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We find double copy relations between classical radiating solutions in Yang-Mills theory coupled
to dynamical color charges and their counterparts in a cubic bi-adjoint scalar field theory which
interacts linearly with particles carrying bi-adjoint charge. The particular color-to-kinematics re-
placements we employ are motivated by the BCJ double copy correspondence for on-shell amplitudes
in gauge and gravity theories. They are identical to those recently used to establish relations between
classical radiating solutions in gauge theory and in dilaton gravity. Our explicit bi-adjoint solutions
are constructed to second order in a perturbative expansion, and map under the double copy onto
gauge theory solutions which involve at most cubic gluon self-interactions. If the correspondence
is found to persist to higher orders in perturbation theory, our results suggest the possibility of
calculating gravitational radiation from colliding compact objects, directly from a scalar field with
vastly simpler (purely cubic) Feynman vertices.

I. INTRODUCTION

The close connection between ordinary quantum field theories and gravitational phenomena has been one of the
major themes of theoretical physics in the last two decades. While gauge/gravity dualities are usually manifest
when the field theory side is strongly coupled and the gravitational dual is weakly interacting (as in the AdS/CFT
correspondence) it has more recently become clear due to the work of Bern, Carrasco, and Johansson (BCJ) [1] that
there exist non-trivial relations between observables even at the level of perturbation theory. The relations uncovered
in [1] yield a definite prescription for obtaining scattering amplitudes in perturbative gravity directly from those of
a gauge theory, simply by replacing the color structures in the Feynman diagrams by suitably defined kinematic
structures. This double copy mapping [2] between gauge and gravity theories contains as a special case the earlier
KLT identities [3] for string amplitudes, and has been established [4] in the case of tree-level field theory using modern
on-shell amplitude techniques. Although at the loop level the BCJ relations remain conjectural [2], many explicit
non-trivial computational checks exist; see [5] for a review of the literature.

A natural question is whether the BCJ double copy structure between gauge and gravity theories relates observables
besides the perturbative S-matrix. This was first raised in [6] which proposed a double copy mapping between non-
perturbative classical solutions in pure Yang-Mills theory and Einstein gravity. See [7, 8] for related work. In [9],
it was found that there is a double copy of perturbative classical radiating solutions in any spacetime dimension d.
On the Yang-Mills side, the setup of [9] consists of a set of radiating color charges, interacting self-consistently by
gluon exchange. Applying color-kinematics substitutions to the long distance radiation field Aµa of this system then
yields a well-defined double-copy field Âµν that precisely matches all radiation channels (φ, hµν , Bµν) in a theory of
gravitating point sources. As in the case of the BCJ relations for scattering amplitudes, the double copy gravitational
theory is not pure gravity but rather contains additional fields (as expected by counting on-shell degrees of freedom
εaµ → εµε̃ν) that must couple to the point particle sources.

Part of the motivation for studying the perturbative double copy of classical solutions is the hope of translating
the calculation of precision gravitational wave observables (e.g black hole mergers seen at LIGO and other detectors)
to the analogous Yang-Mills problem, whose Feynman diagram expansion is considerably simpler. The primary
obstacle to this program is the need to efficiently remove the unwanted states φ,Bµν from the double copy in order
to reproduce pure Einstein gravity. In the context of BCJ duality for scattering amplitudes, various procedures have
been introduced [10, 11] for projecting out the contributions of the additional modes in Feynman diagrams. However,
these techniques are operative at the loop level, and it is not yet clear if analogous methods can be applied to the
types of off-shell, tree-level Feynman diagrams that arise in the calculations of ref. [9] (these sort of diagrams were first
employed by Duff [12] to reproduce the Schwarzschild solution in perturbation theory, and extended to the radiating
(time dependent) two-body problem in general relativity in [13]). We also note that recently ref. [14] has proposed
an approach to the double copy of perturbative classical solutions in which there is more freedom in choosing the
field content of the gravitational theory. The results of ref. [14] were carried out up to third perturbative order for
static spherically symmetric objects, and it would be interesting to see if this approach can be extended to dynamical
sources as well.

In this note, we set aside the issue of canceling the unwanted fields and instead focus on the possibility of further
simplification of the Feynman rules needed to construct perturbative classical solutions in gravity. We follow an
observation made in ref. [15], that linearized classical Yang-Mills solutions can be interpreted as double copies of field
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configurations φaã(x) in a massless scalar field theory with cubic interaction,

fabcf̃ ãb̃c̃φaãφbb̃φcc̃ (1)

invariant under a global G × G̃ symmetry with φaã in the bi-adjoint representation. Ref. [16] showed that, in d
spacetime dimensions, tree-level scattering amplitudes in this particular bi-adjoint scalar field theory map under the
double copy (acting on G̃) to pure gluon amplitudes in Yang-Mills. Similar cubic bi-adjoint structures have been
introduced in the context of color-kinematics duality [17–20]. Bi-adjoint scalars have also been shown to play a role
in the double copy between supersymmetric Yang-Mills theories and supergravities in diverse dimensions [21], in
color-kinematic relations for scalar effective field theories [22], and in the context of soft theorems and asymptotic
symmetries [23]. Non-perturbative static solutions of the (source free) bi-adjoint field equations have been recently
constructed in ref. [24].

In this paper, we obtain perturbative classical solutions of the bi-adjoint scalar with the interaction Eq. (1) coupled

to point-like bi-adjoint charges ca(s), c̃ã(s) transforming in the adjoint representations of G and G̃. These sources are
not treated as fixed but instead evolve self-consistently in the classical field they collectively generate. Our focus is on
the long distance scalar radiation field generated by a set of interacting bi-adjoint color charges coming in from infinity.
We construct the classical field Aaã formally, as a momentum space integral involving the initial momenta pµ and
initial charges ca, c̃ã, as well as the momentum of the outgoing radiation. By applying color-kinematic substitutions
similar to those of BCJ, we obtain the double copy field Aaµ that precisely matches the long distance radiation gluon
field in the corresponding system of scattering point like color charges ca. (This solution has been constructed in
ref. [25, 26] in the four-dimensional case, and generalized to any spacetime dimension d by [9]).

The color-kinematic substitutions are precisely of the same form as those used by [9] to generate gravitational
solutions from Yang-Mills theory. The results presented here together with those of [9] then imply a two-fold double
copy of classical solutions,

Aaã 7→ Aaµ 7→ Aµν (2)

that produces the gravitational radiation field Aµν due to a collection of dynamical point-like sources from the simpler
bi-adjoint radiation field Aaã. If this pattern is also found to hold at higher orders in perturbation theory, it would
allow the calculation of gravitational radiation observables directly from a theory with cubic vertices, sidestepping
the vastly more complex tower of interaction vertices in gravity and streamlining computations.

II. GLUON RADIATION AND ITS GRAVITATIONAL DOUBLE COPY

We begin by reviewing the d-dimensional classical gluon radiation solutions found in [9]. We couple the Yang-Mills
equations1 to point particles xµ(s) carrying color charge degrees of freedom [27] ca(s) which transform in the adjoint
representation:

DνF
νµ
a (x) = gJµa (x), (3)

where the color current sourced by the moving particles is

Jµa (x) =
∑
α

∫
dscaα(s)pµα(s)δd(x− xα(s)), (4)

with a label α that distinguishes the different point charges carrying momentum pµα = dxµα/ds. The equations of
motion follow as a consequence of conservation laws. Covariant conservation of Jµa (x) implies that the charges are
parallel transported in color space along the particle worldline, p·Dca = 0. In turn, conservation of energy-momentum
yields the non-Abelian Lorentz force law for each particle,

dpµ

ds
= gcaFµa νp

ν . (5)

Ref. [9] constructed solutions to these equations corresponding to a set of particles coming in from spatial infinity,
with initial conditions caα(s→ −∞) = caα and

xµα(s→ −∞) = bµα + pµαs. (6)

1 The conventions are Dµ = ∂µ + igAaµT
a, [Ta, T b] = ifabcT c, (Taadj)

b
c = −ifabc.
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FIG. 1: Leading order Feynman diagrams for the perturbative expansion of J̃µa (k).

The main object of interest is the classical radiation field measured at future null infinity (r = |~x| → ∞ and fixed
retarded time t). It has a simple relation to the conserved (but gauge dependent) current

J̃µa (x) = Jµa + fabcAbν(∂νAµc − Fµνc ). (7)

For example, in four spacetime dimensions, the long distance radiation field is related to the on-shell current J̃µa (k) =∫
ddxeik·xJ̃µa (x), k2 = 0, by

lim
r→∞
〈Aaµ〉(x) =

g

4πr

∫
dω

2π
e−iωtJ̃µa (k) (8)

with kµ = (ω,~k) = ω(1, ~x/r) . Similar expressions hold in general spacetime dimension d.
As long as these particles remain well separated, with sufficiently large impact parameters bµαβ = bµα − bµβ , the

on-shell current J̃µa (k) can be calculated in perturbation theory. Up to second order in the gauge coupling, it is given
by the Feynman diagrams shown in Fig. 1. These diagrams are computed using standard Yang-Mills Feynman rules,
with insertions of the classical particle current Eq. (4). The leading order result is from Fig. 1(a) evaluated using
static particle trajectories with constant color charge ca and momentum pµα

J̃µa (k) =
∑
α

eik·bαcaαp
µ
α(2π)δ(k · pα) +O(g2). (9)

For on-shell k2 = 0, this is only non-vanishing if kµ is along one of the particle momenta pµα, and consequently there is

no gluon radiation at this order in perturbation theory, gεaµ(k)J̃µa (k2 = 0) = 0. At order g2, the deflection of the orbits
and color charges due to the Coulomb potential generated by each particle must be taken into account in Fig. 1(a),

which yields a contribution to J̃µa (k) of the form

J̃µa (k)
∣∣∣
Fig. 1(a);O(g2)

= g2
∑
α,β
α 6=β

∫
`α,`β

µα,β(k)
`2α

k · pα

[
((cα · cβ)cα)a

{
−pα · pβ

(
`µβ −

k · `β
k · pα

pµα

)
+ k · pαpµβ − k · pβp

µ
α

}

+ [cα, cβ ]a(pα · pβ)pµα

]
. (10)

where [cα, cβ ]a ≡ ifabccbαccβ . In addition, there is a contribution from the three-gluon vertex, which can be calculated
using static paths,

J̃µa (k)
∣∣∣
Fig. 1(b);O(g2)

= g2
∑
α,β
α 6=β

∫
`α,`β

µα,β(k)[cα, cβ ]a [2(k · pβ)pµα − (pα · pβ)`µα] . (11)

The total current J̃µa (k) is the sum of Eqs. (10), (11). In these equations, we have defined

µα,β(k) =

[
(2π)δ(pα · `α)

ei`α·bα

`2α

] [
(2π)δ(pβ · `β)

ei`β ·bβ

`2β

]
(2π)dδd(k − `α − `β) (12)

and momentum integrals2 are denoted by
∫
`

=
∫
dd`/(2π)d. This result is given only at the level of the integrand and

2 Here and in what follows, it is implicit that we use retarded boundary conditions 1/k2 = 1/((k0 + iε)2 −~k2) and 1/k · p = 1/(k · p+ iε)
as is appropriate for classical solutions.
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holds in any dimension d. We note in particular that the term proportional to fabc receives contributions both from
the three-gluon interaction and from the time evolution of the color charges, ċa = gfabcpµAbµ(x(s))cc(s).

A. Double copy

Given the result in Eqs. (10), (11), we may define its gravitational double copy by making color-to-kinematics
substitutions. We replace initial color charges with the respective momenta,

ca 7→ pµ, (13)

the adjoint generators with the three-gluon vertex kinematic structure

ifa1a2a3 7→ Γν1ν2ν3(q1, q2, q3) = −1

2
[ην1ν3(q1 − q3)ν2 + ην1ν2(q2 − q1)ν3 + ην2ν3(q3 − q2)ν1 ] , (14)

where q1 + q2 + q3 = 0, and gluon polarizations by a product of independent polarizations εaµ(k) 7→ εµ(k)ε̃ν(k). This

defines a double copy radiation field Âµν(k), with k2 = 0,

εaµ(k)Aaµ(k) 7→ εµ(k)ε̃ν(k)Âµν(k), (15)

where Aµa(k) = gJ̃µa (k)
∣∣∣
k2=0

. By decomposing the product εµ(k)ε̃ν(k) into its scalar and symmetric traceless graviton

components3, the quantity Âµν(k) was shown by explicit calculation [9] to match the long distance radiation fields in
a dilaton-graviton theory coupled to point particles, S = Sg + Spp, with

Sg = −2md−2
Pl

∫
ddx
√
g [R− (d− 2)gµν∂µφ∂νφ] , (16)

and for a single particle Spp = −m
∫
dτeφ. In particular, the gravitational wave pattern measured by a detector at

r →∞ (e.g. in d = 4)

h±(t, ~n) =
4GN
r

∫
dω

2π
e−iωtε∗ij±(k)T̃ij(k), (17)

with k2 = 0 is given by

− 1

2m
(d−2)/2
Pl

εij(k)T̃ ij(k) = εij(k)Âij(k), (18)

while the scalar radiation field is proportional to the Fourier transform of As(k)/rd−3 back to the time domain.

III. BI-ADJOINT RADIATION AND ITS YANG-MILLS DOUBLE COPY

Our goal in this paper is to make contact between the classical Yang-Mills system of the previous section and its
“zeroth copy” [15] obtained by demoting the gauge field Aaµ(x) to a scalar φaã(x) transforming bi-linearly in the

adjoint representation of two independent global symmetries G and G̃. This is motivated by results of [15], and
by the work of [16] which establishes a double copy relation between all tree-level amplitudes in d-dimensional pure

Yang-Mills and those in the G× G̃ invariant cubic scalar theory

Lφ =
1

2
(∂µφ

aã)2 − y

3
fabcf̃ ãb̃c̃φaãφbb̃φcc̃. (19)

Note that despite being allowed by symmetry in generic dimension d, a mass term as well as quartic and other self-
interactions are not included, so at the quantum level this is a fine-tuned theory. Because here we work purely at the

3 The anti-symmetric channel can be seen to vanish by explicit calculation. On the gravity side, for spinless point sources this result can
be understood from the symmetries of the two-form gauge field Bµν .
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classical level, we need not worry about the fact that loop corrections typically generate terms that would spoil the
structure in Eq. (19).

In order to reproduce Eqs. (10), (11) as the double copy of an analogous classical solution in this bi-adjoint scalar
field theory, we must introduce suitable point sources. As in [15], we begin by identifying the static isolated Yang-Mills
particle of momentum pµ and charge ca, whose Coulomb field is

Aaµ = −gpµca
∫
`

2πδ(` · p)e
−i`·x

`2
(20)

(in the gauge ∂µA
µ
a = 0), with a bi-adjoint point charge corresponding to a static field configuration

φaã = −ycac̃ã
∫
`

2πδ(` · p)e
−i`·x

`2
. (21)

Thus, our system is described by an action S = Sφ + Spp, where for each point particle,

Spp = −1

2

∫
dλ

[
η−1

dxµ

dλ

dxµ
dλ

+ η
(
m2 − 2yφaãcac̃ã

)]
. (22)

Here the einbein η(λ) is a Lagrange multiplier, introduced to enforce invariance under reparametrizations λ → λ̃(λ)
of the worldline time coordinate. We have imposed by hand that the scalar couples universally to the point particles,
with the same coupling strength y as in the cubic self-interaction. This particular choice of parameters seems to be
yet another fine tuning of the theory, motivated only by the universal couplings of gluons to color charges in the
putative Yang-Mills double copy. While generic scalar worldline couplings such as the one in Eq. (22) normally get

renormalized even at the classical level [13, 28] by diagrams with insertions of the bulk interactions, the G× G̃ color
structure is such that in the present case, the relevant UV divergent diagrams vanish. Thus, in the bi-adjoint theory
symmetry protects the choice of worldline couplings from classical radiative corrections.

The equations of motion for the orbital coordinates xµ(λ) are given by

dpµ

ds
= −ycac̃ã∂µφaã, (23)

where the momentum is pµ = −δSpp/δẋµ = η−1dxµ/dλ and ds = ηdλ is the re-parameterization invariant coordinate
along the worldline. Varying with respect to η yields the on-shell constraint

pµp
µ −m2 = −2yφaãcac̃ã. (24)

In the point particle action Eq (22), we have not explicitly included terms whose variation yield the dynamics of the
color charges ca, c̃a. A model-independent approach to obtaining the equations of motion is to impose conservation
of the currents Jµ,a, Jµ,ã that generate the G× G̃ symmetry of the theory. These currents can be decomposed as a
sum

Jµ,a = Jµ,aN + Jµ,app , (25)

where Jµ,aN = fabcφcb̃∂µφbb̃ is the Noether current implied by the invariance of Lφ, and to leading order in a derivative
expansion

Jµ,app =
∑
α

∫
dspµαc

a
α(s)δd(x− xα(s)) + · · · (26)

is the current induced by the point charges. The current Jµ,ã that generates G̃ is defined analogously. Then ∂µJ
µ,a =

∂µJ
µ,ã = 0 implies that the charges must evolve in time as

dca

ds
= −yfabcccc̃b̃φbb̃, dc̃a

ds
= −yf̃ ãb̃c̃c̃c̃cbφbb̃, (27)

after using the equations of motions for φaã(x) that result from varying Sφ + Spp.
Alternatively, it is possible to derive the color equations of motion directly from the variation of a Lagrangian. As

a specific realization, one could introduce a worldline variable ψ(λ) transforming bi-linearly in a representation (r, r̃)

of G× G̃. Then, by defining the charges ca = ψ† (T ar ⊗ Ir̃)ψ, and c̃ã = ψ†
(
Ir ⊗ T̃ ãr̃

)
ψ, variation of the action

Sψ =

∫
dλ
[
ψ†i∂λψ + ηyφaãcac̃ã

]
(28)
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yields the color equations of motion quoted above. At the classical level, it is sufficient to work directly in terms of
the equations of motion for the charges, so our results are independent of any choice of Lagrangian description such
as Eq. (28).

To compare with Yang-Mills radiation, we construct the radiation field φaã measured by observers at r →∞. The
formal solution is expressible as

φaã(x) = −y
∫
k

e−ik·x

k2
J aã(k), (29)

where the bi-adjoint source J aã receives contributions from a collection of color charges, each coupled to φaã through
the interaction in Eq. (22), as well as the scalar field configuration itself,

J aã(x) = −fabcf̃ ãb̃c̃φbb̃φcc̃ +
∑
α

∫
dscaα(s)c̃ãα(s)δd(x− xα(s)). (30)

Like its Yang-Mills counterpart, this quantity has a simple relation to observables measured at asymptotic spatial
distances r = |~x| → ∞. In particular, the long distance radiation field is (taking d = 4 for illustration; similar results
hold in general dimension d)

lim
r→∞

φaã(x) =
1

4πr

∫
dω

2π
e−iωtAaã(k), (31)

where the amplitude Aaã(k) = y J aã(k)
∣∣
k2=0

is evaluated at the on-shell momentum kµ = ω(1, ~x/r), so that, for

instance, the energy-momentum radiated out to infinity in the color channel (a, ã) is given by

∆Pµa,ã =

∫
k

(2π)θ(k0)δ(k2)|Aaã(k)|2kµ. (32)

In perturbation theory, as a formal expansion in the coupling y, the calculation of J aã(x) can be organized in
terms of the Feynman diagrams shown in Fig. 1, where now the wavy internal lines correspond to bi-adjoint scalar
exchange. As in the Yang-Mills case, we impose as initial conditions that the particles start out widely separated in
the far past, with constant initial momenta xµα(s → −∞) = bµα + pµαs, and constant color factors caα(s → −∞) = caα,
c̃ãα(s → −∞) = c̃ãα. Thus, to leading order in perturbation theory the particles generate the static field given in
Eq. (21) summed over all the particle sources,

φaã(x) = −y
∑
α

caαc̃
ã
α

∫
`

2πδ(` · pα)
e−i`·(x−bα)

`2
, (33)

and a radiation amplitude given by Aaã(k) = y
∑
α e

ik·bαcaαc̃
ã
α(2π)δ(k · pα). This is non-vanishing only if kµ points

along the momentum of any massless particle source involved in the scattering process.
At the next order in the perturbative expansion, we need to determine how the leading order field in Eq. (33)

backreacts on the trajectories in orbital and color space. We write

xµα(s) = bµα + pµαs+ zµα(s), (34)

caα(s) = caα + c̄aα(s), c̃ãα(s) = c̃ãα + ¯̃c
ã
α(s), (35)

with zµα(s), c̄aα(s), ¯̃c
ã
α(s) vanishing as s → −∞. Then, we feed the static field Eq. (33) into the particle equations of

motion, which yields the orbital deflection

zµα(ω) = iy2
∑
β 6=α

(cα · cβ)(c̃α · c̃β)

∫
`

e−i`·bαβ

`2(` · pα)2
(2π)δ(` · pβ)(2π)δ(ω − ` · pα)`µ, (36)

as well as

c̄aα(ω) = −y2
∑
β 6=α

[cα, cβ ]
a

(c̃α · c̃β)

∫
`

e−i`·bαβ

`2(` · pα)
(2π)δ(` · pβ)(2π)δ(ω − ` · pα), (37)

and similarly for ¯̃c
ã
α(s). In these equations, we have defined Fourier transforms zµ(ω) =

∫
dseisωzµ(s) and c̄a(ω) =∫

dseisω c̄a(s).
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The O(y2) radiation field receives contributions from Fig. 1(a) evaluated using these time dependent deflections as
well as from the diagram with the cubic vertex. In the latter case, it is sufficient to evaluate the diagram using the
static worldlines, and we find a contribution to J aã(k) which is given by

J aã(k)
∣∣
Fig. 1(b);O(y2)

= y2
∑
α,β
α 6=β

∫
`α,`β

µα,β(k) [cα, cβ ]
a

[c̃α, c̃β ]
ã
, (38)

where µαβ(k) was defined in Eq. (12). The contribution to J aã(k) from Fig. 1(a),

Fig. 1(a) =
∑
α

∫
dseik·xα(s)caα(s)c̃ãα(s) (39)

becomes at O(y2)

J aã(k)
∣∣
Fig. 1(a);O(y2)

= −y2
∑
α,β
α6=β

∫
`α,`β

µα,β(k)
`2α

k · pα

[
k · `β
k · pα

((cα · cβ)cα)a((c̃α · c̃β)c̃α)ã

+ [cα, cβ ]
a

((c̃α · c̃β)c̃α)
ã

+ ((cα · cβ)cα)
a

[c̃α, c̃β ]ã
]
. (40)

Here, the first term is due to the shift in the orbital trajectory Eq. (36), while the second and third terms are the
contributions of the color deflections c̄a and ˜̄c

a
respectively. The complete bi-adjoint current J aã(k) at order y2 is

then the sum of of Eqs. (38), (40).

A. Double copy

We now apply the color-kinematics substitution rules in Eqs. (13), (14) to the bi-adjoint scalar amplitude determined

above. First, applying the replacement c̃aα 7→ pµα to the symmetry group G̃, yields the Yang-Mills current

J aã(k) 7→
∑
α

eik·bαcaαp
µ
α(2π)δ(k · pα) = J̃µa (k) (41)

at leading order in the couplings. As discussed above, in sec. II, this expression implies vanishing gluon radiation at
leading order in perturbation theory.

In Yang-Mills, radiation first appears at second order in the gauge coupling. By applying the replacement rule from
Eq. (14)

[c̃α, c̃β ]a 7→ Γµνρ(−k, `α, `β)pναpρβ =

[
(k · pα)pµβ − (k · pβ)pµα +

1

2
pα · pβ(`α − `β)µ

]
(42)

at the level of the integrand of the bi-adjoint solution at O(y2), and using the constraints `α · pα = 0 from Eq. (12),
we arrive at

J aã(k)
∣∣
Fig. 1(b);O(y2)

7→ −y2
∑
α,β
α6=β

∫
`α,`β

µα,β(k) [cα, cβ ]
a

(2(k · pβ)pµα − (pα · pβ)`µα) , (43)

which has precisely the same structure as the Yang-Mills three-gluon contribution quoted in Eq. (11). Similarly,

J aã(k)
∣∣
Fig. 1(a);O(y2)

7→ −y2
∑
α,β
α 6=β

∫
`α,`β

µα,β(k)
`2α

k · pα

[
((cα · cβ)cα)a

(
(pα · pβ)

k · `β
k · pα

pµα + k · pαpµβ − k · pβp
µ
α

+
1

2
pα · pβ(`α − `β)µ

)
+ [cα, cβ ]a(pα · pβ)pµα

]
. (44)

In this case, this expression differs from the integrand in Eq. (10) by a term proportional to kµ, whose form is∑
α,β
α6=β

∫
`α,`β

µα,β(k)((cα · cβ)cα)a
`2α

k · pα
(pα · pβ)

 kµ. (45)
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Thus, for off-shell kµ, the double copy of the bi-adjoint source J aã(k) only reproduces the Yang-Mills current J̃µa (k)
up to gauge dependent terms. However, the double copy of the bi-adjoint radiation field yields a gauge-invariant4

on-shell gluon radiation field Âaµ(k)

Aaã(k) 7→ εµ(k)Âµa(k), (46)

which is only defined up to “pure gauge” terms that vanish on-shell when dotted into the gluon polarization vector
εµ(k). A similar gauge ambiguity arises in the double copy Aµa(k) 7→ Âµν(k) going from Yang-Mills to gravity [9].

This gauge freedom may be exploited to put the amplitude Âµa(k) into a form that automatically obeys the Ward

identity kµÂµa(k) = 0,

Âµa(k) = g3
∑
α,β
α 6=β

∫
`α,`β

µα,β(k)

[
`2α

k · pα
((cα · cβ)cα)a

{
−pα · pβ

(
`µβ −

k · `β
k · pα

pµα

)
+ k · pαpµβ − k · pβp

µ
α

}

+ [cα, cβ ]a
(

2(k · pβ)pµα − (pα · pβ)`µα +
`2α

k · pα
(pα · pβ)pµα

)]
. (47)

After the identification y → −g in order to match normalization, this equation correctly reproduces the gluon radiation
field detected by far away observers.

The color-kinematics substitution rules in Eqs. (13), (14) can also be applied to the conserved currents Jµ,a, Jµ,ã

and energy-momentum tensor Tµνφ of the scalar theory. Evaluating these quantities on-shell (i.e. φaã and the particles

obeying the equations of motion) then yields well defined double-copy currents

Jµ,a 7→ Ĵµ,a, Jµ,ã 7→ Ĵµν , Tµνφ 7→ T̂µν . (48)

We have explicitly constructed the currents Ĵµ,a, Ĵµν , and T̂µν and compared them to the analogous objects in
the gauge theory setup of sec. II. The details of this calculation are presented in appendix A. At leading order
in perturbation theory, the currents only get contributions from the static point particle charges, and the mapping
of currents is such that Ĵµ,a coincides with the Yang-Mills color current, while both Ĵµν and T̂µν agree with the
energy-momentum tensor of the color charges in gauge theory. At second order, we find that Ĵµ,a differs from
the (gauge-dependent) Yang-Mills current J̃µ,a defined in Eq. (7) by an improvement term of the form ∂σA

σµ,a,
Aσµ,a = −Aµσ,a and consequently leads to the same global charge Qa =

∫
dd−1~x J0,a(x) as one finds in the gauge

theory. The object Ĵµν , which is the double copy of the G̃ global symmetry current, obeys the conservation law
∂µĴ

µν = 0 and reproduces the total energy-momentum of the Yang-Mills system Pµ,
∫
dd−1~x Ĵ0µ(x) = Pµ, computed

directly to order g2 in Yang-Mills. However, we find that Ĵµν(x) is neither gauge-invariant nor symmetric. Finally

T̂µν(x) is symmetric and conserved, but not gauge invariant. It also reproduces the conserved energy-momentum Pµ

of the gauge theory5.

IV. CONCLUSIONS

In this paper, we have constructed perturbative radiating solutions of the bi-adjoint scalar theory coupled to
dynamical point sources. Using the color-kinematics replacements summarized in Eqs. (13), (14), we have found a
double copy correspondence that relates the scalar field at asymptotic distances from the source to the analogous
classical solution in gauge theory coupled to color charges. The same replacement rules were found recently to
relate gluon radiation to classical solutions in a theory of dilaton gravity. Thus the results of this paper imply a
correspondence, at least at leading order in perturbation theory, between gravity and a scalar theory with much
simpler Feynman rules.

We have focused here on the case of scattering solutions where the classical trajectories are unbound, but similar
methods should apply to the case of non-relativistic bound orbits. Note that because the color-kinematics replacements

4 Under gauge transformations that approach the identity at |~x| → ∞.
5 Of course, for our setup with point charges that are initially infinitely far apart, the global charges are simply Qa =

∑
α c

a
α and

Pµ =
∑
α p

µ
α to all orders in perturbation theory, so in this case we learn nothing from the fact that under the double-copy, the scalar

theory charge Qa =
∫
dd−1~x J0,a 7→ Qa in Yang-Mills, or that Q̃ã =

∫
dd−1~x J0,ã(x) 7→ Pµ. Rather our explicit computation just

serves as a consistency check of the color-kinematics substitution rules. More generally, for instance in a configuration with bound
particle orbits, the perturbative corrections to the global charges are non-trivial, and we expect the mapping of conserved quantities
between bi-adjoint and Yang-Mills to have more physical content.
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are done at the level of the integrand, they relate perturbative solutions whose expansion parameters become small
in different kinematic regimes. For generic velocities and radiation frequency, the classical limit corresponds to large
color charges c, c̃ � 1, while the double copy relations hold in the regime where c, c̃ are of order the orbital angular
momentum L ∼ Eb � ~. In the region of parameters c/Eb, c̃/Eb ∼ O(1), the classical solutions in the bi-adjoint
theory then correspond to an expansion in the dimensionless quantity y2c c̃ b5−d/E � 1 which controls the non-
linearities as well as the corrections to the classical trajectories in orbital and color space. The classical limit of the
gauge theory is also c � 1, and in the regime of validity of the double copy there is a single expansion parameter
of order g2c b4−d � 1 that suppresses both the gluon self-interactions and the orbital and color deflections. Finally,
in the gravitational double copy, the classical limit, with E � mPl, is perturbative as long as Eb3−d/md−2

Pl � 1, in
which case both the gravitational non-linearities and the orbital deflections are under theoretical control.

It remains to be seen if this method of obtaining gauge and gravity solutions by applying simple transformations
holds beyond leading order in the interactions. While the rules outlined in Eqs. (13), (14) appear to be well defined
at higher orders in perturbation theory, additional structure (such as the color and kinematic Jacobi identities that
play a crucial role in BCJ duality for scattering amplitudes) may need to be imposed in order for the solutions to
match. Either a definite computation of the higher order corrections, or better, a general all-orders proof is needed6.
Finally, even if the correspondence between bi-adjoint, gauge and gravity solutions holds to all orders, as alluded to
in sec. I, a method of efficiently projecting out the dilaton (and at higher orders the two-form gauge field Bµν) to get
radiation observables in pure gravity is still missing. We hope to address these remaining issues in future work.
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Appendix A: Double copy of conserved currents

The double copy rules used to relate classical solutions can also be applied to the conserved currents of the scalar
theory. These generate conserved currents whose physical content can be directly compared to Tµν and the color
current on the gauge theory side.

First, we look at the G global symmetry generating current of the bi-adjoint scalar theory, Jµ,a(k) defined in
Eq. (25). At leading order in perturbation theory, the current is a sum of free particle terms

Jµ,a(k)|O(y0) =
∑
α

eik·bαpµαc
a
α(2π)δ(k · pα). (A1)

This expression is invariant under the double copy map and is identical to the Yang-Mills current at this order,
Eq. (41). The leading order solutions for the field, the color variable and the trajectory are then inserted into Eq. (25)
to obtain at O(y2),

Jµ,a(k)|O(y2) = y2
∑
α,β
α 6=β

∫
`α,`β

µα,β(k)(c̃α · c̃β)

[
[cα, cβ ]a

(
`µβ +

`2α
k · pα

pµα

)
− ((cα · cβ)cα)a

`2α
k · pα

(
`µβ −

k · `β
k · pα

pµα

)]
.

(A2)

Applying the replacements c̃aα 7→ pµα and y 7→ −g maps this object onto a conserved current Ĵµ,a(k) in the double

copy gauge theory. We find that this differs from the (gauge dependent) Yang-Mills current J̃µ,a(k) at this order (sum
of Eqs. (10),(11)) by an improvement term of the form kσM

σµ,a, with

Mµν,a(k) = −Mνµ,a(k) = −g2
∑
α,β
α 6=β

∫
`α,`β

µα,β(k)

[
[cα, cβ ]a − ((cα · cβ)cα)a

`2α
k · pα

](
pµαp

ν
β − pναp

µ
β

)
. (A3)

6 Recently [29] constructed an action for d-dimensional gravity in which the interactions are expressed as a cubic structure with a manifest
SO(d−1, 1)×SO(d−1, 1) Lorentz invariance. One might speculate that this doubled kinematic invariance reflects an underlying G× G̃
bi-adjoint structure, and it would be interesting to see whether constructing the gravitational solutions directly in the variables of [29]
could elucidate the connection with the bi-adjoint scalar to higher orders in the perturbative expansion.
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Consequently, Ĵµ,a(k) is conserved and reproduces the same global charge as the Yang-Mills current J̃µ,a(k) that
sources the classical gauge field.

In the case of the energy-momentum tensor, there are two quantities in the bi-adjoint theory whose double copy
can be compared to the gauge theory (symmetric, gauge invariant) Tµν :

Tµν = TµνYM + Tµνpp = Fµλa F νa λ −
1

4
ηµνFαβa Faαβ +

∑
α

∫
dspµα(s)pνα(s)δd(x− xα(s)). (A4)

One is the G color current Jµ,ã that maps onto an object Ĵµν under double copy. The other is the scalar energy-
momentum tensor itself Tµνφ that can be interpreted as a quantity T̂µν in gauge theory. We find that these quantities

obey conservation laws ∂µĴ
µν = ∂µT̂

µν = 0 and generate the same global charge Pµ as the gauge theory Tµν , but
differ from it locally.

To be explicit, on the gauge theory side, we have at leading order

Tµν(k)|O(g0) =
∑
α

eik·bαpµαp
ν
α(2π)δ(k · pα), (A5)

which corresponds to free point particles. At the next order in perturbation theory, the point-particle contribution is

Tµνpp (k)
∣∣
O(g2)

= −g2
∑
α,β
α6=β

∫
`α,`β

µα,β(k)(cα · cβ)
`2α

k · pα

[ {
pµα
(
(k · pα)pνβ − (pα · pβ)`νβ

)
+ (µ↔ ν)

}
− pµαp

ν
α

k · pα
((k · pα)(k · pβ)− (pα · pβ)(k · `β))

]
, (A6)

whereas the bulk contribution is

TµνYM (k)|O(g2) = g2
∑
α,β
α6=β

∫
`α,`β

µα,β(k)(cα · cβ)
{ [
`µαp

ν
β(k · pα) + `νβp

µ
α(k · pβ)− `µα`νβ(pα · pβ)− pµαpνβ(`α · `β)

]
+
ηµν

2
[(`α · `β)(pα · pβ)− (k · pα)(k · pβ)]

}
. (A7)

for on-shell fields.
In the scalar theory, the current Jµ,ã generating the G̃ global symmetry is also a sum of free particle currents to

leading order

Jµ,ã(k)
∣∣
O(y0)

=
∑
α

eik·bαpµαc̃
ã
α(2π)δ(k · pα), (A8)

and reproduces Eq. (A5) upon replacing c̃ã → pµ. At the next order in perturbation theory, Jµ,ã is given by

permutation of G and G̃ labels in Eq. (A2), so under Eqs. (13), (14), we have Jµ,ã 7→ Ĵµν which is given by

Ĵµν(k)
∣∣∣
O(g2)

= −g2
∑
α,β
α6=β

∫
`α,`β

µα,β(k)(cα · cβ)

[(
`µβ +

`2α
k · pα

pµα

)(
(k · pα)pνβ − (k · pβ)pνα +

1

2
pα · pβ(`α − `β)ν

)

− `2α
k · pα

(pα · pβ)

(
pνα`

µ
β − p

µ
αp

ν
α

k · `β
k · pα

)]
. (A9)

It can be checked that, if written in terms of the classical gauge field solutions Aaµ(x), this expression is not invariant

under gauge transformations δAaµ = Dµα
a. Moreover, Ĵµν is not equivalent locally to the gauge invariant Tµν in

Eq. (A5) by any simple improvement terms of the form ∂σM
σ;µν , Mσ;µν = −Mµ;σν = −Mν;µσ. However, the global

charge

Ĵµ =

∫
dd−1~x Ĵ0ν(x) =

∫
dk0

2π
e−ik

0x0

Ĵµν(k0,~k = 0) (A10)

computed from Ĵµν(k) does agree with the total-energy momentum Pµ of the gauge theory.
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Similarly, the scalar energy-momentum tensor Tµνφ at leading order is identical to Eq. (A5), whereas to order O(y2),
we get

Tµνφ (k)
∣∣∣
O(y2)

= y2
∑
α,β
α6=β

∫
`α,`β

µα,β(k)(cα · cβ)(c̃α · c̃β)

[
`2α

k · pα

(
`µβp

ν
α + pµα`

ν
β −

k · `β
k · pα

pµαp
ν
α

)

−`µα`νβ +
ηµν

2
(`α · `β)

]
(A11)

The double copy c̃aα 7→ pµα then produces a well-defined current T̂µν given by an expression similar to Eq. (A9). It can

be checked that, like Ĵµν , this quantity while conserved and symmetric, is not invariant under gauge transformations
δAaµ = Dµα

a and cannot be related to Tµν in Eq. (A4) by adding improvement terms. The global charge T̂µ =∫
dd−1~x T̂ 0,ν(x) is also in agreement with Pµ in the gauge theory.
The mismatch between the currents does not appear to be an impediment to the program of obtaining physical

information about the gauge system from the scalar double copy. The reason is that all the physical information about
the gauge theory set-up (e.g, angular distributions of color, energy-momentum and angular momentum flux measured

at asymptotic distances) can be expressed in terms of the quantity A(k) = εaµJ̃
µ
a (k) for k2 = 0. Because the double

copy of the scalar solution reproduces A(k), it follows that the bi-adjoint theory encodes at least the observables of
the gauge theory that can be accessed by measurements at infinity.
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