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We consider the possibility that the universe, viewed as a three-brane, originated in a region of strong external
field strength due to a four-form gauge field in the bulk. It is shown that in a scenario of this kind inflation is
generic for a wide range of initial conditions. This is true even for small field inflation with a simple quadratic
inflaton potential, as well as for Higgs potentials with the initial field well away from the local maximum, not
necessarily starting from rest. The power spectrum, spectral index, and r parameter help to constrain parameters
in this scenario, and r < 0.1 favors Higgs potentials.

I. INTRODUCTION

The view that our universe should be viewed as a 3-brane
in higher dimensions has been advocated, in various forms, by
many authors, e.g. [1–7]. But three branes couple in a natural
way to an abelian four-form gauge field in the bulk. If the
embedding coordinates of the brane are denoted φ a(x), and
the brane is charged with respect to the gauge field, then the
corresponding interaction term is

SA =
q0

4!

∫
d4x Aabcd [φ(x)]εαβγδ

∂α φ
a
∂β φ

b
∂γ φ

c
∂δ φ

d . (1)

It is interesting to ask what effect a strong external 4-form
gauge field might have had on the dynamics of the early uni-
verse, if the universe were exposed to such a field at that early
time.

Of course such a question can only be answered in the con-
text of a specific model. The model I will consider here was
proposed in [8]. It consists of SA plus the usual action of the
standard model fields. In addition there is the Einstein-Hilbert
action, where the metric depends on the embedding, and an
inflaton action. What is a little non-standard is that the infla-
ton fields are regarded as a subset of the D+1+N embedding
coordinates, while the induced metric gµν is taken to depend
only on the remaining embedding coordinates. Explicitly

S = SSM +SA +
1

16πG

∫
d4x
√
−gR

−σ
4
∫

d4x
√
−g
(1

2
gµν

∂µ φ
s
∂ν φ

s +U(φ)
)
, (2)

where SSM is the action of standard model (and possibly
beyond-standard-model) fields, and

gµν = ∂µ φ
A

ηAB∂ν φ
B , A,B = 0,1, ...,D (3)

is the induced metric of a three brane in a D+1-dimensional
Minkowski space. The constant σ has the dimensions of mass.
The remaining N coordinates

{φ s, s = D+1, ...,D+1+N} (4)

are identified with inflaton fields. We adopt the convention
that upper case Latin indices run from 0 to D, indices r,s run

from D+ 1 to D+N, and all other lower case Latin indices
run from 0 to D+N. It is convenient to define

ϕ
s = σ

2
φ

s and V [ϕ] = σ
4U(φ) , (5)

so that the inflaton field and the potential have the conven-
tional dimensions. We will consider in detail two specific ex-
amples, namely a simple quadratic potential

V (ϕ) =
1
2

m2
ϕ

s
ϕ

s , (6)

and a Higgs potential

V (ϕ) = λ (ϕs
ϕ

s−m2)2 , (7)

where, in the latter case, the inflaton starts out at ϕsϕs < m2.
In section II below we review, following ref. [8], the equa-

tions of motion of this system, and then specialize to the sim-
plest non-trivial case of a two-component inflaton and a con-
stant external field strength, leading to early-universe dynam-
ical equations for the inflaton zero mode and the metric scale
factor. In section III these equations are simplified to some-
thing analogous to slow-roll equations, although in contrast to
a slow roll down a potential hill the dynamics results in a kind
of spiral motion in inflaton field space towards the minimum
of the inflaton potential. What is going on is that while the
inflaton potential tends to pull the inflaton field towards the
minimum of the potential, the external field provides a coun-
terbalancing velocity-dependent force analogous to a υυυ ×BBB
force, orthogonal to gravitational friction, away from the min-
imum. It is shown that inflation in this model does not re-
quire fine tuning of either couplings or initial conditions, even
in the small field case. Scalar field perturbations are consid-
ered in section IV, and the power spectrum, spectral index ns,
and r-parameter are expressed in terms of the parameters of
the model and the initial state. It has been inferred from the
Planck data that the tensor to scalar ratio is r < 0.1. This fact
favors the Higgs potential over the quadratic potential in the
external field scenario, although both are inflationary at small
fields.

It should be mentioned that ours is not the only inflation-
ary scenario that has been proposed involving a kind of or-
bital or spiral motion. There is, e.g. the “Spinflation” picture
[9] which considers the angular motion of a braneworld in
the extended throat of a Calabi-Yau manifold, and a “Spiral
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Inflation” scenario [10] which introduces a potential which
is non-periodic in an angular variable in inflaton field space.
These scenarios are very different from the one presented
here, where there is a flat metric in the bulk, inflaton potentials
of a standard form, and an external four-form gauge field, but
they do share the idea that orbital motion of some kind may
be an important component in the inflationary process.

II. EQUATIONS OF MOTION

Variation of the action (2) with respect to the embedding
coordinates φ A leads to equations of motion

2ηAB∂µ(Eµν
∂ν φ

B)

−q0

4!
FAabcdε

αβγδ
∂α φ

a
∂β φ

b
∂γ φ

c
∂δ φ

d = 0 , (8)

where

Eµν ≡ 1
2
√
−g
{
− 1

8πG
Gµν +T µν

}
, (9)

with Gµν ,T µν the Einstein and stress-energy tensors of
S−SA. Variation of the action with respect to the inflaton
fields ϕs leads to the equations of motion

∂µ(
√
−ggµν

∂ν ϕ
s)−
√
−g

∂V
∂ϕs

+
q0

4!σ2 Fsabcdε
αβγδ

∂α φ
a
∂β φ

b
∂γ φ

c
∂δ φ

d = 0 , (10)

where Ff abcd is the field strength

Ff abcd =
∂Aabcd

∂φ f −
∂A f bcd

∂φ a +
∂A f acd

∂φ b −
∂A f abd

∂φ c +
∂A f abc

∂φ d

(11)

corresponding to the four-form gauge field. These equations
are of course supplemented by the usual equations of motion
of the standard model fields, which we ignore for now.

For the purposes of simplified cosmology it is sufficient
to assume that the induced metric on the three-brane has the
usual Friedman-Lemaitre form with scale factor a(t), which
requires a minimum of five coordinates φ A in the bulk. For
zero spatial curvaure, we can choose the embedding [11, 12]

φ
0 =

1
2

{
a(t)+

∫ t dt ′

da/dt ′
+a(t)r2

}
φ

1 = a(t)r cos(θ)

φ
2 = a(t)r sin(θ)cos(χ)

φ
3 = a(t)r sin(θ)sin(χ)

φ
4 =

1
2

{
a(t)−

∫ t dt ′

da/dt ′
−a(t)r2

}
, (12)

and the remaining inflaton coordinates are numbered φ 5,φ 6.
Next we suppose that there is a constant field strength in the

bulk oriented orthogonal to the inflaton plane, with the gauge

field taken to have components

A5123[φ ] =−
1
2

Bφ
6 ,

A6123[φ ] =
1
2

Bφ
5 . (13)

The four-form gauge field Aabcd is antisymmetric under per-
mutations of indices, but apart from (13) and components ob-
tained from (13) by permutation, it is assumed that all other
components vanish.

For an initial discussion of inflation in this scenario, we
make the usual simplifying assumptions of spatial homogene-
ity and isotropy, taking in particular

φ
5,6(x,y,z, t) = φ

5,6(t) , (14)

and φ a = 0 for a > 6. In conjunction with (13), this has the
consequence that

FAabcdε
αβγδ

∂α φ
a
∂β φ

b
∂γ φ

c
∂δ φ

d = 0 . (15)

This is because two of the indices abcd must be 5 and 6, so the
expression necessarily includes at least one space derivative
of ϕs, which vanishes according to (14). Then the equation
of motion (8) is satisfied by Eµν = 0, which are the standard
Einstein field equations. For a Friedman-Lemaitre metric, dis-
regarding the other standard model fields, the Einstein equa-
tions are just the conventional expressions for the a(t) scale
factor coupled to a pair of scalar fields:

ȧ2

a2 =
8πG

3

(
1
2

∂tϕ
s
∂tϕ

s +V (ϕ)

)
,

ä
a
=

8πG
3

(−∂tϕ
s
∂tϕ

s +V (ϕ)) . (16)

The equations of motion for the ϕs, however, involve the field
strength

∂
2
t ϕ

5−qB∂tϕ
6 +3

ȧ
a

∂tϕ
5 +

∂V
∂ϕ5 = 0 ,

∂
2
t ϕ

6 +qB∂tϕ
5 +3

ȧ
a

∂tϕ
6 +

∂V
∂ϕ6 = 0 , (17)

where q = q0/σ4. It is not hard to verify the consistency of
(16) and (17).

III. THE SLOW SPIRAL

Numerical solutions of (16, 17), a sample of which are pre-
sented in the next section, show that for a very wide range
of initial conditions ϕs(0),∂tϕ

s(0), field strength qB, and pa-
rameters m,λ in the potential, the evolution of ϕs(t) rapidly
settles into a spiral in the ϕ5−ϕ6 plane, drifting slowly to-
wards the origin in the case of the quadratic potential, and
towards ϕ2 = m2 in the case of the Higgs potential. It is the
drift towards the minimum, rather than the magnitude of ∂tϕ

itself, which is “slow” in this scenario.
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FIG. 1. “Force” diagrams for the slow spiral approximation, where
the spiral is counterclockwise inward towards the origin for the
quadratic potential (a), and clockwise outward towards ρ = m for
the Higgs potential (b). The approximation is that ∂ 2

t ϕϕϕ towards the
origin (solid dot) is simply the centripetal acceleration required for
circular motion in the ϕϕϕ-plane, neglecting any acceleration beyond
that.

The spiral motion in the ϕ5,6 plane, with a gradual drift to
the minimum, is best understood as a balance of forces in a
plane. Define

ϕϕϕ ≡

 ϕ5

ϕ6

0

 , BBB≡

 0
0
B

 , ∇∇∇≡

 ∂/∂ϕ5

∂/∂ϕ6

0

 , (18)

and H = ȧ/a as usual. Then the inflaton equations of motion
can be written as

∂
2
t ϕϕϕ +qBBB×∂tϕϕϕ +3H∂tϕϕϕ +∇∇∇V = 0 , (19)

which can be thought of as the equations of motion of a par-
ticle in a plane. There are three forces on this “particle”: a
force −∇∇∇V towards the minimum of the potential, a gravita-
tional drag force in a direction opposite to the velocity ∂tϕϕϕ ,
and a “Lorentz force” in the plane which is perpendicular to
the velocity. In the standard slow roll approximation with a
single inflaton field, the second time derivative of the inflaton
field is neglected. In our case the slow roll is in the radial
direction, so the approximation is that the second time deriva-
tive can be equated to the centripetal acceleration required for

circular motion. Referring to Fig. 1 and defining

ρ ≡ |ϕϕϕ| , υ ≡ |∂tϕϕϕ| , V ′(ρ) =
∂V
∂ρ

β =

{
1 Higgs potential
−1 quadratic potential , (20)

the equations of motion in this “slow spiral” approximation
are

V ′+β (qBcosθ +3H sinθ)υ =
υ2 cos2 θ

ρ
(21)

qBυ sinθ −3Hυ cosθ = 0 . (22)

Solving (21) for υ , we have

υ =
ρβ

2cos2 θ

[
(qBcosθ +3H sinθ)

−
√
(qBcosθ +3H sinθ)2 +4V ′ cos2 θ/ρ

]
, (23)

and from (22)

tanθ =
3H
qB

. (24)

For the cases that we will be concerned with,

θ � 1 , qB� H , (qB)2�V ′/ρ , (25)

so that (23) simplifies to

υ ≈−β
V ′

qB
. (26)

In polar coordinates, where

ϕ
5 = ρ cosα , ϕ

6 = ρ sinα , (27)

the equations of motion are

dρ

dt
=−υ sinθ ≈−3H

V ′

(qB)2 (28)

dα

dt
= β

υ cosθ

ρ
≈− V ′

qBρ
. (29)

Assuming that the fractional variation of H is negligible in a
period υ/(2πρ), the solution of these equations is a spiral in
the ϕ-plane towards the minimum of the potential, i.e. inwards
towards ρ = 0 for the quadratic potential or, if ρ < m initially,
outwards to ρ = m for the Higgs potential.

IV. NUMERICAL SOLUTIONS

Next we compare the slow spiral equations to numerical
solutions of (16, 17), which make no assumptions about force
balance or the time-dependence of H. In a conventional treat-
ment with qB = 0, slow roll inflation in a quadratic poten-
tial requires a strong initial field ρ0 above the Planck scale,
ρ0 > MP, while small field inflation in a Higgs potential calls
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FIG. 2. Numerical solution of the equations of motion (16,17) in a
quadratic potential with initial ρ0 = 3m,υ0 = 0, over a period of two
million Planck times.
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FIG. 3. The initial trajectory of the previous figure, projected into
the ϕ5−ϕ6 plane, which illustrates the initial transient behavior that
dies out after roughly two thousand Planck times.

for an initial ρ0 fine tuned to be extremely close to the local
maximum, with υ0 very close to zero. However, only taking
qB�m, the equations of motion in the external field scenario
predict inflationary behavior in either potential without these
special conditions.

We begin with the quadratic potential (6). Inflationary be-
havior is generic, requiring only that qB�m and ρ0 > m. For
purposes of illustration we choose parameters to be motivated
(for the Higgs potential) in the next section:

m = 0.0083 , qB = 0.22 (30)

in Planck units. For the initial condition, we take

ρ0 = 3m , υ0 = 0 (31)

The trajectory in the space of ϕ5,ϕ6,V (ρ), obtained from
these initial conditions by solving (16, 17) numerically for
Planck times 0 ≤ tP ≤ 2× 106, is displayed in Fig. 2. There
is some initial transient behavior which is shown in Fig. 3.

This behavior can be understood qualitatively: From rest, the
charged “particle” tends to fall towards the minimum of the
potential, but as it falls there is a force orthogonal to the mo-
tion due to the external B-field. The combination of forces
induces the transient oscillatory behavior seen in in Fig. 3,
which dies out after tP = 2000 Planck times, i.e. the transient
behavior is a very small fraction of the trajectory, and dies out
rapidly.

If the universe starts out at non-zero ρ0, then there is no
particular reason that it also starts out at rest, so we may also
consider initial conditions with some random choice of υ0. A
solution of this kind, with (∂tϕ5,∂tϕ6) = (8.4,15.6)× 10−4

in Planck units, and all other parameters as above, is shown
in Fig. 4, over a period of two million Planck times. The
transient behavior is much more noticeable in this case, but
again it dies out after about ten thousand Planck times and the
evolution settles into the slow spiral described in the previous
section. The behavior of H = ȧ/a is shown in Fig. 5(a), and
we compare, in Figs. 5(b) and 5(c), the behavior of the com-
puted θ(t),υ(t) to the predictions of the slow spiral equations,
(24) and (26) respectively. The slow spiral equations clearly
agree very well with the numerical solutions for tP > 10,000,
i.e. after the transient behavior has died out. The number N of
e-foldings of course depends on the initial conditions and the
assumed start of reheating. For the trajectory shown in these
figures, N = 483.

Inflation is also generic for the Higgs potential when
qB� m and m > ρ0, without much tuning beyond those con-
ditions, for any coupling λ . As an illustration we carry out
the computation for the Higgs potential with the same pa-
rameters m = 0.0083,qB = 0.22 as above, and an arbitrary
choice of coupling λ = 1. The initial configuration is taken
to be at ρ0 = 0.2m, with a random choice of initial velocity
(∂tϕ5,∂tϕ6) = (−1.37,1.50)× 10−4 in Planck units. The re-
sult, for a duration of one million Planck times, is shown in
Fig. 6, with the transient and later behaviors shown in dif-
ferent colors. Again the transient behavior dies out beyond
ten thousand Planck times. The Hubble variable H = ȧ/a vs.
time, is shown in Fig. 7(a), and the computed θ(t),υ(t), com-
pared to the slow spiral predictions (24) and (26), are shown
in Figs. 7(b) and 7(c) respectively. Once again it is clear that
the slow spiral is an attractor, at least under the stated condi-
tions qB� m and m > ρ0. For the evolution shown, where
the trajectory is computed up to ρ f inal =

7
8 m, the number of

e-foldings is N = 104.

V. FLUCTUATION SPECTRUM

We now consider the equations of motion to first order in
fluctuations around the homogeneous isotropic background.
Denote

ϕ
s(x, t) = ϕ

s
0(t)+δϕ

s(x, t) , (32)

where ϕs
0(t),a(t) are solutions of the spatially homogeneous

equations (16, 17). In a standard slow-roll scenario with a sin-
gle inflaton field, it is possible to choose a gauge (essentially a
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choice of time coordinate) such that δϕ = 0. The transformed
inflaton field is

ϕ
′(x′, t ′) = ϕ(x, t) (33)

where x′ = x and

t ′(x, t) = ϕ
−1
0 [ϕ(x, t)] (34)

Since t ′(x, t) is, by definition, the time at which ϕ0(t ′) =
ϕ(x, t), it is clear that ϕ ′(x′, t ′) = ϕ0(t ′) and therefore, by con-
struction, δϕ(x, t) = 0 in this (co-moving) gauge.

With two inflaton components, it is not possible to trans-
form to δϕϕϕ = 0 exactly. However, in the slow-spiral regime
it is possible to come close to this, under certain condi-
tions. The reason one cannot find a time coordinate such that
ϕϕϕ ′(x′, t ′) = ϕϕϕ0(t

′) is simply because ϕϕϕ0(t) defines a line-like
object, i.e. a spiral, while ϕϕϕ(x, t) lies in a plane. But one can
still choose t ′(x, t) to be such that the modulus of

δϕϕϕ(x, t ′)≡ ϕϕϕ(x, t)−ϕϕϕ0(t
′) (35)

is minimized. In this “minimal” gauge |δϕϕϕ(x′, t ′)| is the dis-
tance in the ϕϕϕ-plane between (ϕ5(x, t),ϕ6(x, t)) and the near-
est point on the spiral. This distance can be no greater than
half the distance between neighboring arcs of the spiral. From
eqs. (28) and (29), this upper bound on the minimal distance
is

∆ρ =
1
2

∣∣∣∣ dρ

dα

∣∣∣∣2π

=
3πH
qB

ρ (36)

So in minimal gauge the magnitude of δϕ is as small as it can
be, with a fractional deviation δρ/ρ of order H/qB. If the
Hubble expansion rate H is very much smaller than qB, then in
this gauge the fluctuations away from ϕϕϕ0(t) can be neglected
by comparison to the δφ A, which give rise to fluctuations in
the metric. We will assume that this H� qB condition is satis-
fied, and that in an expansion of the action S= S0[ϕϕϕ0,φ

A
0 ]+δS

to second order in the fluctuations the terms involving δϕϕϕ can
be ignored relative to terms quadratic in δφ A.

At this point we can simply follow the approach of Mal-
dacena [13], who derives the power spectrum in a comoving
gauge where the fluctuations of a single inflaton field vanish.
The only modification is to replace the single inflaton field
expression (∂tϕ0)

2 by υ2 = ∂tϕ
s
0∂tϕ

s
0. Of course, in quantiz-

ing perturbations around the Friedmann-Lemaitre metric one
must keep in mind that gµν is the induced metric (3). How-
ever, in a minimal gauge with δϕϕϕ ≈ 0, the fluctuation δS in
the action depends on the fluctuations of φ A = φ A

0 +δφ A only
through the induced metric, and therefore we have

Z =
∫

Dδφ
C exp

[
−(S0 +δS[∂µ φ

A
ηAB∂ν φ

B])
]

=
∫

Dδφ
C
∫

Dgαβ δ [gµν −∂µ φ
A

ηAB∂ν φ
B]e−(S0+δS[gµν ])

=
∫

Dgαβ M[g]e−(S0+δS[gµν ]) , (37)

where

M[g] =
∫

Dδφ
C

δ [gµν −∂µ φ
A

ηAB∂ν φ
B] . (38)

The measure factor M[g] will not contribute at the quadratic
order in metric fluctuations considered here. Then, following
[13], we obtain the familiar result for the dimensionless power
spectrum of the scalar curvature fluctuations

PR(k) =
1

4π2
H4

υ2 . (39)

For the spectral index ns, with N(t) =
∫

dtH the number of
e-foldings, we have [14]

ns−1 =
d lnPR

d lnk

≈
(

2
d lnH2

dN
− d lnυ2

dN

)(
1− 1

2
d lnH2

dN

)
=

1
H

(
2

d lnH2

dt
− d lnυ2

dt

)(
1− 1

2H
d lnH2

dt

)
,

(40)

and for the r-parameter

r =
Pgrav

PR
=

2
π2

H2

M2
P

1
4π2

H4

υ2

= 8
υ2

M2
PH2 , (41)

where MP is the Planck mass. Now we apply the slow spiral
equations (26) and (28), using also the approximation to the
Friedmann equation H2 ≈V (ρ)/3MP. Then we have

P1/2
R =

1
6π

qB
M2

P

V (ρ)

|V ′(ρ)|

ns−1 =− 6
(qB)2

(
V ′2

V
−V ′′

)(
1+

3
2

1
(qB)2

V ′2

V

)
r =

24
(qB)2

V ′2

V
, (42)

and from the Planck 2015 [15] and earlier data it is known that

P1/2
R ≈ 4.6×10−5

ns−1≈−0.04
r < 0.1 (43)

at the pivot scale k = 0.05 Mpc−1.
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FIG. 7. For the example of the Higgs potential with a random initial υ0: (a) the expansion rate H = ȧ/a. (b) Comparison of the computed θ(t)
in the ϕ5−ϕ6 plane with the slow spiral prediction (24). (c) Comparison of the speed υ(t) in the ϕ5−ϕ6 plane with the slow spiral prediction
(26).
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1. Quadratic Potential

For the quadratic potential V (ρ) = 1
2 m2ρ2 these expres-

sions become

P1/2
R =

1
12π

qB
M2

P
ρ

ns−1 =− 6m2

(qB)2

r = 48
(

m
qB

)2

. (44)

But from the Planck data on the spectral index, ns − 1 ≈
−0.04, these equations imply that r ≈ 0.32, which is incom-
patible with the Planck data for r. On these grounds, the
quadratic potential is ruled out.

2. Higgs Potential

For the Higgs potential V (ρ) = λ (ρ2 −m2)2 the corre-
sponding expressions are

P1/2
R =

1
24π

qB
M2

P

|ρ2−m2|
ρ

ns−1≈− 24
(qB)2 λ (ρ2 +m2)

r = 384
λρ2

(qB)2 . (45)

The coupling λ can be entirely eliminated from these equa-
tions by writing

m = m0λ
−1/4 , qB = (qB)0λ

1/4 , ρ = αm , (46)

and then the constants m0,(qB)0, and α at the pivot scale, are
determined, given PR,ns and r. Unfortunately we only have an
upper bound for r, so the best one can do so far is to determine
µ,b,α as a function of r < 0.1. For sufficiently small r we find
the approximate solution

m≈
√

24π

(
PR

384

)1/4( r
λ

)1/4
MP

ρ∗ ≈

√
24r

384(1−ns)
m

= 24
√

π

384(1−ns)

(
PR

384

)1/4 r3/4

λ 1/4 MP

qB≈ 24
√

π

(1−ns)

(
PR

384

)1/4

r1/4
λ

1/4MP , (47)

where ρ∗ is ρ at the pivot scale. To get some numerical feeling
for this, suppose r is at the experimental upper limit r = 0.1
and λ = 1. Then, using the data (43), we find from (45)

ρ∗ = 3.6×10−3 MP

m = 8.3×10−3 MP

qB = 0.22 MP . (48)

We can also compute the running of the spectral index

dns

d lnk
=

dns

dN
dN

d lnk
=

1
H

dns

dt
(1+ ε)

≈− 1
H

96λ

(qB)2 ρ
dρ

dt

= 288λ
2 ρ2(ρ2−m2)

(qB)4 (49)

which, evaluated at ρ = ρ∗ in our r = 0.1 example, is

dns

d lnk
=−0.9×10−4 . (50)

Note that, from (47), this value is λ -independent, and can be
compared to the Planck 2015 [15] estimate of

dns

d lnk
=−(3.3±7.4)×10−3 . (51)

VI. E-FOLDINGS IN THE HIGGS SLOW SPIRAL

We have seen that after a brief transient, the solution of the
homogenous equations of motion (16,17) settles into a trajec-
tory which is well described by the slow spiral equations of
motion derived in section III. We have also seen, in the pre-
vious section, that the constants m and qB are determined, for
the Higgs potential, from the CMB data for PR,ns,r, and the
Higgs coupling λ . Moreover, m and qB depend on simple
fractional powers of λ ,r, shown in (47). From this power de-
pendence, and the slow spiral equations of motion, it is quite
easy to see that the number N of e-foldings is independent of
λ and r. For the Higgs potential, with the minimum at ρ = m,
this number is determined by the known values of PR,ns, and
the (as yet unknown) fractions of ρ/m at the beginning and
end of inflation.

Let m0,(qB)0 denote the values of m,qB shown in (48),
which were determined from the Planck data assuming λ =
1,r = 0.1. Then from (47)

m = m0λ
−1/4

( r
0.1

)1/4

qB = (qB)0λ
1/4
( r

0.1

)1/4
(52)

and also denote

ρ = Rλ
−1/4

( r
0.1

)1/4
(53)

Substituting these expressions into the slow-spiral equations
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of motion, we find

H2 =
1

3MP
(R2−m2

0)
2
( r

0.1

)
= H2

0

( r
0.1

)
υ =

4R(R2−m2
0)

(qB)0

( r
0.1

)1/2

= υ0

( r
0.1

)1/2

dR
dt

=−3H0
4R(R2−m2

0)

(qB)2
0

( r
0.1

)
(54)

Then the number of e-foldings from the beginning of inflation
at t = 0,R = R0 to the end of inflation at t = t f ,R = R f is

N =
∫ t f

0
dtH =

∫ R f

R0

dR
(

dR
dt

)−1

H

=
(qB)2

0
12

∫ R f

R0

dR
R(m2

0−R2)

=
(qB)2

0

24m2
0

log

[
R2

f (m
2
0−R2

0)

R2
0(m

2
0−R2

f )

]
(55)

Note that both λ and r have dropped out of this expression.
Since (qB)0 and m0 are determined from the Planck data, the
number of e-foldings depends entirely on the fractions

f0 =
ρinitial

m
=

R0

m0

f f =
ρ f inal

m
=

R f

m0
(56)

in terms of which

N =
(qB)2

0

24m2
0

log

[
f 2

f (1− f 2
0 )

f 2
0 (1− f 2

f )

]

= 29.3log

[
f 2

f (1− f 2
0 )

f 2
0 (1− f 2

f )

]
(57)

Although the number of e-foldings is λ ,r-independent, the
period of inflation does have an r-dependence, increasing as r
decreases like 1/

√
r:

t f =
∫ R f

R0

dR
(

dR
dt

)−1

=
(qB)2

0

4
√

3
MP

( r
0.1

)−1/2 ∫ R f

R0

dR
R(m2

0−R2)

=
(qB)2

0

8
√

3
MP

m4
0

( r
0.1

)−1/2
{

log

[
R2

f (m
2
0−R2

0)

R2
0(m

2
0−R2

f )

]
m

−
m2

0(R
2
f −R2

0)

(m2
0−R2

0)(m
2
0−R2

f )

}
(58)

Finally, although we do not know the initial and ending points
ρinitial ,ρ f inal , it is clear that ρinitial must be less than ρ at the

pivot momentum. From (47)

ρ∗ = R∗λ−1/4
( r

0.1

)3/4
(59)

where R∗ = 3.6×10−3MP is the value of ρ∗ shown in (48) for
λ = 1,r = 0.1. Then defining, for r ≤ 0.1,

f∗ =
ρ∗
m

=
R∗
m0

( r
0.1

)1/2

= 0.43
( r

0.1

)1/2
(60)

it is necessary that f0 < f∗. The number of e-foldings N vs.
the fractions f0, f f are displayed in Fig. 8
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FIG. 8. The number of e-foldings N, in the Higgs potential case, as a
function of the inflaton field ρ = |ϕϕϕ| at the start and end of inflation.
The latter are displayed as fractions f0 = ρinitial/m and f f = ρ f inal/m
of the minimum of the Higgs potential at ρ = m.

VII. EXCITATIONS

It is worth mentioning, for the sake of completeness, some
intriguing effects of the external four-form gauge field if the
field strength persists into the late universe. It is found, when
the inflaton field is quantized in the presence of the constant
background four-form field strength, that there is an analogy
to ordinary Landau levels, and the spectrum of the quantized
field is

E = ∑
k

{√
k2 +

1
4

q2B2 +m2

(
n1(k)+n2(k)

)
+

1
2

qB
(

n1(k)−n2(k)
)}

+E0 , (61)

where n1(k),n2(k) are occupation numbers, E0 is the ground
state energy, and the sum runs over momenta with non-zero
occupation numbers. Excitations with definite energy and mo-
mentum satisfy one of two dispersion relations

E1(k) =
√

k2 +M2 +m2 +M , and

E2(k) =
√

k2 +M2 +m2−M , (62)
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where M = 1
2 qB. It can be shown that these two types

heavy/light excitations propagate like ordinary massive par-
ticles with inertial mass M′ =

√
M2 +m2, i.e. with group ve-

locity υ = k/
√

k2 +M2 +m2, but interact gravitationally with
gravitational masses M′±M. Thus there is an apparent vio-
lation of the Principle of Equivalence, due to the interaction
with the external field strength of the four-form gauge field.
For details, cf. [8].

VIII. MANY BRANEWORLDS

Having introduced a braneworld scenario in which the
braneworld can interact with an external four-form abelian
gauge field, one can of course formulate the obvious gen-
eralization: a higher-dimensional universe containing many
braneworlds, interacting with one another via the four-form
gauge field, which itself has dynamics and wave propagation
in the bulk. The action would be

S =
∫

∏
a

dφ
aFbcde f [φ ]Fbcde f [φ ]

+∑
n

{
q0

4!

∫
dφ

a∧dφ
b∧dφ

c∧dφ
d Aabcd [φ(xn)]

+Sin f l [{φ s(xn)},
√

g(xn)]+SEH [gµν(xn)]

+SSM[{Φ(xn)},
√

g(xn)]
}

(63)

where the sum is over braneworlds, φ a(xn) are the coordi-
nates of the n-th braneworld in the bulk, Sin f l , SEH , SSM

are the inflaton, Einstein-Hilbert, and standard model actions,
with {Φ(xn)} the set of standard model fields living on the
n-th braneworld, and gµν(xn) = ∂µ φ A(xn)ηAB∂ν φ B(xn) the in-
duced metric of the n-th braneworld. At the quantum level one
could even speculate, going well beyond the conjecture raised
in this article, that our D = 4 dimensional universe was cre-
ated in a strong external gauge field via pair production of a
three brane-antibrane pair.

We are content to make these speculations, but will not pur-
sue them here. A consistent formulation would probably re-
quire making some connection to string theory.

IX. CONCLUSIONS

We have pointed out that if the universe is to be thought of
as a three-brane propagating in a higher dimensional space,
then it is natural for that three-brane to couple to a four-form
gauge field in the bulk. If the very early universe were ex-
posed to a strong external field strength due to the four-form
gauge field, then it seems that the resulting “slow spiral” of
the inflaton field would solve one of the main problems asso-
ciated with small field inflation in a Higgs (or other hilltop)
potential, namely, the need for fine-tuning the initial value of
the inflaton field and its time derivative. We reserve questions
regarding reheating and non-Gaussianity in this scenario for
later investigation.
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