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Separating metric perturbations in near-horizon extremal Kerr

Baoyi Chen∗ and Leo C. Stein†

TAPIR, Walter Burke Institute for Theoretical Physics,
California Institute of Technology, Pasadena, CA 91125, USA

Linear perturbation theory is a powerful toolkit for studying black hole spacetimes. However,
the perturbation equations are hard to solve unless we can use separation of variables. In the
Kerr spacetime, metric perturbations do not separate, but curvature perturbations do. The cost
of curvature perturbations is a very complicated metric-reconstruction procedure. This procedure
can be avoided using a symmetry-adapted choice of basis functions in highly symmetric spacetimes,
such as near-horizon extremal Kerr. In this paper, we focus on this spacetime, and (i) construct the
symmetry-adapted basis functions; (ii) show their orthogonality; and (iii) show that they lead to
separation of variables of the scalar, Maxwell, and metric perturbation equations. This separation
turns the system of partial differential equations into one of ordinary differential equations over a
compact domain, the polar angle.

I. INTRODUCTION

Linear metric perturbation theory is widely used in
studying weakly-coupled gravity [1]. For example, it can
be applied to investigating the stability of black holes,
gravitational radiation produced by material sources
moving in a curved background, and so on. In the context
of linearized gravity, the equations that describe gravita-
tional perturbations are the linearized Einstein equations
(LEE). Although they are linear, the LEE are still diffi-
cult to solve unless we can separate variables. In the Kerr
spacetime, while in Boyer-Lindquist (BL) coordinates t
and φ can be separated, r and θ remain coupled due to
lack of symmetry [2].

A successful approach towards separating wave equa-
tions for perturbations of the Kerr black hole was first de-
veloped by Teukolsky [3, 4]. Instead of looking at metric
perturbations, Teukolsky adopted the Newman-Penrose
(NP) formalism [5] and obtained a separable wave equa-
tion for Weyl curvature tensor components Ψ0 and Ψ4.
The spin-weighted version of this equation, known as the
Teukolsky equation, not only works for gravitational per-
turbations, i.e. tensor fields, but can also be applied to
scalar, vector, and spinor fields. To obtain the other
Weyl scalars and recover the perturbed metric, one has
to go through a complicated metric reconstruction pro-
cedure. The methods were independently developed by
Chrzanowski [6] and by Cohen and Kegeles [7], in which
they obtain the perturbed metric via an analogue of
Hertz potentials. However, these methods only apply
to certain gauge choices and vacuum or highly-restricted
source terms [8].

The desire for separable equations, the complication
of metric reconstruction along with gauge- and source-
restrictions, motivate us to try to develop a new formal-
ism for studying metric perturbations in the Kerr space-
time, in a covariant, gauge-invariant way.
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The metric perturbation equation may not be separa-
ble in Kerr, but Schwarzschild perturbations have long
been known as separable due to the time translation
invariance and spherical symmetry [9–12]. The gauge-
independent language of Schwarzschild perturbations
was started by Sarbach and Tiglio [13], and brought to
fruition by Martel and Poisson [14]. In the Schwarzschild
background, metric perturbations are expanded in scalar,
vector, and symmetric tensor spherical harmonics. These
basis functions naturally lead to separation of variables
in the LEE.

Schematically, the separation of variables in some dif-
ferential equations of motion, such as the scalar wave
equation, Maxwell’s equations, and the linearized Ein-
stein equations, can all be understood via

Dx
[(

symmetry
adapted
basis

)

×
(

dependence
on rest of

coordinates

)]

=
(

symmetry
adapted
basis

)

×Dx′

[

dependence
on rest of

coordinates

]

.

Here Dx[·] is some isometry-equivariant differential opera-
tor. If the argument is decomposed in a natural isometry-
adapted basis, then these basis functions pull straight
through the differential operator, leaving new operators
Dx′ [·] which only act on the remaining non-symmetry co-
ordinates.

We show that this type of reduction is true for a spe-
cial limit of Kerr spacetime: the near-horizon extremal
Kerr (NHEK). This spacetime was introduced in [15] as
an analogue of AdS2 × S2. The NHEK limit exhibits a
symmetry group that is “enhanced” relative to Kerr: the
spacetime has four Killing vector fields that generate the
isometry group SL(2,R)× U(1). The three dimensional
orbit space of the isometry reduces the system of partial
differential equations to one of ordinary differential equa-
tions, leading to separable equations of motion. This is
achieved by expanding unknown tensors into some ba-
sis functions adapted to the isometry. In this paper, we
(i) construct these basis functions, (ii) prove orthogonal-
ity in geodesically-complete coordinates, and (iii) show
separation of variables in the differential equations for
some physical systems. With these accomplishments, we
arrive at a new formalism to deal with (extremal) Kerr
perturbation that differs from using metric reconstruc-
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tion on solutions to the Teukolsky equation. There will
be no gauge preference, no complications of solving PDEs
but only ODEs. This greatly reduces the amount of
work while studying perturbations of extremal Kerr black
holes, whether in GR or beyond-GR theories.

We organize the paper as follows. In Sec. II we re-
view the NHEK limit of the Kerr black hole, and elab-
orate on the structure of NHEK’s isometry Lie group
SL(2,R) × U(1). In Sec. III, we construct the highest
weight module for NHEK’s isometry group, and obtain
the scalar/vector/symmetric tensor basis functions. In
Sec. IV we present a proof of orthogonality for the basis
functions in global coordinates. In Sec. V we show that
with these bases, we can separate variables in the scalar
Laplacian, Maxwell system, and linearized Einstein equa-
tion. Finally we conclude and discuss future work in
Sec. VI.

II. KERR AND THE NHEK LIMIT

In this paper we choose geometric units (G = c = 1)
and signature (− + + +) for our metric g on the space-
time manifold M. A rotating, asymptotically-flat black
hole in vacuum general relativity is described by the Kerr
metric [16]. For simplicity we will set the mass to M = 1.
In BL coordinates (t, r, θ, φ) the line element of the Kerr
black hole is given by [17]

ds2 =− ∆

Σ
(dt− a sin2 θ dφ)2 +

Σ

∆
dr2 +Σ dθ2 (1)

+
sin2 θ

Σ

[

(r2 + a2)dφ− a dt
]2
,

where ∆ = r2 − 2r + a2 and Σ = r2 + a2 cos2 θ. The
ranges of the BL coordinates are given by t ∈ (−∞,+∞),
r ∈ (0,+∞), θ ∈ [0, π], φ ∈ [0, 2π). In this paper we focus
on a particular scaling limit of Kerr. This limit is usually
described by the scaling coordinates (T,Φ, R) introduced
in [15], which are related to the BL coordinates via

t =
2T

λ
, φ = Φ +

T

λ
, r = 1 + λR . (2)

We also introduce a new coordinate u for the polar angle
via u = cos θ. The NHEK limit is then obtained by
taking the (a → M,λ → 0) limit of the Kerr metric in
these coordinates, which yields the line element

ds2 = 2Γ(u)

[

−R2 dT 2 +
dR2

R2
+

du2

1− u2
(3)

+ Λ(u)2(dΦ+R dT )2
]

,

where Γ(u) = (1 + u2)/2 and Λ(u) = 2
√
1− u2/(1 + u2).

This metric is interpreted on the region T ∈ (−∞,+∞),
Φ ∈ [0, 2π), R ∈ (0,+∞), u ∈ [−1, 1].

From now on we will refer to (T,Φ, R, u) as Poincaré
coordinates. The T,R-coordinates of NHEK are similar

to the Poincaré coordinates on the two dimensional anti-
de Sitter space AdS2, which only cover a subspace of the
global spacetime called the Poincaré patch. In particular,
the u = ±1 submanifolds are both precisely AdS2. We
can make this metric geodesically complete by defining
the global coordinates (τ, ϕ, ψ, u) according to [15]

T =
sin τ

cos τ − cosψ
, R =

cos τ − cosψ

sinψ
, (4)

Φ = ϕ+ ln

∣

∣

∣

∣

cos τ − sin τ cotψ

1 + sin τ cscψ

∣

∣

∣

∣

,

where τ ∈ (−∞,+∞), ψ ∈ [0, π], ϕ ∼ ϕ+2π. The NHEK
metric in global coordinates is

ds2 = 2Γ(u)

[

(−dτ2 + dψ2) csc2 ψ +
du2

1− u2
+ (5)

+ Λ(u)2(dϕ− cotψ dτ)2
]

.

The NHEK spacetime has four Killing vector fields
(KVFs), which generate the isometry group G ≡
SL(2,R) × U(1). The four generators in Poincaré co-
ordinates are given by

H0 = T ∂T −R∂R, (6)

H+ = ∂T ,

H− = (T 2 +
1

R2
) ∂T − 2TR∂R − 2

R
∂Φ,

Q0 = ∂Φ.

H0 is the infinitesimal generator of dilation, which leaves
the metric invariant under R → cR and T → T/c for
some constant c ∈ (0,+∞). Q0 is the generator of the
rotation along Φ which generates the U(1) group. H+ is
the time translation generator inherited from Kerr. The
four generators form a representation ρP of the Lie alge-
bra g ≡ sl(2,R)× u(1),

[H0 , H±] = ∓H± , (7)

[H+ , H−] = 2H0 ,

[Hs , Q0] = 0 . (s = 0,±)

In global coordinates, we can similarly obtain four (dif-
ferent) generators that are KVFs of the NHEK spacetime,

L± = ie±iτ sinψ(− cotψ∂τ ∓ i∂ψ + ∂ϕ), (8)

L0 = i∂τ ,

W0 = −i∂ϕ.

This is a different representation, ρg. But since it is still
a Lie algebra representation, they satisfy the same com-
mutation relations as in Eq. (7) with all H ’s replaced by
L’s, and Q0 replaced W0.

We say that the group G acts on the manifold M by
translation, G 	 M. That is, every element g ∈ G de-
termines an isomorphism φg : M → M, and these iso-
morphisms, under composition, form a representation of
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the group G. There is an induced action on the space
of functions/vector fields/forms/tensors/etc. living on M
by pullback under the map φg [18]. We call the pullback
φ∗g, overloading this symbol to mean the pullback from
sections of any tensor bundle to itself. In this way, the
group also acts on all spaces of (p, q)-tensors.

Studying the neighborhood of the identity e ∈ G, we
get the induced action of the Lie algebra g on these same
tensor bundles. The infinitesimal version of a pullback
of a tensor field is the Lie derivative of that field [18].
Thus the induced action of g on tensors is Lie deriva-
tion along the representation of the Lie algebra element.
That is, given a representation as tangent vector fields
ρ : g → X(M), for some algebra element α ∈ g, the in-
duced action of α on a tensor t is via the Lie derivative,

α · t = Lρ(α)t . (9)

One of the crucial algebra elements we will need is the
Casimir element of the sl(2,R) factor. Let h0, h± ∈ g be
the algebra elements whose representations are respec-
tively ρP (h0) = H0, etc. Then the Casimir element of
the sl(2,R) factor, in this basis, is proportional to

Ω ≡ h0(h0 − 1)− h−h+ , (10)

which commutes with every element of g. Under the
Poincaré-coordinates representation ρP , the Casimir acts
on tensors via

Ω · t =
(

LH0(LH0 − id)− LH−
LH+

)

t . (11)

By construction, the differential operator on the right
hand side of Eq. (11) commutes with LX , where X is one
of {H0, H±, Q0}. Similarly, under the global-coordinates
representation ρg, the Casimir acts as in Eq. (11), but
with H ’s replaced with L’s; and this operator will simi-
larly commute with LX where X is one of {L0, L±,W0}.

III. THE HIGHEST (LOWEST)
WEIGHT METHOD

In this section we construct the scalar, vector, and
symmetric tensor bases for NHEK’s isometry group
SL(2,R) × U(1). First we briefly review the formal-
ism of finding basis functions adapted to the isometry
group in Schwarzschild spacetime. By drawing analogy
to the Schwarzschild case and further utilizing the highest
(lowest) weight method for non-compact groups, we will
be able to construct unitary representations of NHEK’s
isometry group.

A. Review: Unitary representations
of SO(3) in Schwarzschild

The full spacetime manifold of Schwarzschild space-
time is MSch = M2 × S2. The two dimensional sub-
manifold M2 is the (t̄, r̄)-plane, and S2 is the unit two-
sphere coordinated by (θ̄, φ̄). Here (t̄, r̄, θ̄, φ̄) are the

usual Schwarzschild coordinates. Part of the isometry
group of Schwarzschild is SO(3), which acts on the S2

factors. The three generators of the group are simply the
rotations along each Cartesian axis, i.e. Jx, Jy, Jz ∈ so(3).
The Casimir operator of so(3) is given by J2 = J2

x +J
2
y +

J2
z .
In any space that SO(3) acts upon, we can look for

bases of functions which simultaneously diagonalize J2

and Jz—that is, they are eigenfunctions of both oper-
ators. In the space of complex functions on the unit
sphere, these eigenfunctions turn out to be the spheri-
cal harmonic functions Y µ,ν , where µ, ν label the func-
tions (they are not tensor indices). The even/odd par-
ity vector harmonics, Y µ,νA , Xµ,ν

A , and tensor harmonics,
Y µ,νAB , X

µ,ν
AB, are also simultaneous eigenfunctions of J2

and Jz (where now A,B are (co-)tangent indices on S2).
All of the scalars, vectors, and tensors here have eigen-
value −µ(µ + 1) for the operator J2, and eigenvalue iν
for Jz.

Under any rotation, scalar spherical harmonics with
different values of µ may not rotate into each other. In
this sense, the function space has been split up into diag-
onal blocks labeled by µ. We say that each µ block “lives
in” or “transforms under” a representation of SO(3).

We have not yet imposed regularity or tried to make
these representations unitary. Let us define the rais-
ing and lowering operators J± = Jx ± iJy, which in-
crease/decrease the ν index (eigenvalue of −iJz) by one.
A highest weight state is one which is annihilated by the
raising operator, J+f = 0, and similarly a lowest weight
state is annihilated by the lowering operator. For spheri-
cal harmonics, we find that the highest weight condition
imposes that ν = µ, and Y µ,µ is annihilated by J+. Sim-
ilarly, the lowest weight condition imposes that ν = −µ.

From the representation theory of compact simple Lie
groups, irreducible unitary representations must be finite-
dimensional [19]. Therefore, if we start with a highest-
weight state Y µ,µ, after a finite number of applications
of the lowering operator, we must end on a lowest-weight
state Y µ,−µ. This gives us the condition that 2µ + 1 is
a positive integer, or µ = 0, 12 , 1, . . .. Periodicity in the

azimuthal angle φ̄ gives the condition that ν must be an
integer m. This gives the ordinary spherical harmonics
Y l,m. The same arguments apply to the vector and tensor
representations.

Since these bases are adapted to the isometry group of
Schwarzschild, they readily lead to a separation of vari-
ables in the linearized Einstein equations [14].

B. Unitary representations
of SL(2,R)× U(1) in NHEK

We now apply the highest/lowest weight formalism to
NHEK. In the Schwarzschild spacetime, the orbit space
of the isometry SO(3) is S2, therefore we expect a 2 + 2
decomposition of the whole manifold. Similarly, in the
NHEK spacetime, the isometry group SL(2,R) × U(1)
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acts on the three dimensional hypersurfaces Σu of con-
stant polar angle θ (or u). This enables us to perform
a 3 + 1 decomposition of the spacetime. In both cases,
we can simultaneously diagonalize some algebra elements,
including the Casimir, in various tensor spaces.

However there is an important difference between the
two spacetimes. In the NHEK case, we encounter the
non-compact group SL(2,R). It is known that for non-
compact simple Lie groups like SL(2,R), the only irre-
ducible unitary finite-dimensional representation is the
trivial representation [19]. As a result, one can find two
distinct unitary representations of SL(2,R)× U(1): the
highest weight module or the lowest weight module. Both
of them are infinite dimensional representations in the
NHEK case. For compact groups like SO(3), these two
modules coincide.

Our method to find the general (scalar, vector, and
symmetric tensor) basis functions ξ associated with the
highest weight module of NHEK’s isometry can be sum-
marized into four steps. Notice that the method pre-
sented here is not restricted to NHEK spacetime. For in-
stance it can also be applied to finding the basis functions
in near-horizon near-extremal Kerr (near-NHEK) which
has the same isometry group as NHEK’s [20]. This will be
left for future work. For readers who are more interested
in what the bases of NHEK’s isometry look like either in
Poincaré or global coordinates, the explicit expressions
are given in App. A.

a. Orbit space. The orbit of a point p ∈ M is
Gp = {φg(p)|g ∈ G}, all points which are related to p by
an SL(2,R)×U(1) transformation. Gp is a 3-dimensional
submanifold of M, and the collection of all the orbit
spaces forms a foliation. In this case, each leaf Σu is
a surface of constant θ (or u). Thus we can perform a
3 + 1 decomposition of the spacetime, and look for basis
functions of SL(2,R)×U(1) acting on a hypersurface Σu.

b. Highest weight states. Second, we simultaneously
diagonalize {LQ0 ,LH0 ,Ω} in the space of scalar, vector,
and symmetric tensor functions. We label the eigenstates
by m,h, k respectively,

LQ0 ξ
(mhk) = im ξ(mhk) , (12)

Ω ξ(mhk) = h(h+ 1) ξ(mhk) ,

LH0 ξ
(mhk) = (−h+ k) ξ(mhk) .

Then using the raising operator LH+ , we also impose the
highest weight condition, k = 0,

LH+ ξ
(mh 0) = 0 . (13)

The solutions ξ(mh 0) that satisfy both Eq. (12) and (13)
are the highest weight basis functions. At each point on
Σu, the spaces of scalars, vectors, and symmetric tensors
have dimensions 1, 3, and 6. Thus the space of solutions
of this system of equations is a linear vector space of
dimension 1, 3, and 6 for scalars, vectors, and symmetric
tensors, for each choice of (m,h). Correspondingly, for
each (m,h), there will be 1, 3, and 6 free coefficients

cβ for the solution, with β ranging over the appropriate
dimensionality.

c. Descendants. Next, we obtain basis functions
with arbitrary weight by applying the lowering operator
LH−

to the highest weight states k times, i.e.

ξ(mhk) = (LH−
)k ξ(mh 0). (14)

d. Lifting to the whole manifold. Finally, we pro-
mote the basis functions living on Σu to functions liv-
ing on the whole manifold M by sending all unknown
constant coefficients cβ (from the end of step b) to be
unknown smooth functions cβ(u). While lifting the vec-
tor and tensor bases from Σu to M, i.e. Vi → Va and
Wij → Wab, we also set all their projections on the u
direction to be zero, i.e. Vu = 0, Wiu =Wui =Wuu = 0.

To obtain the basis functions in global coordinates, one
just replaces Hs by Ls, where s = 0,±, and Q0 by iW0 in
steps b and c. To construct the lowest weight modules of
NHEK’s isometry group, one should instead impose the
lowest weight condition LH−

ξ(mh 0) = 0, and the condi-

tion Ω ξ(mhk) = h(h − 1) ξ(mhk), in step b. All descen-
dant states will then be obtained by applying the raising
operator LH+ on the lowest weight states. In Poincaré
coordinates, we focus on the basis functions that form
the highest weight module because their expressions are
simpler. In global coordinates, we show both representa-
tions explicitly in App. A 2 a and A2 b. Unless otherwise
specified, our basis functions will refer to those obtained
using the highest weight method.

Let us remark on the allowed values of m, h, k. It
is straightforward to see k ∈ Z

+ by construction, and
m ∈ Z due to the periodic boundary conditions for the
azimuthal angle. In order to have a unitary representa-
tion of the isometry group, there are conditions on h as
well. For the scalar case, for instance, if we apply the rais-
ing operator on a scalar in the highest weight module, we
get

LH+ F
(mhk) = k(k − 1− 2h)F (mhk−1). (15)

A nontrivial unitary representation of NHEK’s isometry
group then requires k − 1 − 2h 6= 0, otherwise there
would be a lowest weight state that would lead to a
finite-dimensional (and hence non-unitary) representa-
tion. The same conclusion holds for either the vector or
the tensor bases. The values of h also depend on the reg-
ularity conditions we impose. For instance, in global co-
ordinates, the highest weight scalar basis is proportional
to

F (mh 0) ∝ (sinψ)−h exp[i(hτ +mϕ) +mψ]. (16)

Regularity at the boundaries ψ = 0 and ψ = π requires
h ≤ 0. Another example is given in Sec. VB when we
solve for the free massless scalar wave equation in the
NHEK spacetime, where h must take on some fixed val-
ues due to the regularity conditions for spheroidal har-
monics.
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IV. ORTHOGONALITY IN
GLOBAL COORDINATES

In this section we present a proof that all the scalar,
vector, and symmetric tensor basis functions of NHEK’s
isometry group, when given in global coordinates, form
orthogonal basis sets. In this proof we will use the vector
basis functions defined on Σu as an example. That is,
they are functions of τ, ϕ, ψ. As we shall see, lifting to the
whole manifold M and extending the proof to the scalar
and symmetric tensor cases will be straightforward.

Let us introduce the metric induced on the hypersur-
face Σu as γij , and D is the unique torsion-free Levi-
Civita connection that is compatible with γ. Here Latin
letters in the middle of the alphabet (i, j, k) denote 3-
dimensional tangent indices on Σu. Consider the vector
basis function u

(mhk)(τ, ϕ, ψ) and v
(m′ h′ k′)(τ, ϕ, ψ). We

would like to show bases with different m,h, k are orthog-
onal,

〈u,v〉 ≡
∫

Σu

dVolu
(mhk)
i vi(m′ h′ k′) ∝ δm,m′δh,h′δk,k′ .

(17)
Here the overbar denotes complex conjugation, and the
volume element is given by

∫

Σu

dVol = lim
T→∞

∫ T

−T

dτ

∫ 2π

0

dϕ

∫ π

0

dψ
√−γ , (18)

where γ is the determinant of the three dimensional met-
ric, and in these coordinates

√−γ = 2 csc2 ψ
√
1− u4. To

prove Eq. (17) we first note the basis components v
(mhk)
j

in global coordinates have the τ and ϕ dependence,

v
(mhk)
j ∼ exp (imϕ) exp [i(h− k)τ ]. (19)

This dependence on τ and ϕ is the same for the scalar
and tensor basis components. Once we integrate over ϕ
and τ in Eq. (17), the integral will be proportional to
δm,m′δh−k,h′−k′ . Notice that the boundaries τ → ±∞
are oscillatory, so the τ integral needs to be regulated in
the same way as Fourier integrals.

Now we only need to show bases with different weight k
are orthogonal. Once this is done we will recover Eq. (17).
For simplicity, from now on we only track the k-index in
the vector bases. Recall that we obtain the lower weight
bases by applying the lowering operator order by order,

〈u(k),v(k′)〉 = 〈u(k),LL−
v
(k′−1)〉 . (20)

Now we try to “integrate by parts” with the Lie deriva-
tive,

〈u(k),LL−
v
(k′−1)〉 =

∫

Σu

LL−

(

u
(k)
i vi(k′)

)

dVol − 〈LL−
u
(k),v(k′−1)〉, (21)

=

∫

Σu

LL−

(

u
(k)
i vi(k′)

)

dVol + 〈LL+u
(k),v(k′−1)〉, (22)

where in the last line we used the fact that L+ = −L−. Note that this relationship does not hold between H±, so
this type of proof will not work in Poincaré coordinates.

We would like to discard the first term on the RHS of Eq. (21), which would show that LL+ and LL−
are adjoints

of each other. We can do this by converting the Lie derivative into a covariant derivative and then a total divergence.
Since L± are KVFs, they are automatically divergence-free, so we can pull them inside the covariant derivative:

∫

Σu

dVolLL−

(

u
(k)
i vi(k′)

)

=

∫

Σu

dVolLj−Dj

(

u
(k)
i vi(k′)

)

=

∫

Σu

dVolDj

(

Lj−u
(k)
i vi(k′)

)

. (23)

This step is identical if we are considering
scalars/vectors/tensors, since the argument of the
Lie derivative has all indices contracted. Using Stokes’
theorem, the integral of the total derivative becomes a
boundary integral, evaluated at ψ = 0, π. This boundary
contribution vanishes for h < −1 in the highest weight
module. To see this, one must count the powers of sinψ
which depends on h (see App. A 2), and take into account
the volume element’s contribution,

√−γ ∝ (sinψ)−2.

We repeat the procedure of extracting lowering opera-

tors from the ket as in Eq. (21), and arrive at

〈u(k),v(k′)〉 = 〈
(

LL+

)k′

u
(k),v(0)〉 . (24)

Recall that the vector basis terminates at the highest

weight. Therefore when k′ > k,
(

LL+

)k′

u
(k) will vanish.

Similarly when k′ < k, we can extract all lowering opera-
tors from the bra and raise the weight of the states in the
ket, which will terminate upon raising the highest weight
state. Therefore the vector bases with different weights
k, k′ are orthogonal.
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Since we have also proved that vector bases with differ-
entm and h−k are orthogonal, the proof of orthogonality
for vector bases is done. It may not be obvious that the
proof holds unaltered for scalars/vectors/tensors. In all
the relevant steps above, we have noted where each argu-
ment works for each of the three types of fields.

Therefore we arrive at the conclusion that the scalar,
vector, and symmetric tensor bases in global coordinates
form orthogonal basis sets.

V. SEPARATION OF VARIABLES

In this section we show that with the scalar, vector, and
tensor bases we have obtained, it is possible to separate
variables for many physical systems in NHEK spacetime.
One can show that all conclusions in this section hold
for both Poincaré coordinates and global coordinates. In
global coordinates the results are in general more com-
plicated. Therefore for concreteness all results in this
section are given in Poincaré coordinates.

The main result of this section can be summarized with
the schematic equation:

Dx
[

( SL(2, R) × U(1)
structure (T,Φ, R))

(m,h,k) × ( u (or cos θ)
dependence )

]

=

( SL(2, R) × U(1)
structure (T,Φ, R))

(m,h,k) ×D(m,h)
u [ u (or cos θ)

dependence ] .

Here, Dx is an SL(2,R) × U(1)-equivariant differen-
tial operator, which takes derivatives in the T,Φ, R, u
directions. We completely specify the T,Φ, R depen-
dence by being in a certain irreducible representation (ir-
rep) of SL(2,R) × U(1) labeled by (m,h, k). Then the
SL(2,R)×U(1) structure factors straight through the dif-
ferential operator Dx, leaving a new differential operator

D(m,h)
u which only takes u derivatives. This greatly sim-

plifies computations, since the partial differential equa-
tions have been converted into ordinary differential equa-
tions (ODEs). Because of the SL(2,R)×U(1)-invariance,

notice that D(m,h)
u only depends on m and h, which la-

bel the irrep, and not on k, which labels the descendant
number within the irrep.

A. Covariant differentiation preserves
isometry group irrep labels

Let us first make a general statement about how the
presence of a group of isometries acting on the manifold
can be useful in separation of variables. The conclusions
obtained in this subsection will also justify our motiva-
tions of finding group representations for NHEK’s isom-
etry. Consider a manifold M with metric gab, metric-
compatible connection ∇, and an isometry Lie group G
acting on the manifold. Let α(i) ∈ g be a basis for the
Lie algebra, with representation {X(i)} on the manifold.

Further, let c(i)(j) be the inverse of the Killing form of

the Lie algebra in this basis [19]. Then we also have a
quadratic Casimir element, which acts on any tensor t as

Ω · t ≡
∑

i,j

c(i)(j)LX(i)
LX(j)

t . (25)

Irreps of G will be labeled by eigenvalues λi of some of
the KVFs, and the eigenvalue ω of the Casimir Ω.

First, we need a lemma on the commutation relation
of manifold isometries and covariant derivatives,

[

LX(i)
,∇a

]

t = 0, (26)

where t can be a scalar, vector, or tensor. To prove
Eq. (26), one can start by showing the commutation re-
lations for t being a 0-form (which follows immediately
from Cartan’s magic formula for a 0-form) and a one-
form, then use the Leibniz rule to generalize the relations
to the vector and tensor cases. Eq. (26) says that the
operator ∇a is SL(2,R) × U(1)-equivariant : that is, its
action commutes with left-translation by the group [18].

An important consequence of the commutation rela-
tion Eq. (26) is that the Casimir element Ω of the alge-
bra g also commutes with the covariant derivative. Sim-
ply commute each Lie derivative one at a time, and the
coefficients c(i)(j) are constants. As a result,

[Ω,∇a] t = 0. (27)

Now consider a tensor t living in an irrep with labels
λi and ω, meaning

LX(i)
t = λit , (28)

Ω · t = ωt . (29)

As an immediate consequence of Eq. (26) and Eq. (27) is
that ∇t has the same labels λi and ω,

LX(i)
∇t = λi∇t , (30)

Ω · ∇t = ω∇t . (31)

Thus any differential operator which is built just from
∇a and the metric gab can not mix tensors with differ-
ent irrep labels (λi, ω). This even extends to differential
operators which include the Levi-Civita tensor ǫ and the
Riemann tensor Rabcd, because these two objects are also
annihilated by all of the LX(i)

. As a result, when tensors
are decomposed into a sum over irreps with different la-
bels, they will remain separated in the same ways under
this type of differential operator. This is the underly-
ing reason why the method of finding the unitary irreps
of NHEK’s isometry introduced in Sec. III will lead to
separation of variables in many physical systems.

B. Scalar Laplacian

As the first example, we look at the massless scalar
wave equation 2ψ = S in NHEK space time, where S is
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a source term (including a mass term also works). Since
the scalar d’Alembert operator 2 ≡ ∇a∇a is built only
from gab and ∇a, it should commute with Ω and LX
where X is any KVF. To show this explicitly, note that
in Poincaré coordinates, 2ψ can be written as

2ψ =
1

2Γ(u)

{

(Ω + Ξ(u)L2
Q0

)ψ + L∂u
[

(1− u2)L∂uψ
]

}

,

(32)

where Ξ(u) ≡ Λ(u)−2 − 1.
Assume we can decompose an arbitrary scalar field

ψ(T, Φ, R, u) according to

ψ =
∑

mhk

Cmhk(u)F
(mhk)(T, Φ, R) (33)

=
∑

mhk

ψmhk(T, Φ, R, u),

where F is the scalar basis on Σu and Cmhk are
some unknown functions of u. We also decompose the
source term using the scalar basis functions via S =
∑

mhk SmhkF
(mhk). The basis functions F (mhk) are

eigenfunctions of Ω and LQ0 , and so ψmhk are also eigen-
functions. Therefore it is straightforward to see that the
(T,Φ, R)-dependence in ψmhk is invariant after applying
the scalar box operator. The equation for a specific mode
labeled by (m,h, k) becomes

SmhkF
(mhk) = 2

(m,h)ψmhk =
1

2Γ(u)
× (34)

×
{

[h(h+ 1)−m2Ξ(u)]ψmhk + L∂u
[

(1− u2)L∂uψmhk
]

}

.

This entire equation is proportional to the basis function
F (mhk), which can thus be divided out, leaving an ODE
for one function, Cmhk(u).

Specializing to the homogeneous (source-free) case, we
find the ODE

d

du

[

(1 − u2)
d

du
Cmhk

]

+
[

h(h+ 1)− Ξ(u)m2
]

Cmhk = 0 .

(35)

This equation has two regular singularities u = ±1 and
an irregular singularity of rank 1 at u = ∞, which falls
into the class of confluent forms of Heun’s Equation [21].
Explicitly, it is a spheroidal differential equation, whose
standard form is

d

du

(

(1− u2)
dϕ

du

)

+

(

λ+ γ2(1− u2)− µ2

1− u2

)

ϕ = 0,

(36)
where we have made the substitution λ = h(h+1)+2m2,
γ2 = −m2/4 and µ2 = m2. When γ = 0, Eq. (36) reduces
to the Legendre differential equation and the solutions
are Legendre polynomials. When γ2 < 0, the general
solution of Eq. (36) is the same as the radial solution of

spheroidal equation in the oblate spheroidal coordinates
(u = iξ),

ϕ(ξ) = a1S
µ(1)
n (iξ, γ) + b1S

µ(2)
n (iξ, γ), (37)

where S
µ(1)
n (iξ, γ) and S

µ(2)
n (iξ, γ) are radial spheroidal

harmonics. These solutions only exist for eigenvalues λ =
λµn(γ

2), where µ = 0, 1, 2, . . . , and n = µ, µ+1, µ+2, . . ..
Thus, there are only discrete values of the irrep label h
which satisfy regularity at the poles u = ±1.

C. Maxwell system

Let’s look at another system of physical importance,
the Maxwell system, and verify that we can separate
variables in Maxwell’s equations (the Proca equation—
i.e. adding a mass term—works as well). The inhomoge-
neous Maxwell equations in presence of a source vector
field J are

∇aFab = Jb, (38)

where the electromagnetic tensor F is built from the vec-
tor potential A according to

Fab = ∇aAb −∇bAa. (39)

We again assume that we can expand the vector potential
in the scalar and vector bases. Define a one-form na = du,
this expansion is given by

Aa =
∑

mhk

(

Cu(u)naF
(mhk) +

∑

B

CB(u)V
B
a

(mhk)

)

,

(40)
where B ∈ {T,Φ, R}, CB(u) and Cu(u) are unknown
functions of u. Notice that B is not a tensor index.
It is the label of a specific choice of vector bases and
their corresponding unknown C-functions. The expres-

sion of F (mhk) and the projection of V Ba
(mhk)

onto Σu,

i.e. V Bi
(mhk)

are both given in App. A 1. Then at the
highest weight k = 0, the left hand side of Maxwell’s
equation can be rewritten as

∇aFab|k=0 = D(m,h)
u [C(u)]nbF

(mh 0) (41)

+
∑

B

D(m,h)
B [C(u)]V

B(mh 0)
b ,

where we have collected the four C-functions into the
vector C(u), and defined the general differentiation as
D(m,h)[C(u)], whose expressions are given in App. B. As
long as the source field can also be decomposed using
the scalar and vector bases, the inhomogeneous Maxwell
equations in NHEK will reduce to four ordinary differen-
tial equations with four unknown C-functions. Although
we only show this is true for the highest weight case, this
conclusion holds for any k. This is due to the commu-
tation of the lowering operator and the covariant differ-
entiation. For explicit calculations of Maxwell’s system
using the highest weight vector basis we refer our readers
to [22, 23].
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D. Linearized Einstein system

In this subsection we show that we can separate vari-
ables on the left hand side of linearized Einstein equation,
using our scalar, vector, and tensor bases for NHEK. Con-
sider the metric perturbation g′ab = gab + ǫhab + O(ǫ2),
where gab is the NHEK metric and hab is a perturbation.
The linearized Einstein equations (i.e. at order ǫ1) are

G
(1)
ab [h] = 8πTab , (42)

where Tab is the stress-energy tensor of a source term.
The linearized Einstein operator G(1)[h] can be written
in terms of the background covariant derivative ∇ as

−2G
(1)
ab [h] = 2hab + gab∇c∇dhcd − 2∇c∇(ahb)c

− gabR
cd hcd +R hab , (43)

where hab = hab − 1
2gabg

cdhcd is the trace-reverse of hab,
Rab is the background Ricci curvature, R is the back-
ground Ricci scalar, and parentheses around n indices

means symmetrizing with a factor of 1/n!. This opera-
tor, again, is SL(2,R)× U(1)-equivariant.

We assume that we can expand the metric perturbation
in our scalar, vector, and tensor bases, according to

hab =
∑

mhk

h
(mhk)
ab =

∑

mhk

(

nanbF
(mhk)Cuu(u) (44)

+
∑

B

2n(aV
B(mhk)
b) CuB(u) +

∑

A,B

W
AB(mhk)
ab CAB(u)

)

,

where A,B ∈ {T,Φ, R}, Cuu, CuB , CAB are unknown
functions of u. Notice that A and B are not tensor indices
but only labels of a specific choice of the vector and ten-
sor bases (introduced in App. A 1 b and A1 c) and their
corresponding unknown C-functions. Thus there are no
differences between a subscript and a superscript A or B.

We choose the three highest weight vector bases V
B(mh 0)
b

and the six highest weight tensor bases W
AB(mh 0)
ab such

that the metric perturbation with k = 0 can be written
as Eq. (45). We substitute the highest weight metric per-
turbation into the left hand side of the linearized Einstein
equation and the result is given by Eq. (46).

h
(mh 0)
ab = RheimΦ







R+2CTT (u) R+1CTΦ(u) R+0CTR(u) R+1CuT (u)
∗ R+0CΦΦ(u) R−1CRΦ(u) R+0CuΦ(u)
∗ ∗ R−2CRR(u) R−1CuR(u)
∗ ∗ ∗ R+0Cuu(u)






(45)

G
(1)
ab [h

(mh 0)] = RheimΦ











R+2D(m,h)
TT [C(u)] R+1D(m,h)

TΦ [C(u)] R+0D(m,h)
TR [C(u)] R+1D(m,h)

uT [C(u)]

∗ R+0D(m,h)
ΦΦ [C(u)] R−1D(m,h)

RΦ [C(u)] R+0D(m,h)
uΦ [C(u)]

∗ ∗ R−2D(m,h)
RR [C(u)] R−1D(m,h)

uR [C(u)]

∗ ∗ ∗ R+0D(m,h)
uu [C(u)]











(46)

Again notice that the (T,Φ, R) dependence has factored
straight through the differential operator, resulting in ten
coupled ODEs for the ten C-functions, which we have
collected together as C(u). The expressions for all these
differential operators are given in App. C.

We can easily verify that G(1) commutes with LH−
,

therefore the linearized Einstein operator acting on a ba-
sis function with arbitrary weight can be obtained eas-
ily by repeatedly applying the lowering operator LH−

, k
times, on Eq. (46). While applying the lowering opera-

tor, in general different components of G
(1)
ab [h

(mhk)] will
get mixed up, but the separation of variables still holds.
Therefore we conclude that with these scalar, vector, and
tensor bases, we can separate variables in the linearized
Einstein system in NHEK.

Given some source terms, these bases can be directly

applied to solving for the corresponding metric perturba-
tions. For instance, we have obtained the highest weight
metric deformations in NHEK sourced by the decoupling
limits of dynamical Chern-Simons and Einstein-dilaton-
Gauss-Bonnet gravity [24].

VI. CONCLUSIONS AND FUTURE WORK

In this paper, we proposed an isometry-inspired
method to study metric perturbations in the near-horizon
extremal Kerr spacetime. That is, we separated vari-
ables in the metric perturbation equations in the NHEK
spacetime, by expanding the perturbation in terms of
basis functions adapted to the isometry group. With
the separable linearized Einstein equation, one obtains
the perturbed metric directly, without the complication
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of metric reconstruction. Further, our formalism does
not depend on gauge choice. Within our formalism, par-
tial differential equations built from SL(2,R) × U(1)-
equivariant operators can be converted into ordinary dif-
ferential equations in the polar angle, which are simpler
to solve. The price is that one must solve coupled, rather
than decoupled, equations in our metric formalism.

We accomplished three things: (i) we used the high-
est weight method to obtain the scalar, vector, and sym-
metric tensor bases for the isometry group of NHEK;
(ii) in global coordinates, we showed that these bases
form orthogonal basis sets when the labels of irreps sat-
isfy h < −1; and (iii) with these basis functions, we sepa-
rated variables in many physical equations like the scalar
wave equation, Maxwell’s equations, and the linearized
Einstein equations.

Future work. Although we have shown that bases in
global coordinates are orthogonal, we did not mention
completeness. There are clues that, in global coordi-
nates, combining the highest- and lowest-weight mod-
ules will give a complete set of states. We leave a rigor-
ous treatment of completeness to future work. However,
many problems can already be attacked without worry-
ing about completeness—for example, if the source term
lives in exactly one irrep.

Since the near-horizon near-extremal black hole ex-
hibits the same isometry as NHEK, we expect all dis-
cussions in this paper can be applied to understanding
metric perturbations in near-NHEK, which is more as-
trophysically relevant. With the knowledge of isometry-
adapted bases in NHEK, we hope to enhance our un-
derstanding of the Kerr/CFT conjecture [25] from the
gravity side.
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Appendix A: Scalar, vector, and
symmetric tensor bases

In this section we present the expressions of scalar, vec-
tor, and symmetric tensor bases both in Poincaré coor-
dinates and global coordinates, up to constant factors.
All the basis functions are defined on the three dimen-
sional hypersurface Σu. To promote these basis functions
to the full four dimensional manifold M, one promotes
all constant coefficients cβ to become unknown functions
of the (cosine) polar angle, cβ(u). The basis functions
given here are (mostly) obtained using the highest weight

method introduced in Sec. III, i.e. they form the highest
weight modules for SL(2,R)×U(1) 	 M. Such a highest
weight module is infinite dimensional, the length of this
paper, however, is supposed to be finite. Therefore, we
give the highest three weights for scalar bases, the high-
est two weights for vector bases, and only the highest
weight for tensor bases. Note all other basis functions
can be generated by applying the lowering operator on
the highest weight basis order by order. In order to com-
pare the basis functions in different modules, in global
coordinates, we also give the expressions of the scalar
bases obtained using the lowest weight method.

All expressions in these appendices are also
available in the companion Mathematica
notebooks: Sep-met-pert-in-NHEK-Poinc.nb,
Sep-met-pert-in-NHEK-global.nb, and precomputed
quantities in NHEK-precomputed.mx.

1. Basis functions in Poincaré coordinates

a. Scalar bases

The scalar bases in Poincaré coordinates are given by

F (mhk) ∝ Rh−keimΦ × f (mhk) , (A1)

where

f (mh 0) =1 , (A2)

f (mh 1) =− 2(hRT + im) ,

f (mh 2) =− 2[−2i(2h− 1)mRT+

+ h(1− 2h)R2T 2 + h+ 2m2] .

b. Vector bases

The covector bases in Poincaré coordinates can be de-
composed using the dual basis one-forms {dT, dΦ, dR}
via

V
(mhk) = V

(mhk)
i dxi, x ∈ {T,Φ, R} . (A3)

The covector components are given by

V
(mhk)
i ∝







v
(mhk)
T R+1

v
(mhk)
Φ R+0

v
(mhk)
R R−1






Rh−keimΦ , (A4)

where

v
(mh 0)
T = c1 , v

(mh 0)
Φ = c2 , v

(mh 0)
R = c3 , (A5)

and

v
(mh 1)
T = −2[c3 + c1(hRT + im)] , (A6)

v
(mh 1)
Φ = −2c2(hRT + im) ,

v
(mh 1)
R = −2[c3(hRT + im) + c1 − c2] .
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Notice that there are three unknown coefficients c1, c2,
and c3. They endow us the freedom of choosing a 3-
dimensional basis for covectors. In particular, we intro-
duce a specific set of covector bases labeled by B where
B ∈ {T,Φ, R}. They are defined by

V
(mhk)
T = V

(mhk)|c2=c3=0 , (A7)

V
(mhk)
Φ = V

(mhk)|c1=c3=0 ,

V
(mhk)
R = V

(mhk)|c1=c2=0 .

c. Symmetric tensor bases

The symmetric tensor bases in Poincaré coordinates
can be decomposed using the dual basis one-forms
{dT, dΦ, dR} via

W
(mhk) =Wij dxi ⊗ dxj , x ∈ {T,Φ, R} . (A8)

The tensor components are given by

W
(mhk)
ij ∝





R+2wTT R+1wTΦ R+0wTR
∗ R+0wΦΦ R−1wRΦ

∗ ∗ R−2wRR



Rh−keimΦ ,

(A9)

where

w
(mh 0)
TT = c1 , w

(mh 0)
ΦΦ = c2 , w

(mh 0)
RR = c3 , (A10)

w
(mh 0)
TΦ = c4 , w

(mh 0)
ΦR = c5 , w

(mh 0)
RT = c6 .

Notice that there are six unknown c-coefficients. They en-
dow us the freedom of choosing the six tensor bases. In
particular, we introduce a specific set of highest weight
tensor bases labeled by A,B where A,B ∈ {T,Φ, R}.
They are defined by

W
(mhk)
TT = W

(mhk)
∣

∣

cβ 6=1=0
, (A11)

W
(mhk)
ΦΦ = W

(mhk)
∣

∣

cβ 6=2=0
,

W
(mhk)
RR = W

(mhk)
∣

∣

cβ 6=3=0
,

W
(mhk)
TΦ = W

(mhk)
∣

∣

cβ 6=4=0
,

W
(mhk)
ΦR = W

(mhk)
∣

∣

cβ 6=5=0
,

W
(mhk)
RT = W

(mhk)
∣

∣

cβ 6=6=0
.

This specific choice of tensor bases will be utilized to
write the metric perturbation as in Eq. (45).

2. Basis functions in global coordinates

a. Scalar bases (highest weight module)

The scalar bases from the highest weight module in global coordinates are given by

F (mhk) ∝ (sinψ)−hei[(h−k)τ+mϕ]+mψ × f (mhk) , (A12)

where

f (mh 0) = 1 , (A13)

f (mh 1) = −2(m sinψ − h cosψ) ,

f (mh 2) = 2
[

h2 +m2 +
(

h2 − h−m2
)

cos 2ψ + (m− 2hm) sin 2ψ
]

.

b. Scalar bases (lowest weight module)

The scalar bases from the lowest weight module in global coordinates are given by

F
(mhk)
L ∝ (sinψ)+hei[(h+k)τ+mϕ]−mψ × f

(mhk)
L , (A14)
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where

f
(mh 0)
L = 1 , (A15)

f
(mh 1)
L = −2(m sinψ − h cosψ),

f
(mh 2)
L = 2

[

h2 +m2 +
(

h2 + h−m2
)

cos 2ψ − (m+ 2hm) sin 2ψ
]

.

c. Vector bases

The covector bases in global coordinates can be decomposed using the dual basis one-forms {dτ, dϕ, dψ} via

V
(mhk) = V

(mhk)
i dxi, x ∈ {τ, ϕ, ψ} . (A16)

The covector components are given by

V
(mhk)
j ∝





vmhk
τ (sinψ)−1

vmhk
ϕ (sinψ)+0

vmhk
ψ (sinψ)−1



 (sinψ)−hei[(h−k)τ+mϕ]+mψ , (A17)

where

v(mh 0)
τ = −1

4

(

c1e
−iψ + 2c1e

iψ − 2c2e
−iψ + 4c3e

iψ
)

, (A18)

v(mh 0)
ϕ = c1 ,

v
(mh 0)
ψ = +

1

4

(

c1e
−iψ + 2c2e

−iψ + 4c3e
iψ
)

,

and

v(mh 1)
τ =− 1

4

{

c1[2(h+ im)e2iψ + (3h− im− 1) + (h− im+ 1)e−2iψ]− (A19)

− 2c2[(h+ im+ 1) + (h− im− 1)e−2iψ] + 4c3[(h+ im− 1)e2iψ + (h− im+ 1)]

}

,

v(mh 1)
ϕ =− 2c1(m sinψ − h cosψ) ,

v
(mh 1)
ψ =+

1

4

{

c1[(h+ im+ 1) + (h− im− 1)e−2iψ] + +2c2[(h+ im+ 1) + (h− im− 1)e−2iψ]

+ 4c3[(h+ im− 1)e2iψ + (h− im+ 1)]

}

.

d. Symmetric tensor bases

The symmetric tensor bases in global coordinates can be decomposed using the dual basis one-forms {dτ, dϕ, dψ}
via

W
(mhk) =Wij dxi ⊗ dxj , x ∈ {τ, ϕ, ψ} . (A20)

The tensor components are given by

W
(mhk)
ij ∝





wmhkττ (sinψ)−2 wmhkτϕ (sinψ)−1 wmhkτψ (sinψ)−2

∗ wmhkϕϕ (sinψ)+0 wmhkϕψ (sinψ)−1

∗ ∗ wmhkψψ (sinψ)−2



 (sinψ)−hei[(h−k)τ+mϕ]+mψ , (A21)
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where

w(mh 0)
ττ = +

1

16
(c1e

−2iψ + 4c1e
2iψ − 6c2e

−2iψ + 16c3e
2iψ + 8c5e

−2iψ + 16c6e
2iψ + 4c1 − 8c2 + 16c3 + 8c4) , (A22)

w(mh 0)
ϕϕ = c1 ,

w
(mh 0)
ψψ = +

1

16
(−8c4 + 16c6e

2iψ + c1e
−2iψ + 2c2e

−2iψ + 8c5e
−2iψ) ,

w(mh 0)
τϕ = −1

4

(

2c1e
iψ + 4c3e

iψ + c1e
−iψ − 2c2e

−iψ
)

,

w
(mh 0)
ϕψ = +

1

4

(

4c3e
iψ + c1e

−iψ + 2c2e
−iψ
)

,

w
(mh 0)
ψτ = − 1

16

(

2c1 + 4c2 + 8c3 + 8c3e
2iψ + 16c6e

2iψ + c1e
−2iψ + 2c2e

−2iψ − 8c5e
−2iψ

)

.
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Appendix B: Expressions of D
(m,h)
A [C(u)] in Maxwell systems

Expressions in this appendix can be computed using the companion Mathematica notebook
Sep-met-pert-in-NHEK-Poinc.nb.

DA C′′
T (u) C′′

Φ(u) C′′
R(u) C′′

u(u)

DT
1−u2

u2+1
0 0 0

DΦ 0 1−u2

u2+1
0 0

DR 0 0 1−u2

u2+1
0

Du 0 0 0 0

C′
T (u) C′

Φ(u) C′
R(u) C′

u(u)

DT − 4u

(u2+1)2
−

2u(u2−3)
(u2+1)2

0 0

DΦ 0 −
2u(u2−1)
(u2+1)2

0
im(u2−1)

u2+1

DR 0 0 − 4u

(u2+1)2
h(u2−1)
u2+1

Du − im

u2+1

im(u4+6u2−3)
4(u4−1)

− h+1
u2+1

0

CT (u) CΦ(u) CR(u) Cu(u)

DT

(u4+6u2−3)m2

4(u4−1)
+ h(u4+6u2−3)

(u2+1)3
−

im(u4+6u2−3)
(u2+1)3

2imu(u2−3)
(u2+1)2

+
(h+1)

(

−4u2+h(u2+1)2+4
)

(u2+1)3

DΦ
m2(u2+1)2−4(h+1)(u2−1)

(u2+1)3
h((h+1)u4+2(h+3)u2+h−3)

(u2+1)3
−

im((h+1)u4+2(h+3)u2+h−3)
(u2+1)3

2imu(u2−1)
(u2+1)2

DR − i(h+1)m
u2+1

ihm(u4+6u2−3)
4(u4−1)

m2(u4+6u2−3)
4(u4−1)

4hu

(u2+1)2

Du 0 0 0
4(u2−1)h2+4(u2−1)h+m2(u4+6u2−3)

4(u4−1)

TABLE I. The coefficient table that gives the expressions of D
(m,h)
A [C(u)], A ∈ {T,Φ, R, u} in Maxwell systems. Each row is

labeled by D
(m,h)
A , while each column is labeled by a C-function or its derivative. Each table component is the coefficient in

front of the (derivative of) corresponding C-function in D
(m,h)
A [C(u)]. To recover D

(m,h)
A [C(u)], one just multiplies each table

component with its column label and then add up all those with the same row label DA.
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Appendix C: Expressions of D
(m,h)
AB [C(u)] in linearized Einstein equations

The general second order differentiation D(m,h) on the ten unknown C-functions, denoted as D(m,h)
AB [C(u)], can be

written compactly by putting all C-functions together to form a vector C(u),

D(m,h)
AB [C(u)] = (AAB∂

2
u + BAB∂u + CAB) ·

(

CTT (u), . . . , CΦu(u)

)T

. (C1)

Here AAB, BAB, and CAB are covectors whose components are obtained by collecting coefficients in front of C-
functions. We further stack all the covectors AAB to form a matrix, and similarly do for BAB and CAB. We label the
resulting coefficient matrices as A,B, and C respectively. They are given in Tables II, III, IV, V, and VI. They can
also be computed using the companion Mathematica notebook Sep-met-pert-in-NHEK-Poinc.nb, or read from
the precomputed expressions in NHEK-precomputed.mx.

DAB C′′
TT (u) C′′

TΦ(u) C′′
ΦΦ(u) C′′

RR(u) C′′
Ru(u) C′′

uu(u) C′′
TR(u) C′′

Tu(u) C′′
ΦR(u) C′′

Φu(u)

DTT −
2(u2−1)2

(u2+1)3
u6+5u4−9u2+3

(u2+1)3
−
(u4+6u2−3)2

8(u2+1)3
u6+5u4−9u2+3

2(u2+1)3
0 0 0 0 0 0

DTΦ −
2(u2−1)2

(u2+1)3
u6+9u4−17u2+7

2(u2+1)3
−u6+5u4−9u2+3

2(u2+1)3
2(u2−1)2

(u2+1)3
0 0 0 0 0 0

DΦΦ −
2(u2−1)2

(u2+1)3
4(u2−1)2

(u2+1)3
−

2(u2−1)2

(u2+1)3
2(u2−1)2

(u2+1)3
0 0 0 0 0 0

DRR
u2−1

2(u2+1)
1−u2

u2+1
u4+6u2−3

8(u2+1)
0 0 0 0 0 0 0

DRu 0 0 0 0 0 0 0 0 0 0

Duu 0 0 0 0 0 0 0 0 0 0

DTR 0 0 0 0 0 0 u2−1

2(u2+1)
0 0 0

DTu 0 0 0 0 0 0 0 0 0 0

DΦR 0 0 0 0 0 0 0 0 u2−1

2(u2+1)
0

DΦu 0 0 0 0 0 0 0 0 0 0

TABLE II. A matrix.
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DAB C′
TT (u) C′

TΦ(u) C′
ΦΦ(u) C′

RR(u) C′
Ru(u)

DTT
2u(u4−4u2+3)

(u2+1)4
−

4u(u2−3)(u2−1)
(u2+1)4

−
u(u10+u8−22u6+66u4−123u2+45)

8(u2−1)(u2+1)4
−

u(u6+u4−13u2+3)
(u2+1)4

−
h(u2−1)(u4+6u2−3)

(u2+1)3

DTΦ
2u(u4−4u2+3)

(u2+1)4
−

4u(u4−4u2+3)
(u2+1)4

2u(u4−4u2+3)
(u2+1)4

−
2u(u4−4u2+3)

(u2+1)4
−

2(2h+1)(u2−1)2

(u2+1)3

DΦΦ
2u(u4−4u2+3)

(u2+1)4
−

4u(u2−3)(u2−1)
(u2+1)4

2u(u4−4u2+3)
(u2+1)4

−
2u(u4−4u2+3)

(u2+1)4
−

4(h+1)(u2−1)2

(u2+1)3

DRR −
u(u2−3)
(u2+1)2

2u(u2−3)
(u2+1)2

u(u2−3)3

8(u2−1)(u2+1)2
0 u2−1

u2+1

DRu
h+1

2(u2+1)
− 2h+1

2(u2+1)
h(u4+6u2−3)

8(u4−1)
1

2(u2+1)
0

Duu − u

2(u4−1)
u

u4−1
−

u(u2+3)
4(u4−1)

u

2(u4−1)
0

DTR 0 0 0 0 0

DTu
im

2(u2+1)
−

im(u4+6u2−3)
8(u4−1)

0 0 0

DΦR 0 0 0 0 −
im(u2−1)
2(u2+1)

DΦu
im

2(u2+1)
− im

2(u2+1)
0 − im

2(u2+1)
0

C′
uu(u) C′

TR(u) C′
Tu(u) C′

ΦR(u) C′
Φu(u)

DTT
u(u2−1)(u6+11u4−13u2+9)

2(u2+1)4
0 −

im(u2−1)(u4+6u2−3)
(u2+1)3

0
im(u4+6u2−3)2

4(u2+1)3

DTΦ
4u(u2−1)3

(u2+1)4
0 −

im(u6+9u4−17u2+7)
2(u2+1)3

0
im(u6+5u4−9u2+3)

(u2+1)3

DΦΦ
4u(u2−1)3

(u2+1)4
0 −

4im(u2−1)2

(u2+1)3
0

4im(u2−1)2

(u2+1)3

DRR −
u(u2−1)
2(u2+1)

0
im(u2−1)

u2+1
0 −

im(u4+6u2−3)
4(u2+1)

DRu 0 im

2(u2+1)
0 −

im(u4+6u2−3)
8(u4−1)

0

Duu 0 0 0 0 0

DTR 0 −
u(u2−3)
(u2+1)2

−
(u2−1)

(

−u4−6u2+h(u2+1)2+3
)

2(u2+1)3
u(u2−3)
(u2+1)2

−
(u2−1)(u4+6u2−3)

2(u2+1)3

DTu 0 h+2

2(u2+1)
0 0 0

DΦR 0 0
2(u2−1)2

(u2+1)3
0 −

(u2−1)
(

h(u2+1)2+4(u2−1)
)

2(u2+1)3

DΦu 0 0 0 h+1

2(u2+1)
0

TABLE III. B matrix.
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DAB CTT (u) CTΦ(u)

DTT

(u2−1)
(

u4+2u2+2h2(u2+1)2+6h(u2+1)2+9
)

(u2+1)5
−

u8−28u6−42u4+36u2+2h2(u8+8u6+10u4−3)+3h(u8+8u6+10u4−3)−15

2(u2+1)5

DTΦ
(u2−1)

(

2h2(u2+1)2+5h(u2+1)2+8
)

(u2+1)5
−

h2(u4+10u2−7)(u2+1)2+h(u4+10u2−7)(u2+1)2−8(3u6+4u4−5u2+2)
2(u2+1)5

DΦΦ

2(u2−1)
(

h2(u2+1)2+2h(u2+1)2+4
)

(u2+1)5
−

2(u2−1)
(

−3u4−6u2+2h2(u2+1)2+h(u2+1)2+5
)

(u2+1)5

DRR
8(u6−8u4+9u2−2)−m2(u2+1)4

8(u2−1)(u2+1)3
−3u4+30u2+h(u2+1)2−7

2(u2+1)3

DRu − (h+1)u

(u2+1)2
2u(u2+h(u2−1)−2)
(u2−1)(u2+1)2

Duu
m2(u2+1)4+4h2(u2−1)(u2+1)2+8h(u2−1)(u2+1)2+8(u6−u4+u2−1)

8(u2−1)2(u2+1)3
−

3u4−2u2+2h2(u2+1)2+3h(u2+1)2+3

2(u2−1)(u2+1)3

DTR

im
(

u4−2u2+2h(u2+1)2+5
)

4(u2+1)3
−

im(u4+6u2−3)
(

−u4−6u2+h(u2+1)2+3
)

8(u2−1)(u2+1)3

DTu
imu

2−2u4

imu(u4+6u2−3)
4(u2−1)(u2+1)2

DΦR

im
(

u4+h(u2+1)2+3
)

2(u2+1)3
−

im
(

−u4−6u2+h(u2+1)2+3
)

2(u2+1)3

DΦu
imu

2−2u4
imu

(u2+1)2

CΦR(u) CΦu(u)

DTT −
ihm(u4+6u2−3)2

4(u2−1)(u2+1)3
imu(u4+6u2−3)2

4(u2−1)(u2+1)3

DTΦ −
ihm(u4+6u2−3)

(u2+1)3
imu(u4+6u2−3)

(u2+1)3

DΦΦ −
4ihm(u2−1)
(u2+1)3

4imu(u2−1)
(u2+1)3

DRR

im(u4+6u2−3)
4(u4−1)

−
imu(u6+3u4+19u2−15)

4(u2−1)(u2+1)2

DRu
imu(u4+6u2−3)
4(u2−1)(u2+1)2

−
ihm(u4+6u2−3)

8(u4−1)

Duu −
i(h+1)m(u4+6u2−3)

4(u2−1)2(u2+1)

imu(u2+3)
2(u4−1)

DTR −u4−12u2+3

(u2+1)3
2u(u4−14u2+9)

(u2+1)4

DTu
(h+2)u(u2−3)
(u2−1)(u2+1)2

−
(h+2)(u4+6u2−3)

2(u2+1)3

DΦR
6u2−2

(u2+1)3
−

2u
(

h(u2+1)2−2(u4−6u2+5)
)

(u2+1)4

DΦu − 2(h+1)u

(u2−1)(u2+1)2
−

(h+1)
(

h(u2+1)2+4(u2−1)
)

2(u2+1)3

TABLE IV. Part I of C matrix.
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DAB CRR(u) CRu(u)

DTT

8(u10−2u8−6u6−8u4+21u2−6)−m2(u6+7u4+3u2−3)2

8(u2−1)(u2+1)5
−

4u((2h+3)u4+2(h−6)u2+9)
(u2+1)4

DTΦ
−(u8+8u6+10u4−3)m2+2h(u2−1)(u2+1)2+8(u6+u4−3u2+1)

2(u2+1)5
−

4u(u2−1)(hu2+2u2+h−4)
(u2+1)4

DΦΦ

2(u2−1)
(

−m2(u2+1)2+h(u2+1)2+2(u4+2u2−1)
)

(u2+1)5
−

4(h+1)u(u2−1)
(u2+1)3

DRR
u2−1

(u2+1)3
4u

(u2+1)2

DRu − u

(u2+1)2
8(u6+3u4−5u2+1)−m2(u8+8u6+10u4−3)

8(u2−1)(u2+1)3

Duu
−(u8+8u6+10u4−3)m2+4h(u2−1)(u2+1)2+16u2(u2−1)

8(u2−1)2(u2+1)3
− (h+1)u

u4−1

DTR
im(u4+6u2−3)

4(u2+1)3
−

imu(u2−3)
(u2+1)2

DTu −
imu(u2−3)

2(u2−1)(u2+1)2
im(u4+6u2−3)

2(u2+1)3

DΦR
im(u4+4u2−1)

2(u2+1)3
−

imu(u2−1)
(u2+1)2

DΦu
imu

2(u4−1)

im
(

u4+6u2+h(u2+1)2−3
)

2(u2+1)3

Cuu(u) CTR(u)

DTT

4h2(u6+5u4−9u2+3)(u2+1)2+m2(u6+7u4+3u2−3)2+8(5u8+34u6−68u4+54u2−9)
8(u2+1)5

i(2h+3)m(u4+6u2−3)
2(u2+1)3

DTΦ
(u2−1)

(

(u8+8u6+10u4−3)m2+4h2(u2−1)(u2+1)2+2h(u2−1)(u2+1)2+8(u6+8u4−11u2+2)
)

2(u2+1)5
im(2(u4+8u2−5)+h(u4+10u2−7))

2(u2+1)3

DΦΦ

2(u2−1)2
(

h2(u2+1)2+m2(u2+1)2+h(u2+1)2+2(u4+9u2−2)
)

(u2+1)5
2i(2h+3)m(u2−1)

(u2+1)3

DRR −
(u8+8u6+10u4−3)m2+4h(u2−1)(u2+1)2+8(u4+4u2−1)

8(u2+1)3
− im

2(u2+1)

DRu − hu

2(u2+1)
− imu

(u2+1)2

Duu
u2(u2+3)
(u2+1)3

i(2h+3)m

2(u4−1)

DTR
im(u2−1)(u4+6u2−3)

4(u2+1)3
8(u6−7u4+7u2−1)−m2(u8+8u6+10u4−3)

8(u2−1)(u2+1)3

DTu −
imu(u2−3)
2(u2+1)2

− (h+2)u

(u2+1)2

DΦR

im(u2−1)
(

h(u2+1)2+2(u2−1)
)

2(u2+1)3
− m2

2(u2+1)

DΦu −
imu(u2−1)
(u2+1)2

0

TABLE V. Part II of C matrix.
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DAB CΦΦ(u)

DTT

h2(u2−1)(u6+7u4+3u2−3)2−2(3u12+68u10−5u8−128u6+153u4−36u2+9)
8(u2−1)2(u2+1)5

DTΦ −
−2(u8+8u6+10u4−3)h2+(u8+8u6+10u4−3)h+4(9u6+13u4−9u2+3)

4(u2+1)5

DΦΦ
(u2−1)

(

−3u4−6u2+2h2(u2+1)2−2h(u2+1)2+5
)

(u2+1)5

DRR
2(7u8−30u6+72u4−42u2+9)−h(u2+1)2(u6+5u4−9u2+3)

8(u2−1)2(u2+1)3

DRu −
u(8(u4−4u2+3)+h(u6+11u4−13u2+9))

8(u4−1)2

Duu
(u8+8u6+10u4−3)h2+(u8+8u6+10u4−3)h+2(7u6+3u4+9u2−3)

8(u2−1)2(u2+1)3

DTR −
im(u4+6u2−3)2

16(u2−1)(u2+1)3

DTu −
imu(u6+3u4−21u2+9)

8(u4−1)2

DΦR −
im(u4+6u2−3)

4(u2+1)3

DΦu −
imu(u2−3)

2(u2−1)(u2+1)2

CTu(u)

DTT −
2imu(u2−1)(u2+3)

(u2+1)3

DTΦ −
imu(u4+4u2−5)

(u2+1)3

DΦΦ −
4imu(u2−1)
(u2+1)3

DRR
4imu

(u2+1)2

DRu
i(h+1)m

2(u2+1)

Duu − imu

u4−1

DTR −
2u

(

u4−14u2+h(u2+1)2+9
)

(u2+1)4

DTu −
4h2(u2−1)(u2+1)2+4h(u6−3u4+7u2−5)+(u4+6u2−3)

(

−8u2+m2(u2+1)2+8
)

8(u2−1)(u2+1)3

DΦR −
4u(u4−6u2+5)

(u2+1)4

DΦu
−m2(u2+1)2+4h(u2−1)+4(u2−1)

2(u2+1)3

TABLE VI. Part III of C matrix.
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