. In fact, we will see that the conformal

primary wavefunctions do not cover the constant wavefunction.

Let us start with the inverse transform of (4.4). The inverse Mellin transform of the
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plane wave is (see, for example, [3]),

e±iωq·X−ǫω =

∫ ∞

−∞

dν

2π
ω−c−iν (∓i)c+iνΓ(c+ iν)

(−q ·X ∓ iǫ)c+iν
, ω > 0 , (4.6)

where c can be any positive number. Hence all the massless plane waves except for the

constant wavefunction can be expanded on the conformal primary wavefunctions. In other

words, for any positive c, the massless conformal primary wavefunctions (4.4) with ∆ ∈ c+iR

form a (possibly non-normalizable) basis of nonzero energy solutions to massless Klein-

Gordon equations.

Next we need to determine for what value of c > 0 will the massless conformal primary

wavefunction be delta-function-normalizable with respect to the Klein-Gordon inner product

(3.6). The Klein-Gordon inner product of the massless conformal primary wavefunctions with

∆ = c+ iν is

(
ϕ±
c+iν1

(Xµ; ~w1) , ϕ
±
c+iν2

(Xµ; ~w2)
)

= ±2(2π)d+1

∫ ∞

0

dω1 ω
c−1+iν1
1

∫ ∞

0

dω2 ω
c−1−iν2
2 ω1(1 + |~w1|2) δ(d+1)(ω1q

i(~w1)− ω2q
i(~w2))

= ±4πd+1δ(d) (~w1 − ~w2)

∫ ∞

0

dω2 ω
2c−d+iν1−iν2−1
2 . (4.7)

The ω2 integral is divergent unless c = d
2
, in which case,

∫ ∞

0

dω ωiν−1 = 2πδ(ν) . (4.8)

The Klein-Gordon inner product when c = d
2
is (with ν1, ν2 ∈ R)

(
ϕ±

d

2
+iν1

(Xµ; ~w1) , ϕ
±
d

2
+iν2

(Xµ; ~w2)
)
= ±8πd+2 δ(ν1 − ν2) δ

(d) (~w1 − ~w2) . (4.9)

Thus, the massless conformal primary wavefunctions ϕ±
∆ are delta-function-normalizable if

the conformal dimensions are chosen to be ∆ = d
2
+ iν with ν ∈ R, which are again the

principal continuous series representations of SO(1, d+1). The same conclusion was reached

from studying the AdS holography on each hyperbolic slice of Minkowski space [3, 4].

Notice that since the constant wavefunction is not spanned by the outgoing (incom-

ing) conformal primary wavefunctions, the inner products of the latter are strictly positive-

(negative-) definite as shown in (4.9).

The Klein-Gordon inner product further implies that the massless conformal primary

wavefunctions with different ν ∈ R are orthogonal to each other. In particular, ϕ d

2
+iν is not

17



linearly related to ϕ d

2
−iν , in contrast to the massive case (2.24). Instead, using (2.23), the

shadow of ϕ d

2
+iν is

ϕ̃±
d

2
+iν

(Xµ; ~w) =
Γ(d

2
+ iν)

π
d

2Γ(iν)

∫
dd~z

1

|~z − ~w|2(d2−iν)
ϕ±

d

2
+iν

(Xµ; ~z)

= (∓i) d

2
+iνΓ(

d

2
+ iν)

(−X2)−iν

(−q(~w) ·X ∓ iǫ)
d

2
−iν

, (4.10)

which, up to a normalization constant, is (−X2)−iνϕ±
d

2
−iν

(Xµ; ~w). The Klein-Gordon inner

product between ϕ±
d

2
+iν

and its shadow ϕ̃±
d

2
+iν

is then a power law term as a CFT two-point

function:
(
ϕ±

d

2
+iν1

(Xµ; ~w1) , ϕ̃
±
d

2
+iν2

(Xµ; ~w2)

)
= ±8π d

2
+2Γ(

d
2
− iν1)

Γ(−iν1)
δ(ν1 − ν2)

1

|~w1 − ~w2|2(
d

2
+iν1)

.

(4.11)

We conclude that the massless conformal primary bases B±
m=0 for the outgoing (+) and

incoming (−), delta-function-normalizable solutions of the massless Klein-Gordon equation

are

B±
m=0 =

{
ϕ±

d

2
+iν

(Xµ; ~w)
∣∣∣ ν ∈ R , ~w ∈ Rd

}
. (4.12)

We compare the plane wave bases with the massless conformal primary bases in Table 2.

We emphasize again that the constant wavefunction is excluded from our definition of either

the outgoing or the incoming solution space. In particular, the constant wavefunction is not

spanned by the conformal primary wavefunctions.

Alternatively, the shadows of the bases (4.12) are equally good conformal primary bases

for the outgoing/incoming massless Klein-Gordon solutions:

B̃±
m=0 =

{
ϕ̃±

d

2
+iν

(Xµ; ~w)
∣∣∣ ν ∈ R, ~w ∈ Rd

}
. (4.13)

We have thus identified a pair of bases B+
m=0 and B̃+

m=0 for the outgoing, normalizable

solutions of the massless Klein-Gordon equation. Similarly, we have identified a pair of

bases B−
m=0 and B̃−

m=0 for the incoming, normalizable solutions of the massless Klein-Gordon

equation. The four bases are related by complex conjugation and shadow transform as below:

Outgoing : B+
m=0 ←→

shadow
B̃+
m=0

xy
c.c

xy
c.c

Incoming : B−
m=0 ←→

shadow
B̃−
m=0

(4.14)
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5 Photons

In this and the following section we present a detailed discussion of massless conformal

primary wavefunctions with spin. A massless state in R1,d+1 sits in a representation of

the massless little group SO(d), the spin or helicity. For a spinning conformal primary

wavefunction, this spin gets interpreted as that of a conformal primary in d dimensions.

For example, an outgoing conformal primary wavefunctions in R1,3 with positive helicity

transforms as a spin +1 conformal primary in two dimensions under SL(2,C).

The spin-one massless conformal primary wavefunction in (3 + 1) dimensions has been

constructed in [4]. In Section 5.1 we review this construction and extend it to general

spacetime dimensions. In Section 5.2 we discuss how conformal covariance fixes a particular

gauge choice for the conformal primary wavefunctions. We also discuss conformal primary

wavefunctions that happen to be pure gauge. In Section 5.3, we show that spin-one conformal

primary wavefunctions on the principal continuous series ∆ ∈ d
2
+ iR are normalizable and

span the space of plane wave solutions to the Maxwell equation.

Since there are no propagating degrees of freedom for a spin-one field in (1+1) spacetime

dimensions, we will assume d ≥ 1 in this section.

5.1 Massless Spin-One Conformal Primary Wavefunctions in General Dimen-

sions

The defining properties of the outgoing (+) and incoming (−) massless spin-one conformal

primary wavefunction A∆±
µa (Xµ; ~w) in R1,d+1 are (µ = 0, 1, · · · , d+ 1 and a = 1, · · · , d):

1. It satisfies the (d+ 2)-dimensional Maxwell equation,

(
∂

∂Xσ

∂

∂Xσ

δµν −
∂

∂Xν

∂

∂Xµ

)
A∆±

µa (Xρ; ~w) = 0 . (5.1)

2. It transforms both as a (d+2)-dimensional vector and a d-dimensional spin-one confor-

mal primary with conformal dimension ∆ under an SO(1, d+1) Lorentz transformation:

A∆±
µa (Λρ

νX
ν ; ~w ′(~w)) =

∂wb

∂w′a

∣∣∣∣
∂ ~w′

∂ ~w

∣∣∣∣
−(∆−1)/d

Λ σ
µ A∆±

σb (Xρ; ~w) , (5.2)

where ~w ′(~w) is an element of SO(1, d + 1) defined in (2.3) and Λµ
ν is the associated

group element in the (d+ 2)-dimensional representation.
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As usual, a solution to the Maxwell equation is subject to the ambiguity of gauge transfor-

mations. We will return to this in Section 5.2.

Similar to the scalar massless conformal primary wavefunction, its spin-one analog has

been obtained [4] from the spin-one bulk-to-boundary propagator in Hd+1 [36,47]. The uplift

of the latter in the embedding space R1,d+1 with conformal dimension ∆ is [35]:

G∆
µ;ν(p̂; q) =

(−q · p̂)ηµν + qµp̂ν
(−q · p̂)∆+1

, (5.3)

where p̂µ is a unit timelike vector and qν is a null vector (2.9), both living in R1,d+1. The

uplifted bulk-to-boundary propagator satisfies the following two transversality conditions:

p̂µG∆
µ;ν(p̂; q) = 0 , qνG∆

µ;ν(p̂; q) = 0 . (5.4)

Under SO(1, d+ 1), G∆
µ;ν transforms as a (d + 2)-dimensional rank-two tensor but a scalar

conformal primary in d dimensions:

G∆
µ;ν(Λp̂; Λq) =

∣∣∣∣
∂ ~w ′

∂ ~w

∣∣∣∣
−∆/d

Λρ
µΛ

σ
ν G

∆
ρ;σ(p̂; q) . (5.5)

This is not quite what we want for the conformal primary wavefunction (5.2), but its pro-

jection

∂qν

∂wa
G∆

µ;ν(p̂; q) (5.6)

on the second index ν does have the desired conformal covariance (5.2). This can be shown

by the second transversality condition in (5.4) and the SO(1, d+1) transformation of ∂aq
µ ≡

∂
∂wa q

µ(~w):

∂a′q
µ(~w ′) =

∂wb

∂w′a

∣∣∣∣
∂ ~w ′

∂ ~w

∣∣∣∣
1/d

Λµ
ν∂bq

ν(~w) +
∂wb

∂w′a ∂b

(∣∣∣∣
∂ ~w ′

∂ ~w

∣∣∣∣
1/d
)
Λµ

νq
ν(~w) . (5.7)

We therefore identify the massless spin-one conformal primary wavefunction as the bulk-to-

boundary propagator (5.6) with p̂ replaced by Xµ [4]:

A∆,±
µa (Xµ; ~w) =

∂aqµ
(−q ·X ∓ iǫ)∆

+
∂aq ·X

(−q ·X ∓ iǫ)∆+1
qµ

= − 1

(−q ·X ∓ iǫ)∆−1

∂

∂Xµ

∂

∂wa
log(−q ·X ∓ iǫ) . (5.8)

It is straightforward to check that (5.8) indeed satisfies the Maxwell equation.
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An equally good spin-one conformal primary wavefunction would be the shadow ˜A∆,±
µa of

(5.8). The shadow transform (2.21) for the uplifted wavefunction A∆
µν(X

µ; ~w) = G∆
µ;ν(X ; q)

is15

Ã∆
µν(X ; ~w) =

Γ(∆ + 1)

π
d

2 (∆− 1)Γ(∆− d
2
)

∫
dd ~w ′ (−1

2
q · q′)δρν + 1

2
q′νq

ρ

(−1
2
q · q′)d−∆+1

(−q′ ·X)ηµρ + q′µXρ

(−q′ ·X)∆+1
. (5.9)

Using (2.23), the above integral (excluding the prefactor Γ(∆+1)

π
d
2 (∆−1)Γ(∆− d

2
)
) can be computed to

be

π
d

2Γ(∆− d
2
)

Γ(∆ + 1)

(−X2)
d

2
−∆

(−q ·X)d−∆+2
(5.10)

×
[
(∆− 1)(−q ·X) (ηµν(−q ·X) + qµXν)− (d+ 1−∆)qν

(
qµX

2 −Xµ(q ·X)
)]

.

The second term in the bracket drops out after the projection (2.22). In the end, the shadow

wavefunction Ã∆
µa = ∂aq

νÃ∆
µν is simply:

˜A∆,±
µa (Xµ; ~w) = (−X2)

d

2
−∆Ad−∆,±

µa (Xµ; ~w) . (5.11)

One can easily show that the shadow wavefunction satisfies the two defining properties of

massless spin-one conformal primary wavefunctions as well. Similar to the massless scalar

case, for general ∆, the shadow transform does not take the conformal primary wavefunction

A∆,±
µa back to itself with the shadow dimension d−∆, but to a different wavefunction.

5.2 Gauge Symmetry

Let us discuss the role of gauge symmetry in (d+2) dimensions. A general gauge transforma-

tion has no nice conformal property and thus spoils the conformal covariance of conformal

primary wavefunctions. In other words, conformal covariance (5.2) fixes a gauge for the

conformal primary wavefunction (5.8). Indeed, (5.8) satisfies both the radial gauge and the

Lorenz gauge conditions:

XµA∆,±
µa (Xµ; ~w) = 0 , ∂µA∆,±

µa (Xµ; ~w) = 0 . (5.12)

The radial gauge condition XµAµ = 0 comes from the first transversality condition for

the bulk-to-boundary propagator in (5.4). Note that for any on-shell massless spin-one

wavefunction, i.e. a solution to the Maxwell equation, it is always possible to perform

15For notational simplicity, we drop the iǫ terms and the ± labels for the outgoing/incoming wavefunctions

in this calculation.
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a gauge transformation such that it satisfies both the radial gauge and the Lorenz gauge

conditions [48].16 Under these gauge conditions, the Maxwell equation simplifies to

∂ρ∂
ρA∆,±

µa (Xµ; ~w) = 0 . (5.13)

All these properties also apply to the shadow wavefunction (5.11).

One natural question is whether the conformal primary wavefunction (5.8) or its shadow

is ever a pure gauge in (d+2) dimensions. A short calculation of their field strengths shows

that, for any d, A∆,±
µa (Xµ; ~w) is a pure gauge only if ∆ = 1:

A∆=1,±
µa = − ∂

∂Xµ

∂

∂wa
log(−q ·X ∓ iǫ) . (5.14)

This pure gauge has been studied in the context of soft theorems in (3+1) dimensions in [4].

Incidentally, ∆ = 1 is the shadow dimension (i.e. ∆ → d − ∆) of a conserved spin-one

current in a d-dimensional CFT.

What about the shadow conformal primary wavefunctions (5.11)? The shadow transform

(2.21) commutes with the Xµ derivative, and hence, at least naively, should map one pure

gauge to another. This expectation, however, suffers from an important subtlety that we

will describe below. The shadow transform (2.21) is strictly speaking not defined for ∆ = 1,

in which case (5.8) is a pure gauge. Indeed, from (5.10) with ∆ = 1, we see that the shadow

integral after the projection (2.22) is either zero or singular for integer d, and is accompanied

by a singular prefactor Γ(∆ + 1)/π
d

2 (∆ − 1)Γ(∆ − d
2
) in our normalization for the shadow

transform. In practice, we first obtain the expression (5.11) by assuming a generic value of

∆, and only then we analytic continue it to all ∆.

Even though the shadow wavefunctions (5.11) satisfy all the required properties of confor-

mal primary wavefunctions, the analytic continuation in ∆ mentioned above generally does

not preserve the pure gauge condition. The naive expectation that the shadow wavefunction

with conformal dimension d − 1 is a pure gauge in general spacetime dimensions is falsified

by a direct calculation of the field strength of (5.11). Furthermore, one can show that the

shadow wavefunction (5.11) is never a pure gauge if d 6= 2.

There is one exception in (3 + 1) spacetime dimensions where the shadow wavefunction

can be a pure gauge. When d = 2, the shadow wavefunction (5.11) happens to be the same

as the pure gauge wavefunction (5.14):

˜A∆=1,±
µa (X ; ~w) = A∆=1,±

µa (X ; ~w) (d = 2) , (5.15)

and is thus a pure gauge as well. We summarize spin-one conformal primary wavefunctions

A∆,±
µa and their shadow ˜A∆,±

µa that are pure gauge in Table 3.

16This is similar to the fact that temporal gauge A0 = 0 and Coulomb gauge ∂iAi = 0 can be imposed at

the same time for a solution to the Maxwell equation.
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d = 2 d 6= 2

A∆,±
µa ∆ = 1

∆ = 1

˜Ad−∆,±
µa ×

Table 3: Spin-one conformal primary wavefunctions and their shadows that are pure gauge

in R1,d+1. For d = 2, the conformal primary wavefunction A∆=1,±
µa with ∆ = 1 is identical to

its (formal) shadow ˜A∆=1,±
µa (5.15), so we place ∆ = 1 in the middle between the two rows.

5.3 Mellin Transform

In this section we will determine the range of ∆ such that the conformal primary wavefunc-

tions (5.8) are delta-function-normalizable with respect to a certain norm and span the plane

wave solutions to the Maxwell equation.

Let us first review massless spin-one on-shell wavefunctions in momentum space. We will

be working in Lorenz gauge:

∂µAµ(X) = 0 . (5.16)

In this gauge, the Maxwell equation reduces to ∂2Aµ = 0. The outgoing and incoming

plane waves are ǫµ(k)e
±ik·X where k is a null momentum and ǫµ(k) is a polarization vector

satisfying kµǫµ(k) = 0. The residual gauge symmetry preserving the Lorenz gauge condition

is

Aµ(X)→ Aµ(X) + ∂µα(X) , ∂2α(X) = 0 . (5.17)

In momentum space, this residual gauge symmetry shifts the polarization vector by ǫµ(k)→
ǫµ(k) +Ckµ, where C is any constant. We can fix this residual gauge symmetry by choosing

the polarization vectors to be ∂qµ(~w)/∂w
a (2.11):

∂aqµ e
±iωq·X , (5.18)

where we have parametrized a null vector kµ as kµ = ωqµ(~w) with qµ(~w) given in (2.9) and

ω > 0. Here a = 1, · · · , d.
There is an inner product on the space of complex solutions, modulo gauge transforma-

tions that fall off sufficiently fast at infinity, to the Maxwell equation [49–52]:

(Aµ, A
′
µ′) = −i

∫
dd+1X i

[
AρF ′∗

0ρ − A′ρ∗F0ρ

]
. (5.19)
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Using the Maxwell equation ∂νFµν = 0, one can show that the above inner product does not

depend on the choice of the Cauchy surface we integrate over. Furthermore, the integrand is

gauge invariant up to a total derivative [53–55].17 The plane waves (5.18) are delta-function-

normalizable with respect to this inner product:

(
∂aqµ e

±iωq·X , ∂bq
′
µ e

±iω′q′·X
)
= ±8(2π)d+1 δab ωq

0 δ(d+1)(ωqi − ω′q′
i
) . (5.20)

Let us now switch gears to conformal primary wavefunctions. It will prove convenient

to choose a particular gauge representative of (5.8). As discussed in Section 5.2, confor-

mal covariance (5.2) fixes the conformal primary wavefunctions (5.8) to be in radial gauge

XµAµ = 0 and Lorenz gauge ∂µAµ = 0 at the same time. However, for the purpose of

computing any gauge invariant physical observables such as scattering amplitudes, we can

work with any wavefunction that is equivalent to (5.8) by a gauge transformation, and still

obtain a conformally covariant answer at the end of the day.

A convenient gauge representative of the conformal primary wavefunction is:

ϕ∆,±
µa (Xµ; ~w) = (∓i)∆Γ(∆)

∂aqµ
(−q ·X ∓ iǫ)∆

, (5.21)

which satisfies the Lorenz gauge condition but not the radial gauge condition. Up to a

normalization factor, ϕ∆,±
µa is gauge equivalent to the conformal primary wavefunction (5.8)

by the following pure gauge:

∂

∂Xµ

(
∂aq ·X

(−q ·X ∓ iǫ)∆

)
. (5.22)

In fact, since the gauge parameter α = ∂aq·X
(−q·X∓iǫ)∆

satisfies ∂2α = 0, it is a residual gauge

transformation (5.17) preserving the Lorenz gauge condition. It follows that even though

(5.21) does not transform covariantly under SO(1, d+1) as in (5.2), the non-covariant terms

are pure residual gauge (5.17). For this reason we will still call ϕ∆,±
µa a spin-one conformal

primary wavefunction.

The particular gauge representative (5.21) is chosen such that it is related to the plane

wave (5.18) by a Mellin transform as in the case of massless scalars,

ϕ∆,±
µa (Xµ; ~w) =

∫ ∞

0

dωω∆−1
(
∂aqµ e

±iωq·X−ǫω
)
. (5.23)

17Large gauge transformations generally have nontrivial inner products with other on-shell wavefunctions

because of this boundary term, and thus should be regarded as nontrivial elements in the solution space of

the Maxwell equation. In the following we will only construct conformal primary wavefunctions that span

the non-zero energy plane waves (5.18).
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It follows that the same argument in Section 4.2 can be directly borrowed for the spin-

one case. We conclude that spin-one conformal primary wavefunctions on the principal

continuous series ∆ ∈ d
2
+ iR are delta-function-normalizable with respect to (5.19) and span

the plane wave solutions (5.18) of the Maxwell equation. Similar to the massless scalar case,

another equally interesting space of on-shell wavefunctions with the same property is the

shadow of (5.21) on the principal continuous series. Given a gluon scattering amplitude,

the transition from momentum space to the space of conformal primary wavefunctions is

then implemented by a Mellin transform (5.23) (or plus a shadow transform (2.21)) on each

external gluon particle.

6 Gravitons

We now turn to massless spin-two conformal primary wavefunctions. In Section 6.1 we

construct solutions to the (d + 2)-dimensional vacuum linearized Einstein equation that

transform as spin-two conformal primaries in d dimensions. In Section 6.2 we identify pure

diffeomorphisms that are also conformal primary wavefunctions. In Section 6.3 we show that

again the spin-two conformal primary wavefunctions on the principal continuous series are

normalizable (with respect to (6.16)) and span the plane wave solutions of the linearized

Einstein equation.

Since there are no propagating degrees of freedom in flat space for gravitons below (3+1)

dimensions, we will assume d ≥ 2 in this section.

6.1 Massless Spin-Two Conformal Primary Wavefunctions in General Dimen-

sions

The defining properties for the outgoing (+) and incoming (−) massless spin-two conformal

primary wavefunction h∆,±
µ1µ2;a1a2

(Xµ; ~w) in R1,d+1 are

• It is symmetric both in the (d+ 2)- and d-dimensional vector indices and traceless in

the latter:

h∆,±
µ1µ2;a1a2

= h∆,±
µ2µ1;a1a2

,

h∆,±
µ1µ2;a1a2

= h∆,±
µ1µ2;a2a1

, δa1a2h∆,±
µ1µ2;a1a2

= 0 .
(6.1)

• It is a solution to the vacuum linearized Einstein equation in flat space:18

∂σ∂νh
σ
µ;a1a2

+ ∂σ∂µh
σ
ν;a1a2

− ∂µ∂νh
σ
σ;a1a2

− ∂ρ∂ρhµν;a1a2 = 0 . (6.2)

18For notational simplicity, we omit the superscript ∆,± of the wavefunction in this equation.

25



• It transforms both as a (d+2)-dimensional rank-two tensor and a d-dimensional spin-

two conformal primary with conformal dimension ∆ under an SO(1, d + 1) Lorentz

transformation:

h∆,±
µ1µ2;a1a2

(Λρ
νX

ν ; ~w ′(~w)) =
∂wb1

∂w′a1
∂wb2

∂w′a2

∣∣∣∣
∂ ~w′

∂ ~w

∣∣∣∣
−(∆−2)/d

Λ σ1

µ1
Λ σ2

µ2
h∆,±
σ1σ2;b1b2

(Xρ; ~w) ,

(6.3)

where ~w ′(~w) is an element of SO(1, d + 1) defined in (2.3) and Λµ
ν is the associated

group element in the (d+ 2)-dimensional representation.

With our experiences from the scalar and spin-one wavefunctions, we can immediately

write down the massless spin-two conformal primary wavefunctions from the Hd+1 spin-two

bulk-to-boundary propagator in the embedding formalism:

h∆,±
µ1µ2;a1a2

(X ; ~w) = P b1b2
a1a2

[(−q ·X)∂b1qµ1
+ (∂b1q ·X)qµ1

] [(−q ·X)∂b2qµ2
+ (∂b2q ·X)qµ2

]

(−q ·X)∆+2

= P b1b2
a1a2

1

(−q ·X ∓ iǫ)∆−2
∂b1∂µ1

log(−q ·X ∓ iǫ) ∂b2∂µ2
log(−q ·X ∓ iǫ) , (6.4)

where P b1b2
a1a2

projects a rank-two tensor to its symmetric traceless components:19

P b1b2
a1a2
≡ δb1(a1δ

b2
a2)
− 1

d
δa1a2δ

b1b2 . (6.5)

It is then straightforward to check that (6.4) satisfies the vacuum linearized Einstein equation.

An equally interesting spin-two conformal primary wavefunction is the shadow transform

(2.21) of (6.4). A direct calculation shows that the shadow primary is:

˜h∆,±
µ1µ2;a1a2(X ; ~w) = (−X2)

d

2
−∆hd−∆,±

µ1µ2;a1a2(X ; ~w) . (6.6)

One can straightforwardly show that (6.6) satisfies all the required properties of massless

spin-two conformal primary wavefunctions. Again for general ∆, the shadow transform does

not take the conformal primary wavefunction h∆,±
µ1µ2;a1a2

to itself with the shadow conformal

dimension d−∆, but to a different wavefunction.

6.2 Diffeomorphism

As in the photon case, conformal covariance (6.3) picks a particular diffeomorphism choice

for the conformal primary wavefunction. It is easy to check (6.4) is traceless and satisfies

19Our convention for symmetrization of indices is T(ab) ≡ 1
2 (Tab + Tba).
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the Lorenz20 as well as the radial gauge conditions:

ηµ1µ2h∆,±
µ1µ2;a1a2 = 0 , ∂µh∆,±

µµ2;a1a2 = 0 , Xµh∆,±
µµ2;a1a2 = 0 . (6.7)

In fact, any solution to the vacuum linearized Einstein equation is diffeomorphic to another

solution that satisfies all three conditions in (6.7) [48]. In this gauge (6.7), the vacuum

linearized Einstein equation becomes

∂ρ∂ρ h
∆,±
µ1µ2;a1a2(X

µ; ~w) = 0 . (6.8)

All these properties also apply to the shadow wavefunction (6.6).

While a general diffeomorphism has no nice conformal covariance, the massless spin-two

conformal primary wavefunction h∆,±
µ1µ2;a1a2 happens to be a pure diffeomorphism if ∆ = 0 or

∆ = 1 for any d. In these two cases they can be written as

h∆=0,±
µ1µ2;a1a2

(Xµ; ~w) = ∂µ1
ξ0µ2;a1a2

+ ∂µ2
ξ0µ1;a1a2

,

ξ0µ;a1a2 =
1

2
P b1b2
a1a2

(q ·X ± iǫ) ∂b1 [ qµ∂b2 log(−q ·X ∓ iǫ) ] , (6.9)

and

h∆=1,±
µ1µ2;a1a2(X

µ; ~w) = ∂µ1
ξ1µ2;a1a2 + ∂µ2

ξ1µ1;a1a2 ,

ξ1µ;a1a2 = −
1

4
P b1b2
a1a2 ∂b1∂b2 [ qµ log(−q ·X ∓ iǫ) ] . (6.10)

Incidentally, ∆ = 0 is the shadow dimension (i.e. ∆ → d − ∆) of the stress-tensor in a

d-dimensional CFT.

The shadows of these two wavefunctions (6.9) and (6.10), however, are not pure diffeo-

morphisms in general. This subtlety is parallel to the one we encountered in the spin-one case

in Section 5.2. In the spin-two case, the shadow transform (2.21) is not defined for ∆ = 0, 1,

in which cases the conformal primary wavefunctions (6.4) reduce to pure diffeomorphisms.

Nonetheless, the shadow wavefunction can be analytically continued to any value of ∆ from

the expression (6.6). The subtlety is that this analytic continuation spoils the pure diffeo-

morphism condition. Indeed, by a direct computation of the linearized Riemann curvature

tensor, one can check that the shadow wavefunctions (6.6) with conformal dimensions d and

d− 1, i.e. the shadow dimensions of 0 and 1, are never pure diffeomorphisms if d 6= 2.

There is again an exception for spin-two wavefunctions in (3 + 1) spacetime dimensions.

When d = 2, the ∆ = 1 shadow wavefunction (6.6) is identical to the pure diffeomorphism

20In general relativity, Lorenz gauge is usually defined as ∂µhµν − 1
2∂νh

ρ
ρ = 0. Since our wavefunction is

traceless, the Lorenz gauge condition reduces to ∂µhµν = 0.
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wavefunction (6.10),

˜h∆=1,±
µ1µ2;a1a2(X

µ; ~w) = h∆=1,±
µ1µ2;a1a2

(Xµ; ~w) (d = 2) , (6.11)

and is thus a pure diffeomorphism as well. Additionally, the shadow wavefunction (6.6) with

conformal dimension 2 is also a pure diffeomorphism:

˜h∆=0,±
µ1µ2;a1a2(X

µ; ~w) = ∂µ1
ξ2µ2;a1a2 + ∂µ2

ξ2µ1;a1a2 , (d = 2) (6.12)

ξ2µ;a1a2 = −
1

24
P b1b2
a1a2

[
∂b1∂b2∂

c (Xρfρµ;c log(−q ·X ∓ iǫ))− 1

2
∂c∂c∂b1 (X

ρfρµ;b2 log(−q ·X ∓ iǫ))

]
,

where fρµ;c ≡ qρ∂cqµ − qµ∂cqρ. In [4], this ∆ = 2 pure diffeomorphism was discussed in

the context of soft graviton theorem in (3 + 1) spacetime dimensions. We summarize spin-

two conformal primary wavefunctions h∆,±
µ1µ2;a1a2

and their shadows ˜h∆,±
µ1µ2;a1a2 that are pure

diffeomorphisms in Table 4.

d = 2 d ≥ 2

h∆,±
µ1µ2;a1a2 ∆ = 0 ∆ = 0, 1

∆ = 1

˜hd−∆,±
µ1µ2;a1a2 ∆ = 2 ×

Table 4: Spin-two conformal primary wavefunctions and their shadows that are pure diffeo-

morphisms in R1,d+1. For d = 2, the conformal primary wavefunction h∆=1,±
µ1µ2;a1a2 with ∆ = 1

is identical to its (formal) shadow ˜h∆=1,±
µ1µ2;a1a2 (6.11), so we place ∆ = 1 in the middle between

the two rows.

6.3 Mellin Transform

Finally, let us determine the range of the conformal dimension ∆ for the spin-two conformal

primary wavefunctions so that they are normalizable with respect to a certain norm and

span the plane wave solutions of the linearized Einstein equation.

As before, we first review solutions in momentum space. We will be working in Lorenz

gauge:

∂µhµν −
1

2
∂νh

ρ
ρ = 0 , (6.13)
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in which the vacuum linearized Einstein equation reduces to ∂ρ∂ρhµν = 0. The outgoing and

incoming plane waves are ǫµν(k)e
±ik·X where kµ is null and ǫµν(k) is a symmetric polarization

tensor satisfying kµǫµν = 1
2
kνǫ

µ
µ. The residual diffeomorphisms preserving the Lorenz gauge

condition are

hµν(X)→ hµν(X) + ∂µξν(X) + ∂νξµ(X) , ∂ρ∂ρξµ(X) = 0 . (6.14)

In momentum space, the residual diffeomorphisms shift the polarization tensor by ǫµν(k)→
ǫµν(k) + kµrν + kνrµ for any vector rµ. Using these residual diffeomorphisms, we can bring

the polarization tensor to a rank-two symmetric traceless tensor of the following form:

g±µν;a1a2(X ;ω, q) = P b1b2
a1a2

∂b1qµ∂b2qν e
±iωq·X , (6.15)

with ∂aq
µ given by (2.11). Again we have parametrized a null vector kµ as kµ = ωqµ(~w)

with ω > 0.

The inner product on the space of complex solutions to the vacuum linearized Einstein

equation, modulo diffeomorphisms that fall off sufficiently fast at infinity, is [13, 49–52]

(
hµν , h

′
µ′ν′

)
= −i

∫
dd+1X i

[
hµν∂0h

′∗
µν − 2hµν∂µh

′∗
0ν + h∂µh′∗

0µ − h∂0h
′∗ + h0µ∂

µh′∗

− (h↔ h′∗)
]
, (6.16)

where h = hρ
ρ. Using the linearized Einstein equation we can show that the inner product

does not depend on the choice of Cauchy surface. Further, it is invariant under diffeomor-

phism up to a boundary term [13, 53–55].21 The inner products between two plane waves

are
(
g±µν;a1a2(X ;ω, q), g±µ′ν′;a′1a

′

2
(X ;ω′, q′)

)

= ±32(2π)d+1

(
δa1(a′1δa′2)a2 −

1

d
δa′1a′2δa1a2

)
ωq0 δ(d+1)(ωqi − ω′q′

i
) . (6.17)

We now wish to find the space of conformal primary wavefunctions that spans the plane

wave solutions (6.15). We start by considering a particular diffeomorphism representative

of the conformal primary wavefunction. Let us consider one of the terms in the conformal

primary wavefunction (6.4):

ϕ∆,±
µ1µ2;a1a2(X

µ; ~w) = (∓i)∆Γ(∆)P b1b2
a1a2

∂b1qµ1
∂b2qµ2

(−q ·X ∓ iǫ)∆
. (6.18)

21Similar to the spin-one case, large diffeomorphisms generally have nonzero inner products with other

on-shell wavefunctions and should therefore be included as nontrivial elements in the solution space. We will

focus on the non-zero energy plane wave solutions (6.15) to the linearized Einstein equation below.
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It is traceless and satisfies the Lorenz gauge condition ∂µϕ∆,±
µµ2;a1a2 = 0, but not the radial

gauge condition. It also satisfies the linearized Einstein equation in this gauge, ∂ρ∂ρϕ
∆,±
µ1µ2;a1a2

=

0. One can straightforwardly show that (6.18) differs from the spin-two conformal primary

wavefunction (6.4) by a pure residual diffeomorphism (6.14). Indeed, even though (6.18)

does not transform covariantly as in (6.3), the non-covariant terms of the transformation are

pure residual diffeomorphisms of the Lorenz gauge condition:

∂bq(µ1
qµ2)

(−q ·X)∆
=

1

∆− 1
∂(µ1

(
∂bqµ2)

(−q ·X)∆−1

)
,

qµ1
qµ2

(−q ·X)∆
=

1

∆− 1
∂(µ1

(
qµ2)

(−q ·X)∆−1

)
.

(6.19)

Hence for the purpose of computing any diffeomorphism invariant observables, we can use

the wavefunction ϕ∆,±
µ1µ2;a1a2 and still reproduce a conformally covariant answer in the end.

The advantage of this diffeomorphism representative (6.18) for the conformal primary

wavefunction is that it is simply the Mellin transform of the pane wave (6.15) as in the

massless scalar case:

ϕ∆,±
µ1µ2;a1a2(X

µ; ~w) =

∫ ∞

0

dωω∆−1 g∆,±
µ1µ2;a1a2(X

µ;ω, qµ) . (6.20)

Following the same argument used in Section 4.2, we conclude that spin-two conformal

primary wavefunctions on the principal continuous series ∆ ∈ d
2
+ iR are delta-function-

normalizable (with respect to (6.16)) and span the plane wave solutions (6.15) of the vacuum

linearized Einstein equation. Another equally interesting set of on-shell wavefunctions with

the same property is the shadow of (6.18). Given a graviton scattering amplitude, the

transition from momentum space to the space of conformal primary wavefunctions is again

implemented by a Mellin transform (6.20) (or plus a shadow transform (2.21)) on each

external graviton particle.
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