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We investigate the impact of general conditions of theoretical stability and cosmological viability
on dynamical dark energy models. As a powerful example, we study whether minimally coupled,
single field Quintessence models that are safe from ghost instabilities, can source the CPL expansion
history recently shown to be mildly favored by a combination of CMB (Planck) and Weak Lensing
(KiDS) data. We find that in their most conservative form, the theoretical conditions impact the
analysis in such a way that smooth single field Quintessence becomes significantly disfavored with
respect to the standard ΛCDM cosmological model. This is due to the fact that these conditions
cut a significant portion of the (w0, wa) parameter space for CPL, in particular eliminating the
region that would be favored by weak lensing data. Within the scenario of a smooth dynamical
dark energy parametrized with CPL, weak lensing data favors a region that would require multiple
fields to ensure gravitational stability.

I. INTRODUCTION

Recent observational results from weak lensing ex-
periments [1, 2] have been found to be in discordance
with cosmic microwave background measurements from
Planck [3]. This discordance is usually quantified by
means of consistency tests [4–7] or in terms of the S8 =

σ8

√
Ωm/0.3 derived parameter, with Ωm quantifying the

matter density and σ8 the amplitude of the linear matter
power spectrum on 8 h−1 Mpc scales, to which weak
lensing surveys are expected to be particularly sensi-
tive [8]. In the case of the weak lensing Kilo Degree
Survey (KiDS), this discordance is measured to be at the
level of 2.3σ [2].

Despite significant effort in investigating the effects
of systematics on the measurements of both weak lens-
ing [2, 7, 8] and Planck [9], no relevant reduction of the
tension has been found so far1, prompting some initial
investigations on whether this discordance could be due
to the assumption of the standard cosmological model,
ΛCDM [12, 13]. In [8], the KiDS collaboration revisited
the tensions between the data sets within some simple
extensions of the ΛCDM model. They found a dynam-
ical dark energy (DE) with a time-varying equation of
state to alleviate the tension, reducing it to S8 to 0.91σ
on S8, and to be favored by the combined KiDS and
Planck datasets, from a bayesian model selection point
of view [8].

Given this interesting result, in this paper we investi-
gate how connecting theoretically viable DE model with
the phenomenological parametrization used to perform
this analysis will affect the results. In practice, we ask
ourselves which theoretically viable DE model could cor-

1 We point out that other recent analysis of the KiDS data [10,
11] yield different degrees of tension with Planck. Our results,
however, would not be qualitatively affected by these.

respond to the expansion history preferred by the combi-
nation of KiDS and Planck data. We shall show that the
implementation of conditions of theoretical consistency
inside the analysis pipeline, in the form of viability pri-
ors, allows to answer such questions in a straighforward
way; more generally, it allows to perform theoretically
informed data analysis in a very efficient way. For a pre-
vious investigation of the impact of prior information in
quintessence studies see [14].

The paper is organized as follows. In Section II we re-
visit general conditions of stability for DE models, focus-
ing on minimally coupled quintessence. We then describe
how we implement these conditions in our exploration of
CPL models. In Section III we describe the data sets
that we employ and, finally, we show the results of our
analysis in Section IV. We draw our Conclusions in Sec-
tion V.

II. DYNAMICAL DARK ENERGY: STABILITY
AND VIABILITY CONDITIONS

In the analysis of observational data it is often use-
ful to explore broad classes of models through a frame-
work that parametrizes the relevant deviations from the
standard ΛCDM cosmological model. This approach is
commonly applied to the investigation of dynamical DE
models, where the equation of state is often described by
the Chevallier-Polarski-Linder parametrization [15, 16]:

wDE(a) = w0 + wa(1− a). (1)

When going beyond background probes, the latter
is commonly combined with the Parametrized Post-
Friedmann (PPF) framework for DE perturbations, in-
troduced in [17–19] and implemented in the Einstein-
Boltzmann solver CAMB [19] . This offers a stable and
accurate description of DE perturbations over the en-
tire parameter space of CPL, provided that the DE field
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FIG. 1. Viable and non-accessible regions of the CPL parameter space within the realm of standard quintessence. Different
colours correspond to different viability and stability conditions, as shown in legend. In the left panel we show the effects
of Mathematical Conditions (MC) and in the right one, we show the full combination (FC) of mathematical and physical
conditions.

remains smooth with respect to matter on the scales of
interest. This is the approach used also in [8], where they
found a best fit point in the 3rd quadrant of the (w0, wa)
plane, corresponding to a w that was below −1 in the
recent past.

While adopting a parametrized framework, it is infor-
mative to make contact with known theories and asso-
ciate different regions of the parameter space to different
viable classes of theories. It is known that a single field,
minimally coupled quintessence has to have w > −1 in
order to be stable. When adopting the CPL parameter-
ization, its (w0, wa) are therefore restricted to regions
corresponding to w > −1. Outside of that range, results
need to be interpreted within the realm of multifield DE.
In the following, we will include these theoretical priors
in the statistical analysis pipeline; this will allow us to
perform parameter estimation and model selection au-
thomatically accounting for the restrictions that theoret-
ical considerations apply on the parameter space volume.

Minimally coupled, single field models with a speed
of sound equal to unity, are arguably the simplest mod-
els of dynamical DE. We will refer to them as standard
quintessence. For these models, the DE field remains
smooth on sub-horizon scales, and PPF offers an accurate
prescription. However, in this case one should be careful
with the allowed regions of the parameter space (w0, wa).
Indeed, these models would generally suffer from ghost
instabilities for w < −1 [20–23]. These instabilities arise
from the wrong sign of the kinetic term, which trans-
lates into an Hamiltonian unbounded from below and,
thus, into an unstable quantum vacuum. Correspond-
ingly, w = −1 is referred to as the phantom divide and
single field models crossing through it are gravitationally
unstable.

As explored in [24], while it is difficult, it is not impos-

sible to have a quintessence model with w < −1 which is
effectively stable, i.e. the rate of the instabilities is longer
than the time scale of interest for the analysis. We keep
this option open in our analysis, however we will see that
requiring that no instabilities develop over the relevant
time interval will still cut a significant portion of the
w < −1 region.

Alternatively, single field DE models could safely cross
the phantom divide if the DE field is non minimally
coupled to gravity [25], there is kinetically braiding,
i.e. mixing of the kinetic terms of the metric and the
scalar [26, 27], or the model includes higher order deriva-
tive operators, as discussed in [20]. However, in the for-
mer two cases, the DE component would be clustering
and in the latter case, as shown in [20], stability requires
that in the region w < −1 the DE field behaves like a k-
essence fluid with an approximately zero speed of sound.
As such, in all these cases, the DE component cannot
be considered smooth on the scales of relevance for large
scale structure surveys, and hence the PPF framework
does not apply. Which models could then correspond
to a DE which gives a CPL history which crosses the
phantom divide, while remaining relatively smooth with
respect to matter, (so that PPF is an accurate prescrip-
tion)? As discussed in [28, 29], one necessarily needs to
dwell into the multifield scenarios, with additional de-
grees of freedom ensuring gravitational stability. This is
the assumption at the heart of the PPF approach.

In this paper we shall asses the importance of stability
requirements and their impact on the results obtained
with the CPL parametrization, by performing the same
analysis of [8] within the realm of standard (single field)
quintessence. This will allow us to show that, as ex-
pected, the model favored by data in [8] cannot corre-
spond to such a scenario, and more importantly, if one
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restricts the CPL parameter space to this class of models,
then ΛCDM remains a better fit to the combined data.
Thus the result of [8] should be interpreted in terms of
multiple fields DE, highlighting the relevance of sound
theoretical conditions when connecting viable models to
purely phenomenological approaches.

To this extent, we do not employ the PPF approach
of CAMB, but rather use the minimal implementation
of CPL in EFTCAMB [30, 31], which corresponds to a de-
signer standard quintessence with CPL expansion his-
tory. EFTCAMB has a stability module which imposes
two sets of theoretically motivated conditions conditions:
Mathematical stability Conditions (MC) and Physical
stability Conditions (PC). The former are general con-
ditions which do not rely on any assumption connected
to a specific theoretical model, but rather ensure math-
ematical consistency and numerical stability of pertur-
bations in the DE sector. They include conditions for:
the well-posedness of the scalar field perturbations ini-
tial value problem; the avoidance of exponential growth
of the perturbations; the existence of a viable cosmolog-
ical background with matter and radiation eras and an
accelerated phase (wDE < −1/3).

On the other hand, PC enforce the absence of ghost
and gradient instabilities. Since we put ourselves in the
case of a CPL standard quintessence, the stability check
will automatically ensure that we do not explore regions
of (w0, wa) that would correspond to an unstable model.

While MC and PC can be turned on and off indepen-
dently, in our analysis we use either MC or the full com-
bination of the two (FC), in order to provide a full pro-
tection against instabilities. We stress that a more com-
plete set of PC, e.g. including no-tachyon conditions [32],
is being worked out.

In Fig. 1 we show the effect of MC and FC on the CPL
parameter space, (w0, wa). As we can see in Panel a) MC
prohibit the crossing of w = −1, cutting a relevant por-
tion of parameter space. On the other hand, as shown in
Panel b), the only cut introduced by PC is the one com-
ing from the no-ghost condition, which cuts the portion
of the parameter space corresponding to w < −1 at all
times. Comparing the two panels, we can see that MC
allow some parts of the w < −1 region, namely those for
which the instabilities are still there (from the theoreti-
cal point of view), but do not affect the observables, i.e.
they do not develop over the relevant time range.

In this paper we compare our results for CPL
quintessence under MC and FC, with those of [8], where
the PPF module was used. The results of our analysis
will show how much impact MC and FC can have on the
final results and will serve us as an example to stress the
power of theoretical stability and viability conditions in
the analysis of cosmological data.

III. DATA ANALYSIS

Following [8], we consider the full set of data from
the tomographic weak gravitational lensing analysis of
∼ 450deg2 by the four-band imaging Kilo Degree Survey
(KiDS) [2, 33, 34], , including baryonic effects in the non-
linear matter power spectrum with HMCODE [35]. In
addition, we also consider the Planck measurements [9,
36] of CMB temperature and polarization on large an-
gular scales, limited to multipoles ` ≤ 29 (low-` TEB
likelihood) and the CMB temperature on smaller angu-
lar scales (PLIK TT likelihood).2

We use EFTCAMB and EFTCosmoMC [30, 31] patches of
CAMB/CosmoMC codes [38, 39], and we implement these in
the version of CosmoMC made publicly available by the
KiDS collaboration [8]. We analyze KiDS and Planck
both separately and combining them, sampling the stan-
dard cosmological parameters, i.e. the baryon and cold
dark matter energy densities Ωbh

2 and Ωch
2, the optical

depth at reionization τ , the amplitude and tilt of pri-
mordial power spectrum ln 1010As and ns and the the
angular size of the sound horizon at last scattering sur-
face θ. To these we add the CPL parameters w0 and wa

when we analyze the extension to the ΛCDM model, and
we perform this analysis both in the MC and FC cases.

We adopt flat priors on the sampled parameters, using
the same prior ranges defined in Table 1 of [8].

In order to assess the effect of the conditions on the
possibility of reducing the low-high redshift tension with
a dynamical Dark Energy, we exploit the same statistical
tools used in [8]; this will allow us to compare our results
to the standard PPF treatment of a dynamical Dark En-
ergy. We therefore consider the tension between Planck
(P) and KiDS (K) datasets on the S8 = σ8

√
Ωm/0.3

parameter, defining it as

T (S8) =

∣∣SP
8 − SK

8

∣∣√
σ2(SP

8 ) + σ2(SK
8 )

. (2)

We also assess the preference of the data for any of the
considered models over ΛCDM computing the Deviance
Information Criterion (DIC) [40]:

DIC ≡ χ2
eff(θ̂) + 2pD , (3)

with χ2
eff(θ̂) = −2 lnL(θ̂), θ̂ the parameters vector at the

maximum likelihood and pD = χ2
eff(θ) − χ2

eff(θ̂), where
the bar denotes the average taken over the posterior dis-
tribution. The DIC accounts both for the goodness of

fit through χ2
eff(θ̂) and for the bayesian complexity of

the model, pD, which disfavours more complex models.

2 Notice that the results would change slightly if the re-analysis
of Planck data performed in [37] was used instead of the 2015
release. This dataset would lower the significance of the discor-
dance between KiDS and Planck results, although not affecting
the considerations made in this paper.
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When comparing ΛCDM with its extension (ext), we
compute:

∆DIC = DICext −DICΛCDM. (4)

From this definition it follows that a negative ∆DIC
would support the extended model, while a positive one
would support ΛCDM. Finally, we exploit the DIC to as-
sess the concordance of the two different datasets as [7]

log I = −G(P,K)

2
, (5)

with G defined as

G(P,K) ≡ DIC(P ∪K)−DIC(P )−DIC(K), (6)

where P∪K denotes the combination of Planck and KiDS
datasets.

IV. RESULTS

In this section we report the results obtained with the
analysis described in section III. We do not report the
results on all the cosmological parameters, but rather
focus on the quantities introduced above to quantify the
tension between the datasets and to assess the effects of
the theoretical conditions on it.

The left panel of Fig. 2 shows the constraints obtained
in the σ8 − Ωm plane analyzing Planck data assuming
ΛCDM and CPL quintessence with the two possible con-
ditions applied to the model.

We notice that applying MC qualitatively preserves
the behavior of the CPL analysis with the PPF approach
[8], allowing for smaller values of Ωm. Adopting the FC
instead, moves the contours toward higher Ωm values.
This difference is due to the change in the allowed wDE

values, as can be seen in the right panel of Figure 2.
The analysis with MC disfavors the wDE > −1.0 region,
while the analysis with FC is constrained to be in the
wDE > −1.0 region. Secondly, we see that the FC are
much more effective in constraining the wa parameter as
the geometric degeneracy between w0 and wa is broken
by viability conditions. This leads to tighter constraints
also in the σ8-Ωm plane.

Given this behavior, we expect the CPL quintessence,
with MC, to preserve the ability to ease the tension be-
tween Planck and KiDS data. This is indeed the case,
as can be seen in the left panel of Figure 3 and from
Table I. Following the hierarchy discussed in [8], the val-
ues T (S8) = 1 and log I = 0.97 highlight how the ten-
sion is removed and the two datasets are now in sub-
stantial concordance. The right panel of Figure 3 shows
the constraints on w0 and wa. Notice that when the two
datasets are combined a deviation of more than 2σ from
the ΛCDM model is found. Computing then ∆DIC re-
sults in a moderate preference of the data for the CPL
model when combining Planck and KiDS (see Table II).

T (S8) log I
ΛCDM 2.3σ −0.48

CPL + MC 1.0σ 0.97

CPL + FC 1.3σ −0.76

TABLE I. Tension (T ) and concordance (log I) parameters
between KiDS and Planck data in ΛCDM and in CPL with
MC and with FC.

∆χ2
eff ∆DIC

CPL + MC

KiDS −0.02 3.2

Planck −2.9 −2.0

Planck+KiDS −5.4 −5.4

CPL + FC

KiDS −0.3 0.2

Planck 1.6 3.2

Planck+KiDS 1.0 4.6

TABLE II. Model comparison through the obtained values of
∆χ2

eff and ∆DIC using as a reference χ2
eff the one obtained in

a ΛCDM analysis.

As expected these results are in agreement with those
obtained using a PPF approach [8].

The left panel of Figure 4 shows instead the constraints
achieved when FC are used in the analysis. As discussed
above, in this case the Planck data prefer higher values
of Ωm. Even though the tension with KiDS data on the
S8 parameter is eased with respect to the ΛCDM case
(T (S8) = 1.3), the concordance between the two datasets
is worsened (log I = −0.76). As shown in the right panel
of Figure 4, in this case the constraints on w0 and wa

are compatible with ΛCDM w = −1; additionally, as can
be seen in Table II, the CPL model is disfavored with
respect to ΛCDM when we account for FC (∆DIC =
4.6 when the two datasets are combined) because the fit
does not improve significantly over the ΛCDM one while
the parameter space dimension grows. This is due to
the fact that the w(z) < −1.0 region, which is the one
favoured by the data in PPF and MC analysis, is here
completely removed by the FC, as physically viable single
field quintessence models are not able to reproduce this
evolution.

V. CONCLUSIONS

In this work we revisited the interesting possibility of
easing the tension between weak lensing and CMB data
with a dynamical dark energy, whose equation of state
is described by the CPL parametrization, in light of the
results of [8]. In particular, we explored whether the
model favored by Planck and KiDS data in [8] could cor-
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FIG. 2. The joint marginalized posterior of Ωm and σ8 (panel a) and w0 and wa (panel b) as obtained with the Planck data in
ΛCDM (red contours), CPL with MC (blue contours) and with FC (gray contours). The darker and lighter shades correspond
respectively to the 68% C.L. and the 95% C.L. regions. The dashed line indicates the point corresponding to the ΛCDM model
in the w0 − wa plane.
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FIG. 3. The joint marginalized posterior of Ωm and σ8 (panel a) and w0 and wa (panel b) as obtained analyzing KiDS (green
contours) and Planck (red contours) data. Filled contours refer to constraints obtained in CPL with MC, while empty contours
(left panel only) refer to ΛCDM constraints. The darker and lighter shades correspond respectively to the 68% C.L. and the
95% C.L. regions. The dashed line indicates the point corresponding to the ΛCDM model in the w0 − wa plane.

respond to a theoretically viable single field quintessence,
by restricting the parameter space of CPL to that corre-
sponding to stable standard quintessence. With the lat-
ter, we indicate DE models corresponding to one scalar
field minimally coupled to gravity and without higher
order derivative operators. This theoretical assumption
leads to restrictions on the allowed parameter space of the
CPL parametrization, as described in Section II. In order
to study the impact of these conditions on the observa-
tional constraints, we performed an analysis analogous
to the one done in [8], using the theoretical conditions of
stability and viability built-in in EFTCAMB.

We considered two types of conditions: Mathematical

(MC) and the Physical Stability Conditions (PC). The
former are rather generic and consider only the numer-
ical stability of the model, without any theoretical con-
sideration. The latter are more restrictive, ruling out all
models with ghost or gradient instabilities on the basis of
theoretical considerations [20, 24]. One convenient way
to compare these two classes of conditions is to look at
the corresponding parameter space in the (w0, wa)-plane.
While MC allow for the phantom divide crossing, the
full set, FC, strictly forbids the region corresponding to
w < −1, since for smooth single field quintessence ghost
instabilities would develop. These instabilities could be
avoided with the inclusion of higher order derivative oper-
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FIG. 4. The joint marginalized posterior of Ωm and σ8 (panel a) and w0 and wa (panel b) as obtained analyzing KiDS (red
contours) and Planck (blue contours) data. Filled contours refer to constraints obtained in CPL with FC, while empty contours
(left panel only) refer to ΛCDM constraints. The darker and lighter shades correspond respectively to the 68% C.L. and the
95% C.L. regions. The dashed line indicates the point corresponding to the ΛCDM model in the w0 − wa plane.

ators or additional degrees of freedom in the dark sector,
but in both cases we would move away from single field,
relatively smooth quintessence [20, 22].

After performing a fit to KiDS and Planck data by
means of EFTCosmoMC, we find that in the MC case,
even though the allowed parameter space is shrunk with
respect to the PPF case, the expansion history found
in [8] and able to ease the S8 tension is still allowed
by the implemented conditions. Therefore, CPL under
MC conditions in our implementation yields results anal-
ogous to the general PPF case. In particular we find
∆DIC = −5.4, showing a moderate preference of the
data for the model. Interestingly, the result changes when
we apply the FC: in this case, the parameter space of
CPL is significantly reduced and both KiDS and Planck
contours move towards higher values of Ωm, as shown
in Fig. 2, with the net effect of decreasing the tension
parameter to T (S8) = 1.3σ. However, the value of
∆DIC = 4.6 (for Planck + KiDS) shows that the model
is disfavored with respect to ΛCDM.

In conclusion, as expected, the CPL expansion his-
tory favoured by Planck+KiDS data per [8], cannot cor-
respond to stable single field quintessence, and this is
shown very clearly by the contours in Fig. 4, where we
plot the outcome of our analysis including stability condi-
tions. The best fit model of [8] shall rather be interpreted
in terms of multiple fields scenarios, with the DE d.o.f.
remaining relatively smooth with respect to dark matter.
The results we obtained highlight how parametrized ap-
proaches to ΛCDM extensions, although extremely useful
to agnostically explore departures from the standard cos-

mological model, need to be complemented with theoret-
ically priors if one wants to connect the results to viable
models of DE. Our method allows us to quantify the ten-
sion between data sets and the preference of models while
restricting to specific classes of models in a statistically
meaningful way. In this case, we find that, if one indeed
restricts to standard quintessence and invokes conditions
of theoretical stability, ΛCDM remains a better fit to the
data. We leave for future work the exploration of the ten-
sion between Planck and KiDS data sets in more general
models of dark energy, e.g. stable and viable Horndeski
models.
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