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Abstract

The merger of colliding black holes (BHs) should lead to the pro-

duction of ringdown or quasinormal modes (QNMs), which may very

well be sensitive to the state of the interior. We put this idea to the

test with a recent proposal that the interior of a BH consists of a

bound state of highly excited, long, closed, interacting strings; figu-

ratively, a collapsed polymer. We show, using scalar perturbations

for simplicity, that such BHs do indeed have a distinct signature in

their QNM spectrum: A new class of modes whose frequencies are

parametrically lower than the lowest-frequency mode of a classical

BH and whose damping times are parametrically longer. The rea-

son for the appearance of the new modes is that our model contains

another scale, the string length, which is parametrically larger than

the Planck length. This distinction between the collapsed-polymer

model and general-relativistic BHs could be made with gravitational-

wave observations and offers a means for potentially measuring the

strength of the coupling in string theory. For example, GW150914

already allows us to probe the strength of the string coupling near the

regime which is predicted by the unification of the gravitational and

gauge-theory couplings. We also derive bounds on the amplitude of

the collapsed-polymer QNMs that can be placed by current and future

gravitational-wave observations.
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1 Introduction and Summary of Results

The narrative of classical general relativity (GR) is that the interior of a

Schwarzschild black hole (BH) is a region of empty space surrounding a

classically singular center. Recently, this picture was understood to be in

contradiction with the laws of quantum mechanics and thus revealed as mis-

leading. The modern alternative scenario is that the interior does not exist

and spacetime comes to an abrupt end at the BH horizon — either physically

as in the fuzzball model of BHs [1, 2, 3, 4] (also [5] and, more recently, [6])

or effectively as a “firewall” of high-energy particles surrounding the horizon

[7] (also [8, 9, 10]). This scenario suggests that at least the near-horizon

state (and perhaps the whole interior) has to deviate substantially from the

vacuum; a situation that differs greatly from the expectations of GR. The

degree of deviation is still under debate.

Here, we will be adopting a model of a Schwarzschild BH for which the

interior is not mostly empty, in stark contrast to the GR case. The BH

interior rather contains a particular state of matter: a non-classical, bound

state of long, closed, highly excited, interacting strings; in essence, a collapsed

polymer [11]. A more figurative way of describing the bound state might be

as a “quantum star” consisting of hot fundamental strings in the Hagedorn

phase or simply as a “string ball”. A more detailed account of this collapsed-

polymer model is provided in an appendix, see Sec. A.1. The polymer’s outer

surface acts just like a classical BH horizon in the limit ~→ 0 ; that is, the

interior and exterior are causally disconnected in that enclosed matter had no

opportunity to escape from the interior. However, this is only approximately

true once quantum effects have been “turned on” [12].
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We have argued elsewhere that the low occupation numbers of the Hawk-

ing radiation along with the assumption of a unitary theory necessitates a

strongly non-classical state of matter within the BH interior [13, 14, 15].

Given such a state, a geometric mean-field description in terms of a metric

and other spacetime fields is no longer feasible. But then, faced with the ab-

sence of an effective description of the geometry, what can one actually say

about the interior of a Schwarzschild BH and its influence on the exterior?

We will eventually show that the composition of the interior does indeed

become relevant in the context of BH mergers.

Some of our results are expected to hold in general for BH-like objects.

For us, “BH-like objects” represents a collective name for exotic spacetimes

containing ultra-compact objects that can mimic some of the basic properties

of a BH as viewed by an external observer but without conforming to the

picture from GR (mostly empty space with a dense, singular core). These ob-

jects include, for example, wormholes, gravastars, firewalls, fuzzballs, gravi-

ton condensates, boson stars, neutron stars with a certain equation of state

or an anisotropic pressure and, of course, collapsed polymers. Some of the

objects, such as boson stars, do not possess an essential property of BHs: a

horizon (even an effective one), meaning a bounded region of spacetime from

which matter cannot escape classically.

But, as far as we are aware, any known form of matter cannot support

such Schwarzschild-sized objects without collapsing under the influence of

gravity [16, 17]. This is because all known interactions of standard matter are

weaker than gravity under these circumstances. Only highly excited string

matter seems to be capable of supporting compact enough objects with the
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properties of a BH and yet not collapse any further. This is the impetus for

our current focus on the polymer model; nevertheless, a companion paper

[18] considers a more general class of (rotating) BH-like objects.

Our objective is to show how gravitational waves (GWs) can be used as a

means for distinguishing the collapsed-polymer model from classical BHs and

from other BH-like objects. An observable signal of GWs can be produced

from the merger of two colliding BHs. Such an event proceeds in three stages:

the inspiral (or pre-merger), merger and post-merger (or ringdown) stages. In

the last of these, the newly formed BH will settle down by emitting ringdown

modes — also known as quasinormal modes (QNMs) — which are physically

realized in the form of GWs. Note, however, that our analysis uses scalar

perturbations for simplicity.

It would be difficult to use the early part of the inspiral stage to discrim-

inate various BH-like models because its binary components are adequately

described by point particles. On the other hand, one could, in principle,

use the tidal information which is encoded in the later part of the inspiral

stage to probe BH-like objects [19, 20, 21, 22, 23]. More dominant effects

in terms of post-Newtonian order counting for the purpose of probing exotic

compact objects include the quadrupole moment [24] and tidal heating at the

horizon [25]. But the merger phase is complicated by its highly non-linear

evolution. Moreover, we currently lack merger simulations of binary BH-like

objects (except for boson stars [26, 27]) that would enable us to probe the

merger stage for these exotic spacetimes. Fortunately, the post-merger stage

can provide us with an excellent opportunity for detecting QNMs, thanks to

the recent advances in GW observations and the promise for future detec-
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tions [28, 29, 30, 31]. A discussion on QNMs can be found in Sec. A.2.

1.1 Previous work on constraining exotic spacetimes

from GW150914

Let us recall here the analysis of the famous merger event GW150914 by the

LIGO and Virgo collaboration [28], as well as an associated analysis which

constrains possible exotic spacetimes [31, 32, 33, 34].

It is generally fair to say that the constraints, in cases for which they

apply, are currently weak. The statistical significance in the detection of

the merger comes mostly from the pre-merger and merger phases, whereas

that of the ringdown phase is not so useful. What little is known about

the ringdown phase is, however, consistent with GR. But this by itself does

not have a strong discriminating power among the predictions of GR and

various BH-like candidates because, as discussed in Sec. A.2, a sufficiently

compact object should be able to produce modes that closely resemble the

predominant modes of GR.

Given that the LIGO and Virgo Collaboration did not report the presence

of a secondary ringdown mode, Yunes and collaborators [34] have placed

interesting bounds on the intrinsic dissipation, ringdown frequency fRD and

damping frequency fdamp of applicable BH-like objects. However, the region

of small frequency — our region of interest — was not covered by their

analysis.
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1.2 Summary of results

We will show in what follows that the collapsed-polymer model predicts

a novel class of low-frequency, long-lived modes. The frequencies of this

class are parametrically lower than the GR scale c/RS (the inverse of the

“Schwarzschild time”) by a factor of the string coupling gs; that is, ωR ∼

gs c/RS , and the damping times are longer than RS/c by a factor of the

square of the string coupling, τdamp ∼ 1/g2
s RS/c . The estimate from the

quadrupole formula implies (albeit with less certainty) that the expected

strain of the emitted GWs is smaller by a factor of (g2
s)

2 than the strain of

the conventional GR modes.

The string coupling is small but, in many string theories and models,

it is not “very small”. For instance, in string theory, if one requires the

unification of the gravitational and gauge-theory couplings, the expectation

is g2
s/4π = 1/25 or g2

s ' 1/2 [35]. One can just as easily imagine other

scenarios in which g2
s ∼ 1/100 or even smaller, but it is not related to

any of the extremely small parameters of the BH such as 1/SBH (SBH is the

BH entropy). Therefore, the value of g2
s could easily fall somewhere between

1/2 and 1/100. Thus, there is the tantalizing possibility that a mode is

detected whose frequency is lower than those of the GR modes, and whose

delay in emission time is long enough to be definitive but still short enough

to be observationally relevant to future experiments. In this way, there is a

characteristic signature for the polymer model that would distinguish it from

classical BHs, as well as from some other proposed models (see below).

It is of no coincidence that the string coupling gs determines the new

time (or length) scales. This is a natural outcome for the collapsed-polymer
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model because it formally introduces the fundamental string length ls, which

then represents a new scale from the perspective of an external observer.

Conversely, a hypothetical internal observer would view the Planck length

lP as the new scale. The string coupling g2
s = (lP/ls)

d−1 would then

be the sole parameter that could maintain the democracy between the two

points of view. In four spacetime dimensions, this is simply the small ratio

g2
s = (lP/ls)

2 < 1 . The string coupling can then be viewed as the polymer’s

“dimensionless ~”, g2
s ∼ ~GN/l

2
s .

When it comes to theories of modified gravity like massive gravity, the

frequencies of the new modes tend to be larger and the damping times tend

to be smaller than their counterparts in GR (e.g., [36]), contrary to what

is found here. (Although our basic trends do happen to agree with the

quasibound-state modes of these same massive-gravity models, e.g., [37].)

Nevertheless, a parametrically longer damping time was also found by the

authors of [38] (see also [39, 40, 41, 42]) in a related context. Their model

is based on the modes being trapped in the inner light ring of a wormhole

spacetime, and it is meant to be representative of all BH-like models which

are not in possession of a classical BH horizon.

Their enhancement factor for the damping time (with respect to the

longest-lived GR mode) scales with a certain power of a log of the ratio be-

tween the separation of the wormhole throat from Rs and Rs [43]. Since the

exponent is much larger than unity, the scaling effectively follows a power

law. On the other hand, our collapsed-polymer model introduces a new

length scale ls and includes an outer surface that acts just like a classical

BH horizon when the dimensionless ~ limits to zero, g2
s → 0 [12]. Yet, we
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find a power law enhancement in the damping time, similar to the findings

in [38, 43].

Based on how the QNM amplitudes, frequencies and damping times scale

with respect to gs for the polymer model, we are able to use data from

GW150914 to derive bounds on the string coupling. This current observation

already allows us to probe the string coupling scale in a regime which is close

to that predicted by the unification of the gravitational and gauge-theory

couplings. Since the g4
s scaling in the amplitude is somewhat uncertain, we

also derive bounds on the amplitude of the polymer QNMs without assuming

such a scaling. We also discuss how the bounds will improve once Advanced

LIGO (aLIGO) achieves its design sensitivity.

A couple of final notes: First, since our motivation is to learn about

actual astrophysical BHs, we will consider three large, spacelike dimensions

(d = 3) in mind. Nonetheless, our expectation is that the basic conclusions

will persist for any d > 3 .

Second, we are limiting considerations to Schwarzschild BHs, even though

rotating Kerr BHs are more realistic. Nevertheless, as long as a Kerr BH is

not too close to extremality, the effects of its rotation on the QNM spectrum

of interest should be limited to just subdominant corrections.

Third, a recent complementary paper [18] (which does consider rotating

BHs) discusses how a certain class of fluid modes, the Rossby or r-modes,

can be used to distinguish classical BHs from any BH-like object that is

capable of supporting fluid waves. The proposal there does not, however,

discriminate between different BH-like objects.
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1.3 Organization

The rest of the paper is organized as follows: In Sec. 2, the Klein–Gordon

equation for scalar perturbations is considered, from which the QNM spec-

trum of collapsed polymers is derived. We go on to explain which modes

are the most feasible in terms of GW ringdown observations and emphasize

how the amplitude, frequency and damping time of such modes scale with

respect to gs. Next, in Sec. 3, we derive both existing and projected bounds

on the polymer QNMs with current and future GW observations. Our re-

sults are summarized in Sec. 4, followed by an appendix which contains some

background material on the collapsed-polymer model and QNMs.

Before proceeding, we would like to briefly clarify what the collapsed-

polymer model is and what it is not. The model arose out of an attempt

to reconcile what is known about BHs, their associated paradoxes and the

principles of quantum gravity. This led us to conclude that the BH interior

is described by a state that must be strongly non-classical [14] — so much

so that it evades a description in terms of semiclassical geometry and, con-

sequently, lacks a metric, field equations, action prinicple, etc. 1 And, if this

picture seems far-fetched, Hawking (among others) has advocated that any

description of the interior which is consistent with external observations is as

good as any other [44]. The polymer model has so far passed all such tests

[11, 12], whereas this paper is premised on looking for a new prediction that

could be subjected to experimental verification.

1We also concluded that the interior has the same equation of state as a hot bath of

long, closed strings [11]. Moreover, either of these properties seems to imply the other.
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2 New quasinormal modes of the collapsed-

polymer model

In general, an ultra-compact, relativistic object will produce two classes of

QNMs when perturbed: fluid modes and spacetime modes (see Sec. A.2 for

further discussion). But not so for a classical BH: Because of its strictly

opaque horizon and lack of interior matter, only the latter class is of any

relevance. Now, as shown in [12], the outer surface of a polymer BH behaves

like a real BH horizon for all practical purposes. In the strict classical limit

of ~ = 0 — which for the polymer BH is equivalent to setting g2
s = 0

— the interior matter has no chance of escaping. The polymer BH should

then, to very good approximation, agree with classical GR as far as the

QNM spectrum of the spacetime modes is concerned. And so our objective

is clear: To calculate and then interpret the spectrum for the fluid modes

when the object’s interior is described by the collapsed-polymer model with

a non-vanishing g2
s .

This condition of g2
s > 0 is pivotal to “stuff” being able to leak out

of the polymer BH in spite of its effective horizon. If the strings are indeed

interacting, there is no reason that smaller strings cannot break off from the

long loops and then escape if they are close enough to the outer surface to

avoid subsequent interactions. This process, being a perturbative quantum

effect, is of course suppressed. One of the goals of this section is to deter-

mine the degree of this suppression, which can be calculated using Einstein’s

quadrupole formula and knowledge about the mode frequencies.

Our formal analysis begins with an appropriate form of the Klein–Gordon
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equation for the perturbation away from equilibrium of some physical quan-

tity, such as the string entropy density, string energy density and so on. A

further condition is that the perturbations can couple to the spacetime fields

in the exterior region. Here, it will be sufficient to consider the Klein–Gordon

equation for a massless scalar perturbation. Incorporating a non-vanishing

angular momentum and/or spin would only complicate the practical calcu-

lations without affecting the conclusions at a qualitative level. We are not

including any (possible) corrections to the Klein–Gordon equation due to the

effects of string interactions, as these would necessarily scale as g2
s and thus

represent subleading corrections to the d’Alembert operator and induce only

small corrections to the solutions. Furthermore, we are effectively adopting

an approximation that is akin to a Cowling approximation (i.e., perturba-

tions of the spacetime metric are assumed to be irrelevant to the fluid modes)

[45]. It is, however, argued in the second half of the Appendix that this ap-

proximation is a consequence of the model in question rather than a freely

made choice.

2.1 Wave equation and solutions

It should be kept in mind that the “job” of the polymer is to imitate a

Schwarzschild BH. It must then be a spherically symmetric distribution of

(stringy) matter with an outermost (gyration) radius of r = RS .

The model-dependent input is the index of refraction n(~r) = c/vsound(~r)

or, equivalently, the speed of sound vsound(~r) for the relevant medium. (We

now set c = 1 except when needed for clarity.) Given our assumption of
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spherical symmetry, the equation for the perturbation Φ(t, r) becomes

1

r2

∂2 [r2Φ(t, r)]

∂r2
− [n(r)]2

∂2Φ(t, r)

∂t2
= 0 . (1)

Let us reemphasize that Φ is meant to represent the perturbation of a physical

quantity (like the entropy density) and that a scalar field has been adopted

to simplify the presentation. Equation (1) is the Klein–Gordon equation for

flat space such that the coordinates (t, r) are fiducial flat-space coordinates;

essentially, labels for the constituent string bits. This choice is unavoidable

in the polymer model but, more generally, it is a consequence of the state of

the BH interior having to be strongly non-classical if one insists on unitary

evolution [13, 14, 15]. The meaning of non-classicality in this context is that

the interior defies a semiclassical geometrical description. One can evade this

predicament by adopting the viewpoint that gravity is an emergent inertial

force in flat space rather than a manifestation of the curvature of spacetime.

This is allowed by virtue of Einstein’s equivalence principle.

Let us make one further simplifying assumption that n(r) is constant

within the polymer. This may seem to be a rather severe simplification,

but it follows from the premise that matter should be distributed uniformly

throughout the interior of the polymer [11]. This, in turn, follows from

the saturation of certain holographic entropy bounds everywhere inside the

polymer [14] which, itself, follows from an argument that the saturation of

entropy bounds is a signal of non-classicality [46]. Now, with this additional

assumption, the solutions to Eq. (1) can be expressed as spherical waves,

Φ(t, r) = Co
e−iω(t−nr)

r
+ Ci

e−iω(t+nr)

r
, r ≤ RS , (2)

where Co,i are complex constants. Notice that the above solution contains
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both ingoing and outgoing waves. The latter is a consequence of “quantum

leakage”, allowing modes to escape outside of the (effective) horizon.

Applying the usual boundary conditions for a standard QNM setup (which

are itemized in Sec. A.2), we know that Ci = −Co because of the constraint

Φ = 0 at r = 0 . We also know that Φ must be matched at the outer surface

to the external solution Φ̃, which is that of a purely outgoing wave,

Φ̃(t, r) = Ce
e−iω(t−r)

r
, r ≥ RS , (3)

where n = 1 has been used for the external vacuum to reflect the fact

that massless fields should dominate the outward propagating wave and the

Schwarzschild exterior has been ignored because it makes no sense to adopt

the emergent-gravity picture on one side of the surface and not on the other

for the purpose of matching the two solutions. In any event, this distinction is

inconsequential to the subsequent analysis because the properties of interest

(the frequencies and damping times) are determined only by the contents

and geometry of the interior region (see, e.g., [47]). In effect, the exterior

is effectively traced out of the calculation as far as the QNM spectrum is

concerned; see Sec. A.2 for further explanation. Hence, in spite of the qualifier

of r ≥ RS in the previous equation, this solution is only strictly true at

r = RS . The actual outgoing wave Φ̃(t, r > RS) can be described, from an

external point of view, as a superposition of spacetime fields. However, the

detailed nature of this superposition is not needed for the problem at hand.

We then need to match the solutions (2) and (3) at the surface r = RS .

Since the amplitude of the solutions are unknown and the time derivatives

must match if the solutions already match, this process amounts to the sole
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condition
∂rf

f

∣∣∣∣
r=RS

=
∂rf̃

f̃

∣∣∣∣∣
r=RS

, (4)

where Φ(t, r) = e−iωtf(r)/r and similarly for f̃ .

With the redefinition ω′ = nω , the above matching condition translates

into n = i tan (ω′RS) , which is solved by [48]

ω′m =
mπ

2RS

− i

2RS

ln

(
n+ 1

n− 1

)
, (5)

where m is any odd integer.

The physical frequencies are then given by

ωm =
mπ

2RS n
− i

2RS n
ln

(
n+ 1

n− 1

)
, (6)

with m = 1, 3, 5, . . . and it should be kept in mind that 1/n is essentially

a dimensionless ~ (this will become evident later). Let us reemphasize that

this fluid contribution to the QNM spectrum of the collapsed-polymer BH

is in addition to the usual spacetime contribution from the BHs of classical

GR.

We will encounter two important classes of fluid QNMs; one for which

n ∼ 1 (i.e., vsound ∼ c) and another for which n� 1 (vsound � c). For the

n ∼ 1 case, Eq. (6) becomes

ωm '
mπ

2RS

− i

2RS

ln

(
2

n− 1

)
. (7)

The logarithm in the imaginary part diverges, which is a sign of some problem

for this case in the matching of the internal and external solutions. Indeed,

going back to the solutions and substituting n = 1 , one can see that it is

not possible to satisfy the boundary conditions at r = 0 and r = RS
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simultaneously. As a result, the emission of waves for this class of modes is

suppressed. Another way to see this is to take the above expression seriously;

then the amplitude of the wave is suppressed according to limn→1(n−1)t/2RS .

This suppression does appear to be a general property of relativistic fluid

modes, especially relativistic pressure modes, as this phenomenon has also

been found in other models [49, 50, 51, 52, 53, 54, 38, 39].

When n � 1 — which is expected for some of the modes, see below

— the imaginary part of the frequency now scales with 1/n2. This can be

shown by expanding the logarithm in terms of 1/n to obtain

ωm =
mπ

2RS n
− i
[

1

RS n2
+O

(
1

n4

)]
. (8)

The conclusion is that the sub-relativistic modes can couple to the outer

spacetime, leaking out at a rate that is determined by ωI ∝ v2
sound/c

2 . Since

the leakage has a quantum origin, we may also view v2
sound/c

2 as the polymer’s

dimensionless ~ (see below). The amplitude of the leaking modes is, however,

similar in magnitude to their amplitude inside the horizon, |Ce|2 ' |Co|2 ,

as a complete matching process reveals. The above conclusion applies to any

partially open, spherically symmetric, very massive system with a uniform

index of refraction. The only remaining issue is to identify the velocity of

sound for the various sub-relativistic modes.

2.2 Sound velocities in the collapsed polymer

For the collapsed-polymer model, one encounters a number of different mode

classes according to the polymer’s (or string theory’s) hierarchy of parame-

ters. How this comes about is the next topic of discussion.
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In general terms, each fluid mode can be attributed to a particular restor-

ing force which can act on a deformed element of fluid. As such, the sound

velocity of a mode is determined by

(v2
sound)I =

KI

ρ
, (9)

where ρ is the energy density and KI is the elastic modulus corresponding

to modes of type I. Different types include pressure modes, bending modes,

shear modes, fracture modes, etc. The moduli KI have dimensions of energy

density and scale as KI ∼ fI/A
∆L/L

= fIL
A∆L

, where fI/A is the corresponding

force per unit area and ∆L/L is the fractional deformation.

Let us recall that a force can be obtained from the derivative of a free

energy F with respect to some geometric quantity having a dimension of

length. It follows that each modulus KI can be interpreted as a correction

to the free energy per unit volume ∆FI/V . In other words,

KI =
∆FI
V

, (10)

and then

(v2
sound)I =

∆FI
V ρ

=
∆FI
E

, (11)

where E s the energy any ∆FI should be regarded as non-negative.

Let us now apply Eq. (11) to the collapsed-polymer model. Like most

any physical quantity in a string theory, the contributions to the polymer’s

free energy can be sorted out as an expansion in both the Regge slope α′ and

the string coupling g2
s except that, in the language of the polymer model,

ε = ls/RS inherits the role of α′. 2 Importantly, the condition ε� g2
s � 1

2We subsequently work in ls = 1 string units.
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is required for the self-consistency of the polymer model [11]. (For a more so-

phisticated explanation of how all this works, see Sec. A.1 and Eqs. (30), (31)

in particular.)

Identifying each order in the expansion as the correction due to a different

mode, we can write the leading correction to the “tree-level” free energy

F0 ∼ MBH (MBH is the polymer/BH mass) as ∆F1 ∼ g2
sF0 . Then

∆F2 ∼ εF0 , ∆F3 ∼ g4
sF0 and so on. Each of the corrections, including the

zeroth-order term, can be expected to correspond to some independent class

of modes; some examples are discussed below.

The speed of sound in the stringy interior can be read off of Eq. (11) for

any of the modes. For instance, since F0 ≈ MBH = E , the corresponding

mode is a relativistic wave, vsound = 1 . The pressure (p) modes, which

are associated with volume deformations of the interior, are an example of

relativistic waves. This conclusion is based on the observation that p = ρ

for a highly excited state of closed strings; this is a well-known result [55] and

also follows from Eq. (29) in the Appendix. Consequently, the bulk modulus

for the polymer is KB = ρdp
dρ

= ρ , from which (v2
sound)B = KB/ρ = 1

follows. To sum up, the pressure modes and their analogues are based on

leading-order changes to the effective free energy and have a speed of sound

of vsound = 1 . As argued earlier, such relativistic modes effectively decouple

from the outer region of spacetime and cannot be used to probe the inner

structure of the BH.

A more interesting class of modes is that for which the free-energy cor-

rection scales as ∆F1 ∼ g2
sF0 ; these being the leading-order non-relativistic

modes. For this class, v2
sound = g2

sc
2 and the frequency of emitted GWs
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then scales as ω ∼ vsound/RS ∼ gs c/RS , whereas the damping time due

to mode leakage to the outside scales as τdamp ∼ (1/g2
s) (RS/c) as follows

from Eq. (8). Here, one can see explicitly that g2
s = v2

sound/c
2 ; and so both

of our estimates for the dimensionless ~ coincide, with one coming from first

principles (see Sec. 1.2) and another by estimating the amount of leakage

from the horizon (see Sec. 2.1).

By counting powers of the coupling g2
s and powers of the number of string

“bits” N (N = SBH ∼ MBH/ε) in the free-energy correction ∆F1 ∼ g2
sNε ,

one can attribute this class of modes to the splitting and subsequent rejoining

interactions of single loops of strings. The reasoning behind this claim is

that each splitting has a free energy “cost” of g2
s , as does each subsequent

rejoining. Meanwhile, the single factor of N implies that only a single string

loop can be involved in any one interaction (as the typical length of a string

loop is of order N in string units [56, 57]). A physical example from this class

is a fracture mode, whereby a “crack-like” defect propagates in the stringy

material due to the continual splitting and rejoining of strings.

Other, higher-order classes of modes are less interesting because they are

associated with extremely non-relativistic speeds of sounds (recall that ε�

g2
s), rendering the frequencies too slow to be relevant in any realistic situation.

Nevertheless, it is still interesting to ask about the physical meaning of these

classes. For example, those associated with ∆F ∼ ε2F0 would include

bending modes. This is because the (free) energy “cost” for bending scales

as the spacetime curvature, ∆Fbend ∼ F0/R
2
S ∼ F0ε

2 . In a sense, these

modes also decouple from the exterior but for a different reason than the

pressure modes.
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All classes of modes are also subject to intrinsic dissipation. To estimate

the strength of this dissipation, we will assume that it is caused by the

shear viscosity η. This is because we have a good understanding of the

scaling properties of the shear viscosity for the collapsed-polymer model in

particular and for BH-like objects in general. Let us start here with an

appropriate expression for the rate of intrinsic dissipation 1/τ̃ [58],

1

τ̃
= (`− 1)(2`+ 1)

∫ RS

0

dr r2`η

(∫ RS

0

drρr2`+2

)−1

, (12)

where ` is the angular momentum of the mode.

In the case of the polymer model — for which the stringy matter saturates

the so-called KSS bound [59] throughout the interior [12] — the relevant

expressions are ρ = 1/(g2
sr

2) and η = s/(4π) = 1/(4πg2
sr) [11], where s is

the entropy density. Substituting these into Eq. (12), we then have

1

τ̃
= (`−1)(2`+1)

∫ RS

0

dr
1

4π
r2`−1

(∫ RS

0

drr2`

)−1

=
1

4π

(`− 1)(2`+ 1)2

2`

c

RS

.

(13)

Restricting to the choice ` = 2 , as is most relevant to GW production, we

finally obtain
1

τ̃
=

25

16π

c

RS

. (14)

The result in Eq. (14) applies to relativistic modes. For non-relativistic

modes, the ratio η/ρ scales with (vsound/c)
2. This behavior can be under-

stood by starting with the diffusion equation for viscous flow — for which

η/ρ serves as the diffusion coefficient — and then making the sound velocity

equal to c with the rescaling r → (vsound/c)r . It then follows that

1

τ̃
=

25

16π

v2
sound

c2

c

RS

(15)
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or, for the fracture modes in particular,

τ̃ = 2
1

g2
s

RS

c
' 2τdamp . (16)

And so the time scale for intrinsic dissipation is comparable to that of damp-

ing.

To summarize, the relativistic modes are “unaware” of the existence of

any new physical scale, whereas the fracture modes and their analogues would

present a tell-tale distinction. This contrast can be attributed to the intro-

duction of the string-coupling scale — the ratio lP/ls — as its inclusion

modifies the spectrum of the fracture modes in a substantial way. The impli-

cation being that the QNM spectrum of a collapsed polymer has a definitive

and potentially observable signature.

2.3 Estimate of gravitational-wave emission from poly-

mer black holes

The goal of this subsection is to estimate the relative amplitudes of the

emitted GWs and then compare the fracture-mode amplitudes with those

due to the spacetime modes. The quadrupole formula can be used to obtain

the desired ratio of amplitudes since we know about the respective energies

and frequencies of the emitted waves. It should be emphasized that the

amplitudes, as estimated here, are much less certain than the frequencies

and damping times.

Let us first recall that the (free) energy of a fracture mode scales as

Efrac ∼ g2
sF0 ∼ g2

sMBH , whereas the energy in a GW corresponding to a
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spacetime mode scales as Est ∼MBH . The ratio of energies then scales as

Efrac
Est

∼ g2
s , (17)

where Est can be estimated via observations; for example, in GW150914,

GWs carried away about 5% of the total mass of the merging BHs. Let us

also recall that the ratio of their squared frequencies scales in the same way,

ω2
frac/ω

2
st ' g2

s .

Now, using the quadrupole formula to estimate the GW strain amplitude

h, one finds that the relative amplitudes of the emitted GWs scale according

to
hfrac
hst

' Efrac
Est

ω2
frac

ω2
st

' (g2
s)

2 , (18)

where Q ∼ E R2
S has been used to estimate the fraction of the quadrupole

moment that contributes to the GW production for each mode. The pa-

rameter gs is expected to be small, but not extremely small, as explained

previously.

If the string coupling is indeed not too small, one can anticipate some

spectacular observational consequences. For concreteness, let us set g2
s =

1/10 and choose the other parameters to be those of GW150914 — meaning

an observed ringdown of f = 251 Hz and a damping time (in addition to the

standard ringdown time 1/2πf ' 0.6 ms) of τ = 4 ms [31]. The new class

of GWs are reduced in amplitude by a factor of about 1/100 in comparison

to those already observed but oscillate with frequencies about three times

lower, ω ∼ 2π(251 Hz)/3 ∼ 500 Hz , and have damping times which last

about ten times longer, τ ∼ 40 ms . Because of their lengthier ringdown

time, the sensitivity for detection of the new class of GWs, as estimated by
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h/
√

Hz, is enhanced by a factor of
√
τdamp ∼ gs . 3 This means that the

sensitivity for detection has decreased by “only” a factor of g3
s , rather than

the factor g4
s as estimated above. Such a g3

s scaling in the signal-to-noise

ratio (SNR) will be confirmed in the following section.

3 Bounds on polymer modes from gravitational-

wave observations

We will start off in this section by using the events GW150914 and GW151226

to derive current bounds on the polymer modes. Following this, future pro-

jected bounds that are based on the aLIGO design sensitivity will also be

derived. A subscript of p or BH is used to distinguish between properties of

the polymer modes and classical BH modes respectively.

3.1 Gravitational-wave spectrum and signal-to-noise ra-

tio

Let us begin here by representing the polymer QNMs as damped, sinusoidal

waveforms,

h(t) = Ap e
−(t−tp)/τp sin[2πfp(t− tp)− φp] Θ(t− tp) , (19)

where Θ is the Heaviside step function, A is a QNM amplitude, f is a QNM

frequency and τ is a QNM damping time. Also, tp is the time delay of

3This enhancement follows from two competing effects: The opportunity for signal

detection increasing linearly with time versus the noise increasing only as
√
t. Here, the

relevant time scale is the ringdown time.
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the polymer QNM relative to that of a typical GR mode and φp is a con-

stant phase. The time delay tp ∼ 1/ωp ∼ 1/gsωBH ∼ τBH/gs ensures that

these and the classical GR modes will not be superimposed to any significant

degree, although this detectability may deteriorate if one includes the funda-

mental mode due to possible degeneracies among parameters. The Fourier

transform of the above equation works out to be

h̃(f) = e2πiftpApτp
2f 2

pQp cosφp − fp(fp − 2ifQp) sinφp

f 2
p − 4iffpQp + 4(f 2

p − f 2)Q2
p

, (20)

with Qp ≡ πfpτp . The above expression reduces to Eq. (2.2) of [60] when

tp = 0 . Notice as well that |h̃| does not depend on tp.

To assist in estimating Ap, we will use Ap ∼ g4
sABH (cf, Eq. (18)) and

thus require the amplitude of the QNMs from a classical BH [61],

ABH =
MBH

r
F
√

8εrd
MBHQBHfBH

, (21)

where r is the distance to the source, F is a function that depends on the

source location, εrd is the ringdown efficiency and QBH ≡ πfBHτBH . The

fitting formula for fBH and QBH of a BH forming in the aftermath of a binary

coalescence of BHs is given in [61]. Here, we are setting the spins of the initial

BHs to zero for simplicity. The efficiency is roughly given by εrd ≈ 0.44q2

for non-spinning BH binaries [62], where q ≡ m1m2/(m1 + m2)2 is the

symmetric mass ratio of a binary with individual masses m1 and m2.

Let us now estimate the SNR of collapsed polymers by using [63]

SNR2 = 4

∫ fmax

fmin

|h̃(f)|2

Sn(f)
df , (22)

where fmin and fmax are the minimum and maximum frequency — for which

we choose the values fmin = 10 Hz , fmax = 3000 Hz unless otherwise
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stated — whereas Sn is the detector’s noise spectral density. The density Sn

for the aLIGO O1 run is given by [64] and the fit can be found in Appendix

C of [34], while that for aLIGO’s design sensitivity with the zero-detuned,

high-power configuration is given in [65].

Figure 1 compares the noise spectral density to the polymer QNM spec-

trum for various values of g2
s , with the other parameters chosen to be con-

sistent with GW150914 (m1 = 35.7 M� , m2 = 29.1 M� , r = 410 Mpc ,

fBH = 251 Hz , τBH = 4 ms [28, 31]). We have used the scaling relations

Ap ∼ g4
sABH , fp ∼ gsfBH , τp ∼ τBH/g

2
s as motivated in the previous section

and set φp = 0 for simplicity. The value of F in Eq. (21) is chosen by re-

quiring that the SNR equals 7 for the case of a classical BH with GW150914

parameters [34, 66] (and with fmin = 222 Hz in Eq. (22), which corresponds

to the frequency where the spectrum peaks [34]). We have plotted 2|h̃|
√
f

instead of |h̃| for the signal spectrum so that the ratio between the signal

and noise in Fig. 1 goes roughly as the SNR (cf, Eq. (22)). Notice that the

spectrum’s amplitude and width both grow larger as one increases g2
s .

3.2 Current and future bounds with gravitational-wave

observations

Continuing with the same setup as in the previous subsection, we will next

use GW observations to derive bounds on the polymer modes. It will initially

be assumed that the QNM amplitude scales with g4
s as explained in Sec. 2.3;

however, this assumption will be relaxed later on.
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Figure 1: QNM spectrum of putative polymer modes for GW150914 with

various g2
s , as well as noise spectral density against frequency. For g2

s = 1,

the QNM amplitude, frequency and damping time for the polymer modes are

the same as those of a classical BH. The ratio between the signal and noise

roughly corresponds to the SNR. The spectrum is detectable if this ratio is

above the threshold (∼ 5).

3.2.1 Bounds assuming the g4
s amplitude scaling

The top panel of Fig. 2 presents the SNR for the QNMs of a collapsed poly-

mer with GW150914 parameters. We have used two aLIGO detectors (corre-

sponding to Hanford and Livingston) with the O1 run. For g2
s ∼ 1 , the SNR

scales with g3
s as discussed at the end of Sec. 2.3. This scaling is valid for

a white-noise background; however, as g2
s becomes smaller, there is an extra

suppression due to the frequency dependence of the noise curve. Namely, as
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Figure 2: Top: SNR of the putative QNM of a collapsed polymer for

GW150914 as a function of g2
s (red, solid). The SNR scales with g3

s (blue,

dashed) for g2
s ∼ 1 as explained in Sec. 2.3. The SNR threshold of 5 (black,

dotted–dashed) allows us to constrain g2
s as g2

s . 0.65. As the detector

sensitivity increases, one will be able to probe g2
s for the unification of the

gravitational and gauge theory couplings (green dot). Bottom: Same as the

top panel but for GW151226.

one lowers g2
s , the QNM frequency fp becomes smaller and enters a range

where the detectors are less sensitive (see Fig. 1).

The bottom panel of Fig. 2 depicts the SNR for the case of a collapsed

polymer with GW151226 parameters. The value of F in Eq. (21) is now

chosen by requiring that the SNR equals unity for a classical BH with

GW151226 parameters. The predicted fBH for this source is ∼ 790 Hz, which

is higher than the corresponding frequency in the previous case (251 Hz for
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GW150914). Consequently, as g2
s becomes smaller, fp is actually entering

the region where the detector is most sensitive. Meaning that the scaling of

the SNR with gs is shallower than g3
s .

Let us now derive an upper bound on g2
s by using the knowledge that

the LIGO–Virgo Collaboration did not report the presence of an additional

ringdown signal on top of the dominant BH signal. 4 This means that we

can derive bounds on the polymer modes under the assumption that the

observed data is consistent with gravitational waveforms from binary BH

mergers in classical GR. It then follows that the SNR for the polymer modes

has to be smaller than the threshold value. For example, if the threshold

is 5 [68, 69] — as indicated by the horizontal, black, dotted–dashed line in

the top panel of Fig. 2 — one can use GW150914 to roughly bound g2
s such

that g2
s . 0.65 (the upper limit being where the red, solid curve crosses

the black, dotted–dashed line). This upper bound is intriguingly close to the

point where g2
s corresponds to the unification of the gravitational and gauge

coupling constants, g2
s = 4π/25 ∼ 0.5 .

It is also interesting to consider the future prospects for constraining

g2
s with GW observations. Figure 3 displays the projected upper bound

on g2
s given aLIGO’s design sensitivity (again using the two interferometers

at Hanford and Livingston) and assuming that aLIGO does not find the

collapsed polymer signal. In other words, such an upper bound is equivalent

to the minimum g2
s for which aLIGO would be able to detect such a signal.

4References [40, 41] reported the presence of “echoes” on top of the primary ringdown

signal. This claim is apparently still in debate [67] as the result has not yet been confirmed

by other groups.
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We have, for concreteness, used the sky-averaged value of F in Eq. (21),

assumed that the initial binary contains equal-mass BHs at various distances

r apart and adopted a threshold SNR of 5. As evident from the figure,

one can constrain g2
s . 4π/25 for a total mass of 45 M� or larger when

r = 410 Mpc. Given that SNR ∝ g3
s/r and that g2

s is determined by the

SNR being equal to its threshold value, one finds that such an upper bound

on g2
s is proportional to r2/3. We have checked that this analytic scaling in

distance agrees with the displayed results in Fig. 3.
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Figure 3: Projected upper bound on g2
s as a function of the total mass of

an equal-mass BH binary at various distances apart using aLIGO’s design

sensitivity. 410 Mpc corresponds to the distance for GW150914 [28]. The

horizontal line represents g2
s = 4π/25. The upper bound on g2

s scales with

r2/3.

The bounds on g2
s will further increase as (i) the number of interferometers

increases, (ii) the detector sensitivity improves and (iii) one is able to combine

signals from multiple sources. We stress that the upper bounds presented
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here are not robust and should be understood as only rough estimates.

3.2.2 Bounds without assuming the g4
s amplitude scaling

Since the gs scaling in Ap is the most uncertain among Ap, fp and τp, it

is perhaps more appropriate to place a bound on the relative amplitude

γ ≡ Ap/ABH without assuming the scaling Ap ∼ ABHg
4
s . Let us first

work out a simple scaling relation for the upper bound on γ. We start with

SNR ∝ Ap
√
τp ∝ γABH/gs and then, like before, require this SNR to be

equal to its threshold value. On this basis, one finds that the upper bound

on γ scales linearly with gs.

The thinner red, solid curve in Fig. 4 shows the upper bound on γ from

GW150914 with the threshold SNR of 5. These results roughly agree with

the linear scaling in gs, as motivated above, when g2
s ∼ 1 (cf, the uppermost

dashed, blue line). The slight deviation from the linear scaling in this regime

can be attributed to a small frequency dependence in Sn around f = fp . On

the other hand, the curve strongly deviates away from the linear scaling when

g2
s � 1 . This is because the spectrum falls out of the detector’s frequency

band as one decreases g2
s . The GW150914 observation sets γ . 0.38 for

g2
s = 4π/25 . But, if γ = g4

s (see the black, dotted–dashed line) as predicted

in Sec. 2.3, then the SNR of the polymer modes for GW150914 becomes

smaller than the threshold already when g2
s . 0.65 — in agreement with the

top panel of Fig. 2.

The thicker red, solid curve in Fig. 4 depicts the projected bound on γ

when using the noise curve for aLIGO’s design sensitivity. One should first

observe that the linear-in-gs scaling near g2
s ∼ 1 is a better fit than that
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Figure 4: Upper bound on the relative amplitude γ of the polymer QNMs

with respect to the BH QNMs as a function of g2
s . The thinner red, solid

curve is the current bound from GW150914 with aLIGO’s O1 run, while the

thicker red, solid curve is the projected bound for a GW150914-like event with

aLIGO’s design sensitivity. Blue, dashed lines are the analytic prediction for

the upper bound on γ valid around g2
s = 1, while green dots are the bounds at

g2
s = 4π/25. The black, dotted-dashed line is the predicted relative amplitude

proportional to the g4
s scaling (see Sec. 2.3).

found for aLIGO’s O1 run because the noise curve is flatter for the future

design sensitivity (see Fig. 1). Second, the upper bound on γ decreases by

a factor of ∼ 2 at g2
s = 4π/25 in comparison to the current bound from

GW150914.
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4 Conclusion

We have discussed how the interior structure of BHs, as described by the

collapsed-polymer model, affects the spectrum of QNMs. Our main result is

the identification of several new classes of QNMs, in addition to the classical

GR modes which are a common feature of all BH-like objects with an effective

horizon or a light ring [38, 39, 70, 71, 72]. We found sub-relativistic modes

whose sound velocity is vsound ' gsc ; these being associated with the

self-interactions of the strings. Additionally, there are many other classes

of exceptionally slow modes that are induced by weak restoring forces; for

instance, one such class describes bending modes with a sound velocity of

vsound ' c ls/RS .

We have also discussed how the new classes of QNMs could affect the emis-

sion of GWs from BHs. The emission due to relativistic modes is suppressed

to such an extent that they essentially decouple from the outer spacetime —

in agreement with previous studies in the literature on fluid modes in ultra-

compact objects. The various classes of exceptionally slow modes are irrele-

vant because their low frequencies necessitate prohibitively long observation

times. Fortunately, the emission due to the leading-order sub-relativistic

modes was shown to lead to an interesting observable signature: A char-

acteristic ringdown by the emission of low-frequency GWs which follow the

conventional emissions after a relatively brief but distinguishable time delay.

The amplitude of this new class of GWs is lower than the amplitude of the

usual BH GWs by a factor (g2
s)

2.

Our main conclusion is that observations of GWs from colliding BHs

provides a means for differentiating the collapsed-polymer model from the
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BHs of classical GR. These distinctions — the lower frequencies and time

delay — are determined mainly by the string coupling, which itself depends

on the ratio of the Planck scale to the string scale and is also the dimensionless

~ for the polymer. Remarkably, we found that GW150914 places an upper

bound on g2
s that is close to 4π/25, and such a bound will only become

stronger as the detector sensitivity improves.

One may still wonder how the fluid modes appear to evade the BH horizon

as seen from an external, asymptotic observer’s perspective. After all, a

horizon must be there as far as this observer is concerned, regardless of

whether it is a classical BH or merely a BH-like object with an effective

horizon. This is an important question in its own right and will be addressed

in a separate discussion [73].
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A A brief review on background

A.1 The collapsed polymer

The polymer model assumes that the BH interior consists of a hot bath of

closed, interacting strings in a finite volume. The properties of such a system

are explained in [56, 57] (also see [11, 12].)

Let us start here by considering a free, highly excited, closed string of

length L in an infinite space. In this case, the string occupies a region whose

linear size R is given by the random-walk scale, R ∼ ls
√
L/ls . One can

regard N = L/ls as the total number of “string bits” in the state, and

so R ∼ ls
√
N . The situation, however, changes when strings interact,

which they do by splitting and joining. Such interactions induce an effective

attraction that causes the strings to occupy a smaller region in space, leading

to a smaller value of R [74, 75]. Since the only relevant scales are ls and lP

and the strings do not “know” about the latter, one expects that R ∼ lsN
ν

for some ν which could be different than 1/2. The resulting picture is a

finite-sized, bound state of strings that is dominated by about lnN long

loops [56, 57].

The parameter N also measures the entropy of the string state and, since

N ∼ (R/ls)
1/ν , the entropy will not, in general, be extensive. An area

law, as in the case of BHs, implies that ν = 1/(d − 1) with d being the

number of spatial dimensions. A scaling relation with entropy in terms of R is

also described by the Flory–Huggins theory of polymers [76]. 5 This theory

is reexamined in [79] and reviewed in, for instance, [80]. The parameter

5See the books by De Gennes [77], and Doi and Edwards [78] as well.
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ν is called the Flory exponent and the temperature at which the polymer

becomes tensionless is known as the Flory temperature. The linear size R is

referred to as the gyration radius of the polymer and N represents the total

number of monomers within the polymer chain(s). For our case of attractive

interactions, the gyration radius is smaller than ls
√
N and the system is then

identifiable as a “collapsed polymer”.

The theory of collapsed polymers has been adopted to show that the

bound state of highly excited strings can be described by a quadratic (effec-

tive) free energy [11]. In string (ls = 1) units, this free energy F takes the

form

−
(

F

THag

)
strings

= εN − 1

2

g2
s

V
N2 , (23)

where gs is the string coupling, V ∼ Rd is the occupied volume, THag is

the Hagedorn temperature and we disregard an order-one numerical factor so

that THag = 1 in string units. The parameter ε is an effective, dimensionless

temperature which measures the deviation of the actual temperature T from

the Hagedorn value, ε = (T − THag)/THag . The equilibrium solution of the

theory, which is obtained by minimizing the free energy with respect to N ,

enforces the relation
N

V
=

ε

g2
s

. (24)

The collapsed-polymer scaling relations agree with those of a BH when

the parameters of the polymer theory — N , ε and g2
s — are related to those

of the BH – the Schwarzschild radius RS, energy MBH and entropy SBH —
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in a specific way [11]. In particular, 6

RS =
ls
ε
, (25)

meaning that the Hawking temperature is

THaw = ε . (26)

Additionally, the BH entropy is

SBH = N = V
ε

g2
s

=

(
RS

lp

)d−1

, (27)

where lP is the Planck length, the second equality follows from Eq. (24) and

the last one from g2
s = (lP/ls)

d−1 as well as R = RS = 1/ε . Also, the total

energy of the bound state is found to be in agreement with that of the BH

(cf, Eq. (29) for the density ρ),

Ebound = V
ε2

g2
s

=
1

lP

(
RS

lP

)d−2

= εN = MBH . (28)

It is worth noting that the pressure p is equal to the energy density ρ

for a highly excited state of closed strings [55]. This equality also follows

directly from the free energy (23), both at and away from equilibrium. Using

standard thermodynamics, one finds that the equilibrium values are

p = ρ =
ε2

g2
s

. (29)

This pressure is not to be confused with the (effective) tension, σ = ∂F
∂L

,

which vanishes at equilibrium by virtue of L = lsN .

6Here and for the remainder, the string length ls, fundamental constants and order-

unity numerical factors will only be made explicit when needed for clarity.
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For self-consistency, the string-theory parameters must obey the following

relations [11]: ε � g2
s � 1 and g2

sN = V ε � 1 . Together, these ensure

that the BH is large in string units, the coupling is small but finite and the

higher-order interaction terms in the free energy in Eq. (23) are suppressed.

The higher-order terms can come from α′ ∼ l2s corrections, additional loop

corrections or their combination. Because the former is controlled by the

Regge slope α′ ∝ ε2 , we know that the equilibrium form of the corrected

free energy looks schematically like

F ∼ εN
[
1 + a1g

2
s + a2g

4
s + · · ·

]
×
[
1 + b1ε+ b2ε

2 + · · ·
]
, (30)

where the odd powers of ε are shorthand for powers of g2
sN/V and originate

from loop corrections (the even powers of ε could be of either type), whereas

the explicit powers of g2
s are from string self-interactions. The above hierarchy

tells us that the next-to-leading term in the expansion has a suppression

factor of g2
s ,

F ∼ εN + g2
sεN + · · · . (31)

When the scaling of the various parameters is appropriately fixed, the

bound state appears from the outside to be indistinguishable from a BH.

Since this collapsed-polymer model so immaculately replicates the proper-

ties of a classical BH (and also those of a semiclassical BH [12]), one might

wonder if there is still some property that allows one to distinguish the two

descriptions. As shown in the main text, this question can be answered affir-

matively by comparing the QNM spectrum of the collapsed-polymer model

with the conventional one for the BHs of GR.
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A.2 Quasinormal modes

Just like in the main text, we are limiting considerations to Schwarzschild

BHs, even though rotating Kerr BHs are more realistic.

As is now well known (but see [51, 52, 81] for reviews), a perturbed

BH will settle down to its equilibrium state by “ringing” at characteristic

complex frequencies which are determined by only a handful of parameters.

Since a Schwarzschild BH has only one characteristic scale, the frequencies

are determined solely by the horizon radius RS or, equivalently, the surface

gravity κ = 1/(2RS) . For both tensor and scalar perturbations, the real

parts are of order κ for all modes with low angular momentum ` ∼ 1

(otherwise, the frequencies increase, roughly in proportion to `), ωR ≡

Re ω ∼ κ , whereas the imaginary parts of the frequencies (or the inverses of

the damping times) are, to a good approximation, half-integer multiples of

the surface gravity, ωI ≡ Im ω ≈ (m− 1/2)κ with m = 1, 2, 3, . . . . To be

clear, this spectrum has only been established rigorously in the large-m or

eikonal limit [82], although a WKB approximation attains roughly the same

form at small m [83], as do various numerical studies [51, 84].

As shown in the main text, the appearance of a new scale in the polymer

model is marked in a specific way in both the real and imaginary parts of

the QNM spectrum. It follows that GW frequencies could provide a clear

observational distinction between our model and classical BHs.

Two distinct notions of QNMs exist: the “standard” one that is used,

for example, in the description of quantum-optics and condensed-matter sys-

tems (see, e.g., [47, 85]) and there is also the BH notion of QNMs. First,

let us discuss the standard case. Here, one is considering an open system
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that supports waves; for instance, a dielectric or an optical cavity, as either

provides a partially reflecting outer surface. Such a system will lose energy

to its environment, giving rise to damped (complex-frequency) waves. To

determine the QNM spectrum, one is instructed to impose (1) totally reflect-

ing boundary conditions at the center of the system and (2) the condition of

purely outgoing waves in the external environment and then, by continuity,

the same condition at the outer surface of the system. In effect, the exterior

region is traced out of the problem. It is there only for conceptual reasons

and plays no essential role from a computational perspective.

The BH notion of QNMs (see, e.g., [51, 52]) is different. For a BH space-

time, the problem can be set up like a scattering experiment, which is com-

mon in the high-energy literature (e.g., [86]). In this case, one is considering

modes that initially came in from infinity and then were either reflected

from or transmitted through the Schwarzschild potential barrier (at a radius

of about 3/2 RS). The QNMs can be identified as poles in the scattering am-

plitude, which is essentially a Fourier transform of the scattering potential.

The boundary conditions are those of outgoing waves at spatial infinity and

ingoing at the BH horizon. Such a choice of conditions suggests that it is

now the interior which is, in effect, traced out, as it always is for an external

observer in a BH spacetime. The setup for the BH QNMs is then, in some

sense, the mirror image of the standard description.

The simple model of Kokkotas and Schutz [87] demonstrates how these

two perspectives can both be accommodated. Those authors describe the in-

terior of some radiating system as a finite string. This string is then coupled

by a massless spring to a second, semi-infinite string representing the exterior
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spacetime. The finite string will generally support two independent classes of

modes; one of which is coupled weakly to the exterior and another one, cou-

pled much more strongly. Based on the discussion in [87], one might expect

that the modes of the former and latter classes are analogous to modes from

the standard and BH perspectives, respectively. This expectation has indeed

been verified by studies on ultra-compact neutron stars and other (hypothet-

ical) ultra-compact, relativistic stars (e.g, [88, 89, 49, 50, 53] 7). In these

treatments, one finds that the f - and p-modes (meaning fundamental and

pressure modes) are among those associated with the stellar fluid, whereas

the so-called w-modes have more of resemblance with perturbations in the

curvature of spacetime. The separation of the fluid modes from the space-

time modes is known as either the Cowling or inverse Cowling approximation

[45, 49].

One uses the Cowling approximation when perturbations of the spacetime

metric can be neglected. In this case, the strength of the coupling of the fluid

modes to the emitted GWs — which in turn determines the amplitude of

these emitted waves — can be estimated by way of the celebrated quadrupole

formula, which treats the background spacetime as fixed and (essentially) flat

[90]. In particular, h ∝ d2Q/dt2 , where h is the wave amplitude and Q is

the quadrupole moment of the energy density.

The spectrum of QNMs of a BH-like object should be able to at least

mimic the predominant modes from the spectrum of its classical GR coun-

terpart. The physical reason for this is that the associated ringdown pro-

cess depends primarily on the spacetime outside of the ultra-compact object,

7Many more references can be found in the review articles [51, 52].
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which must be indistinguishable from the exterior spacetime of a BH in GR.

(The boundary conditions at the outer surface, which vary from model to

model, are also of relevance.) However, if the interior of a BH-like object

does contain some matter, then one would expect, as discussed above, some

additional (fluid) modes to be excited. Classically, the fluid modes can-

not couple to the spacetime modes in the presence of a horizon. However,

quantum mechanically, fluid modes would be expected to couple to the space-

time modes by way of “quantum leakage” and then propagate outside of the

(would-be) horizon.

Just like for the modes of relativistic stars, the real part of the frequency

of a QN fluid mode should be determined by the speed of sound of the

interior matter. This velocity is necessarily less than but possibly saturating

the speed of light c. For any BH-like object, the spatial scale of the interior is

the Schwarzschild radius RS; otherwise, the object is not sufficiently compact.

It is then a generic result that the oscillatory frequency of a mode from this

class is bounded from above, ωR ≤ c/RS . In addition, a time delay of

order 1/ωR in the excitation of a mode can be expected. This is because a

waiting time of at least one period is needed for this interior mode to affect

the spectrum of QNMs outside of the BH and, therefore, the spectrum of the

emitted GWs.

As for the damping time — the inverse of the imaginary part of the

frequency τdamp = 1/ωI — the situation is less conclusive. On general

grounds, one might expect the damping time of a fluid mode to be longer

than those of the spacetime modes [88]. To understand why, let us recall the

quadrupole formula, which says that the coupling to gravity of such modes
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is proportional to ω2
R. Then, since ωR < c/RS is generically true, their

coupling must be weaker than it is for the relativistic spacetime modes. On

the other hand, the intrinsic dissipation in the fluid could be strong, reducing

the damping time.

In our model, the damping time of the matter modes is parametrically

larger than 1/ωR, which can be attributed, in part, to the (normalized) in-

trinsic dissipation being very weak. Because of the weak coupling of these

modes to gravity, the emission of GWs will take place over an even longer

time scale and thus be a similarly weak source of dissipation. A longer damp-

ing time is consistent with the expectations of Cardoso et. al. [38]. The same

authors also stressed the importance of long-time observations in identifying

deviations from GR.
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