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The scalar-tensor theory of Damour and Esposito-Farèse recently gained some renewed interest
because of its ability to suppress modifications to General Relativity in the weak field, while intro-
ducing large corrections in the strong field of compact objects through a process called scalarization.
A large sector of this theory that allows for scalarization, however, has been shown to be in conflict
with Solar System observations when accounting for the cosmological evolution of the scalar field.
We here study an extension of this theory by endowing the scalar field with a mass to determine
whether this allows the theory to pass Solar System constraints upon cosmological evolution for
a larger sector of coupling parameter space. We show that the cosmological scalar field goes first
through a quiescent phase, similar to the behavior of a massless field, but then it enters an oscillatory
phase, with an amplitude (and frequency) that decays (and grows) exponentially. We further show
that after the field enters the oscillatory phase, its effective energy density and pressure are approx-
imately those of dust, as expected from previous cosmological studies. Due to these oscillations,
we show that the scalar field cannot be treated as static today on astrophysical scales, and so we
use time-dependent perturbation theory to compute the scalar-field-induced modifications to Solar
System observables. We find that these modifications are suppressed when the mass of the scalar
field and the coupling parameter of the theory are in a wide range, allowing the theory to pass Solar
System constraints, while in principle possibly still allowing for scalarization.

PACS numbers: 04.50Kd, 98.80.-k, 04.25.Nx, 97.60.Jd

I. INTRODUCTION

A plethora of modified gravity theories have been con-
structed over the years in an attempt to provide new per-
spectives on fundamental physics. Although useful from
a phenomenological standpoint, every time a new theory
is proposed, observations of different types have shown
the predictions of the theory to be in conflict with Na-
ture. Solar System observations allow for tests of the clas-
sic predictions of General Relativity (GR) [1] through, for
example, the tracking of spacecrafts and the laser ranging
of the Moon [2]. Binary pulsars observations have also
proven to be an excellent tool to test Einstein’s theory
in strong gravity environments [3], i.e. where the gravita-
tional field is strong but not rapidly varying. The recent
gravitational wave detection of the coalescence of a black
hole binary [4] has taken us one step further by allowing
for tests in extreme gravity [5, 6], i.e. where the field is not
just strong and non-linear but also highly dynamical [7].

Scalar-tensor theories of gravitation are a great exam-
ple of such proposed modifications to gravity. These the-
ories were originally introduced in the 1950’s by Jordan,
Brans, Dicke and Fierz [8] to account for possible varia-
tions of Newton’s gravitational constant G. These vari-
ations are typically achieved by adding one (or several)
dynamical scalar fields that couple to gravity directly,
but to matter indirectly. A dynamical scalar field of this
type modifies gravitational physics in the Solar System,
and thus, it is in conflict with experiments unless the cou-

pling of the field to gravity is suppressed. An example of
this is the Cassini Probe observation of the Shapiro time
delay [9, 10]: signals from the Cassini spacecraft were
observed to be (Shapiro) time delayed when the Sun was
between the spacecraft (on its way to Jupiter) and Earth
by exactly the amount predicted in GR [1]. Scalar-tensor
theories predict a correction to this effect, whose absence
in the Cassini observation forces the coupling between
the scalar field and gravity to be smaller than one part
in 105, limiting the interest in these theories.

This interest, however, was reignited in the early
1990’s, when Damour and Esposito-Farèse (DEF) pro-
posed a massless scalar-tensor theory [11] with a re-
markable feature: a non-linear process could force the
scalar field to induce order unity deviations in the strong
field, while allowing the theory to reduce to GR in the
weak field, thus avoiding Solar System constraints. This
scalarization process typically activates the scalar field
when the energy of the system exceeds a certain thresh-
old. When considering an isolated neutron star, its en-
ergy is proportional to its compactness and the process is
called spontaneous scalarization [11, 12]. When consider-
ing a neutron star binary, its energy is proportional to the
system’s gravitational potential and the process is called
dynamical scalarization [13]. When in a binary, a neu-
tron star can also become scalarized when in the presence
of an external scalar field (e.g. produced by its compan-
ion) and the process is called induced scalarization [13].
More recently, the interest in scalar-tensor theories was
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also revived because they emerge as the low energy limit
of higher dimensional theories, such as string theory [14]
and Kaluza-Klein type theories [15].

A few years ago, however, even this DEF scalar-tensor
model was shown explicitly to be in conflict with Solar
System observations when accounting for the cosmolog-
ical evolution of the field [16, 17]. The DEF model is
in agreement with observations only if the asymptotic
value of the scalar field at spatial infinity is chosen to
correspond to the minimum of an effective potential that
accounts for the coupling of the field to matter. The
asymptotic value of the scalar field, however, cannot be
freely chosen; rather, it must be consistently determined
by the cosmological evolution of the scalar field. Fol-
lowing the work of [18], Refs. [16, 17] showed that the
negative-β branch of DEF theories, i.e. the typical branch
that predicts scalarization, is exactly the one in which the
field has a run-away cosmological evolution, leading to an
asymptotic field value that results in grave disagreement
with Solar System observations. Scalarization is still pos-
sible in the positive-β branch, for only for a restricted
class of equations of state, i.e., those for which the trace
of the stress energy tensor becomes negative somewhere
inside the star [19–22].

This paper studies a generalized version of the DEF
model that endows the scalar field with a mass in the
hopes of avoiding Solar System constraints for all β upon
accounting for its consistent cosmological evolution. In-
deed, establishing the consistency of massive DEF theory
in both cosmological and Solar System contexts repre-
sents a interesting starting point for an extensive study
of the predictions of this model in extreme gravity envi-
ronments, such as in the exterior of neutron stars. Mas-
sive DEF theories are interesting because they have the
potential to continue to allow for scalarization in neu-
tron star system, provided the Compton wavelength of
the field is within a certain range [23]. We here focus
on the cosmological evolution of the massive scalar field
and its impact on Solar System observables through nu-
merical simulations and analytical perturbation theory;
we leave a detailed study of scalarization in massive DEF
theories to future work.

We find that the cosmological evolution of the massive
scalar field is dramatically different to that of the mass-
less field. In the massless case, the scalar field presents
mostly power-law behavior, with the exponents depen-
dent on the matter-energy content of the universe. In
the massive case, however, we prove that after a quies-
cent phase, well-characterized by power-law behavior, the
scalar field enters an oscillatory phase. When this hap-
pens, the amplitude of the envelope of the field decays
exponentially with time but the frequency of its oscil-
lations grows exponentially, until it reaches a limiting
value.

This behavior corresponds effectively to that of a dust
cosmological component. We show explicitly that the ef-
fective equation of state of the scalar field averages to
zero in time, and its effective cosmological energy decays

inversely with the cube of the scale factor. Therefore,
massive DEF is consistent with small redshift cosmologi-
cal observations, the contribution of the scalar field mas-
querading in the ΩM cosmological parameter, as mea-
sured for example in Type Ia supernovae [24]. Indeed,
minimally-coupled massive scalar tensor theories, i.e.,
those without a direct coupling between the scalar field
and the Ricci scalar as proposed by DEF, had already
been shown to present this behavior in the cosmological
context (e.g., scalar field dark matter models [25]).

Adding a mass term in the Lagrangian provides a
mechanism for the scalar field to decay and its envelope
to become small today relative to its initial value (i.e.,
the one at the end of inflation). This, however, comes
at the cost of forcing the field to also oscillate extremely
rapidly today. These results are supported by both fully
numerical simulations, as well as analytical calculations
that characterize stationary points of the field equations
through an effective Hamiltonian. We have further im-
plemented a multiple-scale analysis to obtain an approx-
imate solution for the evolution of the scalar field that
approximates the numerical simulations very accurately.

The time-dependence induced in the scalar field by its
cosmological evolution imposes a time-dependent bound-
ary condition at spatial infinity when dealing with its ex-
citations on astrophysical scales at small redshift. Conse-
quently, time-independent perturbation theory cannot be
formally employed to study the observable consequences
of this theory in the Solar System or with binary pulsars.
We use time-dependent perturbation theory to study the
weak field limit of the theory and find that the field
around a massive astrophysical body does not present
a spatial Yukawa-exponential damping with distance to
the source, as one may expect in theories with massive
scalars1. Instead, the cosmological evolution of the field
forces it to appear massless in the Solar System (on a
spacelike hypersurface) due to a cancelling mechanism
between the mass term and the second time derivative
of the field in its evolution equation. Consequently, So-
lar System constraints can still be cast in a form that
is functionally analogous to that obtained in massless
DEF theory, and thus, the theory passes Solar System
constraints for a wide range of masses and coupling pa-
rameter values.

The remainder of this paper deals with the details of
the calculations described above. Section II summarizes
the basics of scalar-tensor theories of gravity and pro-
vides a summary of the best current constraints on its
coupling parameters. Section III presents the cosmolog-
ical study of massive DEF theory and shows how this
theory embeds consistently in the late time evolution of
the universe. Finally, Sec. IV provides insight into the
weak field limit of the theory and its link with cosmol-

1 This expectation is based on the assumption that the asymptotic
value of the field is static, which is not the case in massive DEF
theory for a wide range of scalar field masses.
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ogy. Henceforth, we use units in which c = 1 and follow
the conventions of [26]. For example, Greek letters in in-
dices run over the four spacetime coordinates and Latin
letters in indices represent spatial quantities.

II. THE ABC OF SCALAR-TENSOR THEORIES

This section begins by recalling the action and the field
equations of scalar-tensor theories in the Jordan and Ein-
stein frames. We then focus on DEF theory and present
the current constraints on its parameters.

A. Equations of Motion

We study scalar-tensor theories of gravity that can be
described by the following action in the Jordan frame:

SST [g̃µν , φ, ψ] =
1

2κ

∫
d4x
√
−g̃
[
φR̃+ Lφ(φ, g̃µν)

]
+ Sm[g̃µν ,Ψ] , (1)

where κ = 8πG and g̃µν is the Jordan frame metric. R̃
and g̃ are the associated Ricci scalar and determinant re-
spectively. The field φ is an additional scalar degree of
freedom that couples non-minimally to the gravitational
sector, and Ψ denotes all matter degrees of freedom. This
action is “natural” because the scalar field was originally
introduced to account for possible variations of the gravi-
tational constant. Moreover, the Lagrangian of the scalar
field is written in a generic way as follows:

Lφ(φ, g̃µν) = −ω(φ)

φ
g̃µν∂µφ∂νφ−Π(φ) , (2)

i.e. as the sum of a kinetic term and a potential.
The absence of a direct coupling between φ and Ψ

guarantees that the weak equivalence principle is not vi-
olated. This principle states that the motion of a freely
falling test mass is independent of its internal structure
and composition, and it has been experimentally well-
verified. Even in the absence of a φ-Ψ coupling, however,
the addition of a new scalar degree of freedom does vio-
late the strong equivalence principle. That is, the motion
of a freely-falling, self-gravitating body does depend on
its internal structure, because the latter affects the scalar
field, and this field contributes to the motion.

In the Jordan frame, variation of the action with re-
spect to g̃µν and φ yields the following field equations:

φ

(
R̃µν −

1

2
R̃g̃µν

)
= κT̃mµν + (∇µ∇νφ− g̃µν∇α∇αφ)

+
ω(φ)

φ

(
∂µφ∂νφ−

1

2
g̃µν∂

αφ∂αφ

)
− g̃µν

Π(φ)

2φ
, (3)

[2ω(φ) + 3]∇α∇αφ = κT̃m − dω

dφ
∂µφ∂µφ+

dΠ

dφ
φ

− 2Π(φ) , (4)

where

T̃mµν =
2√
−g̃

δSm[g̃µν ,Ψ]

δg̃µν
, (5)

is the usual matter stress energy tensor and Tm its trace.
Because ordinary matter only couples to the metric, the
Jordan frame stress energy tensor is covariantly con-
served, as required by the weak equivalence principle.

In order to simplify the mathematics, the action can
be rewritten in the Einstein frame, characterized by the
metric gµν , which is conformally related to g̃µν by g̃µν =
A(ϕ)2gµν . Here, ϕ is a new scalar that satisfies

A(ϕ)2 = φ−1 , (6)(
d lnA

dϕ

)2

= [2ω(φ) + 3]−1 . (7)

The Einstein frame action is then

SE =

∫
d4x

√
−g

2κ
[R− 2gµν∂µϕ∂νϕ− 2V (ϕ)]

+ Sm[A2(ϕ)gµν ,Ψ] , (8)

where the ϕ potential is related to the φ potential via

V (ϕ) =
1

2

Π(φ)

φ2
. (9)

In this frame, the field equations are

Rµν −
1

2
Rgµν = κTmµν + Tϕµν , (10)

gµν∇µ∇νϕ = −κ
2
α(ϕ)Tm +

1

2

dV

dϕ
, (11)

where we have defined

Tϕµν = 2∂µϕ∂νϕ− gµν∂αϕ∂αϕ− gµνV (ϕ) , (12)

and

Tmµν =
2√
−g

δSm[A2(ϕ)gµν ,Ψ]

δgµν
, (13)

is the Einstein frame stress-energy tensor, with Tm its
trace with respect to the g metric. The quantity α(ϕ) =
d lnA/dϕ plays the role of an effective coupling function
between ordinary matter and the scalar field. In addi-
tion to the mathematical simplicity of the equations, the
Einstein frame has another more fundamental advantage:
the spin 2 and the spin 0 degrees of freedom linearly de-
couple, whereas they are mixed in the Jordan frame.
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B. DEF Theory

1. Formulation

DEF theory [11] is most easily formulated in the Ein-
stein frame and it corresponds to a first order develop-
ment in the field of the effective coupling function α(ϕ),
such that

A(ϕ) = eγϕ+ 1
2βϕ

2

, (14)

where γ and β are two, free coupling parameters of the
theory. In the original Brans-Dicke theory (β = 0), γ is
related to the more common ωBD parameter via

γ2 = (2ωBD + 3)−1 . (15)

The choice of the potential determines whether the
field is massive or not. In the standard DEF model,
V (ϕ) = 0, and the field is massless. In this paper, how-
ever, we allow the field to have a mass by setting

V (ϕ) = m2ϕ2 , (16)

where m is the mass of ϕ. This means that in the Jordan
frame, the field φ evolves in a potential of the form

Π(φ) = 2m2 φ2ϕ(φ)2 , (17)

which is not a simple quadratic φ potential. From now
on, we focus only on massive DEF theory.

2. Constraints

There exist mainly three approaches to constrain mod-
ified theories of gravity that respect the weak equivalence
principle. First, the theory must reproduce GR very ac-
curately in the Solar System. Tests such as the measure-
ment of the Shapiro time delay by the Cassini spacecraft
have greatly constrained the coupling constant measured
in the Solar System of the original Brans-Dicke theory
[(γ, β,m) = (γ, 0, 0)] and more generally in massless DEF
theory [(γ, β,m) = (γ, β, 0)]. In fact, in massless theo-
ries, the γPPN parameter, which measures the amount of
spatial curvature created by a unit rest mass 2, and which
is equal to 1 in GR, is related to the coupling constant
measured at spatial infinity by [27]

αmassless(ϕ0)2 =
1− γPPN

1 + γPPN

, (18)

where ϕ0 is the asymptotic value of the field at spatial
infinity, or simply its cosmological value for short. The

2 This parameter should not be confused with the γ coupling pa-
rameter of DEF theory.

previous equation, combined with experimental data, im-
poses the constraint

αmassless(ϕ0)2 ≤ 10−5 . (19)

The previous inequality suggests that important de-
viations from GR and consistency with Solar System
observations are incompatible, and this discouraged the
community from studying scalar-tensor theories for many
years. This conclusion, however, was proven to be incor-
rect in general, with massless DEF theory in the γ � 1
and β < 0 sector as a particular counter-example. In this
case, the constraint above becomes

αmassive(ϕ0)2 = γ + βϕ0 ≤ 10−5 , (20)

which is satisfied, for example, if ϕ0 � 1 and γ � 1 for
any β that is not too large. But even if this constraint
is saturated, massless DEF theory still predicts order
unity deviations from GR in strongly gravitating, non-
vacuum environments (typically neutron stars). This
is achieved through a non-perturbative process called
scalarization [11], which is analogous to spontaneous
magnetization in ferromagnetism. In this process, the
scalar field suddenly activates when the binding energy
of the system exceeds a particular threshold (either in
isolation or in a binary), or when the field is in the pres-
ence of another external field [12].

When scalarization occurs in a binary system, the
scalar field that activates is anchored to each neutron
star, forcing the field to become dynamical as the ob-
jects orbit around each other. This motion induces a
wave-like behavior in the scalar field, which then carries
energy and momentum away from the binary, acceler-
ating its rate of inspiral. This is where the second ap-
proach to constrain modified gravity theories comes in:
binary pulsar observations. These observations allow us
to track the orbital motion of a pulsar in a binary system
extremely accurately. If these observations are done for a
sufficiently long time, one can observe the rate of change
of the orbital period due to the orbital energy decay. Such
observations have been done to incredibly precision and
the predictions of GR have been verified. This, in turn,
implies that the binary pulsar observed could not have
scalarized, which then imposes the constraint β ≥ −4.5
in the negative-β branch of massless DEF theory [28].
Similar constraints can be placed in massive Brans-Dicke
theory [(γ, β,m) = (γ, 0,m)], as done in [29].

The last route to constrain modified gravity theories
is to study their cosmological evolution. In [18], Damour
and Nordtvedt showed that GR is a cosmological (expo-
nential) attractor in massless DEF theories when β > 0.
References [16, 17], however, showed that when β < 0
GR is a cosmological (polynomial) repeller, i.e. the scalar
field diverges as t → ∞, with t being cosmological time.
If this is the case, the constraint in Eq. (20) can only be
passed for vanishingly small and highly fine-tuned values
of γ and β, or for a vanishingly small set of initial val-
ues of the cosmological scalar field at the beginning of
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the radiation-dominated era. Therefore, massless DEF
theory with β < 0 is in conflict with Solar System con-
straints when one accounts for the cosmological evolution
of the scalar field.

Experimental constraints on DEF theory with a poten-
tial have not yet been explored deeply. For example, it
has been recently shown by Pretorius and Ramazanoğlu
in [23] that spontaneous scalarization of isolated and sta-
tionary neutron stars can still happen in massive theory
for β ≤ 0. As in the massless case, this could provide a
way to constrain the free parameters of the theory, but
in this case the constraints would be on a 2-dimensional
surface, i.e. the m–β space. This work, however, was con-
ducted assuming a static asymptotic value of the scalar
field, which as we will show here is not a valid assumption
in a range of scalar field masses.

For the reasons described above, we restrict ourselves
to massive DEF theories with γ = 0 and β ≤ 0 for the
rest of this paper, this last inequality being motivated by
the study of spontaneous scalarization in neutron stars
in massless DEF theory. We expect that when β > 0
scalarization will also arise in neutron stars in the massive
case, as shown in the massless case by [19–22]; there is
less motivation, however, to add a mass to DEF theory
in the positive β branch, since, as discussed above, this
branch automatically leads to a theory that passes Solar
System constraints and is cosmologically viable.

III. COSMOLOGY IN MASSIVE DEF THEORY

This section begins by adapting the Einstein frame
field equations to a Friedmann-Lemâıtre-Robertson-
Walker (FRLW) metric [30–32]. We then continue by
numerically solving these equations in their exact form,
and then interpreting them analytically through pertur-
bation theory. We conclude this section with a descrip-
tion of how massive DEF theory embeds consistently into
late-time cosmology.

A. Field Equations

Under the assumptions of homogeneity and isotropy,
the Jordan frame metric is simply the FRLW one:

ds̃2 = −dt̃2 + ã(t̃)2dl̃2 , (21)

where dl̃2 = dr̃2(1− kr̃2)−1 + r̃2(dθ2 + sin θ2dψ2). From
now on, we consider a spatially-flat geometry, i.e. k = 0,
as suggested by WMAP and Planck data [33]. Using

ds2 = e−βϕ
2

ds̃2, the Einstein metric becomes

ds2 = −dt2 + a(t)2dl2 , (22)

with dt = e−
1
2βϕ

2

dt̃ and a(t) = e−
1
2βϕ

2

ã(t̃) the Einstein-
frame scale factor.

Let us model the matter content of the universe as a
sum of non-interacting perfect fluids. For any individual

component, the Jordan frame stress-energy tensor is sim-

ply T̃mµν = (ρ̃ + P̃ )ũµũν + P̃ g̃µν , where ρ̃ and P̃ are the
density and pressure of the particular fluid component in
the Jordan frame. Equation (13) implies that the corre-
sponding Einstein frame stress-energy tensor also takes
a perfect fluid form, with

ρ = e2βϕ2

ρ̃ , (23)

P = e2βϕ2

P̃ , (24)

For cosmological matter sources, it is convenient to adopt

the cosmological equation of state P̃ = $ρ̃, with $ a
constant that depends on the particular fluid component.

In the Einstein frame, the modified Friedmann equa-
tions are

3H2 =κ
∑
i

ρi + ϕ̇2 + V (ϕ) , (25)

−2
ä

a
−
(
ȧ

a

)2

=κ
∑
i

$iρi + ϕ̇2 − V (ϕ) , (26)

where the overhead dot stands for time differentiation in
the Einstein frame, H = ȧ/a and where the sums run
over all the components of the cosmological fluid. The
modified Klein-Gordon equation takes the following form

ϕ̈+ 3Hϕ̇ = −β κ
2
ϕ
∑
i

(1− 3$i)ρi −m2ϕ . (27)

In order to decouple these equations for the evolution
ofH and ϕ, following [18], we introduce the dimensionless
time p defined as dp = d ln a and we choose p = 0 today.
With this time coordinate, the first Friedmann equation
becomes

3H2

(
1− 1

3
ϕ′2
)

= κ
∑
i

ρi + V (ϕ) , (28)

where the prime stands for differentiation with respect to
p. From the positivity of the energy density, this equation
implies ϕ′ ≤

√
3. Inserting Eqs. (28) and (26) into (27),

we find

2ϕ′′

3− ϕ′2

(∑
i

ρi +
m2

κ
ϕ2

)
+ ϕ′

[∑
i

(1−$i)ρi + 2
m2

κ
ϕ2

]

= −βϕ
∑
i

(1− 3$i)ρi − 2
m2

κ
ϕ .

(29)

The only unknown here is ϕ(p) because the covariant
conservation of the individual Jordan-frame stress-energy
tensors requires that for each non interacting fluid

ρ̃i(a) = ρ̃i,0 ã
−3(1+$i) , (30)

where ρ̃i,0 is the energy density of the ith cosmological
fluid as measured today. Inserting Eq. (23) and the re-

lation between a(t) and ã(t̃) into the previous equation
gives

ρi(p) = ρ̃i,0 e
−3(1+$i)p e

1
2 (1−3$i)βϕ

2

, (31)
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In the massless case and for a single cosmological fluid
component, the evolution equation for the scalar field
[Eq. (29)] becomes independent of ρ and it reduces to

2ϕ′′

3− ϕ′2
+ ϕ′(1−$) = −βϕ(1− 3$) , (32)

which is analogous to the equation of motion of a rela-
tivistic damped harmonic oscillator. From this equation,
it is clear that β ≤ 0 forces the scalar field to diverge
as p → +∞ because (1 − 3$) ≥ 0 for dust, radiation
and dark energy. This justifies the constraint given in
Sec. II B 2 and obtained formally in [17]. In the case of a
massive scalar field, the oscillator analogy does not hold
anymore – or at least, it does not provide a direct way to
understand the behavior of the field, forcing us to con-
sider full numerical solutions to the above equations.

B. Numerical Evolution

In order to solve Eq. (29) numerically, we need to first
specify both the content of the matter stress-energy ten-
sor and the initial conditions at the beginning of sim-
ulation. For reasons that will become clear below, we
choose to incorporate in our simulations only radiation,
baryonic matter (in the form of dust) and dark energy
with a present energy density equal to that measured
today. The dark matter component of the universe has
not been taken into account here; nevertheless, since this
would behave in the same exact way as baryonic matter
on cosmological scales, adding an additional cold dark
matter fluid does not change the qualitative behavior of
the results presented below. We also assume that the
energy density of baryons scales as a−3 – even though
inexact because of the coupling with radiation, we think
this is not a source of error as baryons begin to domi-
nate approximately at the same time as when they de-
couple from photons. In the following, we refer to the
“radiation- (matter- or dark energy-) dominated era” as
the period in the life of the universe when radiation (mat-
ter or dark energy) dominates the matter stress-energy
tensor. Because the scalar field also has a non-vanishing
energy density, this is not equivalent to saying that radi-
ation (matter or dark energy) dominates the total stress-
energy tensor.

We choose to start our simulations at the beginning of
the radiation-dominated era, and thus, the initial con-
ditions are given by the behavior of the field at the
end of inflation, which are not known. However, if we
go backward enough in time to the very beginning of
the radiation-dominated era, the field appears massless
(i.e. m2ϕ2 � κρr and m2 � κρr with ρr the energy den-
sity of radiation). In this case, and with $ = 1/3, the
equation of motion becomes approximately

2ϕ′′

3− ϕ′2
+

2

3
ϕ′ = 0 . (33)

As proven by Damour and Nordtvedt [18], if the velocity

of the field at the end of inflation is not close to
√

3, then
it will come to rest rapidly shortly after the beginning of
the radiation-dominated era, and the magnitude of the
field will vary by an amount of order unity. We thus
choose for our initial conditions (ϕ = ϕ0, ϕ

′ = 0) at the
beginning of the radiation-dominated era, where ϕ0 is a
constant. In our simulations, we choose ϕ(0) to be of
order unity, which is a reasonable assumption, as this
quantity corresponds to a Planck scale excitation of the
field (see Eq. (8)) at the end of inflation. As we will show
later, this assumption is consistent with constraints from
Big Bang Nucleosynthesis (BBN) [34].

With these initial conditions at hand, we now nu-
merically solve the full evolution equations, presented
earlier in Eq. (29), without any approximations. Fig-
ure 1 shows the numerical solution of the scalar field (left
panel) and its derivative (right panel) as functions of p-
time for β = −4.5 and m = 5.8 × 10−28eV. During
the early radiation-dominated era (p . −9), the field is
in a quiescent phase, presenting a quasi-stationary (ap-
proximately polynomial-like) behavior. During the late
radiation-dominated era (p & −9), the field enters an
oscillatory phase with the amplitude of its envelope de-
caying exponentially and the amplitude of the envelope
of its derivative growing and approaching the limiting
value of

√
3. This transition coincides with the time at

which the radiation energy density decays enough to be
of the same order as m2, i.e. from Eq. (31), this tran-
sition occurs when ρr,0e

−4p ∼ m2/κ, where ρr,0 is the
cosmological radiation energy density today.

From the numerical evolution, we can then approxi-
mate the behavior of the field via

ϕ(p) = Ae−p/τ cos [ω(p)]. (34)

and thus,

ϕ′(p) = −A
τ

cos [ω(p)]−Aω′(p)e−p/τ sin [ω(p)] . (35)

Clearly, the only term that is possibly responsible for
the growth of the envelope of the derivative of the field is
ω′(p)e−p/τ , which means the frequency of the oscillations
have to increase exponentially with the same character-
istic time as the decay of the envelope of the field.

As we can see from Fig. 1, the behavior remains the
same during the matter-dominated era, while during the
dark energy-dominated era the behavior changes. In the
former, the amplitude continues to decay exponentially,
as shown in the inset. In the latter, the amplitude of
the derivative of the field starts to decay as well, showing
that the frequency saturates (or at least does not increase
as fast as the amplitude of the field decreases).

The main conclusion of our numerical simulations is
that, despite the coupling to matter, which tends to
induce a cosmological condensation of the field (i.e. a
divergence of the amplitude of the field on cosmologi-
cal scales), the mass term seems to provide a stabilizing
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FIG. 1. (Color online) Evolution of the scalar field (left panel) and its derivative (right panel) as functions of the dimensionless
conformal p-time in massive DEF theory with β = −4.5 and m = 5.8 × 10−28eV. In both panels, the dashed vertical lines
roughly separate the different cosmological eras (radiation, matter and dark energy). Observe that after a quiescent phase, the
field begins to oscillate rapidly while its amplitude decays exponentially to zero. The amplitude of the envelope of its derivative
grows during radiation and matter domination, approaching the limiting value of

√
3 (horizontal dashed green lines on right

panel) but decays during dark energy domination. The inset in the right panel shows the decay of the scalar field during the
matter-dominated era and the dark-energy dominated era for p ≥ −4.

mechanism that forces the field to exponentially decay,
even for β ≤ 0. Picking other values of β and m does not
change the general behavior we discussed here. However,
as the transition between steady-state and oscillations
occurs when the energy density of the scalar field is of
the same order as the energy density of the other cos-
mological fluids, this transition is delayed as one lowers
m.

C. BBN Constraints

One expects that the choice of initial conditions at the
beginning of the radiation-dominated era should deter-
mine whether BBN constraints are satisfied. This is be-
cause the standard scenario for the formation of light ele-
ments depends sensitively on the physical (Jordan frame)

Hubble parameter H̃ during BBN, which in turn depends
on the initial conditions at radiation-domination. To see
this explicitly, let us assume that the transition between
steady state and oscillations happens after BBN, which
is expected to take place during the radiation-dominated
era at temperatures between 10−1 and 10 MeV. If so, ne-
glecting ϕ′ and V (ϕ) in Eq. (28), one finds H2 ' κ/3ρr
so that

H̃ = He−βϕ
2/2 (1 + βϕϕ′) , (36)

' He−βϕ
2/2 ' eβϕ

2/2

√
κ

3
ρ̃r . (37)

Moreover, our previous analysis showed that ϕ remains
constant from the beginning of the radiation-dominated
era until either the beginning of the matter-dominated
era or the transition to the oscillatory phase, which we
have here assumed occurs after BBN. If so, the physical

Hubble parameter depends exponentially on the value of
the scalar field during BBN, which is approximately the
same as the initial value of the scalar field at start of
radiation domination.

Modifications to the standard scenario of light ele-
ment formation are typically quantified by the speed-

up factor ξbbn = H̃/HGR, which is constrained to sat-
isfy |1− ξbbn| ≤ 1/8, given current measurements of the
abundance of Helium in the universe. Using Eq. (37), the
speed-up factor becomes

ξbbn ' eβϕ
2
init/2 , (38)

where we have also used the fact that ϕBBH ∼ ϕinit and
that Solar System constraints force the bare coupling
constant and the measured one to be approximately the
same. The current abundances of Helium then impose
the following constraint on the initial conditions

ϕ2
init <

2

β
ln

(
7

8

)
. (39)

This justifies the relevance of the parameters we have
considered in our numerical simulations (β and ϕinit of
order unity).

Please note that the calculation presented above is only
valid if m2ϕ2

0 � κρ̃r,0a
−4
bbn i.e.

mϕ0 �
√

3ΩrH0

(
Tbbn

T0

)2

' 10−17 eV , (40)

If this bound is saturated, which is far from being the
case in our numerical simulations, it is more difficult to
make a prediction since ξbbn itself will inherit the oscillat-
ing structure of the solution of the field equations. Such
studies are beyond the scope of this paper.
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D. Analytical Phenomenology

In this section, we provide some analytical insight into
the exact, numerical evolution of the scalar field pre-
sented above, using a Hamiltonian approach first and
then a multiple scale analysis approach. In the following,
in order to simplify the mathematics, we approximate the
matter content of the universe via a piecewise decompo-
sition with only radiation (respectively baryonic matter
or dark energy) during radiation (respectively baryonic
matter or dark energy) dominated era.

1. Hamiltonian Approach

Let us begin by computing the Hamiltonian corre-
sponding to the field equation [Eq. (29)], which we
rewrite as

2ϕ′′

3− ϕ′2
+ ϕ′

[
(1−$) + 2m̃2ϕ2

]
(1 + m̃2ϕ2)

= −
[
β(1− 3$) + 2m̃2

] ϕ

(1 + m̃2ϕ2)
, (41)

where we have defined the dimensionless (but time-
dependent) mass m̃2 = m2/(κρ). We identify this equa-
tion as that of a relativistic field in a time-dependent
potential V (ϕ, p) with a time-dependent drag force and
a ϕ′-dependent mass term.

The Lagrangian that reproduces the conservative part
(i.e., the part without the drag force) of the equation of
motion is (see also [18])

L(ϕ,ϕ′, p) =

(
1 +

ϕ′√
3

)
ln

(
1 +

ϕ′√
3

)
+

(
1− ϕ′√

3

)
ln

(
1− ϕ′√

3

)
− V (ϕ, p) , (42)

where V (ϕ, p) can be interpreted as the potential in
which the field evolves. The Euler-Lagrange equation
then imposes

∂V

∂ϕ
=
[
β(1− 3$) + 2m̃2

] ϕ

(1 + m̃2ϕ2)
. (43)

We are mostly interesting in the late time behavior of
the scalar field, which according to the exact solution
presented in Fig. 1 satisfies ϕ� 1, in turn allowing us to
simplify the Lagrangian and its associated Hamiltonian
significantly. Neglecting the ϕ dependence of ρ (i.e. of
m̃) in the potential,

V (ϕ, p) =
[
β(1− 3$) + 2m̃2

]
ln
(
1 + m̃2ϕ2

) 1

2m̃2
. (44)

The associated Hamiltonian is then found to be

H(p, ϕ, ϕ′) = ϕ′
∂L
∂ϕ′
− L

= − ln

(
1− ϕ′2

3

)
+ V (ϕ, p) , (45)

where the first term can be interpreted as an effective ki-
netic energy T (ϕ, p) and the second term as the potential
the field evolves in.

With the Hamiltonian at hand, we can now explore the
global stability of the field. If there exists a (constant)
p-time p0 such that, ∀p ≥ p0,[

β(1− 3$) + 2m̃2
]
≥ 0 ,

⇔ m2 ≥ |β|(1− 3$)
κρ̃0

2
e−3(1+$)p , (46)

then V (ϕ, p) has a global minimum in ϕ ∀p ≥ p0. This
can easily be checked by plotting V (ϕ, p) as a function of
p or ϕ. When this is the case, we say that the potential
is stabilizing.

For most of the history of the Universe, such a p0 does
exist and the potential is stabilizing. This is because
1 + $ > 0 (except during dark-energy domination and
inflation). However, in very late-time cosmology (during
dark-energy domination), $ = −1. In this case, Eq. (46)
with $ = −1 tells us that the potential is stabilizing if
and only if

m2 ≥ 2|β|Λ , (47)

where Λ is the cosmological constant.
Let us now restrict attention to the dark energy-

dominated era and use H to infer the behavior of the
field as p→ +∞. When the potential is stabilizing,

1. H(ϕ,ϕ′) 3> 0 ∀ {ϕ,ϕ′} 6= {0, 0} ,

2. H(0, 0) = 0 .

These conditions mean that the energy of the field is
always bounded from below (by zero) and that it reaches
its minimum at the phase space point {ϕ = 0, ϕ′ = 0}.
Moreover, Eq. (45) and Eq. (41) also tell us that

dH
dp

= −2ϕ′2 ≤ 0 , (48)

and thus, H is semi-negative definite.
In order to obtain Eq. (48), one has to be careful. The

potential used in Eq. (45) was obtained neglecting the ϕ
dependence of ρ, and thus, one should use the same ap-
proximation to obtain Eq. (48). The above result, how-
ever, does not actually rest on this approximation. One
can obtain Eq. (48) without knowing the exact analytic
solution to Eq. (43) for the potential. To do so, one
simply uses the chain rule: dH/dp = dV/dp + dT/dp =
(dV/dφ)φ′ + dT/dp, and then inserts Eq. (43) for the

3 During dark energy-dominated era, the Hamiltonian does not
depend explicitly on p because m̃ and ρ are constants.
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derivative of the potential with respect to the field. Do-
ing so, one then arrives at Eq. (48) generically during the
dark energy-dominated era.

With this at hand, we can now determine the late-
time stability features of the scalar field and explain why
the amplitude of the derivative of the scalar field begins
to decrease only during the dark energy-dominated era.
Let us define Ξ = {(ϕ,ϕ′) : ϕ′ = 0} as the set of points
at which the derivative of H vanishes. The only orbit
of ϕ contained in Ξ is defined by the phase space point
{ϕ(p), ϕ′(p)} = {0, 0}. In fact, if {ϕ,ϕ′} ∈ Ξ with ϕ 6= 0,
then Eq. (41) implies that ϕ′′ 6= 0, and thus, the orbit
leaves Ξ. Thanks to the first Lyapunov stability theo-
rem and the Krasovskii-LaSalle invariance principle, we
conclude that {ϕ = 0, ϕ′ = 0} is asymptotically stable.
Therefore, at late times, the ϕ field must flow to this or-
bit, settling down at the global minimum of the potential.
In other words, due to the effective drag force, the energy
of the scalar field decreases with time, forcing the field to
settle down to the phase space point {ϕ = 0, ϕ′ = 0} as
p→ +∞. This argument does not hold during radiation-
dominated era or matter-dominated era because the in-
equality dH/dp ≤ 0 also does not hold. Furthermore,
when the inequality in Eq. (47) is not satisfied, the field
evolves in a potential that is not bounded from below,
which forces it to diverge as p → +∞; this is precisely
what happens in the massless case.

2. WKB Approximation

Let us now attempt to understand the approximate
evolution of the the envelope of ϕ(p) and the frequency of
the oscillations using a well-known technique in multiple
scale analysis: the WKB approximation. The original
evolution equation for the scalar field in massive DEF
theory [Eq. (27)] expressed in the variable p is

H2ϕ′′ +
(
HH ′ + 3H2

)
ϕ′ = −

[
1

2
β(1− 3$)κρ+m2

]
ϕ ,

(49)

where recall the Hubble parameter satisfies the modified
Friedmann equation [Eq. (28)], which we rewrite below
with the mass potential for convenience:

3H2

(
1− 1

3
ϕ′2
)

= κρ+m2ϕ2 . (50)

From Eqs. (49) and (50), the field is effectively massless if
and only if κρ� m2ϕ2 [18]. On the other hand, when the
energy density has decayed enough so that κρ ∼ m2ϕ2,
then the mass term is non-negligible.

Let us first consider the late-time behavior of the field,
where ϕ� 1, and the regime κρ ∼ m2ϕ2. We then make
the (WKB-inspired) substitutions

ϕ→ εϕ , κρ→ ε2κρ , H → εH , (51)

with ε� 1, and Eq. (49) becomes

H2ϕ′′ +
(
HH ′ + 3H2

)
ϕ′ = −

[
1

2
β(1− 3$)κρ+

m2

ε2

]
ϕ ,

(52)

which is well-adapted to a WKB analysis due to the fac-
tor of ε2 in the denominator of the last term. We there-
fore look for a WKB solution of the form

ϕ = Re
[
e

1
δ

∑
δnSn

]
, (53)

where δ � 1 and Sn is in principle complex. A quick
dominant balance calculation shows that we need δ = ε.
In other words, when ϕ = O(ε) with ε � 1, there is
a short time scale of order O(1/ε) that naturally arises
in the evolution of the field, as shown in the oscillatory
behavior of the numerical solution.

With this WKB ansatz, the evolution equation reduces
to a set of ordinary differential equations (order by order
in ε):

(S′0)2 = −m
2

H2
, (54)

2S′1 = −3− 1

H
H ′ − S′′0

S′0
. (55)

The last two terms of the right hand side of Eq. (55)
cancel, upon inserting Eq. (54) in (55). Solving these
equations, the solution becomes

ϕ(p) = eKe−
3
2p cos

[∫
m

εH
dp

]
+O(ε) , (56)

where K is a constant4.
In order to obtain a closed expression for ϕ in terms

purely of p-time, we now need to solve for εH at second
order in ε. This can be achieved by inserting Eq. (56)
in (50) and expanding the Hubble parameter as H =
H0 + εH1. Doing so, we obtain

3H2
0 = κρ+m2e2Ke−3p , (57)

H1 =
3

4
e−3pe2Km sin

[
2

∫
m

εH
dp

]
. (58)

Equation (58) shows that H1 is a rapidly oscillatory func-
tion, and the derivative of its phase is always non-zero.
Therefore, the integral of H1 over p is much less than
unity, and we can safely replace H by H0 in the denom-
inator of the integrand of H1. One can check that this
expansion is valid as long as

εH1

H0
� 1 ⇒ εeKe−

3
2p � 1 , (59)

4 Here, K ∈ R and we ignore any initial phase in the oscillations
of the field.
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i.e. as long as the amplitude of the field is very small
compared to one.

Combining all of these results, we obtain the late-time
behavior of the scalar in the κρ ∼ m2ϕ2 regime:

εϕ(p) = Re

[
ϕ0e
− 3

2pe
±i
∫

m
εH0
−mH1

H2
0
dp
]

+O(ε2) , (60)

where we have defined eKε = ϕ0, as the amplitude of the
scalar field today. Similarly, we obtain the amplitude of
the frequency of the scalar field5:

lim
p→∞

|ϕ′| =

√
3

1 + κρ̃0/(m2ϕ2
0)
. (61)

Clearly, the scalar field presents an exponentially-
damped oscillatory behavior, while its frequency becomes
approximately

√
3 if the cosmological energy density as-

sociated with the scalar field is much larger than that
associated with usual matter, just as we found in the full
numerical solution of Sec. III B.

The approximate solution found in the regime κρ ∼
m2ϕ2 is uniformly valid during the matter-dominated
era, but not during the dark energy-dominated era or the
radiation-dominated era. This is because during matter
domination the potential energy of the field, which is
proportional to ϕ2, and the matter energy density both
decay as e−3p. But during the dark energy-dominated
era, the energy density associated with Λ is roughly con-
stant (in the Einstein frame), and thus the inequality
(κρ)Λ = Λ� m2ϕ2 eventually becomes satisfied. In fact,
this inequality becomes stronger and stronger as the field
evolves and continues to decay.

Let us then consider the dark energy-dominated case
with Λ � m2ϕ2 and linearize the equation of motion
[Eq. (29)] in the amplitude of the field:

ϕ′′ + 3ϕ′ + 3

(
2β +

m2

Λ

)
ϕ = 0 . (62)

The analysis of this equation leads to the same conclu-
sions we arrived at in Sec. III D 1, i.e. one must have
m2 ≥ 2|β|Λ for the amplitude of the field to decay to
zero as p → ∞. In the limit where m2 � Λ (which
is compatible with the previous assumption Λ � m2ϕ2

only for very small values of ϕ) and for β of order unity,
we can integrate the previous equation to find

ϕ(p) = ϕ0e
− 3

2p cos

(
3m2

Λ
p

)
. (63)

Again, we see that this is also the same approximate be-
havior we found in the exact numerical solution presented
in Sec. III B.

5 The limit used here makes sense rigorously only if there were
only baryonic matter in the universe.

Equation (63) reveal that the amplitude of the
derivative of the scalar field decays during dark energy-
domination (at least when the potential energy of the
field is small compared to the cosmological constant).
This is consistent with our numerical results and con-
firms that, in the analytical treatment of this subsection,
we were justified in neglecting terms that scale as ϕ′2

in the field equation. Moreover, there is a continuous
mapping between the two solution [Eqs. (63) and (60)],
suggesting that the matching of their asymptotic behav-
iors would provide a continuous solution at the matter-
domination/dark energy-domination interface.

As we found in Sec. III B, during the radiation-
dominated era the field starts decaying when its poten-
tial energy and the radiation energy density are of the
same order. In this regime, the approximate solution of
Eq. (63) is also in very good agreement with the numer-
ical simulations. When the potential energy of the field
begins to dominate over the radiation energy density, our
approximation breaks down and the characteristic time
of variation of ϕ decreases slightly. Our analysis does
not capture this feature, but fortunately this behavior is
not relevant when considering Solar System tests at late
times.

Before concluding this subsection, let us point out that
the term proportional to β in the field equation [Eq. (28)]
is negligible. This is not a surprise because when ϕ� 1
at late time, then the Einstein and the Jordan frames
become approximately equal. Since our simulations show
that the amplitude of the field does decay exponentially,
this approximation is always true after a certain amount
of cosmological time (that depends on the mass the field)
has elapsed. Thus, the parameter β weakly influences
the behavior of the field in late-time cosmology as long
as m2 � Λ.

E. Late-Time Cosmology

One may be concerned that the oscillations presented
in the previous subsection are inconsistent with late-time
cosmology, i.e., with observations at small redshift. In
this section, we show that massive DEF theory in fact
embeds consistently in this context. As we will see be-
low, the highly-oscillatory scalar field behaves like cold-
dark matter, and thus, its impact on the evolution of the
universe is consistent with cosmological observations.

Given the generic result of the numerical simulations
presented in the previous subsection, the scalar field is
well damped at late times. This implies that there is
effectively no difference between the Einstein and the
Jordan frames. Of course, for this to be true the mas-
sive transition, i.e., the transition between the quiescent
phase and the oscillatory phase, must occur before dark
energy domination, which translates roughly to requiring
m2 � Λ. In this regime, the first Friedmann equation
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FIG. 2. (Color online) Hubble parameter as a function of p-
time for β = −4.5, m = 5.8× 10−28eV and ϕ0 = 1. Top: The
Hubble parameter is computed first by solving the field equa-
tions numerically (dashed red line), and then fitting this data
to the analytical approximate model of Eq. (64) (black line).
Bottom: Fractional percent difference between the numeri-
cal and the analytical result. Observe that the error between
the numerical solution and the analytic expression is at most
approximately 1%.

becomes

3H2 =

(
Λ +m2ϕ2

)(
1− ϕ′2

3

) '
(
Λ +m2ϕ2

0e
−3p
)
, (64)

the last expression being valid at leading order in the
amplitude of the scalar field when Λ ∼ m2ϕ2

0e
−3p or

when Λ � m2ϕ2
0e
−3p. The next term in the perturba-

tive expansion of H in power of ϕ0 is given in Eq. (57).
The scalar field therefore behaves as dust on cosmological
scales (as shown by the exponential decay with a chara-
teristic time of 1/3 of the contribution of the scalar field
to the scale factor) and its oscillatory behaviour only ap-
pears in the scale factor perturbatively. This is confirmed
by our numerical simulations as shown in Fig. 2, where
the dashed red curve is the numerical evolution of the
Hubble parameter, and the black continuous curve is a
fit to this data with the model of Eq. (64).

This result should not be a surprise because the Ein-
stein frame equation of state of the field is given by

$ϕ =
Pϕ
ρϕ

=
ϕ̇2 −m2ϕ2

ϕ̇2 +m2ϕ2
, (65)

which averages to 0, as we can see on Fig. 3. In the
previous equation, Pϕ and ρϕ are the effective pressure
and energy density associated with the scalar field respec-
tively. These quantities can be read off from the modified
Friedmann equation [Eq. (64)].

Such a scalar field thus could in principle act like cold
dark matter on cosmological scales. In that sense, our

FIG. 3. Evolution of the equation of state of the scalar
field as a function of p-time, obtained by numerically solving
the field equation with β = −4.5, m = 5.8 × 10−28eV and
ϕ0 = 1.Observe the equation of state averages to zero.

results are closely related to those of the scalar field dark
matter model [25]. This model is obtained by setting
β = 0 in the massive DEF model, as e.g. explained in
detail in [25]. Here, we do not try to constrain any pa-
rameter of the theory by matching the coefficient ϕ0 to
the dark matter ΛCDM parameter, as it seems too re-
strictive to postulate the absence of any other type of
dark matter particles/fields, such as weakly interacting
massive particles. The main point here is that the late-
time behavior of the scalar field, and its impact on the
evolution of the scale factor, is consistent with cosmolog-
ical observations.

IV. SOLAR SYSTEM CONSTRAINTS

In this section, we carry out a weak-field analysis of
massive DEF theory with the aim to calculate Solar Sys-
tem observables that we can then compare against obser-
vations. As we shall find, the weak-field analysis is com-
plicated by the persisting time-dependence of the scalar
field in the Solar System, which forces us to carry out a
time-dependent perturbative expansion.

A. Scalar Field Behavior in the Solar System

In order to understand what happens on Solar Sys-
tem scales, let us first derive the solution to the modified
Klein-Gordon equation around a given body, neglecting
the curvature of spacetime. This equation becomes

�ηϕ = m2ϕ+ 4πGβ ϕ e2βϕ2

ρ̃ , (66)

where �η is the D’alembertian operator in flat spacetime,

and where we have assumed that ρ̃ � P̃ , with ρ̃ and P̃
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the energy density and the pressure of the body creating
the perturbation respectively. Let us approximate the
matter distribution as spherically symmetric, and so let
us use spatial spherical coordinates {r, θ, φ}.

An important feature of the results presented in the
previous sections is that the cosmological scalar field os-
cillates with conformal time p as given by Eq. (60), with
(angular) frequency ωp today of

ωp =
m

H0
, (67)

where H0 is the Einstein frame Hubble constant. Con-
sequently, the cosmological field oscillates with the coor-
dinate time t of the FLRW metric (which is the proper
time of observers at rest in this spacetime) with an an-
gular frequency of

ω = m (68)

This is, of course, only true today, i.e. in the limit ϕ0 �
1, where ϕ0 is the amplitude of the cosmological scalar
field. Recall that this condition is a consequence of the
cosmological evolution of the scalar field in the m2 �
Λ ∼ H2

0 regime, which we focus on here in order to remain
consistent with the cosmological constraint obtained in
Eq. (47) for β of order unity.

This behavior imposes a (cosmological) boundary con-
dition for the scalar field in the Solar System, namely

lim
r→+∞

ϕ(r, t) = ϕ0 cos (mt) . (69)

One cannot therefore assume that the scalar field asymp-
totes to a constant at spatial infinity, like one does in
massless DEF theory. In fact, for the values of the mass
usually of interest to massive scalars in cosmology and
in the scalar field dark matter model (e.g. see [25]), i.e.,
when m ∼ 10−20eV, the period of oscillation is roughly

ϕ

ϕ̇
≈ 0.01 yrs

(
10−20eV

m

)
. (70)

Solar System experiment with observation times larger
than a few days would then be sensitive to the temporal
variations of the scalar field. Even though cosmological
observable quantities, such as the scale factor, evolve on
time scales of order H−1

0 , the cosmological scalar field
varies on a much shorter time scale that needs to be
taken into account when dealing with its influence on
astrophysical observables.

Given the above considerations, let us search for an
approximate solution to our toy problem in Eq. (66) of
the form

ϕ(r, t) = f(r) cos (mt) , (71)

with the boundary condition f(r) → ϕ0 as r → +∞.
Inserting this ansatz in Eq. (66) leads to

1

r2
∂r
(
r2∂rf

)
= 4πGβfρ̃ , (72)

which is simply the Poisson equation, i.e., a massless
equation. The solution to this equation, of course, de-
pends on the density profile, but we expect, outside of
the body, a solution of the form f(r) = ϕ0 + Π/r, where
Π ∝ M is an integration constant and where M is the
mass of the astrophysical body, leading to the full solu-
tion

ϕ(r, t) =

(
ϕ0 +

Π

r

)
cos (mt) . (73)

In the next section, we will use post-Newtonian theory to
find the proper solution for the scalar field, assuming a
weak-field, constant-density astrophysical body, and we
will find that indeed it takes the form presented above.

This solution appears to be in complete conflict with
our standard expectations of massive DEF theory in the
Solar System. When solving the Klein-Gordon equa-
tion for a massive scalar field in a stationary, i.e. time-
independent, and spherically symmetric geometry that is
asymptotically flat, one finds a Yukawa-type potential

ϕ(r) ∝ M

r
e−mr . (74)

for large radii. This solution comes about because we
required a priori that ϕ be time-independent. This re-
quirement forces any time derivatives in the left-hand
side of Eq. (66) to vanish, which then means that ϕ(r)
must by itself reproduce the right-hand side of Eq. (66).
The latter is not necessary when ϕ is allowed to also be
time-dependent, since then the time derivatives in the
left-hand side of Eq. (66) can cancel the term propor-
tional to m2 on the right-hand side of this equation.

Requiring that the scalar field be time-independent
creates a problem when requiring that the scalar field
matches smoothly between its cosmological evolution and
its Solar System behavior. If one forces the field to
be static, then the solution to its evolution equation
[Eq. (74)] is Yukawa (exponentially) suppressed when
r > 1/m, which in particular implies that ϕ → 0 as
r → +∞. Of course, we immediately recognize that
this boundary condition is in conflict with the bound-
ary condition imposed by the cosmological evolution of
the scalar field [Eq. (69)]. This problem disappears when
allowing for the scalar field to be time-dependent, since
the cosmological boundary condition can then be easily
satisfied.

The need to account for the cosmological time-
dependence of scalar fields goes beyond massive DEF
theory, and in fact, it is applicable to a much wider class
of models. For example, we showed in Sec. III that as
long as β is not very large compared to unity, the be-
havior of the cosmological scalar field at late times does
not depend on β . Consequently, the same type of scalar
field behavior could be expected when adding simply a
massive scalar to the stress-energy tensor (without the
Brans-Dicke non-minimal coupling) and studying its ex-
citations on astrophysical scales.



13

B. Perturbative Decomposition

With the previous toy problem under control, we now
compute observable effects in the Solar System through
a post-Newtonian analysis. We perform all calculations
in the Einstein frame, rewriting only the end results in
the Jordan frame to find observables. In the Einstein
frame, we expand all quantities to first order around a
fixed background:

ϕ = ϕ(0) + ε ϕ(1) , (75)

Tµν = T (0)
µν + ε T (1)

µν , (76)

gµν = g(0)
µν + ε g(1)

µν , (77)

where the subscripts (or superscripts) (0) and (1) refer to
background or first-order quantities respectively. We use
ε� 1 as an order counting parameter for the metric per-
turbation – namely, in the Solar System ε = O(GM/RSS)
with GM the Schwarzschild radius of the Sun and RSS

the typical size of the Solar System. We restrict our-
selves to the study of a spherically symmetric background
and perturbations, but the results found here can be eas-
ily extended to more generic scenarios. Moreover, when
carrying out order-of-magnitude calculations, we treat β
as a quantity of order unity for simplicity, although our
equations do not rely on this assumption.

The background scalar field ϕ(0) must behave as pre-
scribed by its cosmological evolution, and thus, ϕ(0) is
at leading order spatially homogeneous, isotropic and
purely time dependent6. Consequently, any spatial
derivatives of the scalar field are treated as first order
quantities in the sense that ϕ(0) varies only on length
scales proportional to RSS/ε. The first order part of the
scalar field is expected to be sourced by a weak-field, as-
trophysical source, and thus, it is allowed to depend both
on time and spatial coordinates.

The perturbed stress-energy tensor represents a weak-
field, spherically-symmetric astrophysical matter source
– namely, a source for which the ratio between its internal
pressure and energy density is of P/ρ = O(ε), and for
which the Virial theorem guarantees the characteristic
velocities to be v = O(

√
ε). Consequently, we expect

the first order metric perturbation to be sourced only by
the energy density of the body creating the perturbation.
Moreover, on Solar System scales, we assume that there

is no background T
(0)
µν . On scales much larger than the

Solar System, the background stress energy tensor is the

cosmological one T
(0)
µν = T cosmo

µν , where this includes the
cosmological constant, the CMB and every cosmological
sources of stress-energy, apart from the scalar field.

We decompose the spacetime into two sub-manifolds
of co-dimension zero: a cosmological one, located at

6 We shall see later on that multiple scale analysis has to be used
in order to solve the field equations consistently, leading to a first
order spatial dependence of ϕ(0).

supra-solar distances, and a Solar System one, located at
smaller distances (but at distances still large relative to
the Schwarzschild radius of the astrophysical body creat-
ing the perturbation). Section III provides the behavior
of the scalar field and of the metric in the cosmological
submanifold, where all fields are spatially homogeneous.
We are thus here interested in finding the behavior of
all fields in the Solar System submanifold, which must
asymptotically match the cosmological behavior in some
buffer zone characterized by a certain length scale LC .
We know that the characteristic length scale associated
with the Newtonian potential is the Schwarzschild radius
GM , whereas the length scale associated with cosmol-
ogy is H−1

0 . In the following, we define the buffer zone
through a geometric average between these two scales,
i.e. LC ∼ (GM)ηH−1+η

0 with η < 1. A convenient
choice is to pick η = 1/2 for which we have LC � RSS

– namely the dynamics in the Solar System are, as one
expects, dictated by sub-cosmological length scales. An
schematic representations of the different scales at play
is given in Fig. 4.

FIG. 4. Schematic representation of a spacelike hypersurface
t = cst of the spacetime, the two sub-manifolds we consider,
and the different scales at play in our perturbative scheme.
The region r � LC is dominated by cosmology and the behav-
ior of the field is given in Sec. III. We are interested in com-
puting observables in the Solar System submanifold, which is
characterized by length scales of O(RSS).

Since the background spacetime is sourced by the back-
ground scalar field ϕ(0), which we already argued must be
spatially homogeneous and isotropic, using insight from
our cosmological analysis, we search for solutions to the
modified Einstein field equations that are conformally re-
lated to a perturbation of the Minkowski metric. We then
consider the ansatz

gµν = e2Ωgµν = e2Ω (ηµν + ε hµν) , (78)

where clearly then

g(0)
µν = e2Ω ηµν , (79)

g(1)
µν = e2Ω hµν , (80)

where Ω depends on time only. We further work in har-
monic coordinates associated to gµν , defined by the gauge
condition

gµνΓ
α

µν = 0 , (81)



14

with Γ the Christoffel symbol associated with gµν . Equiv-
alently, at linear level, this condition can be rewritten as

∂µh
µ
λ −

1

2
∂λh = 0 . (82)

where the indices are raised and lowered by the
Minkowski metric and where h = ηµνhµν is the trace
of the metric perturbation. In this (harmonic) gauge, xi

with i ∈ (1, 3) denotes spatial coordinates and τ denotes
the temporal coordinate.

Before proceeding, let us stress that the following com-
putation rests on some strong assumptions. The most
important one is that both the energy density and the de-
viations to Minkowski are treated as perturbations. This
prevents the emergence of any type of nonlinear coupling
between the perturbed field and any of these quantities.
In the strong field regime, where these assumptions do
not hold, the ansatz we use may not be the correct one
and the solution of the field equations may be more in-
volved than the one we present in the following analysis.

C. Zeroth Order Evolution

At zeroth order, and neglecting spatial variations of
the conformal factor Ω, the field equations reduce to
the modified Friedmann equations and the Klein-Gordon
equation. This then immediately implies that

e2Ω = a2(τ) , (83)

where a(τ) is the usual Einstein frame cosmological scale
factor. Moreover, this also implies that the background
spacetime is the FLRW metric

ds2
(0) = −dt2 + a(t)2

(
dr2 + r2dΩ2

)
, (84)

in spherically symmetric coordinates with dt = a(τ)dτ .
We require that our theory is cosmologically consis-

tent, i.e. we assume that the predicted Hubble constant
is indeed the observed one H0. Then, in the limit where
m � H0 ∼ 10−33 eV, the Klein-Gordon equation be-
comes(

∂2
τϕ(0) + 2H∂τϕ(0)

)
+m2ϕ(0) = βϕ(0)T

cosmo , (85)

where H = ∂τa/a is the conformal Hubble parameter
and T cosmo = ηαβT cosmo

αβ is the trace of the cosmological
stress-energy tensor, simplifies to

∂2
τϕ(0) +m2ϕ(0) = 0 , (86)

since the trace of the stress-energy tensor if of O(H0).
This simplification implies we treat all time-dependent
contributions to ϕ(0) that evolve on time scales compa-

rable to H−1
0 as constants. The background scalar field

is then

ϕ(0)(~r, t) = A(~R)eimτ +A∗(~R)e−imτ , (87)

where the length scale R is assumed large relative to the
size of the system under consideration, i.e. relative to the
size of the Solar System RSS.

For later convenience, let us define a new set of coor-
dinates (t, u,Ω), where u = a(t)r is a co-moving radial
coordinate. In this coordinates, the FLRW line element
becomes

ds2
0 = −

{
1− [H(t)u]2

}
dt2 − 2H(t)udtdu+ du2 + u2dΩ2 ,

(88)

where H(t) = ∂ta/a is the Hubble parameter. Hence-
forth, we assume that H(t)RSS � ε, which allows us to
solve for first-order quantities, taking the background to
be Minkowski, which is a legitimate approximation on
Solar System scales.

D. First-Order Evolution

Henceforth, we work with coordinates {t, xi} and we
neglect the influence of the scale factor on Solar Sys-
tem scales. We begin by decomposing the stress-energy
tensor, then finding the evolution equations and finally
solving them to first-order.

1. Perturbed Stress-Energy Tensor

We describe the astrophysical body creating the per-
turbation as a pressureless perfect fluid. Its stress-energy
tensor is defined in the Jordan frame at first order by

T̃ (1)
µν = ε ρ̃ uµuν , (89)

with the normalization condition g̃
(0)
µν uµuν = −1 where

g̃µν refers to the Jordan frame metric and ρ̃ is the Jordan
frame ε-normalized energy density.

From Eq. (23), in the Einstein frame, the perturbation
is also described by a perfect fluid with an ε-normalized
density ρ defined by

ρ = e2βϕ2
(0) ρ̃ . (90)

Therefore, the corresponding stress energy in the Ein-
stein frame takes the form

T (1)
µν = ε e2βϕ2

(0) ρ̃ δ0
µδ

0
ν , (91)

and its trace is simply

T (1) = −ε e2βϕ2
(0) ρ̃ . (92)

2. Modified Field Equations and Klein Gordon Equation

At first order and using harmonic coordinates, the
modified field equations are

−ε1

2
ηαβ∂α∂βhµν = 8πGε

(
T (1)
µν −

1

2
T (1)ηµν

)
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+ 2∂µ(ϕ(0) + εϕ(1))∂ν(ϕ(0) + εϕ(1))

− 2
(
∂τϕ

(0)
)2

δτµδ
τ
ν + 4m2εϕ(0)ϕ(1)ηµν ,

(93)

These equations can be simplified greatly through the fol-
lowing reasoning. From the cosmological evolution of the
scalar field in Sec. III, we know that mϕ(0) ∼ ∂0ϕ(0) ∼
H0, with H0 the Hubble constant. Therefore, neglecting7

terms of O(RSH0)2 and O(RSH0)2ϕ(1)/ϕ(0) leads to the
following simplified set of equations

−1

2
∇2h00 ' 4πGe2βϕ2

(0) ρ̃ , (94)

−1

2
∇2hii ' 4πGe2βϕ2

(0) ρ̃ , (95)

−1

2
∇2hij ' 0 , for i 6= j , (96)

−ε1

2
∇2h0i = 2∂τϕ

(0)
(
∂iϕ

(0) + ε∂iϕ
(1)
)
, (97)

where the right-hand side of Eq. (96) is technically non-
zero, but would give rise to a solution that varies on time
and length scales of order the Hubble radius, and so it
can be neglected here.

The structure of the modified field equations suggests
that in the Einstein frame the perturbed line element
takes the form

ds2 = − [1− εχ(~r, t))]dt2 + 2εΓidtdx
i

+ [1 + εχ(~r, t)] δijdx
idxj , (98)

with

∇2χ(~r, t) ' −8πGe2βϕ2
(0) ρ̃(~r) , (99)

ε∇2Γi ' −4∂τϕ(0)

(
∂iϕ(0) + ε∂iϕ(1)

)
. (100)

Unlike in GR, first-order off-diagonal metric terms can
potentially arise in massive DEF theory due to the non-
vanishing of the time derivative of the cosmological field.
If the latter varies with time only on cosmological scales
(like the scale factor), as is the case in the massless DEF
theory, then this term is automatically suppressed. As
we have shown in Sec. III, however, this is not the case
because the time derivative of the scalar field varies on
scales of order the mass of the field, which can be much
larger than the Hubble parameter today.

Similarly, keeping only zeroth- and first-order terms
and working in harmonic coordinates, the scalar field
evolves according to

εηµν∂µ∂νϕ(1) + (ηµν − εhµν) ∂µ∂νϕ(0)

= m2(ϕ(0) + εϕ(1)) + 4επGβϕ(0)e
2βϕ2

(0) ρ̃ . (101)

7 This assumption is redundant with the one made in the previous
section, which allowed us to use a Minkowski background.

Under the assumption that spatial derivative of ϕ(0) are
first-order quantities, and using the zeroth-order evolu-
tion equation, we obtain

−ε∂2
t ϕ(1) + ε∂i∂iϕ(1) + ∂i∂iϕ(0) + εχm2ϕ(0)

= m2εϕ(1) + 4πGβεϕ(0)e
2βϕ2

(0) ρ̃ . (102)

We render this equation dimensionless through (dimen-
sionless) spatial coordinates σi = xi/RSS and time coor-
dinate t′ = mt to find

−ε(mRSS)2∂2
t′ϕ(1) + ε∂i∂iϕ(1) + ∂i∂iϕ(0) + εχR2

SSm
2ϕ(0)

= εR2
SSm

2ϕ(1) + 4πGβεR2
SSϕ(0)e

2βϕ2
(0) ρ̃ .

(103)

3. Metric and Scalar Field Solutions

Now that we have found the first-order evolution equa-
tion for the scalar field [Eq. (103)], let us solve it in the
exterior of the matter source, which we assume is con-
tained in a sphere of radius Rsource. Once more, we use
that ϕ(0) � 1 today and neglect terms that are pro-

portional to ϕ3
(0) in the first-order equations. To solve

Eq. (103) with these assumptions, we first need to com-
pute the solution to Eq. (99) neglecting the ϕ2

(0) contri-

bution, and we obtain

εχ(~r, t′) = 2G
(

1 +O(ϕ2
(0))
)∫

d3~r1
ρ̃(~r1)

|~r − ~r1|
, (104)

=
2GM

r

(
1 +O(ϕ2

(0))
)
, (105)

with M the enclosed mass, namely

M = 4π

∫
dr r2ερ̃ . (106)

Thus, for σ ≥ Rsource/RS , Eq. (103) becomes

−(mRS)2∂2
t′ϕ(1) +

1

σ2
∂σ
[
σ2∂σϕ(1)

]
+

1

εσ2
∂σ
[
σ2∂σϕ(0)

]
+

2

σ
(RSm)2ϕ(0) = (RSm)2ϕ(1) + 4πGβR2

Sϕ(0)ρ̃ .

(107)

In the previous equation, the forcing term proportional
to ϕ(0)/σ is resonant with the homogeneous solution for
ϕ(1) and it is non-localized, possible leading to secular
divergences of the field ϕ1. This behavior is unphysical
and it can be dealt with using multiple scales analysis

as follows. We require that the function A(~R) appearing
in Eq. (87) be a function of the slowly-varying variable
Σ = εσ only. Using this in Eq. (107), we then find that

∂ΣA+ (RSm)2A = 0 , (108)

whose solution is simply

A(σ) = Ae−ε(RSm)2σ , (109)
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with A ∈ R. This solution then cancels the resonant term
that arises from the spatial derivative of the zeroth-order
scalar field. The zeroth-order scalar field then becomes

ϕ(0)(~r, t) = Ae−m
2GMr cos (mt) . (110)

With this at hand, the first-order field equation reduces
to

−∂2
t ϕ(1) +

1

r2
∂r
[
r2∂rϕ(1)

]
= m2ϕ(1) + 4πGβA(R)ρ̃ .

(111)

We can find a solution to this equation through Fourier
transform techniques. In the Fourier domain, Eq. (111)
becomes

εϕ̂(1)(~k, ω) = 4πGβA(R)

√
π

2

εˆ̃ρ(~k)

−~k2 + ω2 −m2

× [δ(ω −m) + δ(ω +m)] , (112)

where we have used the convention

ϕ̂(1)(~k, ω) =
1
√

2π
4

∫
d3~r dt ei(ωt−

~k·~r)ϕ(1)(~r, t) . (113)

Consequently,

εϕ(1)(~r, t) =
1

4επ2

∫
d3~k dω e−i(ωt−

~k·~r)ϕ̂(1)(~k, ω) ,

= −
√

2
GβA(R)

ε
√
π

cos (mt)

[∫
d3~k

ei
~k·~r

~k2
ˆ̃ρ(~k)

]
,

= −GβA(R) cos (mt)

∫
d3~r1

ρ̃(~r1)

|~r − ~r1|
,

= −GM
r

βA(R) cos (mt) , (114)

the last line being valid only for r ≥ Rsource.
Putting all results together, the total (zeroth- plus

first-order) scalar field takes the form

ϕ(~r, t) = Ae−m
2GMr

(
1− GMβ

r

)
cos (mt) . (115)

This is clearly only true outside the matter distribution
and on Solar System scales. In fact, in order to be consis-
tent with the cosmological analysis of previous sections,
we know that the amplitude of the zeroht-order scalar
field does not vanish but instead it must asymptote to
ϕ0 as r → ∞. We thus match these two solutions at

rc =
√
GM/H0, and find

A = ϕ0e
m2GM

√
GM
H0 , (116)

so that at first order

ϕ(~r, t) = ϕ0e
m2GM

(√
GM
H0
−r
)(

1− GMβ

r

)
cosmt .

(117)

This calculation is valid only for a certain range of
scalar field masses m. In fact, our computation of the
first order metric perturbations rests on the assumption
that

mϕ(0) ∼ ∂0ϕ(0) ∼ H0 , (118)

which is to say that ϕ(0) ∼ ϕ0 cos (mt) and which is only
true if the exponential in Eq. (117) is not too large. This
in turn implies that

m2GM

√
GM

H0
. 1 , (119)

or more exactly if this quantity is not large compared to
unity. This means our calculations are valid provided

m . 10−15 eV . (120)

One could extend the regime of validity of this solution,
for example by going to next order in multiple scale anal-
ysis, but this is beyond the scope of this paper.

In this mass domain and in the Solar System, one can
therefore write

ϕ(~r, t) = ϕ0e
m2GM

√
GM
H0

[
1− GM

r
(β +m2r2)

]
+O

(
ε2
)

+O
(
ϕ3

0ε
)
,

(121)

where the second order symbol, O
(
ϕ3

0ε
)
, is emphasized

to recall our previous assumption of neglecting terms that
scale as ϕ3

0 times a first order quantity.
With the scalar field at hand, we can now solve for the

metric tensor in the Jordan frame. From Eq. (121), the
Jordan frame metric takes the form

ds̃2 = eβA
2 cos (mt)2

[
1− 2β2A2GM

r
cos (mt)

2

]
ds2 ,

(122)

where we have neglected the (mr)2 contribution appear-
ing in Eq. (121) because this would give rise to a term of
O(εH2

0R
2
S) – an order we have neglected in this analy-

sis. Since the overall conformal factor is closely related to
the Jordan frame cosmological scale factor, we can also
neglect it on astrophysical scales and we thus obtain

ds̃2 = −
{

1−
[
χ− 2β2A2GM

r
cos (mt)

2

]}
dt2

+

{
1 +

[
χ+ 2β2A2GM

r
cos (mt)

2

]}
δijdx

idxj + 2Γidx
idt .

(123)

We do not substitute Eq. (105) for χ in the above equa-
tion because Eq. (105) was obtained up to a correction
factor of O(ϕ2

0), which although not important before,
it must be taken into account now as we do below. In-
terestingly, and as expected from the intuition developed
at the beginning of this section, the diagonal part of the
metric takes roughly the same form as in the massless
case, but with the substitution ϕ0 → ϕ0 cos (mt).
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4. Constraints

Let us now use the previous line element to see what
constraints we can place on the parameters m and β of
massive DEF theory using Solar System observations.
We proceed in two steps. First, we compute the γPPN

parameter of parametrized post-Newtonian theory. Sec-
ond, we use assumptions of post-Newtonian theory to
find the regime of validity of some of our expressions.
The off-diagonal part of the metric is briefly discussed in
Appendix A, but it will not be used here.

The diagonal part of the metric is characterized by χ
which, from Eq. (99), can be written at first order as

χ(r, t) = 2G

∫
d3~r1

ρ̃(~r1)

|~r − ~r1|
e2βA2 cos [m(t−|~r−~r1|)]2 .

(124)

This equation implies that structure dependent terms
arise even at first post-Newtonian order in this theory,
i.e., the solution to this integral explicitly depends on
the radius of the considered body. For a test-particle
with ρ̃(~r) = Mδ(~r), the above integral collapses to

χ(r, t) =
2GM

r
e2βA2 cos (mt)2 . (125)

Therefore, the diagonal part of the metric gives rise to
the following line element

ds̃2
diag = −dt2

[
1− 2GM

r
e2βA2 cos (mt)2(

1− β2A2 cos (mt)
2
)]

+ ηijdx
idxj

[
1 +

2GM

r
e2βA2 cos (mt)2(

1 + β2A2 cos (mt)
2
)]

. (126)

up to O
(
A4
)
. Let us now make a few remarks about

this line element. First, the effective gravitational con-
stant GN appearing in the Solar System and measured
by Cavendish-like experiments is

GN = Ge2βA2 cos (mt)2
(

1− β2A2 cos (mt)
2
)
, (127)

which clearly is time-dependent. Furthermore, the effec-
tive γPPN parameter is

γPPN =
1 + β2A2 cos (mt)

2

1− β2A2 cos (mt)
2 . (128)

Please note that, interestingly, on Solar System scales,
all dependence in r vanishes in γPPN. This is very dif-
ferent from the results obtained when neglecting the cos-
mological evolution and the time dependence of the field
in generic massive scalar-tensor theories as shown e.g.
in [35]. Both of these modifications allow, in principle,

for constraints on the theory through observations of the
Shapiro time delay from the Cassini spacecraft [1].

First, when the mass of the scalar field is so small
that the field evolves on time scales much larger than the
observation time in the Solar System, and if today mt ∼
π/2, then the theory reduces “accidentally” to GR. We do
not consider this case further, as it requires fine-tuning;
instead we make the assumption that cos (mt) = O(1),
which will lead to the strongest constraints. The rapid
oscillations of the field [see e.g. Eq. (70)] suggests that
this assumption is reasonable at least for m ≥ 10−20 eV.
With this at hand, Eq. (128) and measurements of the
Shapiro time delay require that

β2A2 ∼ β2ϕ2
0 . 10−5 , (129)

so that

m

β
& 102.5H0 ∼ 3× 10−31 eV , (130)

is a sufficient constraint for the theory to be in agreement
with the measurements made by the Cassini spacecraft.
Indeed we know that, assuming consistency of the cos-
mological evolution, the energy density of the scalar field
can only be a fraction of the total measured energy den-
sity, i.e.

m2ϕ2
0 . H

2
0 , (131)

and Eqs. (130) and (131) imply Eq. (129). Clearly, this
constraint is extremely weak, and thus, we conclude that
massive DEF theory passes Solar System tests easily.

Furthermore, for the theory to be in agreement with
the post-Newtonian expansion of GR, we need

∂th00

∂rh00
. O(

√
ε) . (132)

In order of magnitude, the previous equation gives the
requirement

β(β − 1)(H0RS)
H0

m
.
√
ε . (133)

For order of unity β and in the limit where m � H0,
this constraints is automatically passed if the constraint
given in Eq. (130) is passed. One could also use the off-
diagonal part of the metric to place a requirement on m
with Solar System observations, and we sketch this in
Appendix A.

Our calculation suggests that, for β ≤ 0 and with |β| of
order unity, adding a mass term to the Lagrangian of the
scalar field allows for consistency with cosmological ob-
servations, which in turn implies consistency with Solar
System experiments. Our analysis holds whenm . 10−15

eV and when the mass hierarchy m � H0 ∼ 10−33eV is
satisfied. Consistency with Solar System tests imposes
the very weak constraint m/β & 10−31 eV. The very
weak constraint m/β & 10−31 eV implies consistency
with Solar System tests.
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V. CONCLUSIONS AND DISCUSSION

In this paper, we studied massive DEF theory from the
point of view of its cosmological evolution and its sub-
sequent Solar System behavior. We have found that the
scalar field generically goes through a quiescent phase
at very early cosmological times, and then enters an
exponentially-damped oscillatory phase, typically during
the radiation-dominated era, that persists until today.
Because of this, the cosmological value of the scalar field
today, which serves as a boundary condition to astro-
physical studies, is necessarily time-dependent. We have
also calculated the behavior of the scalar field as sourced
today by weak-gravitational sources to find that mas-
sive DEF theory is perfectly consistent with Solar Sys-
tem observations. Observations with the Cassini space-
craft do technically allow for a constraint on the mass of
the scalar, but this constraint is extremely weak, leaving
most of the parameter space available.

Additionally, we have shown that the mass hierarchy
m� H0 leads to a consistent late-time cosmological sce-
nario where the scalar field behaves as a (cold matter-
like) pressureless fluid. In this context, the additional
interactions caused by the scalar field could be “hidden”
in the ΩM term of cosmology, which describes the amount
of baryonic and cold dark matter in a ΛCDM universe.
One possible avenue for future work would be to extend
the analysis presented here to more subtle cosmological
effects, such as perturbations in the CMB and the growth
of structure.

Perhaps one of the most important conclusions of our
work is that in order to study astrophysical phenomena at
small redshift, one must first carry out a careful matching
between the cosmological and the astrophysical behav-
ior of all fields. We have here presented a first attempt
to understand the effect of the cosmological evolution of
the scalar field on astrophysical scales, focusing only on
Solar System observables. Another possible avenue for
future work would be the study neutron star observables
and spontaneous scalarization in neutron stars. Previ-
ous work in this area has assumed that the scalar field
can be treated as static asymptotically at spatial infinity,
but our work shows that for a wide range of scalar field
masses, the scalar field remains time-dependent at late
times. One could thus re-visit the study of spontaneous
scalarization with a time-dependent ansatz for the scalar
field that allows to naturally satisfy its time-dependent,
cosmological boundary conditions. Similarly, one could
also revisit the study of the super-radiant instability in
massive scalar-tensor theories, which so far has only been
carried out with time-independent boundary conditions.
These issues involve strong field analysis. As pointed out,
the ansats we use may not be the correct one to study
this regime. However, this paper provide a useful solu-
tion to compare against fully numerical studies of generic
bodies in the weak field limit.
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Appendix A: The Off-Diagonal Sector of the Metric

In order to compute the Γi’s, let us require that
Γi(~r, t) = f(r)(∂r/∂xi) sin (2mt). Recalling that ∂r/∂xi

is an eigenvector (with eigenvalue 2) of the Laplacian op-
erator on the unit 2-sphere, Eq. (100) implies

4m2f(r) +
1

r2
∂r
(
r2∂rf

)
+

2

r2
f(r) = 2A2GM

r2
mβ .

(A1)

There is no simple analytical solution to this equation,
but we can still perform an order-of-magnitude estimate
of f(r). When mRSS � 1 (roughly when m � 10−18

eV), the above evolution equation implies

f(r) ∼ (H0RSS)εAβ . (A2)

The first order off-diagonal part of the metric therefore
is a “cosmological” correction, and thus, it can be ne-
glected on Solar System scales. On the other hand, when
mRSS � 1, one finds

f(r) ∼ εβ A2

mRSS

. (A3)

In order to be consistent with the post-Newtonian ex-
pansion of GR in the Solar System, however, we must
require that

A2

mRSS

. O(
√
ε) , (A4)

which leads to the requirement

H2
0

m2

1

mRSS

. 10−4 (A5)

This inequality is almost redundant with the requirement
that mRSS � 1. This implies that we can neglect off-
diagonal corrections of the metric at first order and in
the range of mass parameter we are considering.
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