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The non-perturbative structure of the photon and gluon propagators plays an important role in
governing the dynamics of quantum electrodynamics (QED) and quantum chromodynamics (QCD)
respectively. Although it is often assumed that these interacting field propagators can be decomposed
into longitudinal and transverse components, as for the free case, it turns out that in general this
is not possible. Moreover, the non-abelian gauge symmetry of QCD permits the momentum space
gluon propagator to contain additional singular terms involving derivatives of §(p), the appearance
of which is related to confinement. Despite the possibility of the failure of the transverse-longitudinal
decomposition for the photon and gluon propagators, and the appearance of singular terms in the
gluon propagator, the Slavnov-Taylor identity nevertheless remains preserved.

I. INTRODUCTION

Correlators, and thus propagators, are the cen-
tral objects of interest in any quantum field
theory (QFT). Despite their importance, the non-
perturbative structure of propagators in physical
theories such as quantum electrodynamics (QED)
and quantum chromodynamics (QCD) remains
largely unknown. Nevertheless, there are several
techniques which have the potential to probe this
non-perturbative behaviour. Axiomatic quantum
field theory (AQFT) is one such approach, and
consists of defining a QFT in a mathematically
rigorous manner via the definition of a series of
physically motivated axioms [1-5]. Although differ-
ent axiomatic schemes have been proposed, these
schemes generally consist of a common core set of
axioms which are often referred to as the Wightman
azioms [1]. These axioms include assumptions such
as relativistic covariance, fields as (operator-valued)
distributions, and locality!.

In the case of quantised gauge theories such as QED
and QCD, the standard Wightman axioms no longer
apply. In particular, gauge symmetry provides an
obstacle to the locality of fields in the theory. To
quantise a gauge theory one therefore has to either
accept that fields can be non-local, as is the case
in Coulomb gauge, or one can preserve locality by
adopting a local quantisation. In local quantisations,
additional degrees of freedom are introduced into
the theory, resulting in a space of states ¥ which no
longer possesses a positive-definite inner product.
Since negative norm states are unphysical, one must
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I See [1-5] for a more in-depth discussion of these axioms.

define an external condition in order to specify the
physical states Vpnys C V. For gauge theories such
as QED and QCD, BRST quantisation is an impor-
tant example of a local quantisation. In this case,
auxiliary gauge-fixing and ghost term are added
to the equations of motion of the theory in order
to break the gauge invariance, and thus preserve
the locality of the fields. Although the gauge-fixed
theory is no longer gauge invariant, it remains
invariant under a residual BRST symmetry, which
has a corresponding conserved charge Q. Physical
states are then defined by the requirement that the
quantised equations of motion must hold for these
states, and it turns out that this is equivalent to the
condition: QpgVphys = 0 [4]. Due to the preservation
of locality, BRST quantisation is usually employed
when analysing the non-perturbative structure of
the photon and gluon propagators. The modifica-
tion of the Wightman axioms required to facilitate
the indefinite inner product space of states V in this
approach is referred to as the Pseudo-Wightman
formalism [5]. Although many of the results derived
from the standard Wightman axioms are maintained
in this formalism [6], the modification of the axioms
can lead to significant changes in the structure
of correlators and propagators, and it is precisely
these differences which will be explored in this paper.

The rest of this paper is structured as follows: in
section II the general properties of Lorentz covari-
ant correlators is outlined, and these properties are
applied in order to derive the general form of the cor-
relator and propagator of an arbitrary vector field; in
section III the results derived in section II, together
with the model-dependent constraints, are used to
derive the structure of the non-perturbative pho-
ton propagator in free (quantised) electromagnetism
and QED, as well as the gluon propagator in QCD;



in section IV, the issue of whether a transverse-
longitudinal decomposition exists for the interact-
ing photon and gluon propagator is discussed; and
finally in section V the key findings are summarised.

II. THE NON-PERTURBATIVE
STRUCTURE OF VECTOR CORRELATORS
AND PROPAGATORS

A. The vector correlator

In axiomatic formulations of QFT [1], the basic
field correlators (0|1 (x1)¢2(22)|0) = Tiq 2y (71 — 22)
are defined to be tempered distributions S’(R!3),
and hence their Fourier transforms f(lﬁg)(p) =
F [T1,2) (w1 — x2)] are in S'(R'3). Moreover, since
quantised fields are also assumed to transform co-
variantly under Lorentz transformations, f(m)(p) is
a Lorentz covariant distribution, and therefore sat-
isfies the following condition [5]:

f(l,Q)(Ap) = S(A) f(1,2) (p)7

where A € fi &~ SL(2,C). The structure of the
Lorentz covariant distribution f(u)(p) is dependent
upon how the fields ¢, and ¢o transform under
Lorentz transformations. In particular, T(; )(p) has
the following decomposition [5]:

(IL1)

N
T2y (®) = > Qu(p) Tug1.2)(p), (11.2)
a=1

where fa(lg)(p) are Lorentz invariant distributions

~

(ile. Taa2)(Ap) = Taap2(p), and Qu(p) are
Lorentz covariant polynomial functions of p which
carry the Lorentz index structure of ¢; and ¢2. Be-
fore discussing the specific structure of the photon
and gluon correlators and propagators, one must
first consider the general case where ¢; are both
arbitrary vector fields. Given that ¢1 = A, and
¢2 = A,, it turns out that there are two possible
Lorentz covariant polynomials: Q1(p) = g.. and
Q2(p) = pupy. Due to Eq. (IL.2) it therefore follows
that

Dy (p) = F [(0] Ay(2) Ay (3)[0)]

- g,uu Bl(p) +p,up1/ ﬁ?(p) (113)

In order to further specify the structure of ﬁ,w (p)
one must first understand the behaviour of the

Lorentz invariant components Dy (p) and D (p). It
is well known that Lorentz invariant distributions
T, € 8'(R*3) have certain structural properties. In
particular, if fa is restricted to have support in the
closed forward light cone V7T, as is required in ax-
iomatic formulations of QFT, fa can be written in
the following general manner [5]:

To(p) = P@)5(p) + / " 4506150 — 5)pals),
(IL.4)

where P(0?) is some arbitrary polynomial of finite
order in the d’Alembert operator 9% = gw,%%
(with complex coefficients), and p,(s) € S'(Ry).
This is the spectral representation of fa, and p, is
the spectral density. In the case of the vector field
correlator (Eq. (I1.3)), Eq. (I1.4) can be used to write

D, (p) in the form

Dyw(p) = /0 s 0(p)6(p* = 5) [guwp1(s) + pupup2(s)]

+ (90 P1(0%) + pupy P2(0%)] 6(p),
(IL5)

where P; and P, are polynomials of finite order. Per-
forming the inverse Fourier transform of this expres-
sion leads to the following general representation of
the position space correlator:

(0]AL(2) AL (y)[0) =
— [ ds[ = guupr(s) + pa(8)0,0,] DO (x — y; )

2m Jo
+ ﬁ [guupl (_(ZU - y)2) — 0,0,P> (—(x _ y)z)] '

P, and P, are arbitrary complex polynomials of
finite order and hence one can set: Pj(0?) =
ZZL:O a1(0?)!, and Py(0?) = Z%:O by (0?)™ where
ap, b, € C. Since the polynomial term
Py (—(z —y)?) involves derivatives, not all of the
terms will contribute to the correlator. In fact, one
can write

0,0, Py (—(z — y)Q) =

M
— 2b1G,u + 00y <Z b (—(z — y)2)™ - - ) .

m=2

=Pa(=(2=y)?)



Finally, by setting ag = ag + 2b1 (a; = a; for [ > 1)

(014, (2) Au ()]0) =
i ds [—guvpi(s) + p2(8)0,0,] D(*)(x —y;s)
+ # |:guuﬁ1 (—(z— y)2) — 6M81,152 (—(z— y)z)} 7

(1L.6)

where now 161(—(:10 —y)?) = ZILZO a(—(z —y)?).

S)}0) = 0 )
+ole ‘“/(iﬁ;

e [ f

(O[T {Au(x)A s

00 =) [ L e (g, (07) + PP 50

In order to simplify this expression one can use the
relation

050 |02 — y")e™ PV (0 — a®)e )|
— Pubv [9(:100 — D) PEY) ()0 — xO)eip(m—y)j|

— i(puguo + prguo) 6(z° — y°) [e*ip(rfy) + eip(xfy)}
+ Guoguo 0 (2% — y°) {eﬂ-p(z,y) _ ez—pmy)} |

which upon substitution into Eq. (I.8) implies that
the vector propagator has the following general
structure:

O[T {Au(z)

/ ds
0 27T
)

= 5-9u09v0 o(x — y)/o ds p2(s)

v)?)

Ay (y)}Ho) =
[—guwp1(s) + pa(s)0507 | iAp(x — y; 5)

[gWPl (—(z—y)?) - 0202y (—(a

—y)z)} ,

(IL.9)

1
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B. The vector propagator

In general, the vector propagator involves a time-
ordered product of fields, and is defined as:

(01T {Au(2) Ay () }0) : = 0(2° —

Using the spectral representation of the vector cor-
relator in Eq. (IL.5), the propagator can be written

—zp z— u)e( )6(]?2 — 5) [gwjpl (S) + pupup2(5)]

_zp(:c y) [quﬁ1(82)+pﬂpyﬁ2(32)} 5(p)

ip(xfy)e(p0)5(p2 _ 5) [gl“/pl (S) + p,upl/p2(5)]

(IL.8)

and thus the Fourier transformed propagator ZA)EV =
FO[T{Au(z)Ay(y)}|0)] is given by

DE,(p) =i /0

1

- %guOQVO/O ds pa(s)

+ g,uuf)l (32)5(17) + pupuﬁ2(82)5(p)'
(I.10)

ds [guupl (5) +pupup2(3)]
2 p? — s +ie

A shared feature of the position and momentum
space vector propagators is that they both contain
an explicitly non-covariant term proportional to
guogvo- This is in fact not surprising because unlike
correlators, propagators involve time-ordered fields,
and this requires one to single out a non-covariant
plane (z° — y° = 0) with which to chronologically
order the fields. It is clear from Eq. (I1.10) that
whether or not this non-covariant term appears
depends on the integral of the spectral density ps.

In order to rigorously make sense of the integral ap-
pearing in the first term of Eq. (I1.10), one intro-
duces the following notion of distributional convolu-



tion [5]:

1 1
<p2 T e * P, f) = <P7 m *f> , (H.ll)

where 1)2#_”6 xp = fdspgfi(;i_ie, and (D, f) =
Jd*z D(z)f(z) represents the smearing of the
distribution D with the test function f. For this
definition to make sense for all test functions f € S,
this requires that p is extended from the class
S'(Ry), as defined in section ITA, to the class
S'(Ry U o0). In other words, the distribution p
must be permitted to have support at (positive)
infinity. The origin of this requirement stems from
the fact that propagators contain a product between
theta distributions and ordinary correlators (see
Eq. (IL.7)), which is in general ill-defined. By
extending the domain of validity of p, and thus
making sense of the convolution pQ;ﬂ.E * p, this is
equivalent to defining this product [5]. A direct
consequence of this extension is that the constant
function f = 1 is now a valid test function for the
spectral density (since 1 € S(Ry U o)), and this
therefore guarantees that the expressions [ dspa(s)
and [ dsp1(s) are both well defined.

An important property of the representations in
Egs. (I1.9) and (I1.10) is that they follow only from
the assumption that Fourier transformed correla-
tors are Lorentz covariant tempered distributions
with support in V1. Since this is a ubiquitous fea-
ture of any axiomatically defined QFT, this means
that these representations are model independent.
Therefore, in order to further constrain the struc-
ture of particular propagators, one must introduce
dynamical information about the fields A,, such as
equations of motion or (anti-)commutation relations.
In section III these constraints will be outlined in
the cases where A, is a free photon field, the photon
field in QED, and the gluon field in QCD, and the ef-
fect that they have on the form of the corresponding
propagators will be discussed.

III. EXPLICIT VECTOR PROPAGATORS
A. The free photon propagator

When A, is a free (locally) quantised electromag-
netic field, it satisfies the following equations of mo-
tion:

0"F,, +0,A=0,

EA=0"A,,  (IIL1)

where A is a gauge fixing auxiliary field. As with any
free theory, quantisation is performed by imposing
equal-time commutation relations (ETCRs), which
in this case are

[A(2), AW)lzy=y, =0 (I11.2)
[A(2), Av(Y)] 1y =yy = 19000(x — ¥), (I11.3)
[Foi (@), Ay ()] gy—yo = ig00(x —y),  (IIL4)
[Au(@), Av(Y)] 4=y = 0- (I1L.5)

It follows immediately from the equations of motion
that: °A = —919"F,,, = 0, and thus A satisfies a
free wave equation. Among other things, this im-
plies that any unequal-time commutator involving
the field A is uniquely determined (as a distribution)
by the corresponding equal-time commutator [4]. In
particular, one has

[A(z), A(y)] = 0

: (I11.6)
[A(z), Au(y)] = i05 Do(z — y).

(I1L.7)

Moreover, since A is a free field, one can decompose
it into positive and negative frequency components:
A = AT + A, where the gauge fixing (subsidiary)
condition corresponds to: A™Vphys = 0. In order to
constrain the form of the photon correlator, one can
use the fact that the vacuum state is physical, from
which it follows that

(0lA(2)A(y)|0) =0,
(0[A(2) Ay ()[0) = (0] [A™ (2), A (y)] |0)
=10, Dj (z — y).

(II1.8)

(I11.9)

v

Now that the equations of motion and ETCRs have
been defined, one can establish the constraints that
these relations impose on the structure of the free
photon correlator and propagator. Firstly, using the
equation of motion (A = 0*A,, Eq. (IIL.8) can be
written in the form

(00" Ay (2)0" Ay (y)]0) = 030 (0| Ay () Ay (y)|0) = 0.
By inserting in Eq. (I1.6), and taking the inverse

Fourier transform of this expression, this then im-
plies the equality

0(p")p* [p1(P°) + P*p2(p*)]

L M
»° <Z dz(82)l> +(p)? (Z bm(az)mﬂ 3(p) = 0.

=0 m=2
(I11.10)

_|_




Since the first distribution in the equality above is
defined to have support outside p = 0 (in the closed
forward light cone) [5], whereas the second distribu-
tion has support at p = 0, the equality requires that
both distributions must vanish identically. It turns
out that the vanishing of the first term in Eq. (II1.10)
implies the relation

p1(8) + spa2(s) = Cd(s),

where C is an arbitrary constant. Moreover, by
using the distributional properties of §(p) (and its
derivatives), one can write

L I
p? (Zal (0?) ) Z (14 Da(0*) =1s(p),

(I11.12)

(IIL.11)

1)(m + 1)bm (%) 28(p).

(I11.13)

Setting N := min{L —1, M — 2} and K := max{L —
1, M — 2}, the vanishing of the second term then
implies

an =—4(n+1)(n+2)bpt1, 1<n<N+1,
(ITL.14)

n =0, if M<L+1

byt =0, if L+1<M} N+2sn<K+L

(I11.15)

The constraint in Eq. (II1.8) therefore ensures that
the coefficients of the polynomials 161-, as well as the
spectral densities p;, are no longer independent, but
are in fact related to one another.

The next constraint on the free photon correlator
and propagator arises from Eq. (IIL.9). Again, by
using the equation of motion (A = 9% A,,, this equa-
tion can be written

95 (0] Ay () Ay (y)]0) = £(0]A(z) Ay (y)|0)
=i€0, Dy (¢ —y).
Inserting Eq. (II.6), and then taking the inverse
Fourier transform of this expression, implies the
equality

0(p°)pv [p1(p?) + P*pa(p?) + 2mE8(p?)]

(z al<a2>l> - (Z bm<az>m>] 5(p) = 0.
=0 m=2

Just as with Eq. (II1.10), both of the terms in this
expression must vanish separately. Using the distri-
butional identities:

L L
P (Z m(a“‘)l) 5(p) = 3 20, (0°) " 6(p).
=0

. (II1.16)
M
pup’ <Z bm(32)m> d(p) =

M
> 8m(m — 1)(m + 1)bynd,, (9%)™ 25 (p),
m=2

(I11.17)

it turns out that the vanishing of the second term
implies identical constraints to those in Eqgs. (II1.14)
and (II1.15). Furthermore, by considering the v = 0
component of the first term, and using the constraint
in Eq. (IT1.11), one obtains

0(p")po [p1(p?) + P*p2(p?) + 21E5(p?)]
=0(p")po [(C + 27E)6(p?)]

= o (€ +2me) 0P

o S(C+om) =0,

and thus the constant in Eq. (ITI.11) is fixed to C' =
—27¢. In summary, the correlators in Eqgs. (IIL.8)
and (II1.9) imply the following conditions:

an =—4(n+1)(n+2)bpr1, 1<n<N+1,
(IIL.18)
in =0, if M<L+1
buir =0, if L+1<M} N+t2snsk+l,
(IIL.19)
p1(8) + spa(s) = —2wEH(s). (II1.20)

Although the constraints imposed by the relations
in Eqs. (ITI1.8) and (II1.9) imply that the coefficients
of the polynomials ﬁl and ﬁg are related to one an-
other (Egs. (III.18) and (II1.19)), these coefficients
can still in principle be any complex numbers. How-
ever, it will now be demonstrated that further con-
straints on these parameters arise due to another
important feature of free electromagnetism — the
field strength tensor F),, is an observable. The pre-
cise definition of operator observability is discussed
in [3], but essentially because F},, is gauge invari-
ant this is sufficient to imply it is an observable,
and hence: Fj,, Vpnys € Vpnys. Since by definition:



|U) € Vonys = (¥|¥) > 0, the observability of F,,
and the fact that |0) € Vpnys therefore gives rise to
the following constraint:

F(f)I0) =0

where F(f) := [d'a¢F,,(z)f" (z), with f*
S(RY3). Because F,, = 9,A, —9,A,, one can write

(O] Fw () Fpor (y)]0) =
905 (014, (2) A5 (y)]0) — 8,05 (0] Au () A, (y)|0)

|0
— 0,05(0] Ay (2) Ao (1)]0) + 9505(0]Apu(x) A
(I11.22)

O|F(f)T (I11.21)

Moreover, due to Eq. (I1.6) the vector correlator has
the following form:

»(1)]0)-

(014, () Ay (y)|0) =
eoy | P2 (C@=9)?) [ ds e .
9,07 — _/0 %pg(s)zD( Nz —y;s)
=G(z—y)
P (—(z—9)?) * ds )
o | et = [ G (iD=

(I11.23)
which upon substitution into Eq. (IT1.22) gives

<O|Fuu(x)FpU ()[0) = (guaaﬁag - gupaﬁag

— Guc0,0) + 9up0y03) F (2 —y).

(I11.24)

So the G(z — y) component of the vector correlator
does not contribute to the field strength correlator.
Since F(f)" = F(f), Eq. (II1.24) can then be used
to write the observability condition in Eq. (ITI1.21)
as follows:

(OIE(H)TF(f)]0)

— [ dtady O1F (@) Fpr ()]0) 7 ()57 )
= / d*zd*y F(x — y)h*(z)h,(y) >0,  (I11.25)

where h, := 9, f", — duf,* € S(RY3). Since h,, is
an arbitrary test function, Eq. (II1.25) implies that
F(z—y) must be a positive-definite distribution. An
important feature of positive-definitive distributions
is that their Fourier transform F (p) is a non-negative
distribution and this in turn defines a measure [5].

Since F(p) = [7° ds p1(s)0(p°)3(p* —s)+P1(8%)3(p),

in particular this means that Py (82)8(p) cannot con-
tain terms involving derivatives of d(p), because
these distributions do not define measures [7], and
thus one must have: ar = 0 Vk > 1. Taken to-
gether with the relations in Egs. (IT1.18) and (I11.19),
this therefore implies the following constraint on the
polynomial coefficients:

i =bpe1 =0, Vk>1. (I11.26)

Due to the definitions of the polynomial terms in

Eq. (IL 6) an immediate corollary of this constraint

is that: P2 = 0, and P1 = ag. In other words, the
polynomial terms only contribute to the free photon
correlator or propagator if ag is non-vanishing.

In principle the coefficient ag could be non-

vanishing, but it turns out that a (p) defining a mea-
sure guarantees that this is not the case. To see this,
consider the following (cluster) correlator:

(01 F()F(7)[0) :=
/d4wd4y (01 Fyuw (2) Fpor ()|0) F1 (= 2) 77 (y — §).

Taking the Fourier transform of this expression, and
applying Eq. (111.24), gives

F [0 F@F)0)]
—F U d'zd'y F(z —y)h*(x — &)hy(y — 7)
(—p)hp(p)F (p).

Since F(p) defines a measure it follows that
F [<O|ﬁ(i)ﬁ(gj)|0>} must also define a measure [8].
Moreover, due to Eq. (II1.26), this measure has
the contribution doh?(0)h,(0)d(p) at the point
p = 0. However, one of the Pseudo-Wightman
axioms [5] states that since the Fourier trans-
form of (0|F(Z)F(§)|0) defines a (complex) mea-
sure, it must be the case that the contribution
of this measure at the point p = 0 is equal to
(27)4(0| F(2)[0)(0| F'()]0)é(p). Therefore, one must
have the equality

h(0) = (2m)* (O|F()[0) (01 F'(5)[0)
= (27T)4/d4~’6d4y (01 Fs ()]0) (01 Fpor ()]0)
X 1 (@ —2) 7 (y = 5)-

But (0|F),.(2)]0) = (0|F,s(y)|0) = 0 because one
cannot have a non-Lorentz invariant condensate, and

he

doﬁp(o) 4



so it must be that: @y = 0. Combining this con-
straint with Eq. (II1.26) implies:

P =P, =0. (I11.27)

Another constraint on the form of the vector cor-
relator, and in particular the spectral densities p;,
arises from the equal-time commutation relation

4@, 4. ()]

= —i[guw — (1 — €)gougor] 6(x — y),
(I11.28)

To=Yo

which itself is derived from the equations of motion
and Egs. (IIL.3), (I11.4) and (IIL.5). Setting u =
i,v = j one has that

[00(0]As () A; (1)]0) — D01 A; (3)
— —igijé(x — y)

Ai(2)]0)]

Zo=Yo

Inserting in the general expression for the correlator
in Eq. (I1.6), one obtains the following sum rules:

/0 ds pi(s) = —2m, /0 ds p2(s) = 0. (II1.29)

One should note here that even if the polynomial
terms P; were non-vanishing, they would cancel in
the commutator and hence not affect the constraints
in Eq. (IT1.29). Similarly, in the case where u = v =
0, this instead implies the sum rules

| s oa(s) + sl = —2m6. [ dspats) =0
0 0
(I11.30)

So both the constraints imply that the integral of the
spectral density ps vanishes, whereas Eq. (II1.29)
constrains the integral of p;, and Eq. (I11.30) con-
strains the the integral of the combination p; + sps.

A final constraint on the form of the free photon
correlator arises because the equation of motion can

be written: 9" F,,, + 9,A = 0?A, + (1 — )9, A =0,
which means that

v ()|0) = (£ = 15 (0[A(2)
=i(¢ — 1)aLaD,

82 (0|A,(z)A A, (y)]0)
o (x —y).
By inserting the general expression for the correlator
in Eq. (IL.6), as well as the constraint P =P, =0,

and taking the inverse Fourier transform, this equal-
ity implies

0(p°) (9P’ p1(P?) + Pupvp’ p2(p°)
+2m(€ — 1)pﬂpl,5(p2)] =0.

Substituting in the condition on the spectral densi-
ties in Eq. (II1.20) into this relation, one obtains

e(po) [(guup — PuPv)p1(p ) — 27ppy 0 (p )} =0,

which upon contraction with g"** implies
0(p°) [3p*p1(p?) — 21p°5(p*)] = 30(p°)p*p1(p*) = 0,

and hence: p1(p?) = DJ(p?) for some arbitrary
constant D. By applying the sum rule for p; in
Eq. (I11.29) it immediately follows that D = —2m.
Since p1(p?) = —2m(p?), this means that py satisfies
the equation

pPp2(p®) = 2m(1 - £)6(p?).

The general solution to this equation has the form:
p2(p?) = ES(p?) — 27(1 — €)' (p?), where E is an
arbitrary constant. It follows from the sum for ps in
Eq. (IT1.29) that E = 0 and thus one can finally con-
clude that the spectral densities for the free photon
correlator have the following exact form:

pr(s) = —273(s),  pals) = —2m(1— €)' (s)
(I11.32)

(I11.31)

Given these spectral densities, and the fact that
P, = P, =0, the momentum space free photon cor-
relator can therefore be written

Dy (p) = 270(1°) [~ 9,w0(p%) + pup (€ — 1) ()] -
(111.33)

Moreover, since the constraints from Eq. (IT1.28) im-
ply that the integral of po vanishes, it follows from
Eq. (I1.10) that the free photon propagator has the
form

~p . oo
D, (p) ZZ/O

which upon substitution of the expressions for p;
and po in Eq. (IT1.32) gives

ds [guvp1(s) + pupvpa(s)]
2T P2 — s+ i€

)

(IT1.34)

N Pubv [
DF (p) = — |gu — (1 — &)L
,uu(p) |:gM ( §)p2 +Z€:| pQ —|—’L€
= (g — Pubv { —i¢ PuPv
2 p2 e ) p? +ie (p? + ie)?
—_— ————
=Ty =L,

)



where T, and L, are referred to as the transverse
and longitudinal projectors respectively.

B. The photon propagator in QED

In QED one requires the fields to be renormalised
in order to make sense of the equations of motion.
Once this renormalisation has been performed, the
equations of motion in locally quantised QED have
the following form:
OV F) + 9, A =0 g A0 = or A,
(I11.36)

where the index r indicates that the corresponding
quantity is renormalised, and jfbr) is the (conserved)
fermion interaction current. In particular, one has
_1
that A,(f) = Z,4 2ALO), where Z3 is the photon field
renormalisation constant and ALO) is the unrenor-
malised bare field. For simplicity, throughout the
rest of this paper the label r will be dropped, and
every quantity should be implicitly assumed to be

renormalised. To quantise QED one imposes the
ETCRs:

II1.37
II1.38

)
)
111.39)
111.40)

[A(2), Ay)]ozy, =0,

[A(@), Av(Y)]y=yy = 190v0(x —y),
[Foi(2), Ay (9)] gy = 190w Z5 0(x =),
[ A

(
(
(
w(); Av(y)] 4=y, = 0- (

b

An important feature here is that even though the
equation of motion includes the non-vanishing cur-
rent j,, A still satisfies the free massless wave equa-
tion by virtue of the current conservation condition
0*j, = 0. Among other things, this implies that the
renormalisation constant Z3 must be finite [4], and
therefore the correlators involving the auxiliary field
A are the same as those in the free case (Egs. (IIL.8)
and (II1.9):

{0lA(2)A(y)|0) =0,
(O[A(2) A (9)]0) = 10, Dy (2 — y).

(II1.41)
(I11.42)

Moreover, because F),,, is gauge invariant, it follows
that F),, is also an observable in QED. Since the
structural relations for vector correlators and prop-
agators derived in section II are equally applicable
to both free and interacting theories, the constraints
implied by the observability of F,,, and Eqgs. (II1.41)

and (IT1.42) are identical to those in the free photon
case:

P =P, =0, (I11.43)
p1(s) + spa(s) = —2m&d(s), (I11.44)
/Ooo dspi(s) = =212,

[ ds 11(6) + spalo) = ~2n,

/000 ds p2(s) = 0. (II1.45)

Using the above constraints, it follows analogously
to section IIT A that the momentum space photon
correlator has the structure:

~

Do) = / " 45 0°)5( — ) [guwpr(5) + pupepa(s)],
(I11.46)

and hence the photon propagator can be written

ﬁiy( ) = i/oo ds [Quupl(j) —l—pup.ypg(s)].
o 2m p — s +ie

(I11.47)

An important feature of the spectral densities in
QED, as opposed to the free case, is that despite
being related to one another via Eq. (II1.44), the
explicit form of the spectral densities is not deter-
mined. This lack of knowledge arises because of the
non-trivial non-perturbative structure of the theory.

C. The gluon propagator in QCD

In BRST quantised QCD, the equations of motion
have the following form:

(D¥F,.)" + 0,A" = gj — igf**°9,C"C",
oM A = EA", (II1.48)
o"(D,C)* =0, (D"9,0)" =0, (I11.49)
where C® and C® are the ghost and anti-ghost fields,
and all of the fields depend on the non-abelian ad-

joint index a. The ETCRs of particular relevance
are:

[A"(2), A W)],, s = 05 (IIL.50)
[A*(2), A (W)],,_,, = i6"90,0(x —y), (IIL51)
[Foi(@), AL (y)] =i6"9i, Z5 '6(x — ),

(I11.52)
(I11.53)

To=Yo

[Afi(x), A (y)] =0,

Zo=Yo



where now Z3 is the gluon field renormalisation
constant. Although these ETCRs have a similar
form to those in QED and the free case, there is
a very important difference in QCD — the auxil-
iary field A does nmot satisfy a free wave equation.
This means that unlike in QED and free electro-
magnetism, the ETCRs involving the auxiliary field
cannot be used to determine the value of the commu-
tators at unequal times. In particular, one cannot
assume that Eq. (II1.7) holds. Nevertheless, one can
use the BRST symmetry of the QCD equations of
motion to prove that the auxiliary field correlator
(0|A%(z)A®(y)|0) does in fact vanish, just like in sec-
tions IIT A and IITB. The key to this derivation is
that the BRST variation of any product of fields O
vanishes
(0165010) = (0 [iQp, O], |0) = 0.
This automatically follows from the fact that
Qgl0) = 0 since |0) € Vpnys. By taking O =
9, A*(2)C®(y) one has:
0 = (0165 (34" (2)T"(1)) [0)
= (0165 (A" >> '()[0)
+ (0|0, A" (x)dB (C’b
= (010,65 (A" (2)) C*(y)|0)
<O|8 A (:1:)53(
= (0] 9(D"C())* C*(y)|0)
~—_————
=0
+ (019, A" () (—iA" (y))[0)
(0], A" (z)A* (y)[0).
Using the equation of motion: 0" Aj; = (A this then
leads immediately to: (0|A%(x)Ab(y)|0) = 0. Just as
in the case of QED, one can apply the same anal-
ysis as for free photon correlator and propagator in

section IIT A, and this leads to the analogous con-
straints

(y)) [0)

"(1)) 10)

@t = —4(n+1)(n+2)b2%,, 1<n<N+1,
(IT1.54)
a =0, if M<L+1
bt =0, if Lr1<pf NTEsnsEAL
(I11.55)
P (s) + sps’(s) = C®6(s), (I11.56)

where now the spectral densities and coefficients of
the polynomials P* and Ps® must depend explicitly
on the adjoint indices a and b, and one assumes that

the colour symmetry is unbroken, and thus: p?b =
59 p;. Although one does not have an expression like
Eq. (II1.7) to determine the value of C°, as in the
free case and QED, the ETCRs still give rise to the

sum rules
/ ds p2t(s) = —2m6® 75,
0

/ s [ (s) + sp5"(s)] = —2m€5,
0

/ ds p§°(s) = 0, (I11.57)
0
the second of which implies that C* = —27£57°,
and hence:

P88 (s) + sp3P(s) = —2mEH(5). (IT1.58)

An important difference between QCD and QED (or
the free case), is that F}, is no longer an observ-
able. This means that although one can decom-
pose the gluon correlator in an analogous manner

to Eq. (IT1.23)

(0] A% ()AL ()]0) = g F®(x — y) + 924G (x

(I11.59)

one is not guaranteed that the Fourier transform of
F%(z — y) defines a measure. Since this property
is essential for demonstrating that the coefficients
of the polynomials Pﬂb vanish, as discussed in
section ITT A, it is therefore possible that these coef-
ficients are related (via Eqgs. (II1.54) and III.55) but
non-zero. In other words, the fact that Fe(z — y)
does not necessarily define a measure implies that
the polynomials P can be mnon-vanishing, and
hence the propagator is permitted to contain terms
involving derivatives of d(p).

Due to the various constraints in
Egs. (IIL.54), (II1.55) and (II1.57), it follows
that the gluon propagator can be written in the
following general form:

D) = i / ds [g9u0pi"(s) + Pupvps’(s)]
mv o 27 p? — s+ e

N+1

+Z e’ gy (0

+d9,0,(8%)" "] 8(p),
(IT1.60)

where the (complex) coefficients ¢, and d,, are de-



fined by:

cab —2(n+1)(2n+3)p%,, 1<n<N+1
" agb, n=>0
(I11.61)
gab — [ An(n + 1)beb 1<n<N+1
n 0, n=>0
(111.62)

By contrast to the photon propagator, the gluon
propagator is only specified up to IV + 2 arbitrary
complex coefficients. In this case the dynamical
constraints are not sufficient to determine whether
these coefficients are vanishing or not, and this
ultimately stems from the fact Ff, is no longer
an observable in QCD. This therefore opens up
the possibility that the gluon propagator can
contain singular terms involving derivatives of d(p).
Derivatives of §(p) have the property of not defining
measures, unlike d(p), and it turns out that this
property allows the correlation strength between
clusters of fields to increase with separation [8].
This mechanism is particularly interesting in the
context of QCD, since a growth of the correla-
tion strength (with increasing distance) between
coloured particle-creating fields would be a sufficient
condition for confinement. Therefore, the fact that
Fy, fails to define an observable, and hence permits
derivative of §(p) terms to exist, is suggestive that
the non-abelian nature of the gauge symmetry
may well play an important role in ensuring that
confinement occurs in non-perturbative QCD.

In the literature, the analysis of the gluon propa-
gator is performed using a variety of different non-
perturbative techniques, including the Schwinger-
Dyson equation [9-12], and lattice QCD [13-15].
Since both of these approaches aim to uncover the
characteristics of the propagator, it is important
to understand whether the singular terms discussed
previously can in fact be detected using these meth-
ods. In the case of the Schwinger-Dyson equation,
the equation itself involves various terms, includ-
ing products of the gluon propagator DZ?,F (p) with
various vertex terms I'(p). By introducing general
ansétze for I'(p), this enables the equation to be
solved recursively. However, since the precise struc-
ture of these vertex terms is unknown, one cannot
guarantee that the product F(p)f)z,bjF (p) is meaning-

ful, particularly if ﬁff;F (p) contains singular terms.

This issue arises because both I'(p) and ZA)ZII’,F (p) are
distributions, not functions, and so their product is
not necessarily well-defined [5]. In order to illustrate
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this point, consider the situation where both of these
objects contains a d(p) contribution. The Schwinger-
Dyson equation would then necessarily contain the
ill-defined expression (p)d(p). In light of these pos-
sible ambiguities, it may well be the case that in
order for the Schwinger-Dyson equation to possess a
well-defined solution one must intrinsically assume
that no such singular terms are present. Whether
or not this casts doubt on the existence of these sin-
gular terms in the gluon propagator remains to be
seen, but it certainly suggests that if these singular
terms are indeed present, then this method would
potentially have difficulties detecting them. In the
case of lattice QCD, it also unclear as to whether sin-
gular distributional terms like d(p) can be observed.
Nevertheless, one can in principle probe quantities
like the Schwinger function [8], which are indirectly
sensitive to the distributional behaviour of the prop-
agatorQ.

IV. THE TRANSVERSE-LONGITUDINAL
DECOMPOSITION OF THE PHOTON AND
GLUON PROPAGATORS

In the literature, the structure of the photon and
gluon propagators are often derived using the fol-
lowing Slavnov- Taylor identity?:
P’ Dyt (p) = —igd. (IV.1)
It is often claimed [16, 17] that Eq. (IV.1) implies
that the photon and gluon propagators have the fol-
lowing general transverse-longitudinal structure:

DF(p) = T, D (p?) — i€6°° L,

PuPv \ pyabg, 2y  esab_ PuPv
= (g — D T g
(g“ p2+i6) w7 - (p? +ie)?
(IV.2)

where D% (p?) is Lorentz invariant. In the case
of the free photon propagator (Eq. (II1.35)) this
structure is indeed present. However, for QED and
QCD it will be argued in the proceeding section
that the propagators cannot in general be written

2 It turns out that if the gluon propagator did indeed con-
tain derivatives of §(p), then these terms would introduce a
polynomial ¢? dependence in the Schwinger function C(t).
See [8] for more details about the definition of C(¢).

3 In the case of QED this relation is referred to as the Ward-
Takahashi identity, and the adjoint indices a, b are dropped
(i.e. 6%® = 1) because the gauge group is abelian.



in this form.

The constraints imposed by the equations of mo-
tion and the ETCRs in QED and QCD imply that
the photon and gluon propagators have the form of
Eqs. (IT1.47) and (II1.60) respectively. As well as
defining the general structure, the constraints on

the photon and gluon propagators also imply that
the spectral densities are related to one another (via
Egs. (II1.44) and (II1.58)). Therefore, one can at-
tempt to write the photon and gluon propagators
exclusively in terms of either p® or p$®. In terms
of p4®, the photon and gluon propagators have the
form

~ [ ds p2(s) 19 €
D v = - v v — — ) IV.
v (P) Z/o 27T( S9u +p”p)p2—s—|—ze 7+ e (IV.3)
A . [ ds p3P(s) 19, E0%° s _
ab F _ 2 Hv ab 2\n ab 2\n—1
D;w (p) = Z/0 Gy (—89uv + Pubv) P2 — s +ic - p2 + i€ + n§:O: [Cn 9 (0°)" + d3,0,0,(07) } 3(p)-
(IV.4)

Contracting both of these representations with p*p”
one obtains

> ds

o pa(s) —i§ = —i,

p*p” Dy (p) = ip? / 5

0

l//\(l - e dS a - a
p'p’ Dt " (p) = zp2/ %sz(s) — i£5"
0
N+1

+ 0" Y [ g (0°)" + di0,0,(9°)" ] 6(p)
n=0

=0
= —ig6",

where the last equality holds in both cases due to the
0% integral constraint in Eqs. (II1.45) and (I11.57)
respectively.  This demonstrates that both the
photon and gluon propagators do indeed satisfy
Eq. (IV.1). Nevertheless, it is clear that both prop-
agator representations in Eqgs. (IV.3) and (IV.4) do
not have the form of Eq. (IV.2). The only other
possibility to express these propagators in this form
is to write them exclusively in terms of the spec-
tral density p?°. Since p3® and p$® are related by
Egs. (I11.44) and (II1.58), this problem boils down
to solving the (distributional) equation

— p§°(s).

It turns out that this equation always possesses so-
lutions [18]. In particular, one can write:

spSP(s) = —2mE5(s) (IV.5)

/ ds p8(s)f(s) := (3, f)
= Cf(0) — 2mE8 £1(0) + (P50, f1),
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where C® is an arbitrary constant and f € S. This
solution uses the fact that any Schwartz function
f can be written in the form: f(s) = f(0)fo(s) +
sf1(s), where fo(0) = 1 [5]. However, in order to
write pg® explicitly in terms of p$® (i.e. indepen-
dently of the test function f) the last term must
be rewritable in terms of the full function f, and
not just f;. For the free photon case this is in-
deed possible because p1(s) = —27d(s), and since
sd'(s) = —d(s), it follows that:

(p1, f1) = =2m(8, f1) = 27 (0", f1)
=2n(8', f = £(0) fo) = 27m(0', f) — 27 f(0)(&', fo),

which together with Eq. (IV.5) and the constraints
in Eq. (IT1.30) imply that p2(s) = —27(1 — £)d’(s).
However, for the photon or gluon propagators the
form of the spectral density p%® is a priori unknown,
and so one cannot express p3®, and hence the full
propagator, explicitly in terms of p®. This means
that a transverse-longitudinal representation as in
Eq. (IV.2) exists for the free photon propagator
(Eq. (111.35)) but is not in general achievable for
either the photon or gluon propagators. Therefore,
the statement that the structure of ZA)ZII’,F(p) has
the form of Eq. (IV.2) due to the Slavnov-Taylor
identity is evidently false.  The fact that the
representation of the photon and gluon propagators
in Egs. (IV.3) and (IV.4) does not possess this
form, and yet satisfies this identity, proves this point.

As outlined at the end of section IIIC, there are a
variety of different non-perturbative techniques for
analysing the structure of propagators, in particu-
lar the Schwinger-Dyson equations and lattice QFT.



In light of the findings in this section, which sug-
gest that the canonical decomposition in Eq. (IV.2)
may no longer hold, it is important to understand if
this can potentially cause inconsistencies with these
techniques, and if so, whether this issue can be cir-
cumvented. In the literature it appears that in the
case of both the Schwinger-Dyson [9-12] and lat-
tice [13-15] approaches, both the photon and gluon
propagators are assumed to have the structure of
Eq. (IV.2). In particular, in Landau gauge (¢ = 0)
it is stated that these propagators can be written:
T,,D%(p?). Since the representation in Eq. (IV.2)
is not in general achievable for either the photon or
gluon propagators, extracting the structure of the
propagators based on this premise could potentially
lead to inconsistent results. Nevertheless, despite
the failure of Eq. (IV.2) to hold in general, the repre-
sentations in Egs. (IV.3) and (IV.4) are guaranteed
to hold, and this is independent of the form of the
spectral densities p; and ps. Moreover, if instead of
calculating the propagator BZZF (p) one determines

the contracted quantity g“”ﬁﬁ,bjF (p), this represen-
tation issue no longer arises because this expression
takes the form
~ Z'(Sab
9D ) =3 [ :

s pi®(s)
P2+ ie

2m p2 — s+ ic
N+1
+ Z 952 (9*)"6(p), (IV.6)

where g2 = 4¢%° + d%°. In the case of the pho-
ton propagator one has an analogous expression, but
without the singular terms. Besides the possible
singular terms, in Landau gauge one now has an
expression which depends only on the spectral den-
sity pi1, in contrast to the non-contracted propaga-
tor. With regards to lattice calculations this means
that as long as one extracts the (Euclidean) con-
tracted propagator, one will indeed be sensitive to
the behaviour of p;. Similarly, by contracting the
Schwinger-Dyson equation for BZZF (p) with g+,
one could in principle solve for g””ﬁﬁ,bjF (p) instead
of the propagator, and hence also remove the ambi-

guity in this case as well.

V. CONCLUSIONS

Understanding the structure of the photon and
gluon propagators is essential for probing the non-
perturbative dynamics of QED and QCD. Ax-
iomatic approaches to QFT provide a framework
from which one can characterise the general proper-
ties of Lorentz covariant propagators, and the con-
straints imposed on them as a result of the dynam-
ical properties of the fields in the propagators. In
this paper we discuss the constraints on the photon
and gluon fields, and determine the specific effect
that they have on the non-perturbative structure of
the photon and gluon propagators. By virtue of the
abelian gauge symmetry of QED, it transpires that
the photon propagator can be completely charac-
terised by one of two different interrelated spectral
densities p; and ps. Moreover, in QCD the non-
abelian gauge symmetry also permits additional sin-
gular terms involving derivatives of §(p) to appear in
the gluon propagator. The possibility of such terms
is particularly interesting in the context of QCD,
since their appearance is suggestive of confinement.
Due to the distributional behaviour of the spectral
densities of the photon and gluon propagators, it
turns out that the lack of knowledge of these ob-
jects actually prevents one from decomposing these
propagators into transverse and longitudinal compo-
nents, as in the free case. Nevertheless, despite the
obstruction to this decomposition both the photon
and gluon propagator representations still satisfy the
Slavnov-Taylor identity.
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