
This is the accepted manuscript made available via CHORUS. The article has been
published as:

μ-hybrid inflation with low reheat temperature and
observable gravity waves

Mansoor Ur Rehman, Qaisar Shafi, and Fariha K. Vardag
Phys. Rev. D 96, 063527 — Published 27 September 2017

DOI: 10.1103/PhysRevD.96.063527

http://dx.doi.org/10.1103/PhysRevD.96.063527


µ-Hybrid Inflation with Low Reheat Temperature and

Observable Gravity Waves

Mansoor Ur Rehman,1, ∗ Qaisar Shafi,2, † and Fariha K. Vardag1, ‡

1Department of Physics, Quaid-i-Azam University, Islamabad 45320, Pakistan

2Bartol Research Institute, Department of Physics and Astronomy,

University of Delaware, Newark, DE 19716, USA

Abstract

In µ-hybrid inflation a non-zero inflaton VEV induced by supersymmetry breaking is proportional to the
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I. INTRODUCTION

In its simplest formulation minimal supersymmetric hybrid inflation can be associated with a

symmetry breaking G → H, where G and H are usually assumed to be local gauge symmetries [1].

Successful inflation employs a unique renormalizable superpotential W and a canonical Kähler

potential Kc [1, 2], and the temperature fluctuation δT/T in this case is roughly proportional to

(M/mP)
2[1], where M and mP denote the symmetry breaking scale of G and reduced Planck scale

(2.4×1018 GeV) respectively. The model therefore predicts that the symmetry breaking scale M is

on the order of 1015 −1016 GeV, which means that Grand Unified Theories (GUTs) are naturally

incorporated in supersymmetric hybrid inflation [3]. A scalar spectral index in agreement with

the measurement ns = 0.9655± 0.0062 by Planck [4] is realized by including both the radiative

corrections as well as the relevant soft supersymmetry breaking terms in the inflationary potential

[5]. Without the soft supersymmetry breaking terms ns lies close to 0.98, and an alternative way

to bring this into agreement with the Planck measurement is to employ a non-minimal Kahler

potential [6, 7].

An attractive extension of minimal supersymmetric hybrid inflation is the so-called ‘µ-hybrid

inflation’ [8, 9], which is shorthand for supersymmetric hybrid inflation in the presence of the tri-

linear coupling SHuHd that yields the desired Minimal Supersymmetric Standard Model (MSSM)

µ term. The scalar component of the G-singlet superfield S acquires, after supersymmetry break-

ing, a non-zero VEV (vacuum expectation value) proportional to m3/2, where m3/2 denotes the

gravitino mass [8]. This can be used, as shown in [8], to resolve the µ problem encountered in the

MSSM. This model has been explored in greater depth in [9], with the conclusion that successful

µ-hybrid inflation based on the minimal superpotential W and a canonical Kähler potential Kc

leads to split supersymmetry [10]. The gravitino mass m3/2 and the soft supersymmetry break-

ing masses are predicted to be larger than 5×107 GeV, and the reheat temperature after inflation

estimated to be Tr & 1012 GeV [9]. For a recent discussion on µ-hybrid inflation in no-scale

supergravity see [11] and for a discussion including axions see [12].

In this paper we study an extension of minimal µ-hybrid inflation in which the canonical Kähler

potential is replaced by a non-minimal K but the renormalizable superpotential W is retained. This

will allow us to implement successful µ-hybrid inflation with m3/2 ∼ 1−100 TeV and soft scalar

masses in the TeV region, compatible with the resolution of the gauge hierarchy problem. The

plan of the paper is as follows. In section II we review µ-hybrid inflation with minimal canonical
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Kähler potential. In section III we study the consistency of µ-hybrid inflation with the gravitino

problem and reheat temperature in the case of non-minimal Kähler potential. We discuss the

prospect of observing primordial gravity waves in section IV. In addition, the impact of cosmic

strings [13], if present, on the inflationary predictions is also briefly discussed in section IV. In

section V we summarize our findings.

II. µ-HYBRID INFLATION WITH MINIMAL KÄHLER POTENTIAL

Minimal supersymmetric µ-hybrid inflation employs a canonical Kähler potential and a unique

renormalizable superpotential W which respects a U(1) R-symmetry [8],

W = κS(ΦΦ−M2)+λSHuHd, (1)

where κ and λ are dimensionless real parameters. The scalar component of S, a gauge singlet

chiral superfield plays the role of the inflaton. The dimension-full parameter M represents the non-

zero VEV of the conjugate chiral superfields Φ and Φ that belong to a non-trivial representation

of a gauge group G. Since our main goal is to discuss the viability of µ-hybrid inflation with

low reheat temperature and TeV scale SUSY breaking masses, we take G to be U(1)B−L [14], an

attractive and presumably the simplest model for µ-hybrid inflation. The superpotential W and

superfield S have unit R-charges, while the remaining superfields are assigned zero R-charges.

This implies that in the supersymmetric limit, the VEV of the scalar component of superfield S

is zero. The gravity mediated supersymmetry breaking yields a non-zero VEV proportional to

m3/2 for the scalar component of S. Then the last term in the superpotential, λSHuHd, effectively

describes the µ-term with µ ∼ λ
κ m3/2, thereby solving the MSSM µ problem [8].

The minimal canonical Kähler potential is given by

Kc = |S|2+ |Φ|2 + |Φ|2 + |Hu|2 + |Hd|2. (2)

Taking into account the well-known radiative corrections [1, 15], supergravity (SUGRA) correc-

tions [3, 16] and the soft supersymmetry breaking terms [5, 17], the inflationary potential (along

the D-flat direction with |Φ|= |Φ|= 0 and |Hu|= |Hd|= 0) to a good approximation is given by:

V (x)≃ κ2M4

(

1+
κ2

8π2
F(x)+

λ 2

4π2
F(y)+

1

2

( M

mP

)4

x4 +a
m3/2

κM
x

)

. (3)
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FIG. 1: Variation of gravitino mass m3/2 with reheat temperature Tr is shown by solid-red curve for the

minimal Kähler potential with the conditions, ns = 0.9655, γ = 2 and a=−1. The gluino mass mg̃, obtained

via Eq. (8), is displayed with dotted-green curve. The LHC lower bound on gluino mass (mg̃ & 2 TeV) is

shown by a grey vertical line at Tr ∼ 2×1011 GeV. Regarding the unstable gravitino scenario, we indicate

Tr ∼ 1011 GeV corresponding to m3/2 = 25 TeV as shown by dashed-grey line.

The radiative corrections are described by the functions,

F(x) =
1

4
[(x4 +1) ln

(x4 −1

x4

)

+2x2 ln
(x2 +1

x2 −1

)

+2ln
(κ2M2x2

Q2

)

−3] (4)

where x = |S|/M, y =
√

γ x and following [9] we define γ = λ/κ and take the coefficient of soft

linear term a = −1 [5]. Note that the canonically normalized inflaton field is σ = |S|/
√

2 where

we denote both the superfield and its scalar component by S. Note that in this paper we will ignore

the imaginary component of S which has previously been analyzed in [7, 17, 18]. The µ-term

coupling λSHuHd in Eq. (1) induces an inflaton decay into Higgisnos with a decay width given by

[9],

ΓS(S → H̃uH̃d) =
λ 2

8π
mS, (5)

where mS =
√

2κM is the inflaton mass. The reheat temperature Tr is estimated to be [19],

Tr ≈ 4

√

90

π2g∗

√

ΓSmP, (6)

where g∗ is 228.75 for MSSM.

Following [9] we briefly recapitulate µ-hybrid inflation with minimal K and W . Taking into

account the inflationary constraints we obtain a lower bound on the reheat temperature Tr & 3×
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1010 GeV for a gravitino mass m3/2 & 1 TeV (as shown by solid-red curve in Fig. 1). Assuming

that the gravitino is the lightest supersymmetric particle (LSP), it’s contribution to the relic density

[20] is given by

Ω3/2h2 = 0.23
( Tr

1010 GeV

)(1 TeV

m3/2

)( mg̃

2 TeV

)2

, (7)

where mg̃ is the gluino mass. The relic density of the observed dark matter DM (that is ΩDMh2 =

0.11) [21] is used to obtain the variation of the gluino mass mg̃ with Tr and m3/2,

mg̃

2 TeV
=
[

0.46
(1010 GeV

Tr

)( m3/2

1 TeV

)]
1
2
. (8)

Using the LHC bound on the gluino mass, the plot of mg̃ was cutoff at 2 TeV. It is clearly seen

that the gravitino is heavier than gluino for all values above the LHC cutoff (Fig. 1), and hence the

former cannot be the LSP.

In the light of the unstable gravitino problem [22] we review the two scenarios discussed in

detail in [9]. For an unstable gravitino, the lifetime is (Fig. 1 of [23])

τ3/2 ≃ 1.6×104
(1 TeV

m3/2

)3

. (9)

A long-lived unstable gravitino with lifetime τ3/2 > 1 sec and mass m3/2 < 25 TeV will decay

after Big Bang Nucleosynthesis (BBN). Therefore, successful BBN limits the reheat temperature

to be Tr . 3× (105 −106) GeV and Tr . 2×109 GeV for gravitino masses of 1 TeV and 10 TeV

respectively [23]. As shown in Fig. 1, the reheat temperature from inflationary constraints is

3× 1010 GeV and 1011 GeV for gravitino masses of 1 TeV and 10 TeV respectively. Hence the

possibility of long-lived unstable gravitino is inconsistent with the BBN bounds.

For a short lived unstable gravitino with m3/2 > 25 TeV, the BBN bound on reheat temperature

is unimportant. As the gravitino decays into the LSP neutralino χ̃0
1 , we find [23],

Ωχ̃0
1
h2 ≃ 2.8×1011 ×Y3/2

( mχ̃0
1

1 TeV

)

, (10)

where mχ̃0
1

is the mass of the lightest neutralino and Y3/2 is gravitino yield given by

Y3/2 ≃ 2.3×10−12
( Tr

1010 GeV

)

. (11)

This relations fits well with the numerical result for a wide range of reheat temperature, that is

Tr ∼ 105 GeV−1012 GeV [23]. As the LSP neutralino density produced by gravitino decay should

not exceed the observed DM relic density, we finally obtain an upper bound on the neutralino mass;

mχ̃0
1
. 18

(1011 GeV

Tr

)

. (12)
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This is inconsistent with the lower limit set on the neutralino mass mχ̃0
1
& 18 GeV [24] for reheat

temperature Tr & 1011 GeV with m3/2 > 25 TeV (see Fig. 1).

To bypass this constraint the LSP neutralino is assumed to be in thermal equilibrium during

gravitino decay in which case the neutralino abundance is independent of the gravitino yield. For

a typical value of the freeze out temperature, TF ≃ 0.05 mχ̃0
1
, the gravitino lifetime is estimated to

be:

τ3/2 . 10−11 sec
(1 TeV

mχ̃0
1

)2

. (13)

Comparing Eqs.(9) and (13) we obtain a bound on m3/2,

m3/2 & 108 GeV
( mχ̃0

1

2 TeV

)2/3

. (14)

We thus arrive at the main conclusion of [9], namely that the successful realization of µ-hybrid

inflation with the minimal Kähler potential requires split supersymmetry with gravitino mass

m3/2 & 108 GeV. The corresponding reheat temperature according to this scenario is Tr & 1013 GeV

(Fig. 1). In summary, the gravitino mass is strongly dependent on reheat temperature due to infla-

tionary constraints. In the next section we discuss how these problems are overcome by employing

a non-minimal Kähler potential.

III. µ-HYBRID INFLATION WITH NON-MINIMAL KÄHLER POTENIAL

The Kähler potential including the relevant non-minimal terms is given by

K = Kc +κS

|S|4
4m2

P

+κSS

|S|6
6m4

P

+ ... . (15)

The corresponding scalar potential takes the following form,

V (x)≃ κ2M4

(

1+
κ2

8π2
F(x)+

λ 2

4π2
F(y)+

γS

2

( M

mP

)4

x4 −κS

( M

mP

)2

x2 +a
m3/2

κM
x

)

, (16)

where γS = 1+ 2κ2
S − 7κS

2
− 3κSS. Using this scalar potential we can obtain the usual slow roll

parameters defined by,

ε =
m2

p

4M2

(V ′

V

)2

, η =
m2

p

2M2

(V ′′

V

)

, ξ 2 =
m4

p

4M4

(V ′V ′′′

V 2

)

. (17)

It is important to note that all derivatives (denoted by V ′, V ′′ and V ′′′) in the above expressions are

with respect to x and not with respect to the canonically normalized field σ =
√

2|S|. The scalar
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spectral index ns, the tensor-to-scalar ratio r and the running of the scalar spectral index dns/dlnk,

to leading order in slow roll approximation, are given by

ns ≃ 1−6ε +2η, (18)

r ≃ 16ε, (19)

dns

dlnk
≃ 16εη −24ε2 −2ξ 2. (20)

The amplitude of power spectrum of scalar curvature perturbation As is given by,

As(k0) =
1

6π2

( M

mP

)2(V 3/V ′2

m4
P

)

x=x0

, (21)

where As(k0) = 2.196× 10−9 and x0 is the value of the inflaton field at the pivot scale k0 =

0.05 Mpc−1 [4]. The number of e-folds between the horizon exit (at pivot scale) and the end

of inflation is given by

N0 = 2
( M

mP

)2
∫ x0

1

(V

V ′

)

dx. (22)

Assuming a standard thermal history, N0 is related with Tr as,

N0 = 53+
1

3
ln
( Tr

109 GeV

)

+
2

3
ln
(

√
κM

1015 GeV

)

, (23)

where Tr is given by Eq. (6). The predictions for the various inflationary parameters is estimated

numerically using these relations up to second order in the slow roll parameters. For most of the

numerical work, we fix the scalar spectral index at the central value of the range given by Planck,

ns = 0.9655± 0.0062 [4]. It is important to mention here that in the minimal Kähler potential

case with TeV scale soft SUSY masses [5], we need to take a = −1 in order to obtain the red-

tilted spectrum within the 1-σ Planck bounds. Alternatively, for a = 1 a similar range for ns can

be obtained by taking intermediate scale, negative soft mass-squared term for the inflaton [25].

However, with the non-minimal Kähler potential we can obtain the central value of ns with TeV

scale soft masses even for a = 1 [6, 7]. The appearance of a negative mass term for the inflaton

with non-minimal coupling κs in the potential (Eq. (24)) actually plays a crucial role in realizing

successful inflation. Most importantly it is shown in [7] that a low reheat temperature in the

standard hybrid inflation can be obtained with appropriately small values of κ (see Fig. 10 of [7]).

Therefore, with smaller values of κ and λ , we expect similar results in µ-hybrid inflation.

For suitably small κ and λ values, the last 50−60 e-folds occur in the flat region of the potential

with |S| close to M (that is x → 1). Therefore, we can ignore the radiative corrections and the
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FIG. 2: Variation of the reheat temperature Tr and the symmetry breaking scale M with κ for gravitino mass

of 1 TeV (solid-green), 10 TeV (dashed-red) and 100 TeV(dotted-blue). We fix the scalar spectral index

ns = 0.9655, κS = 0.02, κSS = 0 and represent γ = 2(10) by thick (thin) curves.

potential becomes,

V (x)≃ κ2M4

(

1+
γS

2

( M

mP

)4

x4 −κS

( M

mP

)2

x2 +a
m3/2

κM
x

)

. (24)

Apart from the linear term this potential resembles the model of Spontaneous Symmetry Breaking

Inflation (SSBI) [26]. However, near x ∼ 1, the linear term becomes important and develops a

local maximum resulting in ‘hilltop inflation’ starting near this maximum [27]. These hilltop

type solutions are a common feature of supersymmetric hybrid inflation models with non-minimal

Kähler potential [28]. Near x ∼ 1 Eq. (21) becomes

As ≈
κ2

6π2

( M

mP

)6

(

4γS

( M

mP

)4

−2κS

( M

mP

)2

+a
m3/2

κM

)−2

. (25)

Assuming M . 1016 GeV, the quartic SUGRA correction term with co-efficient γS can be ignored

and this further simplifies the above expression to,

As ≈
κ2

6π2

( M

mP

)6

(

− (1−ns)
( M

mP

)2

+a
m3/2

κM

)−2

, (26)

where we have used Eq. (18) to eliminate κS in favour of ns [7]. For the central value ns = 0.9655

and other inflationary constraints from Eqs. (21) and (23), it is found numerically that there is one

percent cancellation among the two terms in Eq. (26). As a result we arrive at a simple relation for

M as function of κ ,

M(κ)≈
(

am3/2

κ(1−ns)mP

)1/3

mP ≈ 5.6×1012

(

m3/2

κ

)1/3

∝ κ−1/3. (27)
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The reheat temperature from Eq. (6) can be written as,

Tr(κ)≈ 1.7×108γ
√

Mκ3 ≈ 3.9×1014γ(m3/2)
1/6κ4/3 ∝ κ4/3. (28)

This is an important relation which justifies our expectation of realizing a low reheat temperature

with appropriately small values of κ in µ-hybrid inflation. The approximate results in Eqs. (27)

and (28) are clearly in agreement with our numerical work as shown in Fig. 2. Here we have

displayed the variation of Tr and M as a function of κ , for three different values of the gravitino

mass m3/2 = 1,10 and 100 TeV. As mentioned in [8], in order to have the ‘good’ point, that is

Hu =Hd = 0 and Φ Φ =M2, as the unique local minimum of the superpotential (given by Eq. (1)),

we should have γ > 1. Therefore, to see the effect of γ on various inflationary parameters in general

and on reheat temperature in particular, we consider γ = 2 and 10 (as shown by the thick and thin

curves respectively in Fig. 2). For the M versus κ curve of Fig. 2, the dependence of γ disappears

in the low reheat temperature regime where the radiative corrections become unimportant (see

Eq. (27)). For a given value of κ and M the reheat temperature varies linearly with γ as derived in

Eq. (28) and shown in the right panel of Fig. 2. Therefore, to estimate the lower bounds on reheat

temperature we implicitly assume γ = 2. As mentioned earlier the low reheat temperature values

occur with x0 close to one, so we impose a 0.01% fine tuning bound on the difference x0 − 1.

Consequently, we obtain the following lower bounds on the reheat temperature Tr:

Tr & (6×106, 2×106, 6×105) GeV for m3/2 ∼ (1,10,100) TeV, (29)

respectively (Fig. 2).

We return to a discussion of the gravitino problem in the light of low reheat temperature. With

reference to the previous discussion we consider the following three scenarios:

1. A stable LSP gravitino;

2. an unstable ‘long-lived’ gravitino with mass less than 25 TeV;

3. an unstable ‘short-lived’ gravitino with mass greater than 25 TeV.

Assuming the gravitino is LSP and using the dark matter relic density (ΩDMh2 = 0.11) constraint,

the gluino mass is calculated as a function of Tr via Eq. (7), as shown in Fig. 3, for three values of

m3/2. The upper bounds on the reheat temperature, shown by the vertical grey lines in Fig. 3 are

Tr . 2× (1010,109,108) GeV for m3/2 = (1,10,100) TeV, (30)
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FIG. 3: Possibility of LSP gravitino with masses m3/2 = (1, 10, 100) TeV and corresponding gluino masses

mg̃, are shown by solid-green, dashed-red and dotted-blue curves, respectively, with ns = 0.9655 and γ = 2.

The lower bounds on reheat temperature are shown by vertical grey lines.

respectively. These upper bounds of Tr are consistent with the lower bound incorporated in our

numerical work (i.e. Eq. (29)), and so the LSP gravitino scenario can be consistently realized in

the non-minimal Kähler case.

For the second possibility, namely an unstable ‘long-lived’ gravitino (with m3/2 . 25 TeV), the

gravitino problem arises as the gravitino decays right after BBN, which can adversely effect the

light nuclei abundances and thereby ruin the success of BBN. To avoid this problem, as mentioned

in section I, an upper bound on the reheat temperature is obtained [23]: Tr . 3× (105 −106) GeV

for m3/2 ∼ 1 TeV, and Tr . 2 × 109 GeV for m3/2 ∼ 10 TeV. But the inflationary constraints

on the reheat temperature mentioned in Eq. (29) are Tr & 6× 106 GeV for m3/2 = 1 TeV, and

Tr & 2× 106 GeV for m3/2 = 10 TeV, respectively. Thus the second scenario with a long-lived

gravitino is marginally ruled out for 1 TeV gravitino mass but stays comfortably within the BBN

bounds for a 10 TeV gravitino mass.

An unstable gravitino of mass m3/2 = 100 TeV falls in the third category of short-lived grav-

itino. Here, the BBN constraints are weakened because a heavy gravitino implies a shorter life-

time. But now the constraints from the abundance of the lightest LSP neutralino from the decay

of gravitino will come into play. These constraints are less severe than those from BBN [23]. For

a 100 TeV gravitino mass, the upper bound on the LSP neutralino as derived in Eq. (12) becomes

mχ̃0
1
. (18−105) GeV for 1011 GeV & Tr & 6×105 TeV. (31)
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FIG. 4: Variation of the reheat temperature Tr with the symmetry breaking scale M, coefficient κS, the

tensor-to-scalar ratio r and the running of spectral index dns/d lnk, for m3/2 = 1 TeV (solid-green), 10 TeV

(dashed-red) and 100 TeV(dotted-blue). We have set the scalar spectral index ns = 0.9655, κS = 0.02,

κSS = 0 and represent γ = 2(10) by thick (thin) curves.

The lower limit on the LSP neutralino mass from experiments is mχ̃0
1
& 18 GeV [24]. Therefore,

the non-LSP gravitino scenario with m3/2 ∼ 100 TeV comfortably holds in a considerably larger

domain: 106 GeV . Tr . 1011 GeV. Hence, we have successfully realized µ-hybrid inflation with

m3/2 ∼ 1−100 TeV and low reheat temperature.

The predictions of other important inflationary parameters are displayed in Fig. 4. It is inter-

esting to note that with low reheat temperature we can a achieve a gauge symmetry breaking scale

M of the order of GUT scale, namely 2×1016 GeV. In the second panel of Fig. 4, the value of the

parameter κS is seen to remain constant in the low reheat temperature range. As discussed earlier

the radiative and the quartic-SUGRA corrections can be neglected in this region. Therefore, the

scalar spectral index ns in the low reheat region can be approximated as,

ns ≃ 1−2κS =⇒ κS =
1−ns

2
. (32)
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For the central value of scalar spectral index ns = 0.9655, we obtain κS = 0.0173 in good agree-

ment with the numerical estimate shown in Fig. 4. The tensor-to-scalar ratio r and the running of

the scalar spectral index dns/d lnk in the low reheat limit are given by

r .
2

3π2
√

γ/2As(k0)

( m3/2

(1−ns)mP

)5/4( Tr

mP

)1/2

, (33)

dns/d lnk .−
(

6

π2As(k0)

)1/2 m3/2

(1−ns)mP

. (34)

As shown in the lower two panels of Fig. 4, r and dns/d lnk in this case are very small which is a

common feature of small field models.

IV. PRIMORDIAL GRAVITY WAVES AND COSMIC STRINGS

So far we have set the non-minimal coupling κSS to be zero in our calculations and only the

non-minimal coupling κS has played a significant role in realizing µ-hybrid inflation. Next, with

non-zero κSS we will mainly be interested in the large (observable) r solutions which might be

detectable in future experiments; PRISM will be able to measure the tensor-to-scaler ratio r .

5×10−4 [29], whereas LiteBIRD will provide a precision of δ r < 0.001 [30]. The large r solutions

have previously been explored in standard hybrid inflation in [31] with intermediate scale soft

masses, and in [32] with TeV scale soft masses. As explained in these references, large r solutions

are possible with positive quadratic and negative quartic terms in the potential. This structure is

not possible with κSS = 0 where, with κS = 0.0173, the quadratic term is negative and the quartic

term is positive. This structure of the potential resembles the SSBI model of [26] if we ignore both

the radiative corrections and the linear term in V (x), Eq. (24). It turns out that although the linear

term can be ignored for large r solutions, the radiative corrections provide a contribution that is

comparable with the quadratic and quartic terms. Therefore, the predictions of our model are, in

general, different from those of SSBI model but it lies within the same category of hilltop inflation

[27]. The largest possible values of r consistent with the Lyth bound in our case are obtained with

S0 values comparable to mP. Therefore, we take S0 = (0.1, 0.2, 0.5, 1) mP and show in Fig. 5 the

variation of reheat temperature Tr with r and dns/d lnk in the upper panel, and M versus κ and

κSS versus κS in the lower panel. To avoid the gravitino problem the bound on reheat temperature

Tr . 1011 GeV is highlighted by darkening of curves, whereas the faded region of the curves show

large r solutions that lie outside this bound.
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FIG. 5: The variation of the reheat temperature Tr with r and dns/d ln k (upper panel) and M versus κ and

κSS versus κS (lower panel), for S0 = mP (green), mP/2 (red), mP/5 (blue) and mP/10 (brown), valid for

gravitino mass range m3/2 ∼ 1− 100 TeV with ns = 0.9655 and γ = 2. The faded region of the curves

represents the reheat temperature Tr & 1011 GeV.

The choice S0 = mP gives the upper bound on r . 0.002 mainly from the requirement of Tr .

1011 GeV. However, this choice entails the fine tuning of higher order terms in the potential.

Therefore, with S0 ∼ 0.1 mP, we obtain an upper bound r . 4× 10−6 with reasonably natural

suppression of higher order terms. This is also consistent with the value of r obtained by requiring

the boundedness of the potential for large values of the field as discussed in [33].

Cosmic strings arise from the breaking of U(1)B−L at the end of inflation. The observational

bounds on these strings are given in terms of the dimensionless quantity GNµs which characterizes

the strength of the the gravitational interaction of the strings. Here GN = 1
8πm2

P

is Newton’s constant

and µs denotes the mass per unit length of the string. A recent Planck bound on GNµs, using field

theory simulations of the Abelian-Higgs action, is given by [34, 35]

GNµs . 2.4×10−7. (35)
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FIG. 6: The symmetry breaking scale M and Tr versus κ (upper panel) and S0/mP versus κS and Tr versus r

(lower panel) are plotted for m3/2 = 1 (solid-green), 10 (dashed-red) and 100 (dotted-blue) TeV with γ = 2,

ns = 0.9655 and holds for −1. κSS . 1. The cosmic string bounds Mstring are shown by the grey dot-dashed

curve. The faded region of the curves represents the reheat temperature Tr & 1011 GeV.

For local cosmic strings µs is given by,

µs = 2πM2ε(β ), (36)

where,

ε(β ) =
2.4

log[2/β ]
for β =

κ2

2g2
< 10−2. (37)

For g = 0.7 and using above equations we calculate the Planck bound on the symmetry breaking

scale M and denote it by Mstring.

In Figure 6, we display the cosmic string bounds on the prediction of U(1)B−L µ-hybrid infla-

tion for m3/2 = 1,10 and 100 TeV. The cosmic strings bounds directly constrain M and κ as shown

in the upper-left panel of Fig. 6. This, in turn, put bounds on the reheat temperature, especially for

larger values of the gravitino mass. The cosmic string bounds also restricts the value of S0 (with

0.008 . κS . 0.0173 ) which, in turn, constrain the large r values, as shown in the lower panels
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TABLE I: The values of κ , r, M and Tr allowed by the Planck 2015 cosmic string bound GNµs . 2.4×10−7

for m3/2 = 1, 10, and 100 TeV for fixed values of ns = 0.9655 and γ = 2.

m3/2 (TeV) κ r M (GeV) Tr (GeV)

1 3×10−7 −3×10−4 3×10−16 −2×10−12 8×1015 −2×1015 6×106 −1×1011

10 4×10−6 −3×10−4 4×10−14 −4×10−12 7×1015 −3×1015 2×108 −1×1011

100 5×10−5 −3×10−4 5×10−12 −2×10−11 6×1015 −4×1015 1×1010 −1×1011

of Fig. 6. For further clarity the values obtained for κ , r, M, and Tr constrained by the cosmic

string bounds are given in Table I. For 1 TeV gravitino mass a wide range of reheat temperature

106−1011 GeV will yield observationally acceptable values of the cosmic string tension µs. With

the increase in gravitino mass the allowed phase space becomes more constrained. It is important

to note that the allowed range of r permissible by cosmic string bounds is highly suppressed and

unlikely to be observed in future experiments like PRISM and LiteBIRD. However, if we avoid the

cosmic strings bound in some way (for instance, by employing the shifted hybrid inflation [36],

or by using FD-term hybrid inflation [37]), then the range of r . 10−6−10−3 mentioned earlier is

testable in the foreseeable future.

V. CONCLUSION

We have considered a U(1)B−L extension of MSSM in which successful supersymmetric hy-

brid inflation is realized in conjunction with the resolution of the well-known µ problem. This

is achieved by invoking a non-minimal Kähler potential as a well-defined power series beyond

the leading canonical terms. The reheat temperature lies below the conventional upper bound of

around 109 GeV, and the gravitino and scalar sparticle masses can be of order 1−100 TeV. Thus

split supersymmetry, which appears if the Kähler potential is minimal, can be evaded. The upper

bound on the reheat temperature obtained from the gravitino problem translates into the upper

bound range on the tensor-to-scalar ratio r . 10−6 − 10−3. This is expected to be observed in

future experiments. However, it is important to note that this potentially observable interval al-

ludes to the upper limits of a wider range of r predicted by the model. Generalization of µ-hybrid

inflation to symmetry groups larger than U(1)B−L should be straightforward and will be discussed

elsewhere [38].
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