
This is the accepted manuscript made available via CHORUS. The article has been
published as:

Quasinormal modes of black holes in scalar-tensor theories
with nonminimal derivative couplings

Ruifeng Dong, Jeremy Sakstein, and Dejan Stojkovic
Phys. Rev. D 96, 064048 — Published 25 September 2017

DOI: 10.1103/PhysRevD.96.064048

http://dx.doi.org/10.1103/PhysRevD.96.064048
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We study the quasi-normal modes of asymptotically anti-de Sitter black holes in a class of shift-
symmetric Horndeski theories where a gravitational scalar is derivatively coupled to the Einstein
tensor. The space-time di↵ers from exact Schwarzschild-anti-de Sitter, resulting in a di↵erent e↵ec-
tive potential for the quasi-normal modes and a di↵erent spectrum. We numerically compute this
spectrum for a massless test scalar coupled both minimally to the metric, and non-minimally to the
gravitational scalar. We find interesting di↵erences from the Schwarzschild-anti-de Sitter black hole
found in general relativity.

I. INTRODUCTION

The mysterious nature of dark energy [1] has galva-
nized a recent theoretical study of alternative gravity
theories as one potential driving mechanism for the ac-
celeration of the cosmic expansion. The search for new
and phenomenologically interesting theories has led to a
proliferation of scalar-tensor extensions of general rela-
tivity (GR) [2–6]. Many of these di↵er from the classi-
cal theories of modified gravity (such as Brans-Dickie)
in that they include higher-derivative interactions, yet
they are free of any Ostrogradski ghost instabilities be-
cause the equations of motion are second-order. These
theories have received particular attention because they
can self-accelerate cosmologically whilst simultaneously
satisfying solar system tests of gravity by utilising the
Vainshtein screening mechanism [7–11], which uses non-
linearities in the field equations to suppress deviations
from GR.

Any scalar-tensor theory that has second-order equa-
tions of motion falls into the class of theories first derived
by Horndeski [12] and independently re-derived by [13–
15]. This class is defined by four free functions of a the
scalar ' and its kinetic energyX = �g

µ⌫

@

µ

'@

⌫

'/2 and a
set of essential building blocks. Such an expansive theory
has found use in a variety of cosmological and astrophys-
ical scenarios from inflation [16] to dark energy [17–21]
to neutron stars [22–25] and other astrophysical objects
[26–33].

The enormous freedom in constructing models has en-
abled several examples of black holes (BHs) with scalar
hair to be found. These circumvent the no-hair theorem
[34–36] because it was derived assuming only first-order
derivatives of the scalar and non-derivative couplings to
curvature tensors (a no-hair theorem has been proved for
asymptotically BHs in shift-symmetric Horndeski theo-
ries [37] with one loophole [38–40]). A comprehensive
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and systematic review of hairy solutions in Horndeski
theories as well as how to construct them can be found
in reference [41]. In this work, we are concerned with the
specific theory with a non-minimal derivative coupling of
the scalar to the graviton
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which has been well-studied in the literature1. Here m

p

is the reduced Planck mass, R is Ricci scalar and G

µ⌫ is
the Einstein tensor. In particular, in the absence of the
canonical kinetic term, this theory is a specific example
of the John class of fab-four theories, which can self-tune
away a large cosmological constant [46]. The parameter
z is a free coupling constant and ⇤ is a bare cosmologi-
cal constant. It has been shown that this theory admits
hairy BHs that are asymptotically anti-de Sitter (AdS)
[47–50]. In the original construction [47], the bare cos-
mological constant was absent and the scalar derivative
'

02
< 0 outside the horizon. Here prime is the derivative

with the radial coordinate in the Schwarzschild system.
This is problematic since it violates the null energy con-
dition and ' is ultimately coupled to matter. Later, [48–
50] showed that this pathology could be ameliorated by
including a bare cosmological constant.
Whilst not particularly relevant for cosmology, the

study of AdS BHs is especially important for the
AdS/CFT correspondence [51–53]. Large AdS BHs de-
scribe (approximate) thermal states of the boundary
CFT and it may be the case that AdS BHs in these the-
ories are dual to an interesting strongly coupled three-
dimensional gauge theory. Similarly, the decay of a

1 This specific theory does not include a screening mechanism but
passes solar system tests nonetheless since derivatively coupled
scalars only source scalar field gradients through their (weak)
cosmological dynamics [42–45].
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scalar outside the BH—quasi-normal modes (QNMs)—
corresponds to perturbations of these states, and contain
information about the time-scale for the system to reach
equilibrium [54–56]. In particular, the QNMs of AdS BHs
correspond to poles of the retarded Green’s function for
the boundary CFT; we refer the reader to [56] and refer-
ences therein for the applications of this to hydrodynamic
systems.

Motivated by this, Minamitsuji has numerically calcu-
lated the fundamental QNM for a massless test scalar
outside an AdS BH for this theory [57]. The purpose of
this work is two-fold. First, we extend this calculation
to the higher overtones and non-radial modes. Second,
we calculate the QNMs for the case where the scalar is
non-minimally coupled to the gravitational scalar '; we
investigate the lowest-order coupling that preserves the
symmetries of ' and test scalar. In the former case, we
find qualitatively similar behaviour as the fundamental
QNMs calculated by reference [57]. In the latter case,
we find that there is a critical value of the non-minimal
coupling below which the e↵ective potential has a di↵er-
ent behaviour at asymptotic infinity so that the QNMs
are not well-defined. We numerically calculate the QNMs
for parameter choices where this is not the case and find
that stronger non-minimal couplings increase the oscil-
lation period and decay rate of the QNMs (at fixed BH
horizon and derivative coupling constant).

This paper is organized as follows: in section II we in-
troduce the specific BH studied in this work. The QNMs
are calculated and discussed in section III (for both the
minimal and non-minimal coupling) before concluding in
section IV.

II. ADS BLACK HOLES IN
DERIVATIVELY-COUPLED THEORIES

The theory defined by the action (1) admits AdS BH
solutions of the form [47–50]

ds
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where the AdS length l is related to the coupling con-

stant z and the cosmological constant ⇤ via2
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The BH horizon radius r

h

is the only real solution of
F (r

h

) = 0, and the Hawking temperature of this horizon
is
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F
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In order for the solution for ' to be real, we need to
impose

z � m

2
p

l

2
/3. (6)

When this lower bound is saturated, one has '0(r) =
0, h(r) = 1, and the arctan term in F (r) vanishes.
Therefore, we have an exact Schwarzschild-anti-de Sit-
ter (SAdS) BH3. In the following, we will first study the
QNMs for this case and compare them with known re-
sults in the literature [55, 57] as a test of our numerical
procedure. We will then consider more general values of
z where '0(r) is nonzero and the BH deviates from ex-
act SAdS, as well as non-minimal couplings of ' to the
test scalar. In what follows, we will work in units where
m

p

= 1. Furthermore, we will rescale our distances so
that l = 1 i.e. r and M both have units of l.

III. QUASI-NORMAL MODES

A. Minimal Coupling

We first consider a test scalar field �, minimally cou-
pled to the metric but not to '. This is the simplest
situation one can envision and we will henceforth refer
to it as the minimally coupled case. This is in contrast to
the case where one has direct couplings between ' and
�, which we will refer to as the non-minimally coupled

case. The minimally-coupled Lagrangian is

LMC = �1

2

p
�g@

µ

�@µ�, (7)

2 Note that it is not possible to choose a value of ⇤ such that the
solution is an asymptotically de Sitter (dS) BH. Such a choice
cannot lead to the formation of a cosmological horizon. One
could choose z < 0, but this results in a naked curvature singu-
larity that is not hidden behind a horizon [57].

3 It is important to note that the cosmological constant for this
black hole di↵ers from ⇤ (see Eqn. (4)) so that this still repre-
sents a non-GR solution. In particular, one would expect metric
perturbations to di↵er from their GR counterparts. In the limit
z ! 0 the theory reduces to GR, in which case the vacuum so-
lution is an SAdS black hole with AdS length set by ⇤. Since
SAdS BHs are solutions of both theories, they are observationally
indeistinguishable if one only considers their static, stationary
properties, but their di↵erent dynamics, such as metric pertur-
bations and interaction with matter, can be used to distingish
between the two theories.
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and, ignoring the back-reaction of � on the spacetime,
the metric is given by Eq. (2) so that the equation of
motion of � is

⇤� = 0. (8)

For our static and spherically symmetric background, one
can separate the dependence on coordinates as

� =
1

r

 (r)Y m

j

(✓,�)e�i!t (9)

where Y

m

j

(✓,�) are the usual spherical harmonics with
degree j and order m. Defining

f(r) = F (r)/h(r), (10)

and introducing the tortoise coordinate r⇤ given by dr

⇤ =
dr/f(r), Eq. (8) can be written in a similar form to the
Schrödinger equation:

d

2
 

dr

⇤2 + (!2 � V (r)) = 0, (11)

where the e↵ective potential is

V (r) =
f(r)f 0(r)

r

+ j(j + 1)
h(r)f(r)

r

2
. (12)
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FIG. 1. E↵ective potential for a scalar perturbation given in
Eq. (12). The tortoise coordinate r⇤ takes values from -1 to
⇡/2. z = 1/3 and j = 0.

We plot V (r) for large and small BHs for the SAdS
case z = 1/3 in Fig. 1. Consider perturbations outside
the BH, i.e. r

h

< r < 1. From Eqs. (3) and (10), we
see that f ⇡ 4⇡T (r � r

h

) as r ! r

h

, and f ⇡ C1r
2 as

r ! 1. C1 is a positive constant. From the definition of
the tortoise coordinate, we find

r

⇤ ⇡ 1

4⇡T
ln(r � r

h

), r ! r

h

;

r

⇤ ⇡ C2 �
1

C1r
, r ! 1. (13)

Here C2 is an integration constant which can be freely
chosen. We set it to ⇡/2. Clearly, r⇤ tends to �1 as
r approaches r

h

so this coordinate takes values in the
range �1 < r

⇤
< ⇡/2. It is evident that, for any value

of z, V (r) vanishes as r

⇤ goes to �1 (as r approaches
r

h

), and V (r) diverges as r

⇤ goes to its upper bound ⇡

2
(as r goes to 1), as shown in Fig. 1.
The QNMs are then naturally defined as the complex

values of ! = !

ST

, so that the solution of Eq. (11) has
the following asymptotic form,

 ⇠ e

�i!r

⇤
, r ! r

h

;

 ! 0, r ! 1. (14)

We apply the numerical approach proposed in [55] to
solve for the QNMs; the details of this method are out-
lined in appendix A. Note that for SAdS BHs in GR,
the imaginary parts of the QNM are always negative
(=(!

GR

) < 0) [55]. This implies that the modes always
decay. The same is true for all asymptotically AdS BHs
in the theory we consider here, i.e. =(!

ST

) < 0; we refer
the reader to reference [55] for a formal proof.

1. Quasi-normal Modes for z = 1/3

As discussed above, when z = 1/3 we have h(r) = 1
and f(r) = F (r) = 1 � 2M

r

+ r

2 so that the metric has
precisely SAdS form (note that '0(r) = 0). The QNMs
will then be those of the SAdS BH, even if there is a
finite coupling between � and @'. We begin by studying
the QNMs for the radial perturbations, i.e. j = 0 modes,
for r

h

between 10 and 1/4, for the principal QNM and
the first two overtones. As r

h

becomes smaller, a larger
order of expansion is needed to get precise solutions. For
example, 50 orders are su�cient for r

h

= 10, while 450
orders are considered for r

h

= 1/4 in order to be precise
to 3 decimal places. Our results for typical values of r

h

are shown in Tab. (I) in Appendix B and are plotted in
Fig. 2.

For large BHs, the relations !(0)
ST

= (7.75 � 11.16i)T ,

!

(1)
ST

= (13.24�20.59i)T , and !(2)
ST

= (18.70�30.02i)T , as

found for SAdS BHs in [55], hold. Here !(0)
ST

, !

(1)
ST

, !

(2)
ST

are the principal QNM and the first and second overtones
respectively, and T is the Hawking temperature of the
BH horizon given in Eq. (5). As r

h

decreases, the above
linear relations no longer hold. For intermediate-size
BHs, a linear relation between =(!

ST

) and r

h

holds, i.e.

=(!(0)
ST

) = �2.66r
h

, =(!(1)
ST

) = �4.98r
h

and =(!(2)
ST

) =
�7.18r

h

. This relation breaks down for smaller BHs. As
found by [58], the QNMs of SAdS BHs approach those of
a pure AdS space as the hole becomes very small.
Next, we consider non-radial perturbations, i.e. j > 0.

It is necessary to go to larger orders in the expansion
in order to get convergent results for larger values of j.
We were able to calculate the principal QNM for j up
to 30, for r

h

down to 4. Typical results are listed in
Tab. (II) in Appendix B, and these are plotted in Fig. 3.
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FIG. 2. Real (a) and imaginary (b) parts of the QNMs, (!ST ),
as a function of the BH horizon radius rh. Here z = 1/3.
The data points are the principal QNM (black circles), and
the first (red squares) and second (blue diamonds) overtones.
The solid continuous curves are (7.75 � 11.16i)T (principal),
(13.24� 20.59i)T (first overtone) and (18.70� 30.02i)T (sec-
ond overtone), where T is the Hawking temperature of the
BH horizon. The dashed continuous curves in (b) are 2.66rh
(principal), 4.98rh (first overtone) and 7.18rh (second over-
tone). The units are chosen by setting mp = 1 and l = 1.

As seen, both of the real and imaginary parts of QNMs
increase with j, with the change becoming less significant
for larger BHs. Our results are consistent with those of
[55], who have studied SAdS BHs previously.

2. Quasi-normal Modes for z > 1/3

When z > 1/3, two factors contribute to the change in
QNMs: the spacetime (2) deviates from SAdS, and there
is a potential coupling between the test field and '. In
this section, we consider the former, the latter is the topic
of the next section. As before, we begin by considering
radial perturbations, j = 0. Examining Eq. (11) (using
V (r) as given in Eq. (12)), the di↵erences from SAdS are

ST

ST

rh

FIG. 3. Contour plot of the principal QNMs for di↵erent
values of j and rh. Di↵erent j’s are denoted by di↵erent
marker shapes. Di↵erent rh’s are represented by di↵erent
marker colors. Here z = 1/3.

due to the di↵erent form of f(r) in Eq. (10). For BHs
with r

h

>>

p
z we have,

arctan(r/
p
z) ⇡ ⇡/2, and (15)

h(r) ⇡
p
3z, (16)

and therefore f(r) di↵ers from the SAdS form by a con-

stant factor
q

1
3z . The potential V (r) then di↵ers from

the SAdS potential by 1
3z . As a result,

!

ST

⇡
r

1

3z
!

GR

, (17)

where !
GR

is the corresponding QNM for an SAdS BH
(solution in GR) with the same horizon r

h

.
We plot the above relation as dashed lines in Fig. 4 for

the principle QNM as well as the first and second over-
tones, and compare them with our numerically computed
QNMs (only the principal mode is shown for r

h

= 0.6
since it is su�cient to illustrate that the relation breaks
down for small BHs). As expected, our data points fol-
low these lines very well for large BHs but the deviation
is significant for small BHs, i.e. r

h

<

p
z. This can be

seen in the figure as small deviations at large z for the
case r

h

= 5.
In general, <(!

ST

) and �=(!
ST

) decrease with in-
creasing z. Physically, this means the dominant pertur-
bation oscillates with a longer period and decays more
slowly as z increases. From an AdS/CFT correspondence
point of view, this means it takes a longer time to reach
equilibrium. For large BHs, this change follows the z�1/2

trend as discussed above. For small BHs, <(!
ST

) changes
more slowly while �=(!

ST

) changes more rapidly with
z.
We also plot the imaginary part of the QNMs as a

function of r

h

for z = 2 in Fig. 5. As discussed in
the previous subsection, =(!

ST

) is proportional to T for
large BHs, and to r

h

for intermediate-size BHs. As seen
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FIG. 4. The real (a) and imaginary (b) parts of the QNMs as
a function of the constant z. The dashed lines are given by
Eq.(17) with the corresponding BH horizon radius and QNM
order. Di↵erent rh’s are represented by di↵erent colors. The
integers between data points are the order of QNMs: ”0”
for principal mode, ”1” for the first overtone and ”2” for the
second overtones.

here, the linear relation with T still holds for large BHs
for z > 1/3, with di↵erent proportionality. And the lin-
ear relation with r

h

also holds for intermediate-size BHs,
with the proportionality reduced by a factor of (3z)1/2.
Note that these linear relations break down at larger val-
ues of r

h

than the SAdS BH relations. As discussed by
[55], <(!

ST

) never scales as r
h

no matter the value of z.
Next, we compute the non-radial QNMs for di↵erent

values of z and plot them in Fig. 6. We choose r
h

= 10.4

This constitutes one of the new results of this work. For
each value of z, higher-j order QNMs have both larger
real and imaginary parts. And the change of QNMs with
j becomes more significant for larger values of z.

Comparing Fig. 6 with Fig. 3 shows that increasing
z has a similar e↵ect to decreasing r

h

. The reason for

4 The QNMs for di↵erent values of rh (provided rh > 1 and rh >p
z) have similar dependencies on j and z.

z=1/3

z=2

11.16T 2.66rh

15.65T

2.66(3z)-1/2rh

1 2 5 10

1

5

10

FIG. 5. Imaginary part of QNMs as a function of the BH
horizon radius, for z = 1/3 (blue) and z = 2 (Red). The filled
circles are data from our calculation, and the solid/dashed
curved are the analytic functions shown in the legends.

this can be seen from the the metric. For r

h

� 1 and
r

h

�
p
z, the metric functions (Eq. (3)) show that the

metric is approximately SAdS with

r

3
h

⇡ 2M � ⇡(3z � 1)2

24
p
z

. (18)

This clearly shows that, for large BHs and not too large
z, increasing z would reduce r

h

while keeping the approx-
imate SAdS form and AdS radius l of the BH fixed.5

ST

ST

FIG. 6. Contour plot of the principal QNMs for di↵erent j
and z for rh = 10. Di↵erent j’s are denoted by di↵erent
marker shapes shown in the figure. For each j, z takes values
uniformly from 1/3 to 20/9, from top to bottom.

5 Of course, as discussed in Eq. (17), increasing z causes a decrease
of <(!ST ) and �=(!ST ), due to the first term in V (r) (Eq.
(12)). The second term in V (r) is exactly the same as the SAdS
counterpart for large BHs. As j becomes larger, this term is more
important and increasing z has an e↵ect more similar to that of
decreasing rh.
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B. Non-minimal Coupling
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FIG. 7. The e↵ective potential for a non-minimally coupled
scalar model (Eq. (21)) with di↵erent values of the coupling
constant ⇠, for rh = 10, j = 0 and z = 2/3. The critical value
of ⇠ is ⇠c = �1/2.

In this subsection we consider a coupling between the
test scalar and the gravitational scalar '. The simplest
form of coupling preserving the shift symmetry of the
field ', ' ! ' + c with c constant, and the reflection
symmetry of � (�! ��) and ' ('! �') is

LNMC =
p
�g

✓
�1

2
@

µ

�@µ�� ⇠

2m2
p

�2
@

µ

'@

µ

'

◆
, (19)

where ⇠ is a dimensionless coupling constant. The equa-
tion of motion for � is now modified to

⇤�� ⇠

m

2
p

(@
µ

'@

µ

')� = 0, (20)

which still reduces to the form of a Schrödinger-like equa-
tion for  when written in terms of the tortoise coordi-
nate, but with the e↵ective potential

V (r) =
ff

0

r

+ j(j + 1)
hf

r

2
+

⇠

m

2
p

f

2
'

02(r), (21)

where '0(r) is given by Eq. (3). The first and third terms
both vary as r

2 when r ! 1, and therefore there is a
critical value of ⇠ above which V (r) ! +1 as r ! 1,
but below which V (r) ! �1 as r ! 1. This critical
value is

⇠

c

= � 3z + 1

6(3z � 1)
. (22)

At ⇠ = ⇠

c

, V (r) is dominated by the second term and
becomes constant as r ! 1. For j = 0, V (r) ⇠ 1/r ! 0
as r ! 1. For ⇠  ⇠

c

, our boundary conditions (Eq.
(14)) in the definition of QNMs no longer apply. For this
reason, we will only consider values of ⇠ above ⇠

c

. The
e↵ective potential is plotted in Fig. 7 for this case for
di↵erent values of ⇠.

FIG. 8. Real part (upper half plane) and imaginary part
(lower half plane) of the principal QNMs as a function of
z for di↵erent values of the coupling constant ⇠ (defined in
Eq. (19)) given in the figure. Here rh = 10 and j = 0.
Neighboring data points are joined by line segments for better
illustration.

The principal QNMs are plotted in Fig. 8, for j = 0
and r

h

= 10. As seen, both <(!
ST

) and �=(!
ST

) in-
crease as ⇠ increases. For low values of ⇠, <(!

ST

) and
�=(!

ST

) decrease as z increases but for large ⇠, <(!
ST

)
and �=(!

ST

) increase with z for small z, and then de-
crease for large z. Recall that when z = 1/3 the solution
is exactly SAdS with '0 = 0 so that the non-minimal cou-
pling is not relevant and the QNMs converge to the same
value whatever the value of ⇠. At z = 1/3, ⇠

c

becomes
�1 (Eq. (22)). Therefore, for ⇠ very close to ⇠

c

, the
QNMs have a very steep change with z close to z = 1/3.
This is clearly seen in Fig. 8.
For a fixed value of z, the real part of QNM increases

while the imaginary part becomes more negative with
increasing ⇠. Physically this means the dominant per-
turbation will have a shorter oscillation period and will
decay more rapidly. In terms of AdS/CFT, if such BHs
have a CFT dual, this means the equilibrium state is
reached faster.

IV. CONCLUSIONS

In this work we have studied the quasi-normal modes
of asymptotically Anti-de Sitter black holes that are an-
alytic solutions of a class of shift-symmetric Horndeski
theories where a gravitational scalar ' is derivatively
coupled to the Einstein tensor. We have calculated the
QNMs numerically for a massless test scalar both mini-
mally coupled to the metric, and non-minimally coupled
to '.
In the case of minimal coupling, we have calculated the

principal radial as well as the first two overtones for pa-
rameter choices that give exact SAdS solutions. A linear
relation between the (complex) frequency !

ST

and the
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Hawking temperature was observed in all cases for large
black holes, confirming known analytic expectations. We
also calculated the principal mode for non-radial pertur-
bations and found that increasing the horizon radius in-
creases the real part of !

ST

and makes the imaginary
part more negative.

Moving away from exact Schwarzschild-Anti-de Sitter
black holes, we calculated the principal radial mode and
first two overtones and found that increasing the coupling
z of ' to gravity decreases the real part and makes the
imaginary part of !

ST

less negative at fixed black hole
radius. We predict and numerically confirm the relation
!

ST

/ z

�1/2 for large black holes. In the context of the
AdS/CFT correspondence, the dual theory exhibits per-
turbations from the thermal state that decay more slowly.
We also calculated the principal non-radial mode and
found that, for a black hole with a fixed radius, stronger
couplings to gravity have a similar e↵ect to decreasing
the horizon radius in the case of Schwarzschild-Anti-de
Sitter black holes.

Finally, we considered, for the first time, a non-
minimal coupling between ' and the test scalar �; we
chose the lowest-order operator that respects the symme-

tries of both fields. We found that there is a critical value
of the dimensionless coupling constant ⇠ below which
the structure of the e↵ective potential for perturbations
changes so that lim

r!1 V (r) = �1 and the QNMs sat-
isfying the usual boundary conditions (Eq. (14)) are not
well-defined. We numerically calculated the principal ra-
dial mode for values of ⇠ larger than this critical value and
found that stronger non-minimal couplings increase the
real parts and decrease (make more negative) the imag-
inary parts of the frequency i.e. they give rise to QNMs
that oscillate with a shorter period and decay faster than
the equivalent (same z) minimally coupled models.
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Appendix A: Numerical Procedure

In what follows, we review the numerical procedure of
Horrowitz and Hubeny [55]. Defining  =  e

i!r

⇤
, we

can write Eq. (11) in terms of  using the r coordinate
so that

f

d

2 

dr

2
+ [f 0 � 2i!]

d 

dr

� U(r) = 0, (A1)

where U(r) = V (r)/f(r). Introducing the new variable
x = 1/r, Eq. (A1) can be written as

s(x)
d

2 

dx

2
+

t(x)

x� x

h

d 

dx

+
u(x)

(x� x

h

)2
 = 0. (A2)

Here x
h

= 1/r
h

, s(x) = x

4
f(r)

x�xh
, t(x) = 2x3

f(r)�x

2
f

0(r)+

2i!x2 and u(x) = �(x � x

h

)U(r). From our boundary
conditions (Eq. (14)),  should be finite as x ! x

h

, and
vanish as x ! 0. Expanding  as

 =
1X

n=0

a

n

(x� x

h

)n+↵

, (A3)

where ↵ is a constant. We can solve perturbatively by
matching every order of the series in (x�x

h

). The lowest-
order term is

s0↵(↵� 1) + t0↵ = 0, (A4)

where s0 = �x

2
h

f

0(r
h

) and t0 = �x

2
h

f

0(r
h

) + 2i!x2
h

are
the zeroth-order term in the expansion of s(x) and t(x)
respectively. There are two solutions given by

↵ = 0,
2i!

f

0(r
h

)
; (A5)

the former corresponds to an incoming wave at the BH
horizon, and the latter an outgoing wave there. Physi-
cally, as measured by an observer at the horizon, a wave
can only travel into the BH, and not out. Therefore, we
choose the former solution, i.e. ↵ = 0. Next, we need to
satisfy the other boundary condition, i.e.  (x = 0) = 0.
This is achieved by solving the series in a

n

to order N,
and setting

 (x = 0) =
NX

n=0

a

n

(!)(0� x

h

)n = 0. (A6)

We solve the resulting polynomial equation in ! numer-
ically; the precision of the solution can be checked by
varying N and checking the convergence of the results.

Appendix B: Data tables
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rh !
(0)
ST !

(1)
ST !

(2)
ST

10 18.607� 26.642i 31.802� 49.182i 44.910� 71.706i
8 14.936� 21.315i 25.526� 39.353i 36.048� 57.379i
6 11.284� 15.988i 19.282� 29.527i 27.229� 43.056i
4 7.676� 10.663i 13.112� 19.708i 18.516� 28.746i
2 4.234� 5.340i 7.222� 9.911i 10.197� 14.476i
1 2.798� 2.671i 4.758� 5.038i 6.719� 7.395i
0.8 2.588� 2.130i 4.395� 4.062i 6.207� 5.983i
0.6 2.432� 1.580i 4.120� 3.080i 5.819� 4.565i
0.4 2.363� 1.006i 3.979� 2.073i 5.617� 3.120i
0.3 2.384� 0.704i 3.984� 1.547i 5.619� 2.369i
0.25 2.418� 0.548i 4.014� 1.273i 5.657� 1.980i

TABLE I. The principal QNM (!(0)
ST ) and the first two over-

tones (!(1,2)
ST ), for di↵erent BH horizon radii. Here z = 1/3

and j = 0.

rh j = 0 j = 10 j = 20 j = 30

10 18.607� 26.642i 22.513� 25.616i 30.219� 24.030i 39.098� 22.714i

8 14.936� 21.315i 19.505� 20.155i 27.786� 18.647i 36.979� 17.519i

6 11.284� 15.988i 16.722� 14.691i 25.569� 13.367i 35.043� 12.477i

4 7.676� 10.663i 14.261� 9.273i 23.621� 8.265i 33.332� 7.650i

TABLE II. The principal QNM for the z = 1/3 case (SAdS
BH), for di↵erent j-degrees and BH horizon radii rh.


