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Abstract

A simple theorem is proved: When a gauge-invariant local field theory is written in terms of

matter fields alone, a composite gauge boson or bosons must be formed dynamically. The theorem

results from the fact that the Noether current vanishes in such theories. The proof is carried

out by use of the charge-field algebra at equal time in the Heisenberg picture together with the

well-established analyticity of the form factor of the current. While there is no need of diagram

calculation for the proof, we demonstrate in the leading 1/N expansion of the existing models what

the theorem means in diagrams and how the composite gauge boson emerges.

PACS numbers: 11.15.-q, 11.10.St
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I. INTRODUCTION

Some theories possess a local gauge symmetry, yet do not contain a gauge field explicitly.

The CPN model [1] is one of the examples. It was shown in the leading 1/N expansion of the

CPN−1 model that a U(1) gauge boson is indeed generated as a composite state of matter

particles.[2] The U(1) gauge symmetry of the CPN model was extended by Akhmedov[3]

to the SU(2) symmetry. More recently, models were built with fermion matter alone.[4]

Whether the symmetry is Abelian or non-Abelian, the models with fermion matter cannot

be reproduced by extension of the CPN model nor by means of the auxiliary field trick.[5, 6]

Nonetheless, it was explicitly shown by the large N expansion of the diagram calculation

that these models indeed generate the composite gauge bosons as the massless bound states

of the matter particles.

There is one peculiar feature common to the Lagrangian of composite gauge bosons. That

is, the Noether current does not exist. This can be shown generally as a direct consequence

of local gauge invariance without referring to specific binding forces.[4] In fact, in the case of

the non-Abelian gauge theory, if the Noether current existed, formation of composite gauge

bosons would contradict with the theorem of Weinberg and Witten.[7]

The diagrammatic study of the composite gauge bosons has been limited to the leading

order of the 1/N expansion which amounts to summing up an infinite series of loop diagrams

of the matter particles[2, 4]. Because of the complexity of perturbative computation, we

cannot keep such calculation under control beyond the leading order of 1/N. Nonetheless,

it is natural to speculate that the composite gauge bosons are always formed irrespectively

of specific details of the binding force when the total Lagrangian is gauge invariant with

matter particles alone.

In this paper, we attempt to prove the formation of composite gauge bosons to all orders

of binding interactions without recourse to diagrams. The proof is based on the equal-

time algebra of charges and fields in the Heisenberg picture, which incorporates all orders

of interactions. We show that a composite gauge boson must appear as a pole in the form

factor of the current carrying its quantum numbers. Although a diagrammatic verification is

redundant for the proof, it is reassuring and also visually helpful to understand the proof in

terms of diagrams. After completing our proof, therefore, we demonstrate in the leading 1/N

expansion of an existing model how the statement of our theorem is realized in diagrams.
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We organize the paper as follows: First the theorem is stated in Sec. II. After the nec-

essary input of field theory is carefully reviewed in Sec. III, the theorem is proved in Sec.

IV with the equal-time algebra of charges and fields for the non-Abelian gauge theories of

the boson matter. In Sec. V, we demonstrate in diagrams how the statement of the the-

orem is realized in the leading 1/N order of a concrete non-Abelian model. It is shown in

Sec. VI that the theorem holds just as well for the U(1) gauge theories. In order to apply

our argument to the fermion matter, we discuss in Sec. VII on an issue in the canonical

quantization of the Dirac field, specifically, a problem related to quantization of constrained

systems and a possibility of justifying the charge-field algebra without relying on the canon-

ical quantization. We conclude with some perspectives in theory and phenomenology in Sec.

VIII.

II. THEOREM

The theorem is stated as follows:

If a gauge-invariant Lagrangian field theory is written in terms of matter fields alone,

there must be a composite gauge boson or bosons made of the matter particles.

The gist of the theorem is that formation of the composite gauge boson(s) is not a

possibility but the necessity. The input crucial to prove this theorem is the absence of

the Noether current in this class of theories. We study the form factor of the current in

the equal-time commutation relation of charges and fields by starting away from the gauge

symmetry limit. Then we approach the gauge symmetry by continuously varying a certain

parameter and prove the theorem without referring to diagrams or details of binding forces.

The theorem holds in the flat space-time of (3+1) dimensions for both the Abelian and

non-Abelian theories with boson or fermion matters. It is not dual to the Weinberg-Witten

theorem[7], which states that the non-Abelian massless gauge bosons cannot exist if the

corresponding Lorentz-covariant conserved currents exist. Their theorem is mute as to

whether the non-Abelian gauge bosons must exist or not when such currents are absent.
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III. NON-ABELIAN SYMMETRY WITH BOSON MATTER

All that we use for the proof is the basic quantum field theory and its simple applications.

To emphasize specific subtleties relevant to our proof, however, we give a brief review on

elementary subjects, some of which may have fallen into oblivion by now.

A. Gauge variation of Lagrangian

The reason to discuss the spinless boson matter first is mainly the notational and technical

simplicity related to the spins. But there is one complication in the canonical quantization

of the Dirac field. Otherwise, no intrinsic difference exists between the boson matter and

the fermion matter.

The Lagrangian is in the form of

Ltot = ∂µΦ†∂µΦ−m2Φ†Φ + Lint. (1)

A set of the scalar fields Φ/Φ† transform locally like an n/n-dimensional representation of

a Lie group;

Φ → UΦ, Φ† → Φ†U †, (2)

where U is given in terms of the n× n generator matrices Ta as

U = exp[iTaαa(x)]. (3)

The matrices Ta obey [Ta, Tb] = ifabcTc with the structure constants fabc.

We introduce N copies of the n-component complex scalar pairs Φi/Φ
†
i (i = 1, 2, 3 · · ·N)

since, after completing the proof, we make the large N-expansion in the diagram calculation

to demonstrate how the theorem works in the explicit model.1 However, we shall suppress

the copy index i hereafter unless we need to remind of it.

The interaction Lagrangian Lint is a functional of Φ, Φ† and their first derivatives in the

known models. We assume that Lint does not contain time-derivatives of field higher than

1 In fact, there is another reason for considering a large N. In our proof one-particle states will be treated

as the asymptotic states. If confinement occurs with the composite gauge bosons, the one-matter-particle

states are, strictly speaking, not the asymptotic states of the S-matrix. The simplest way to avoid this

inconvenience is to consider the case that there exist a sufficient number of matter multiplets to counter

the confinement.
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the first derivative. That is, Lint should be just as singular as the free Lagrangian L0 in

regard to the derivatives of field. Otherwise the gauge variation of L0 cannot be compensated

with that of Lint.
2

Since the free Lagrangian L0 is not invariant under the local gauge transformation Eq.

(2), the interaction Lagrangian Lint must counterbalance the gauge variation δL0 of the free

Lagrangian as

δLint = −δL0. (4)

Since δL0 is known from the free Lagrangian in Eq. (1) as

δL0 = ∂µΦ†(U †∂µU)Φ + Φ†(∂µU †U)∂µΦ + Φ†(∂µU †∂µU)Φ, (5)

the relation of Eq. (4) determines the gauge variation δLint uniquely even without knowing

Lint itself. We place an emphasis on this trivial but powerful constraint of gauge invariance

since it allows us to proceed in our proof without knowing an explicit form of Lint. We

would need the form of Lint only when we carry out, as we shall do later, a diagrammatic

demonstration of the theorem in the interaction picture.

Whereas we are interested in the gauge-invariant Lagrangian of Eq. (1), we insert a

parameter λ in front of Lint as

Lλ
tot = L0 + λLint, (6)

and study how physics varies as λ approaches unity. The purpose of this seemingly redundant

procedure is the following: Since the composite gauge boson carries the same quantum

numbers JPC = 1−− as the Noether current, we wish to study the gauge boson through the

Noether current. However, if we stayed exactly in the gauge symmetry limit (λ = 1), we

would not be able to do so since the Noether current vanishes there according to the general

theorem. (cf Appendix A.) In order to study the pole of a composite gauge boson in the

form factor, therefore, we must approach the gauge symmetry limit with Lλ
tot of Eq. (6) by

continuously varying the value of parameter λ to 1. By doing so, we can study where the

bound-state pole of JPC = 1−− is located off the gauge symmetry and how it moves to zero

2 Higher derivatives would ruin causality in dynamics. Recall in classical physics that the solutions are

acausal when the force contains a higher derivative. For instance, the radiation damping of a point

charge. The same happens in classical field theory. In quantum theory we would not be able to quantize

canonically in the Heisenberg picture if Lint is more singular.
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turning into the massless gauge boson in the gauge limit. With Lλ
tot as given in Eq. (6), we

approach the gauge limit along one special path in the functional space of Lagrangian. 3

B. Noether current

The Noether current vanishes in the gauge-symmetric field theories for which the La-

grangian consists only of matter fields. This is a simple inevitable consequence of gauge

invariance, Abelian or non-Abelian. Since the Noether current due to the free Lagrangian

cannot vanish by itself, this must happen such that the contribution from the interaction

Lagrangian cancels that from the free Lagrangian. The proof is very simple, as is given in

Appendix A for the non-Abelian boson matter. Extension to other cases is trivial.

In short, the gauge-symmetric Lagrangian Ltot varies under the infinitesimal local phase

transformation by αa(x) of Eqs. (2) and (3) as

δLtot = i(∂µJaµ)αa + iJaµ ∂µαa +O(α2), (7)

after use of the equations of motion for Φ and Φ† in the first term. Since αa(x) is an arbitrary

function of x, we can treat αa(x) and ∂µαa(x) as independent of each other. Consequently

the first term of Eq. (7) leads to the definition of the Noether current and its conservation.

The second term simply states that the Noether current must vanish.

Both L0 and Lint contribute to Jaµ since both contain the first derivatives of Φ and Φ†

in order to satisfy gauge invariance. When we modify Ltot into L0 + λLint, it is no longer

gauge invariant off λ = 1 and therefore the Noether current Jλ
aµ survives. It is simply given

(cf Appendix A) by

Jλ
aµ = i(1− λ)

(

Φ†Ta

↔

∂µ Φ
)

. (8)

The factor (1−λ) in front indicates the fact that the Noether current vanishes in the gauge

limit. The Noether current thus takes the form identical with that of the free field theory

up to the factor (1− λ):

Jfree
aµ = lim

λ→0

( 1

1− λ
Jλ
aµ

)

. (9)

3 Obviously there are many different ways to approach the gauge limit. For instance, one may let λ → 1

with the Lagrangian Ltot = L0 + Lint + (1 − λ)Lbr where Lbr is some arbitrarily chosen gauge-breaking

interaction. Instead we have chosen here the specific form Lλ
tot

for which the Noether current off λ = 1

takes the simple form determined by the free Lagrangian L0 alone.
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However, we make a trivial but important remainder about Eq. (8). That is,

Jλ
aµ 6= (1− λ)Jfree

aµ . (10)

The reason is that when we use Eq. (8) the fields in right-hand side are in the Heisenberg

picture, that is, the Φ/Φ† fields in Jλ
aµ incorporate all the λ-dependence through the inter-

action, while the Φ/Φ† fields in Jfree
aµ are independent of λ (= 0) by definition. It would

be clearer in this respect if we wrote the fields of the Heisenberg picture as Φ(x, λ) and

Φ†(x, λ). The implicit λ dependence of Φ and Φ† in the Heisenberg picture incorporates all

interactions and it is responsible for the formation of the bound states among others.

C. Equal-time algebra of charges and fields

We use the equal-time algebra of the charges and fields in the Heisenberg picture for our

proof of the theorem. With the “canonical momentum” defined by Π ≡ ∂L/∂(∂0Φ), the

field Φ obeys the equal-time commutation relation,

[Φr(x, t),Πs(y, t)] = iδrsδ(x− y). (11)

The subscripts (r, s) refer to components of the n-dimensional representation. Eq. (11) holds

separately for each of N copies. Φ† and Π† obey the same form of commutation relation, and

all other equal-time commutators among Φ,Φ†,Π and Π† vanish. In terms of these canonical

variables, the charge component of the Noether current is expressed as

Jλ
a0 = i(Φ†TaΠ

† −ΠTaΦ)

= i(1− λ)(Φ†Ta

↔

∂ 0 Φ), (12)

where the summation over the N copies is understood. Notice that the factor (1−λ) appears

when Ja0 is written in Φ, Φ† and their time-derivatives. But Eq. (12) does not mean that

Π and Π† are proportional to 1− λ. (cf Appendix B) The Noether charge is defined by

Qλ
a =

∫

d3xJλ
a0(x, t). (13)

It is independent of time since the Noether current is conserved. By use of the canonical

commutation relations, one can show that the charges form the Lie algebra,

[Qλ
a , Q

λ
b ] = ifabcQ

λ
c . (14)
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The commutation relations of Qλ
a with the fields Φ/Φ† form the charge-field algebra,

[Qλ
a,Φr(x)] = −(Ta)rsΦs(x), (15)

and the hermitian conjugates. It should be emphasized that both Eqs. (14) and (15) are

the direct consequences of the canonical commutation relations Eq. (11) and therefore valid

irrespectively of Lint. The peculiarity of the matter gauge theories to be emphasized here

is that the Noether charge operator Qλ
a vanishes in the gauge symmetry limit according to

Eq. (12).

Now here comes the key point. One might notice that something does not look quite

right about Eqs. (14) and (15) at least superficially. Let us take the matrix elements of the

both sides of Eq. (15), for instance. When the charge Qλ
a is expressed with the Noether

current as written in the second line of Eq. (12), it looks as if its matrix element were always

proportional to (1−λ). If so, when it is substituted in Eq. (15), the left-hand side would be

infinitesimally small like (1 − λ) near λ = 1. On the other hand the matrix element of the

right-hand does not vanish at λ = 1. The same superficial inconsistency appears as (1−λ)2

vs (1− λ) from Eq. (14) too. How should we answer to this question ?

There is no computational error here. The fact that charge operator Qλ is proportional

to (1 − λ) is a manifestation of the absence of the Noether current in the gauge invariant

theories that consist only of matter fields. Then, how can the charge-field commutation

relation Eq. (15) hold valid near λ = 1 ?

We shall find that this is the place where the formation of the composite gauge bosons

enters and solves the puzzle. By examining the form factor of the Noether current in the

following section, we shall find that a composite vector bound-state is formed in the channel

of Jλ
aµ, and therefore that the matrix element of i(Φ†Ta

↔

∂µ Φ) at zero momentum transfer

turns out to be proportional to 1/(1− λ) and compensates the factor (1− λ) in front of the

operator (Φ†Ta

↔

∂µ Φ).

D. Dispersion relation for form factor of Noether current

To study consistency of the powers of (1 − λ), we need to examine the matrix elements

for the both sides of Eq. (15) between the vacuum 〈0| and the one-particle state |p〉, in
particular, the one-particle matrix element of Jλ

aµ near the zero momentum-transfer limit.
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We define the Lorentz-scalar form factor F (t, λ) by separating (1− λ) from Jλ
aµ as

1

1− λ
〈p′, s|Jλ

aµ(0)|p, r〉 = 〈p′, s|i(Φ†Ta

↔

∂µ Φ)|p, r〉

=

√

1

4Ep′Ep

(p′ + p)µ(Ta)srF (t, λ), (16)

where the variable t is the invariant momentum transfer t = (p′ − p)2. Even after the factor

(1−λ) is removed from the Noether current, the form factor F (t, λ) still depends on λ. This

λ dependence comes from the multiple interaction of Lλ
int of Eq. (6), which is implicit in the

Heisenberg operator i(Φ†Ta

↔

∂µ Φ), as we have already pointed out.

Analyticity of the function F (t, λ) is well known. F (t, λ) is analytic in the variable t with

the branch points on the positive real axis of the complex t-plane. The lowest branch point

t0 is located at the invariant mass squared of the lowest two-particle threshold. If there is

a bound state of JPC = 1−− with mass mbound, the function F (t, λ) has a simple pole at

m2
bound below t0 and, barring a tachyon, above t = 0 for λ 6= 1. (See the left-side figure in

Fig. 1.)

Im t Im t

 Re t Re t

F(t, λ) 1/F(t, λ)

FIG. 1: Analyticity of F (t, λ) and 1/F (t, λ) in the complex t plane. The cross in the left-side figure

indicates the pole due to a bound state of JPC = 1−− for F (t, λ). The crosses in the right-side

figure are due to possible poles of 1/F (t, λ), that is, zeros of F (t, λ).

The inverse of the form factor 1/F (t, λ) possesses the cuts at the same locations as F (t, λ),

but a bound-state pole of F (t, λ) becomes a zero of 1/F (t, λ) and therefore does not generate

9



a singularity. The dispersion relation for 1/F (t, λ) therefore takes the form of 4

1

F (t, λ)
=

1

π

∫ ∞

t0

Im(1/F (t′, λ))

t′ − t− iǫ
dt′ +

∑

i

ci(λ)

ti(λ)− t
+ c0(λ), (17)

where ti(λ)’s (i = 1, 2, · · ·) are the locations of zeros of F (t, λ) and ci(λ)’s are constants

independent of t with c0(λ) = 1/F (∞, λ). We are interested in the formation of a composite

vector boson with small mass (→ 0 as λ → 1), that is, a zero of 1/F (t, λ) on the positive

real axis in the neighborhood of t = 0. Given Eq. (17), we can expand 1/F (t, λ) in the

Taylor series in t in the neighborhood of t = 0 off λ 6= 1 as

1

F (t, λ)
= a0(λ) + a1(λ)t+O(t2), (λ 6= 1), (18)

where a0(λ) and a1(λ) are some real finite constants that may depend on λ. Having expressed

the behavior of 1/F (t, λ) in the form of Eq. (18), we are ready to prove the theorem.

IV. PROOF OF THEOREM

We take the matrix element of Eq. (15) between the vacuum 〈0| and the one-matter-

particle state |p, s〉, and insert a complete set of states
∑

|n〉〈n| between Qλ
a and Φ(x).

Since Qλ
a is a generator of a Lie group, only the one-particle state that belongs to the same

representation as |p, s〉 survives in the sum. Use Eq. (16) to express 〈p, s|Qλ
a|p, r〉 in terms

of the form factor. We also use the relations,

〈0|Φr(x)|p, s〉 =

√

1

2Ep

√

Z2δrse
−ipx,

〈0|Qλ
a = 0, (19)

where Z2 is the wave-function renormalization of the matter particle (0 < Z2 < 1). It should

be emphasized that Eq. (19) is valid to all orders of interaction. After factoring out the

group-theory coefficients and
√
Z2, we are simply left with

(1− λ)F (0, λ) = 1, (20)

4 If F (t, λ) has a zero, it turns into a pole of 1/F (t, λ), which would have to be taken into account in

writing the dispersion relation for 1/F (t, λ). Such zeros can appear in general on the real axis of t and/or

pairwise symmetrically above and below the real axis because of the relation F (t, λ)∗ = F (t∗, λ), where

the asterisk indicates a complex conjugate. But a zero does not appear for F (t, λ) at t = 0. The reason

for F (0, λ) 6= 0 is that (1−λ)F (0, λ) is equal to the nonvanishing charge of the global symmetry for λ 6= 1,

which must be nonzero.
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or

F (0, λ) =
1

1− λ
. (21)

This is what the charge-field algebra imposes on the form factor F (t, λ) at t = 0. Since the

charge-field algebra is just as fundamental as quantum field theory itself, the form factor

F (t, λ) must obey Eq. (21) no matter what the interaction of matter particles may be.

How can the form factor of i(Φ†Ta

↔

∂µ Φ) satisfy Eq. (21) ? There must be some dynamical

reason for it. The only possibility allowed by analyticity is that a bound state is present in

this channel with the mass square proportional to (1 − λ) so that F (t, λ) ∼ 1/(m2
bound − t)

near t = 0. No other possibility exists according to the behavior of the form factor allowed

by analyticity.

When we compare Eq.(21) with Eq. (18), namely, the expansion of 1/F (t, λ) near t = 0,

we obtain

a0(λ) = 1− λ, (22)

therefore,
1

F (t, λ)
= (1− λ) + a1(λ)t+O(t2). (23)

The coefficient a1(λ) cannot be determined by the group theory alone. Eq. (23) means that

F (t, λ) has a dynamical pole at

t = −1− λ

a1(λ)
. (24)

We call this pole dynamical since it is not an artifact due to a definition or a kinematical

choice of amplitude. The value of a1(λ) that determines the location of the pole depends

not only on λ but also on details of the binding force. Therefore this pole in t possesses all

the properties of a physical bound state. It ought to be a composite vector-meson.

Analyticity of the form factor follows from local field theory. With the help of analyticity,

the charge-field algebra thus requires that a bound state be formed in the channel of JP =

1−− with the mass squared proportional to (1− λ). When this happens, the multiplicative

factor 1− λ of the charge operator Qλ
a coming from the Noether current is canceled by the

dynamical factor 1/(1 − λ) due to the bound-state pole ∼ 1/(m2
bound − t) in F (t, λ), where

m2
bound ∝ (1− λ). There is no other possibility. The puzzle is thus solved and the proof has

been completed.

It should be pointed out that the crucial relation Eq. (21) for our proof can also be ob-

tained in the form of [(1−λ)F (0, λ)]2 = (1−λ)F (0, λ) by taking the one-particle expectation
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value for the both sides of the charge algebra Eq. (14).

We add a few remarks before closing this short Section.

The preceding argument gives us one interesting byproduct: Although the local Noether

current vanishes in the gauge limit, the conserved Noether charge can still be defined for the

matter particles through the limiting value limλ→1(1 − λ)F (0, λ). The value of this charge

is equal to what we would naively assign as the global charge to the matter particle. It is

reassuring that we still have the global Noether charge as the conserved quantum number

in the gauge symmetry limit even though the Noether current operator itself disappears.

Existence of the non-Abelian Noether charges as the limiting values has no conflict with

the Weinberg-Witten theorem. To rule out the non-Abelian gauge-boson formation by the

Weinberg-Witten theorem, we must have a Lorentz-covariant conserved current density that

is capable of transferring spatial momentum. [7] In the gauge theories that consist only

of matter fields, such a local current density does not exist in the gauge symmetry limit.

Therefore the global charge as defined above does not interfere with the Weinberg-Witten

theorem.

Once a set of massless vector-bound states are formed in a gauge invariant theory, these

bosons ought to be the gauge bosons of the underlying Lie group. The argument leading

to this conclusion is, in short, that there is no other way known in field theory to accom-

modate such massless vector bosons in conformity with the gauge symmetry built in the

total Lagrangian. When the couplings of higher dimension are included, perturbative renor-

malizability does not hold in the space-time dimension of four. Nonetheless, when they are

written in terms of effective gauge fields, all interactions up to the dimension four are exactly

the same as in the standard renormalizable gauge theory. The couplings of higher dimension

for the matter fields can be combined and cast into gauge-invariant combinations with the

effective vector gauge fields. The explicit demonstration was given through diagram com-

putation of the higher dimensional couplings up to the dimension six in the 1/N expansion

of the known Abelian and non-Abelian models. [4]

V. DIAGRAMMATIC STUDY

The proof of our theorem is complete in the preceding section. Nothing needs to be

added mathematically. Since the proof does not refer to any specific group property of
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the matter fields or their interactions, the theorem should hold for all non-Abelian gauge

theories of boson matter. Nonetheless, it is reassuring to see that the bound-state pole is

indeed generated in the form factor and that the pole migrates with the value of parameter λ

in the way as we have asserted. It will help us to envision the theorem in terms of diagrams

since the diagrams often give us better or more intuitive understanding of physics.

For diagrammatic demonstration, we choose the SU(2) doublet model and make the large

N expansion. Except for keeping the leading 1/N terms, the diagrammatic calculation below

makes no approximation. To work in the large N expansion, we introduce the N doublets of

matter. The interaction Lagrangian of the SU(2) gauge symmetry is given by [3, 4]

Lλ
int = λ

(
∑

i Φ
†
iτa

↔

∂µ Φi)(
∑

j Φ
†
jτa

↔

∂
µ

Φj)

4
∑

k Φ
†
kΦk

, (25)

where the summations over i, j and k run from 1 to N . When the free Lagrangian of Φ and

Φ† is added to this Lλ
int, the total Lagrangian L0 + Lλ

int is SU(2) gauge invariant at λ = 1.

When the value of λ is in a right range, this interaction generates an SU(2) triplet of bound

states in the channel of JPC = 1−− . In the gauge symmetry limit, the force is just right to

make the bound states exactly massless in the leading 1/N order.5

When we perform the diagram calculation, we express the denominator of Eq. (25) in

sum of its vacuum expectation value and normal-ordered product and expand it around the

vacuum expectation value in the power series of the normal-ordered terms,[4]

Lλ
int = λ

(
∑

i Φ
†
iτa

↔

∂µ Φi)(
∑

j Φ
†
jτa

↔

∂
µ

Φj)

4
∑

k〈0|Φ
†
kΦk|0〉

×
∑

l=0

(−1)l
(

∑

k :Φ†
kΦk :

∑

k〈0|Φ
†
kΦk|0〉

)l

, (26)

where :Φ†Φ: denotes the normal-ordered product of Φ†Φ. To obtain the form factor F (t, λ)

of i(Φ† 1
2
τa

↔

∂µ Φ) defined in Eq. (16), we follow the leading 1/N computation of the two-body

scattering amplitude performed in Ref. [4]. It amounts to iteration of the bubble diagrams,

as shown in Fig. 2.

After the group-theory coefficients have been factored out, the form factor F (t, λ) is

obtained as the solution of the simple algebraic equation

F (t, λ) = 1 +K(t)F (t, λ), (27)

5 We should remark here that the form of Lint appears to be unique up to addition of terms that are gauge

invariant by themselves e.g., globally invariant nonderivative interactions. It is easy to show that such

nonderivative interactions do not affect the composite gauge-boson mass nor coupling in the leading 1/N

order.[4]
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pp’ p’ p

q q

Q Q

FIG. 2: The form factor F (t, λ) in the leading 1/N order (t = q2). Each bubble in the left-side

figure gives the function K(t) in Eq. (27) and its iteration generates a vector bound-state in the

right-side figure.

where K(t) comes from the single bubble in the left side figure of Fig. 2. Since we are

interested in F (t, λ) near t = 0, we need K(t) also near t = 0 in Eq. (27). We carry out the

loop integral of the bubble with the dimensional regularization to preserve gauge invariance.

The result is

K(t) = λ
(

1 + (1−D/2)
t

6m2

)

+O(t2), (28)

where m is the matter-particle mass and D is the space-time dimension. With this function

K(t), the inverse form factor is given by

1

F (t, λ)
= (1− λ)− λ

(1−D/2)t

6m2
+O(t2). (29)

This form of 1/F (t, λ) clearly shows that a vector-boson pole exists in F (t, λ) and that the

pole goes to zero as λ → 1. By comparing Eq. (29) with the coefficients defined in Eq. (18)

in the preceding section, we find

a0(λ) = 1− λ,

a1(λ) = −λ(1 −D/2)/6m2. (30)

The coefficient a0(λ) = 1−λ agrees with what we have obtained in Eq. (22) in the preceding

section. This is no surprise since it is a requirement of the Noether charge being the generator

of the global symmetry group off λ = 1. The coefficient a1(λ) determines the location of the

bound-state pole m2
bound as a function of λ and the matter-particle mass m. As we expect,

the location of the pole reaches zero as we approach the gauge symmetry limit, λ → 1:

m2

bound =
6(1− λ)

λ(1−D/2)
m2. (31)

This exercise in the SU(2) model illustrates how our theorem works. While the Noether

current operator disappears like (1− λ) as we approach the gauge limit, the location of the
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bound-state pole converges to zero so as to cancel this (1−λ) factor with 1/m2
bound ∝ 1/(1−λ)

at t = 0.

The diagrammatic exercise presented here indicates that up to a proportionality constant

the Noether current acts like a composite vector-boson field Vµ whose mass turns to zero in

the gauge limit. This may remind some theorists of the field-current identity of Kroll, Lee,

and Zumino[10] that identified the gauge current of hadrons with the (massive) gauge field.

They attempted to equate the electromagnetic current JEM
µ to the ρ◦-ω or ρ◦-ω-φ field up

to a scale factor; JEM
µ = fV ρ−ω

µ . But there is a fundamental difference. Being massive, the

ρ◦/ω mesons are not gauge bosons of the flavor SU(2)×U(1). The photon being composite

was not their option. Our passing remark here is only that if one lets m2
ρ, m

2
ω → 0 in the

field-current identity, such a limit has some resemblance to our matter gauge models.

Although the SU(2) matter model was shown to produce the gauge bosons as bound states

in the leading order of 1/N expansion [4], going beyond this order in the diagram calculation

is nearly impossible because of the complexity of the nonleading orders. However, now that

our theorem has been proved, the gauge-boson generation is correct to all orders of the 1/N

expansion, that is, there is no need to do higher-order diagram calculation. This is one place

where the power of our theorem should be appreciated.

We make one closing remark for this section. Our proof turns out to be extremely simple

primarily because the charge operator Qλ
a connects a one-particle state only to another

one-particle state that belongs to the same multiplet. This would not be the case if the

momentum transfer q is nonvanishing across the current. The spatial Fourier components

Qλ
a(q, t) of the charge density Jλ

a0(x, t) do not form a finite algebra:

[Qλ
a(q, t),Φ(q

′, t)] = −TaΦ(q + q′, t). (32)

When we insert a complete set of states
∑ |n〉〈n| between Qλ

a(q, t) and Φ(q′, t), all mul-

tiparticle states also contribute as long as their quantum numbers are right. In this case,

the one-particle matrix element 〈p′|Qλ
a(q, t)|p〉 ∼ 1/(m2

bound + |q|2) vanishes like (1 − λ)

as λ → 1 since q2 6= 0. Then, comparing the matrix elements on both sides of Eq. (32),

it may look as if our power dependence argument of (1 − λ) would fail like (1 − λ) vs 1

since the one-particle state no longer provides 1/(1− λ) in the left-hand side. In this case,

however, multiparticle states in
∑ |n〉〈n| contribute as well without a constraint of energy
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conservation.6 In particular, the composite vector-boson enters the continuum and its polar-

ization sum generates the mass singularity ∼ (−gµν + kµkν/m
2
bound) through its longitudinal

polarization. [11] This mass singularity would be canceled out if the vector-boson mass is

generated by spontaneous symmetry breaking [12, 13] and if the matrix elements are a set

of physically observable scattering amplitudes. Since our matrix elements satisfy neither

conditions, it ought to happen that the mass singularity proportional to 1/(1 − λ) of the

light vector composite survives and restores consistency in the (1 − λ) powers. We do not

attempt computation of the mass singularities here.

VI. U(1) GAUGE THEORIES

We can repeat our argument made for the non-Abelian theories and show that the theorem

works for the U(1) gauge theories as well. Since the U(1) Noether current also vanishes in the

gauge limit, we approach the U(1) gauge symmetry limit by multiplying the same parameter

λ on Lint as we have done. To avoid arbitrariness in the overall U(1) charge scale, we define

the Noether current as

Jλ
µ = −i

∂Lλ

∂µΦ
Φ+ iΦ† ∂L

λ

∂µΦ†
,

= i(1− λ)(Φ†
↔

∂µ Φ),

Qλ =

∫

Jλ
0 (x, t)d

3x. (33)

Just as in the non-Abelian case, the factor (1 − λ) does not appear in Jλ
0 when we express

it by use of Π/Π†;

Jλ
0 = i(Φ†Π† − ΠΦ). (34)

Consequently the charge-field commutation relation does not have an explicit dependence

on (1− λ);

[Qλ,Φ(x, t)] = −Φ(x, t), (35)

in spite that Qλ = i(1− λ)
∫

(Φ†
↔

∂ 0 Φ)d
3x.

We take the matrix element between the vacuum 〈0| and the one-particle state |p〉 for

the both sides of Eq. (35). When we insert a complete set of states
∑

|n〉〈n| between the

6 We end up with a sum rule which involves a continuum of states all the way up to infinite energies. Some

examples using the charge density algebra are found in the Reference [8]. See also Reference [9].
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Qλ and Φ(x, t), we are immediately led to

〈p|Qλ|p〉 = 1. (36)

The reasoning goes from here exactly as in the non-Abelian case: When 〈p′|Qλ|p〉 is written
as (1 − λ)F (t, λ) with the form factor F (t, λ) of the Heisenberg operator i(Φ†

↔

∂µ Φ), Eq.

(36) requires that the function F (t, λ) must behave like

F (t, λ) → 1

1− λ
+O(t) (37)

near λ = 1 in the neighborhood of t = 0. This is realized only if F (t, λ) has a bound-state

pole, µ2/(m2
bound − t), on the real axis in the complex t-plane and if m2

bound reaches zero at

λ → 1 as m2
bound = µ2(1− λ).

VII. FERMION MATTER

The Noether theorem is based on the invariance of Lagrangian under the phase rotation of

fields. Therefore, whether fields are canonically independent or not, the conserved Noether

current consists of all the fields that enter Lagrangian,

Jaµ = −i
∂L

∂(∂µΨ)
TaΨ+ iΨ†Ta

∂L

∂(∂µΨ†)
. (38)

If we want to treat Ψ and Ψ† on the equal footing, we may choose the free Lagrangian in

the form

L0 =
i

2
Ψ

↔

6 ∂ Ψ−mΨΨ, (39)

by adding a total divergence term. With Lλ
int added to this L0, it may look trivial to repeat

our proof for the boson matter to prove the theorem for the fermion matter. But it is not

the case.

If we formally defined the conjugate momentum by Π = ∂L/∂(∂0Ψ) with L0 + Lλ
int and

similarly for Π†, the Noether charge density would take the form of

Jλ
a0 = i(Ψ†TaΠ

† −ΠTaΨ), (40)

where Ta =
1

2
τa for the SU(2) doublet and Ta → 1 for a unit U(1) charge. If we blindly im-

posed the canonical anticommutation relations by treating (Ψ, Π, Ψ†,Π†) as all independent

of each other, it looks that we would obtain the charge-field algebra at equal time,

[Qλ
a ,Ψ] = −TaΨ (41)
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and its hermitian conjugate just as in the case of bosons. Then, with Eq. (41), our proof

for the boson models would apply to the fermion models with no modification. However,

we encounter one problem: This naive derivation of Eq. (41) is incorrect although the final

result is most likely correct. There is a subtlety special to the canonical formalism of the

Dirac field.[14–18].

The problem arises from the fact that the Lagrangian of the Dirac field is linear in the

time derivative and therefore that only two of those four variables above can be treated as

canonically independent. For instance, if one chooses Ψ and Π as independent variables,

Ψ† and Π† are functions of Ψ and Π. This turns the equal-time anticommutator {Ψ,Ψ†}+
nontrivial and dependent on the interaction, in general.

In the matter gauge theories, the interaction Lint contains the derivatives of field in order

to counterbalance the gauge variation of the free Lagrangian L0. In a such case, unlike

the Dirac field interacting with a nonderivative interaction, we do not have an option of

setting Π† = 0 by choosing L0 asymmetric in Φ and Φ†. Consequently the equal-time

anticommutator between Ψ and Ψ† may become dependent on Lint in general. Although

the prescription to determine the anticommutators has been known when this happens, one

has to go through cumbersome steps. The canonical quantization is thus not best suited for

our purpose in the case of the Dirac field since we would have to check each model one by

one to make sure that the algebra Eq. (41) is indeed valid for a given interaction.

In some cases we can circumvent this procedure. For instance, in the known model of the

U(1) symmetry [4], we can remove the time-derivative of Ψ† entirely and realize Π† = 0 by

an appropriate rewriting of the Lagrangian. Then the independent canonical variables are

only Ψ and Π, and they obey the simple equal-time anticommutator {Ψ,Π}+ = iδ(x− y).

It is interesting to note that in this case Ψ turns out to be twice as large as what we would

obtain formally by ignoring the interdependency of the variables. Since the Noether charge

is given by a single term Jλ
0 = −iΠΨ in the case of Π† = 0, the correct charge-field algebra

[Qλ,Ψ] = −Ψ immediately follows in the same form as that for the bosons. We shall describe

in Appendix C how it works for the U(1) model.

In the case of the boson matter the charge-field algebra is an immediate consequence of

the canonical quantization. In contrast, its derivation through the canonical quantization

requires some knowledge of the interaction in advance in the case of the Dirac field. Our

goal is to prove the theorem as generally as possible without referring to specific properties
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of the interaction or without knowing the interaction at all. For this purpose, it is desirable

to derive the charge-field algebra Eq. (41) in a way that does not rely on the canonical

quantization.

In fact, a line of argument can be made to advocate validity of the charge-field algebra

irrespectively of the interaction. It goes as follows: The charge-field algebra Eq. (41) is

obtained as the O(α) terms of the global symmetry rotation of the fields by angle α,

e−iQαΨ(x)eiQα = eiαΨ(x) (42)

for the field of a unit U(1) charge. For non-Abelian symmetries, Q and α should be modified

appropriately by attaching relevant group-component indices. Then going from Eq. (42)

backward, ask what kind of operator the Q can be. The operator Q must be a space-

time independent Lorentz-scalar since the symmetry at λ 6= 1 is global but unbroken. The

operator Q is dimensionless and has a negative charge parity since it generates a phase

of the opposite sign for Ψ† as Ψ†e−iα. The only possible candidate for Q is a charge of

some conserved vector current Jµ. Up to an overall proportionality constant, therefore, this

current ought to be the Noether current that arises from the phase rotation of the fields.

It is the only candidate that we have at hand. The Noether current has the right scale of

proportionality constant since its scale is fixed by Eq. (42) that corresponds to the rotation

per a unit angle of α. This argument is a little wordy, but it is almost equally as good as

the derivation based on the canonical quantization. It works for the boson matter too.

Once Eq. (41) has been accepted in one way or another, we can repeat what we have

done for the boson matter. Define the electric and magnetic form factors in the standard

way as

1

1− λ
〈p′|Jλ

aµ(0)|p〉 = 〈p′|ΨTaγµΨ|p〉

=

√

m2

Ep′Ep

up′Ta

(

γµF1(t, λ) +
iσµνq

ν

2m
F2(t, λ)

)

up, (43)

where we have suppressed the indices for spins, copies and multiplet components of the

fermion. Compare the one-particle matrix elements for the both sides of the charge algebra

Eq. (41) near λ = 1. The consistency in the power of (1−λ) on the both sides requires that

the electric form factor F1(t, λ) must obey

F1(0, λ) =
1

1− λ
. (44)
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It means existence of a pole of the composite gauge boson in F1(t, λ) at t = m2
bound ∝ (1−λ).

The magnetic form factor F2(t, λ) does not enter the (qµ = 0) limit because of the kinematical

factor iσµνq
ν . Refer to Reference [4] more for the Pauli term F2(t, λ), the dimension-five

interaction, in the leading 1/N order.

Our proof ought to hold for any SU(2) multiplet other than the doublet and for any group

higher than SU(2) as well, if such a model is built.

The diagrammatic demonstration is a little less simple for the fermion matter since two

channels 3S1 and 3D1 couple to form the vector bound state.[4] But it is no more than a

small technical complication.

VIII. SUMMARY AND DISCUSSION

We can realize gauge invariance without introducing a fundamental vector gauge-field

of any kind. In order to connect between the matter fields at separate space-time points

in such theories, the interaction Lagrangian must be carefully concocted by including the

derivatives of matter fields. In this paper we have proved that such matter interactions

inevitably generate composite gauge bosons.

The proof is based on the three properties:

(1) Most importantly, the Noether current vanishes in the gauge symmetry limit of such

theories.

(2) The equal-time charge-field algebra holds in the Heisenberg picture.

(3) The form factor of current obeys the well-established analyticity.

In our proof we have started with a globally invariant but not locally invariant theory

(λ 6= 1) and then have approached the gauge symmetry by continuously varying the value of

parameter λ. When we follow this path to the gauge symmetry, consistency of the charge-

field algebra requires that a bound state must be present in the channel of JPC = 1−−

and turn massless in the gauge symmetry limit. The proof has been given step by step in

detail for the non-Abelian gauge theories of the boson matter. The proof has been trivially

extended to the Abelian theories. The theorem holds for the fermion matter as well. But we

have cautioned about the issue that we encounter if we rely on the canonical quantization

of the Dirac field. Our proof is valid to all orders of interactions since the theorem has been

proved in the Heisenberg picture.
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This theorem gives us another way to understand why the composite state of JCP =

1−− cannot be massless if the Noether current exists: Because, if a massless bound state

were formed in the presence of the nonvanishing Noether current, it would lead to the

inconsistency O(1/(1 − λ)) = O(1) as λ → 1 in the charge field algebra. This observation

applies to the Abelian theories equally well, while the theorem of Weinberg and Witten [7]

is limited to the non-Abelian theories.

The gauge boson formation was proved in the past only in the leading 1/N order of the

perturbative diagram calculation [2, 4]. Now we have no need to attempt the higher-order

perturbative calculation. With our theorem, the gauge boson formation is valid to all orders.

This is certainly one significant advancement. If someone succeeds in writing a matter gauge

Lagrangian with a higher symmetry or with a multiplet of a higher representation within

SU(2), our theorem guarantees that such a theory must have composite gauge bosons before

they are shown by diagrammatic computation. This is the main advancement.

Looking forward, some may ask how useful or relevant our theorem will be to phenomenol-

ogy of particle physics. It is natural to wonder whether one can introduce in one way or

another the idea of the composite gauge bosons into the standard model in the flat space-

time of dimension four. At present, we have one obvious problem of group theory in doing

so. That is, the non-Abelian models have been built only with the SU(2)-doublet matter

particles. This is sufficient for the minimal electroweak interaction of SU(2)×U(1). But

what shall we do about the composite gluons ? Is the so-far unsuccessful attempt to build

a matter gauge-theory beyond the SU(2) doublet only for a technical reason or for a more

fundamental reason ? In the past we saw a few cases in which physics cannot be extended

beyond SU(2). One is the G-parity (G = C exp[iT2π]) of low-energy hadron physics. We

know why it cannot. Another is the instanton solution of the non-Abelian gauge theory

[20]. This is because of the winding number arising from mapping of the SU(2) solution

onto the sphere S3 of the four-dimensional space-time. Recall that the QCD instanton is

no more than the SU(2) instantons embedded into the SU(3) parameter space. In our case

unlike the instanton, there seems to be nothing topological in our case. In the no-Abelian

models so far invented, the special property of 1

2
τa for the SU(2)-doublet plays a crucial role.

If an extension is possible beyond the SU(2)-doublet, it appears that we shall need a very

different approach to model building.

Once we have proved formation of composite gauge bosons, it is not necessary every
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time to go back to the original matter Lagrangian as far as the gauge boson interactions of

dimension four are concerned. An obvious question is how to handle the effective interactions

of dimension higher than four. This is the place where we expect to see difference between

the elementary gauge bosons and the composite ones phenomenologically. It is too early to

speculate on it.

Appendix A: Noether current

We show that the Noether current is identically zero in gauge theories which consist only

of matter fields.[4] Since this is the basis of our theorem, we reiterate it in the simplest

way. We choose the non-Abelian gauge theory of boson matter as an example. Extension

to fermion matter involves only minor modifications due to spins and anticommutativity.

Gauge invariance of the action of the total Lagrangian Ltot requires to the first order in

αa(x)

∂µ
( ∂L

∂(∂µΦ)
TaΦ − Φ†Ta

∂L

∂(∂µΦ†)

)

αa

+
( ∂L

∂(∂µΦ)
TaΦ− Φ†Ta

∂L

∂(∂µΦ†)

)

∂µαa + 0(α2) = 0, (A1)

where the equation of motion has been used in the first term as usual. Since αa are arbitrary

functions of xµ, the terms proportional to αa and ∂µαa must vanish separately in Eq. (A1).

The terms proportional to αa allow us to define the Noether current Jµ
a and lead us to its

conservation:

Jaµ ≡ −i
∂L

∂(∂µΦ)
TaΦ+ iΦ†Ta

∂L

∂(∂µΦ†)
, (A2)

∂µJaµ = 0. (A3)

Then the requirement that the terms proportional to ∂µαa be zero in Eq. (A1) is nothing

other than the vanishing of the Noether current:

Jaµ = 0. (A4)

When Lint is multiplied with λ and turned into Lλ
int,

Lint → λLint ≡ Lλ
int, (A5)
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it breaks gauge invariance of the total Lagrangian Lλ
tot ≡ L0 + λLint so that the Noether

current Jaµ no longer vanishes for λ 6= 1. However, we do not need an explicit form of Lint

to obtain the Noether current for λ 6= 1 since the variation of Lint is determined by that of

the free Lagrangian L0 alone through gauge invariance of L0 + Lint. To obtain the Noether

current in this case, split the Lagrangian as

Lλ
tot = (1− λ)L0 + λ(L0 + Lint). (A6)

The second term does not contribute to the Noether current since it is gauge invariant. The

Noether current arises only from the first term and takes the form of (1 − λ) times the

Noether current due to L0;

Jλ
aµ = i(1− λ)

(

Φ†Ta

↔

∂µ Φ
)

. (A7)

Appendix B: Effect of interaction in equal-time algebras

The equal-time algebras of the charge Qλ
a are free of an explicit dependence on the factor

(1−λ). It is because this factor does not appear in Qλ
a when it is written in terms of Π and

Π† instead of ∂0Φ and ∂0Φ
†. The purposes of Appendix B is to show how the charge density

acquires the factor (1− λ) when we switch from Π and Π† to ∂0Φ and ∂0Φ
†, but that Π nor

Π† vanishes individually as λ → 1.

We go back to the canonical quantization rule of quantum mechanics in the Heisenberg

picture, [qi, pj] = iδij , and make the correspondence qi(t) → Φ(x, t) and pi(t) → Π(x, t) =

∂Ltot/∂(∂0Φ(x, t)). According to the standard quantization rule, a pair of the canonical

“coordinate” and “momentum” obeys the equal-time commutation relation,

[Φ(x, t),Π(y, t)] = iδ(x− y), (B1)

and so forth. The unit matrices are to be understood in the right-hand side of Eq. (B1)

with respect to the components of the group indices, the copies and so forth.

According to Eq. (A2), the charge density can be expressed as

Jλ
a0 = i(Φ†TaΠ

† −ΠTaΦ). (B2)

A factor of (1 − λ) does not appear in the right-hand side of Eq. (B2). Consequently, the

celebrated equal-time algebra of the charge densities results [8] as

[Jλ
a0(x, t), J

λ
b0(y, t)] = ifabcJ

λ
c0(x, t)δ(x− y) (B3)
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without (1− λ). Similarly

[Jλ
a0(x, t),Φ(y, t)] = −TaΦ(y, t)δ(x− y). (B4)

When the Noether charge is written with ∂0Φ and ∂0Φ
† instead of Π and Π†, the factor

of (1− λ) appears. But this does not mean that Π and Π† are proportional to (1− λ). It is

interesting to see in the known model how the factor (1 − λ) appears in the charge density

upon switching from Π and Π† to ∂0Φ and ∂0Φ
†.

Take the SU(2) doublet model [4] as an example. The interaction is given by

Lint = λ
(Φ†τa

↔

∂
µ

Φ)(Φ†τa
↔

∂µ Φ)

4(Φ†Φ)
. (B5)

The momenta conjugate to Φ and Φ† are given by

Π =
∂Lλ

tot

∂(∂0Φ)

= ∂0Φ
† + λ

(Φ†τa
↔

∂ 0 Φ)

2(Φ†Φ)
Φ†τa, (B6)

and its hermitian conjugate, respectively. Notice that neither Π nor Π† vanishes as λ → 1.

However, taking the combination of Φ†τaΠ
† − ΠτaΦ and using [τa, τb] = 2δab, we obtain

i
(

Φ† τa
2
Π† − Π

τa
2
Φ
)

= (1− λ)
(

Φ† τa
2

↔

∂ 0 Φ
)

. (B7)

Dependence on the interaction enters the Noether current through Π and Π†. However, in

the combination of (Φ† 1
2
τaΠ

† − Π1

2
τaΦ), the contribution of the interaction turns out to be

simply λ times (Φ† 1
2
τa

↔

∂ 0 Φ) with a minus sign.

Appendix C: Canonical quantization of Dirac field

The complication in the canonical quantization of the Dirac field is due to the fact that

the Lagrangian is linear in the time derivative and therefore the hermitian conjugate field

Ψ† is no longer canonically independent of (Ψ, Π) after Ψ and Π are chosen as the canonical

variables. This is an example of the so-called constrained dynamical systems.[14–19].

Let us first recall the free Dirac field. When we choose the Lagrangian in the asymmetric

form,

L0 = iΨ 6∂Ψ−mΨΨ, (C1)
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we obtain Π = ∂L0/∂(∂0Ψ) = iΨ† and impose {Ψ,Π}+ = iδ(x − y) at equal time. The

canonical quantization is complete with this condition since Π† = ∂L/∂(∂0Ψ
†) = 0.

We may add a total divergence term to L0 and antisymmetrize it with respect to ∂µΨ

and ∂µΨ
† as

L0 =
i

2
Ψ

↔

6 ∂ Ψ−mΨΨ. (C2)

In this case we cannot proceed with the naive rule of quantization by treating both Ψ and

Ψ† as independent coordinates.

Let us consider the interacting Dirac fields. We can sometimes circumvent the difficulty

by modifying Lint without changing physics. Consider the U(1) matter model [4] as an

example. The interaction is given by

Lλ
int = −iλ

2

(ΨγµΨ)(Ψ
↔

∂
µ

Ψ)

(ΨΨ)
, (C3)

We add a total derivative term

∆Lλ
int = −iλ

2
∂µ

(

(ΨγµΨ) log(ΨΨ)
)

, (C4)

to the original interaction Eq. (C3) and turn it into

Lλ
int +∆Lλ

int = −iλ
(ΨγµΨ)(Ψ∂µΨ)

(ΨΨ)
. (C5)

Here we have used ∂µ(ΨγµΨ) = 0. The purpose of adding ∆Lλ
int is to remove the term ∂0Ψ

†

from the interaction. Now the total Lagrangian reads

Lλ
tot = iΨ 6∂Ψ−mΨΨ− iλ

(ΨγµΨ)(Ψ∂µΨ)

(ΨΨ)
. (C6)

Since Π† = ∂L/∂(∂0Ψ
†) = 0 for this Lagrangian, we can now choose Ψ and Π as canoni-

cally independent variables and treat Ψ† as a trivial dependent variable, i.e., the constraint

variable. The variable Π defined by Π = ∂L/∂(∂0Ψ) with the Lagrangian of Eq. (C6) turns

out to be twice as large as what we would obtain for Π by pretending (Ψ, Π, Ψ†, Π†) as all

independent in the original Lagrangian. Since the simple canonical quantization relation

{Ψ(x, t),Π(y, t)}+ = iδ(x− y) (C7)

holds, we are led to the desired result, Eq. (41) for [Q,Ψ]. Its hermitian conjugate correctly

gives what we want for [Q,Ψ†].
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Alternatively we can choose Ψ and Ψ†, instead of Ψ and Π, as the canonical variables for

the original Lλ
tot. To do so, we must take account of the interdependency of the variables

by making sure that Hamilton’s equation of motion should hold correctly. The general

prescriptions of this procedure have been discussed in length, but the case of the Lagrangian

linear in the time-derivative can be presented in a compact mathematical form, which is

found, for instance, in the lecture note, “Constrained Quantization Without Tears” by

Jackiw [19].
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