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In this work we analyze the gravitational wave signal from hyper-massive neutron stars formed
after the merger of binary neutron star systems, focusing on its spectral features. The gravitational
waves signal are extracted from numerical relativity simulations of models already considered in
[1–3], and allow us to study the effect of the total baryonic mass of such systems (from 2.4M� to
3M�), the mass ratio (up to q = 0.77) and the neutron star equation of state, both in equal and
highly unequal mass binaries. We use the peaks we find in the gravitational spectrum as independent
test of already published hypotheses of their physical origin and empirical relations linking them
with the characteristics of the merging neutron stars. In particular, we highlight the effects of the
mass-ratio, which in the past was often neglected. We also analyze the temporal evolution of the
emission frequencies. Finally, we introduce a modern variant of the Prony’s method to analyze the
Gravitational Wave post-merger emission as a sum of complex exponentials, trying to overcome
some drawbacks of both Fourier spectra and least-square fitting. Overall, the spectral properties of
the post-merger signal observed in our simulation are in agreement with those proposed by other
groups. More specificaly, we find that analysis of [4] is particularly effective for binaries with very low
masses or with small mass ratio and that the mechanical toy model of [5] provides a comprehensive
and accurate description of the early stages of the post-merger.

PACS numbers: 04.25.D-, 04.40.Dg, 95.30.Lz, 97.60.Jd

I. INTRODUCTION

Gravitational waves (GW) from binary neutron star
(BNS) mergers are the next target for Earth-based in-
terferometric detectors, after the recent first detection
of GW from two binary black hole mergers [6–8]. BNS
are a particularly interesting system to study, since they
are also linked to the electromagnetic signal counterpart
to the GWs [9–12], to be the center for r-process nucle-
osynthesis in material that is dynamically ejected [13, 14]
macronovae [15–21] from the material ejected during and
after the merger, and are related to short gamma ray
bursts [22–25] (whose central engine mechanism is still
disputed). Even more importantly, BNS mergers can
be thought as a laboratory to study nuclear physics at
the extreme conditions present in neutron star cores [26].
The still unknown equation of state (EOS) of nuclear
matter inside the neutron star core, at densities higher
than at nuclear equilibrium, will leave an imprint on the
GW signal emitted both before and after the merger.

For the coalescent phase, semi-analytic techniques have
been developed that include effects due to the tidal de-
formability effect of matter EOS, in particular within the
effective-one-body (EOB) formalism [27–30], and tested
and validated using numerical relativity (see for example
[31–34]). On the other hand, for the merger and post-
merger phase, numerical relativity is the only available
tool to study the evolution of the remnant and its GW
emission, both in the case in which a (hyper)massive neu-
tron star [35], or a black hole surrounded by an accretion
disk is formed. If a neutron star remnant is produced, its

GW emission will be still linked to the neutron star EOS.
In particular, many recent works focused on linking the
spectral peaks of post-merger GW emission with some
characteristics of the merging neutron stars [4, 5, 18, 36–
43], such as their radius, compactness or tidal deforma-
bility. If the progenitor masses would be known from the
inspiral signal, they could be used to constraint the EOS
together with information about the post-merger peaks.
Despite this large body of previous works, which

mainly focuses on constructing empirical relations be-
tween GW spectral features and EOS-related features,
there is still an open debate about the physical origin of
the post-merger GW signal, especially the subdominant
spectral peaks.
In this work, we analyze the post-merger GW signal

from numerical relativity simulations, of which other as-
pects were already highlighted our previous works [1–3].
Our goals here are to get a clearer picture of the post-
merger GW emission mechanisms and their evolution in
time, and to act as an independent test for empirical re-
lations published in the recent literature, which are often
tested only on the same data used to derive them. Our set
of simulations span several directions in the relevant pa-
rameter space, investigating the effect of the total bary-
onic mass (from MT = 2.4M� of model SLy 1.11vs1.11
toMT = 3.2M� of model SLy 1.44vs1.44), the mass ratio
(up to q = 0.77, which corresponds to the largest mass
asymmetry observed in a BNS system in our galaxy [44]),
and the high density EOS in both equal and highly un-
equal mass systems. In particular, unequal mass systems
were less widely investigated for the effect of the mass ra-
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tio in the post-merger GW analysis [1, 37, 42, 45, 46]. In
this work we will highlight the effect of mass-ratio on the
GW spectral features and evaluate the error of applying
empirical relations developed for equal or close-to-equal
mass binaries to highly unequal mass ones. The presence
of this effect was already emphasized in [18] for the exis-
tence of empirical relations between the peak frequency
of the GW signal and the radius of the neutron star.

We also adopt, for the first time, a modern version
of Prony’s method [47–51] to analyze GWs from BNS
merger remnants. It is a promising technique, since it is
able to overcome some of the limitations of both Fourier
spectrograms and least-square fitting. In particular, the
Prony analysis allows us to confirm that the post-merger
GW signal is given by a sum of complex exponential
modes, which could not be clearly identified from the
Fourier spectra alone. We also validate those modes fre-
quencies and their time evolution with an independent
data analysis technique.

The paper is organized as follows: in section II we
briefly describe the simulated initial data and the nu-
merical methods adopted. In section III we present the
results of our analysis. In particular, IIID contains a
comparison of some empirical relations for the dominant
spectral peaks with our data, in section III E we discuss
different models for explaining the subdominant peaks
in the spectra, before we introduce the version of the
Prony’s method we implemented and the results obtained
applying it to our data in section III F. Finally, we con-
clude our analysis in section IV. The work is completed
by one appendix , containing characteristics of our initial
data, as well as a comparison of our data with existing,
universal formulae for the post-merger peak frequencies.

Throughout this paper we use a space-like signature
−,+,+,+, with Greek indices running from 0 to 3, Latin
indices from 1 to 3, and the standard convention for sum-
mation over repeated indices. The computations are per-
formed using the standard 3+1 split into (usually) space-
like coordinates (x, y, z) = xi and a time-like coordinate
t. Our coordinate system (xµ) = (t, xi) = (t, x, y, z) (far-
from the origin) are, as it can be checked, almost isotropic
coordinates and (far-from the origin) they would have the
usual measure unit of “time” and “space” and in partic-
ular t is close to be identified as the time measured from
an observer at infinity.

All computations have been done in normalized com-
putational units (hereafter denoted as CU) in which
c = G = M� = 1. We report all results in cgs units ex-
cept for values of the polytropic constant K, whose unit
of measurement depends on the value of the dimension-
less polytropic exponent Γ, so we report K in the above
defined normalized unit CU). We also report masses in
terms of the solar mass M�. The reader should note
that, as is usual in most of the work on this subject we
describe matter using the variable ρ (baryon mass den-
sity), ε (specific internal energy) and p, instead of, as usu-
ally used in Astrophysics, ρ (energy density), n (baryon
number density) and p. Their relation is the following:

ρ = e = ρ(1+ε) and n = ρ/mB (mB is the baryon mass).

II. INITIAL MODELS AND NUMERICAL
METHODS

The models analyzed in this paper were already con-
sidered in our previous works [1–3] where a detailed dis-
cussion of the employed numerical methods, their conver-
gence properties as well as of their properties can be find.
We report here the general simulation setup and param-
eters and refer to those previous articles for simulation
setup details. In particular, the resolution used in the
simulation here presented (dx = 0.25 CU = 370 m) is
coarser than the one used in other works but that should
not efffect the identification of the peaks (see [1] for a
discussion of the convergence properties of the code).
The simulations were performed using the Einstein

Toolkit [52], an open source, modular code for numer-
ical relativity based on the Cactus framework [53, 54].
The evolved variables were discretized on a Cartesian
grid with 6 levels of fixed mesh refinement, each using
twice the resolution of its parent level. The outermost
face of the grid was set at 720M� ( 1040 km) from the
center. We solved the BSSN-OK formulation of Ein-
stein’s equations [55–59], implemented in the McLachlan
module [60], and the general relativistic hydrodynamics
equations (GRHD) with High resolution shock capturing
methods, implemented by the public GRHydro module
[61, 62]. In particular, we used a finite-volume algo-
rithm with the HLLE Riemann solver [63, 64] and the
WENO reconstruction method [65, 66]. The combined
use of WENO reconstruction and the BSSN-OK formu-
lation was found in [1] to be the best combination within
the Einstein Toolkit even at low resolution in [1]. For
time evolution, we used the Method of Lines, with fourth-
order Runge-Kutta [67, 68].
Initial data were generated with the LORENE code

[69, 70], as irrotational binaries in the conformal thin
sandwich approximation. In this work we analyze a set
of simulations with the SLy EOS [70] (from ref. [1]),
equal mass systems with total baryonic mass from 2.4M�
to 3.2M� and unequal mass systems with the same to-
tal baryonic mass MT = 2.8M� and mass ratio up to
q = M1

M2
= 0.77. We also study simulations with differ-

ent EOSs, both in equal mass systems (with total mass
MT = 2.8M�, from ref. [2]) and unequal mass bina-
ries, simulating the merger of the observed system PSR
J0453+1559 (see ref. [3]), the BNS system with the
largest mass asymmetry observed so far in our galaxy
[44]. The simulations from ref. [1] have an initial dis-
tance between the merging stars of 40 km, while it was
set to 44.3 km for the simulations from ref. [2, 3]. More
physical initial data characteristics are reported in the
Appendix.
The cold part of the EOS is parametrized as a piecewise

polytrope with 7 pieces, following the prescription of ref.
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i Γi
ρi[g/cm3]

APR4 SLy H4 MS1
0 - 1.584
1 2.440 × 107 1.287
2 3.784 × 1011 0.622
3 2.628 × 1012 1.357

4 2.830 3.005 2.909 3.224
(ρ4/1014) (1.512) (1.462) (0.888) (0.942)

5 1 × 1014.7 3.445 2.988 2.246 3.033
6 1 × 1015 3.348 2.851 2.144 1.325

TABLE I. Parameters for 4 different piecewise polytropic
EOSs. K0 for all EOSs is 6.801 × 10−11, with the other Ki

chosen to obtain continuous EOSs. As can be seen, all EOSs
show the same low-density behavior, but start to differ above
ρ4 (which is also different for all EOSs). While ρ5 and ρ6 is
the same for all EOSs, they use a quite different Gammai for
this high-density regime.

[71]:

Pcold = Kiρ
Γi (1)

εcold = εi + Ki

Γi − 1ρ
Γi−1, (2)

where εi and Ki are fixed imposing the continuity of the
zero-temperature pressure and the specific energy density
(Pcold and εcold respectively), starting from K0, ε0 = 0
and the (zero-temperature) pressure value at the fixed
density 1014.7g/cm3. The four lowest-density pieces are
common to all the adopted EOS, and are taken from the
SLy EOS [72]. The three high density pieces, instead,
differ for the four EOS models we compared (two nu-
clear many-body EOSs, SLy [73] and APR4 [74], and
two relativistic mean-filed EOSs, H4 [75] and MS1 [76]).
All the EOS-specific parameters are reported in table I.
During the evolution, the cold EOS is supplemented by
an ideal-fluid thermal component, to ensure thermody-
namic consistency in the presence of shocks. It takes the
form of a Γ-law, with the choice Γth = 1.8 [77].

Pth = Γthρ(ε− εcold). (3)

A. Gravitational waves extraction

During the simulations the GW signal is extracted
computing the Newman-Penrose scalar Ψ4 [78, 79] (us-
ing the code module WeylScalar4), which is linked to
the GW strain by the following relation, valid only at
spatial infinity:

Ψ4 = ḧ+ − iḧ×, (4)

where h+ and h× are the two polarizations of the complex
GW strain h = h+ih×. The signal is then decomposed

in spin-weighted spherical harmonics of weight (−2) [80]
(by the module Multipole):

ψ4(t, r, θ, φ) =
∞∑
l=2

l∑
m=−l

ψlm4 (t, r) −2Ylm(θ, φ). (5)

Since in this work we only focus on the dominant l =
m = 2 mode, we will identify h = h2,2 for the rest of this
paper. In order to get the GW strain form Ψ4 and min-
imizing the extraction errors, one has to extrapolate the
signal extracted within the simulation at finite distance
from the source to infinity, in order for eq. (4) to be valid.
Then, the extrapolated Ψ4 is integrated twice in time,
employing an appropriate technique to reduce the ampli-
tude oscillations caused by high-frequency noise aliased
in the low-frequency signal and amplified by the double
integration process [81]. We adopted the procedure de-
veloped and extensively discussed in ref. [2]: first, Ψ4
is extrapolated to spatial infinity using the second order
perturbative correction of Nakano and collaborators [82]:

rψlm4 (tret) |r=∞ =
(

1− 2M
r

)(
r¨̄h(tret, r)+ (6)

− (l − 1)(l + 2)
2r

˙̄h(tret, r)

+ (l − 1)(l + 2)(l2 + l − 4)
8r2 h̄(tret, r)

)
.

Both the GW strains at finite radius, which are present
in eq. (6), and the final extrapolated strain are computed
first by integrating the Newman-Penrose scalar twice in
time with a simple trapezoid rule, starting from zero co-
ordinate time, and fixing only the two physically mean-
ingful integration constants Q0 and Q1 by subtracting a
linear fit of itself from the signal:

h̄
(0)
lm =

∫ t

0
dt′
∫ t′

0
dt′′ψlm4 (t′′, r) (7)

h̄lm = h̄
(0)
lm − Q1t − Q0. (8)

Only after the integration, a digital high-pass Butter-
worth filter is applied, designed to have a maximum am-
plitude reduction of 0.01 dB at the initial GW frequency
ft0 (assumed to be two times the initial orbital angu-
lar velocity, as reported by the LORENE code), and an
amplitude reduction of 80 dB at frequency 0.1ft0 .
All the GW related information will be reported in

function of the retarded time

tret = t−R∗ (9)

R∗ = R+ 2MADM log
(

R

2MADM
− 1
)
.

From the GW strain obtained with the aforementioned
procedure, we arrive at the GW amplitude spectral den-
sity

∣∣h̃(f)
∣∣ f1/2, which is the physical observable we are
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focusing on in the analysis presented in this work, with:

∣∣h̃(f)
∣∣ =

√∣∣h̃+(f)
∣∣2 +

∣∣h̃×∣∣2
2 , (10)

where h̃(f) is the Fourier transform of the complex GW
strain:

h̃(f) =
∫ tf

ti

h(t)e−2πiftdt. (11)

III. RESULTS

In order to study the spectral features of GWs emit-
ted by the hyper-massive neutron star remnant after
the merger of BNS systems, we first compute the whole
Fourier spectrum, as described in the previous section,
from 8 ms before up to 15 ms after merger. The results
are shown in figure 1. For all models, the spectrum has
an initial growth and a maximum (corresponding to the
inspiral GW emission, which has finite temporal length).
The filled circles in figure 1 mark the instantaneous fre-
quency at merger, computed as fi = 1

2π
dΦGW(t)

dt

∣∣∣
tmerger

,
where tmerger is taken as the time at which the GW am-
plitude is maximum, and ΦGW(t) = arctan h×

h+
+ 2kπ is

the accumulated GW phase, with the integer k chosen
to impose its continuity. The segment of each spectrum
at frequencies greater than the merger frequency is gen-
erated by the merger remnant GW emission. In par-
ticular, for all models, it shows a well known dominant
peak. This peak corresponds to the frequency f2 (also
called fpeak or fp in the literature), of the fundamental
quadrupolar m = 2 oscillation mode of the bar-deformed
neutron star formed after the merger [38]. Its frequency
has been correlated with different characteristics of the
merging neutron stars [36, 37], in particular for construct-
ing empirical relations to constraint the neutrons star
EOS with future BNS post-merger GW detections. For
a quantitative discussion of some of those relations, see
sec. IIID. Most models also show one or more subdomi-
nant peaks, at frequencies both lower and higher than the
dominant one. The scientific debate about their physical
origin is still open (see ref. [18, 43] for an overview of the
most recent results). Like the dominant peak, especially
the low-frequency subdominant peak has been the target
for empirical relations linking it to the characteristics of
static stars with the same EOS as that of the merger rem-
nant. A detailed discussion about subdominant peaks is
presented in section III E. Looking at figure 1, one can
have a first qualitative impression about the dependency
of the spectral features on the total mass of the binary,
the mass ratio, and the neutron star EOS. In the top-
left panel, equal mass systems with the same EOS (SLy)
and different total mass are compared. With increasing
mass, the dominant peak gains more power and moves
towards higher frequencies, as it is expected from a more

compact remnant. For most models, there are two sub-
dominant peaks which are about equidistant from the
dominant peak. They also gain more power with increas-
ing total mass. As an exception, there is no recognizable
peak with a frequency higher than the dominant one for
the system SLy 1.11bs1.11 with MT = 2.4M�. The
highest-mass system considered (MT = 3.2M�, model
SLy 1.36vs1.36, which collapses to black-hole 7 ms after
the merger) instead, shows an additional low frequency
peak, which does not correspond to any of the emission
mechanisms analyzed so far in the literature. It is sit-
uated at a lower frequency than the merger one, but it
comes, nevertheless, from the post-merger, as confirmed
by the spectrogram (see later in the text and figure 2).
The top-right panel shows unequal mass systems with
the same total baryonic mass (MT = 2.8M�) and EOS
(SLy), but different mass ratio, up to q = 0.77. As al-
ready reported in ref. [1] and confirmed in other works
published in the last year [42, 46], the mass asymmetry
leads to a lower dominant peak frequency and subdom-
inant peaks with progressively less power. The bottom
panels show the EOS effects for unequal (left) and equal
(right) mass binaries: the softest EOSs (SLy and APR4),
which lead to the most compact remnants, are charac-
terized by a dominant peak at higher frequencies (there-
fore, more difficult to detect in current generation GW
interferometers). The low-frequency subdominant peaks
have relatively higher power for the less compact stars
(H4 and, in a more pronounced fashion, MS1), while a
high frequency subdominant peak is clearly recognizable
only in the most compact stars. This difference was al-
ready noted in the unified model of [4], and was being
attributed to the possibility of different emission mech-
anisms being responsible for the subdominant spectral
peaks in soft and stiff EOS stars (see section III E for a
deeper discussion about this hypothesis).

Several refs. [43, 46, 84] highlighted the importance of
not only analyzing the spectrum taken over the entire
merger time, but also to analyze its time evolution. This
is important, because the signal components are not fixed
in time, but their frequencies evolve dynamically. Fig-
ure 2 shows the GW Fourier spectrogram for all the ana-
lyzed models, computed taking the Fourier transform in
intervals of 5 ms, with a superposition of 95%. Before the
Fourier transform, the time domain signal is first padded
with zeros to obtain a better frequency resolution, with a
padding length of twice the length of the original signal.
The first qualitative information noticeable in the spec-
trograms is that the subdominant modes are short-lived,
and that they decay during the first 5 ms after merger.
Even if they are too weak to be fully visible in the spec-
trograms, all the subdominant modes are active just after
the merger. For unequal mass systems with a soft EOS
this show that the main emission mechanism is only sup-
pressed by the mass asymmetry, but it is nevertheless
active. Finally, the dominant emission peak does not
show a fixed frequency, but changes slightly with time.

In the following subsections we present the results ob-
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FIG. 1. Amplitude of the spectral density of the GW signal
∣∣h̃(f)

∣∣ f1/2, computed with eq. (10) for an optimally aligned source
at 100 Mpc. The Fourier transform is taken from 8 ms before to 15 ms after the merger. Filled circles mark the instantaneous
frequency at merger. The top-left panel shows equal mass models with the SLy EOS and different total masses. On the top-left,
unequal mass models are shown with the same EOS and a fixed total baryonic mass of MT = 2.8M�. The bottom panels show
models with different EOSs, reproducing the observed PSR J0453+1559 system (left), or with baryonic mass M = 1.4M� for
each star (right). The filled circles in mark the instantaneous frequency at merger. The dashed black line shows the Advanced
Ligo design sensitivity curve in the “zero detuning - high power” configuration [83].

tained for the descriptions of the post-merger spectrum
of binary neutron star mergers.

A. Rapid change of f2 within few ms after merger

The frequency of the main emission mode rapidly
changes in the first milliseconds after the merger, when
also the subdominant modes are active, and when the
merger remnant is rapidly evolving towards a more sta-
ble, equilibrium configuration. This feature was already
noted in ref. [43] and was described using the notation
f2i to indicate a short-lived mode that evolves into the
f2 frequency. This continuous process seems to have
different characteristics depending on the binary phys-
ical characteristics as was observed in the spectrogram
of [84]. For example, in some models this frequency

change is a slow process, with the dominant frequency
first increasing (after the merger) and then decreasing,
to reach its quasi-stationary stage value, as happens for
the equal mass M = 1.11M� SLy EOS model (top-
left panel), or for the equal mass model with the H4
EOS (third panel of the bottom row). In other sys-
tems this maximum in the dominant frequency is also
present, but the quasi-stationary phase is reached much
more quickly, like the equal mass systems with the SLy
EOS and M = 1.20, 1.28M� (second and third panels
in the first row) or all the systems with the parame-
ter of the observed PSR J0453+1559 binary (third row).
Finally, there are systems for which the dominant fre-
quency just decreases from its value right after the merger
to the quasi-stationary phase value (like the equal mass
APR4 model). It is interesting to note that in the PSR
J0453+1559 system with a soft EOS (SLy or APR4),
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FIG. 2. Fourier spectrograms of all the not promptly collapsing models represented in figure 1. The Red lines show the
combination of the dominant peak frequency f2i reported in table II (dashed-blue) with the oscillation frequency f0 reported
in table III, namely f2i ± f0

the change in frequency of the dominant peak is visible
also in the full spectrum (figure 1, bottom-left panel), as
the splitting of the main peak, and as already reported
in [3]. Although this could be considered an artifact of
the short post merger simulated time, it is unlikely to
change even for a longer observation period. The reason
is that it is caused by the fact that the GW amplitude
quickly decreases after the first transient phase in high
mass asymmetry models, allowing for the short but with
relative high amplitude transient emission to leave an im-
print on the overall spectrum as a local maximum, which
does not happen in equal or close-to-equal mass binaries,

where the GW emission amplitude decreases more slowly
in the quasi-stationary phase.

B. Slow increase of f2 at late times

The dominant mode frequency, in the last part of the
signal, when it is the only active component, increases
with time in most models. This effect is expected, be-
cause the angular momentum emitted in GW and redis-
tributed by hydrodynamical processes drives the merger
remnant to be more axisymmetric (damping the ampli-
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tude of the GW emission) and more compact (increas-
ing its frequency). This frequency increase is more pro-
nounced in models with higher total mass (see first row
of fig. 2) and in equal mass models, while highly un-
equal mass ones show little or no frequency change in
the temporal interval considered in this work, indepen-
dently from the EOS (see third row). This is quite easy to
understand, since the remnants of unequal mass binary
mergers are less compact, and, in particular, more matter
is ejected far from its core due to the tidal deformation of
the lower mass star by its companion gravitational field
which begins in the last orbits before the merger.

C. Other features

Finally, other subdominant modes are visible from
the spectrograms, which are not explained by any of
the standard pictures published so far, like the already
mentioned low-frequency peak in the collapsing model
SLy1.36vs1.36, which is generated at merger and lasts for
the first 4 ms, or the extended low frequency emissions
around 1.7 kHz visible in the PSR J0453+1559 system
with the APR4 or EOSs, which start to develop about
10 ms after the merger, already noticed and discussed in
ref. [3].

D. The dominant emission frequency f2 and its
link with the stellar properties

The physical mechanism behind to the dominant peak
in the post-merger GW spectrum is well known and
agreed upon in the literature. As anticipated in the intro-
duction, several empirical relations have been developed
to link the peak frequency f2 with the merging star char-
acteristics, like their radii [18, 40, 85, 86], compactness
[5, 42, 87], or tidal deformability [39, 41, 43, 88]. One
of the purposes of this work is to use our data, which
cover a relevant portion of the expected BNS parameter
space, as an independent test for such relations, in or-
der to check their validity and estimation error on a set
of simulations different from the ones used to obtain the
relation parameters with nonlinear fitting.

In particular, we started form the results of ref. [89],
which state that for equal mass models, fB2 correlates
tightly with the radius of a static neutron star in equi-
librium with the same EOS and a mass higher than the
mass of each merging star. In particular, the dominant
post-merger emission frequency from a system with two
1.35M� stars was correlated with the radius of a static
star of M = 1.6M�. In ref. [18] (Eq. (2)), a relation-
ship which connects the radius of a static TOV star with
the f2 frequency and the total gravitational mass (see
Eq. (A.1) for fB2 in the appendix) of the merging sys-
tem was also presented, but was reported to have higher
errors in the obtained radii with respect to the fixed-
total-mass relations. However, it is important to keep

Model f2i f2 fB
2 [18] ∆RM=1.6 f2 [42]

[kHz] [kHz] [kHz] [km] [kHz]
SLy 1.11vs1.11 2.79 2.85 2.784 0.16 2.83
SLy 1.20vs1.20 3.01 2.96 3.009 0.10 3.03
SLy 1.28vs1.28 3.23 3.14 3.212 0.15 3.20
SLy 1.36vs1.36 3.48 3.51 3.410 0.19 3.38
SLy 1.24vs1.32 3.18 3.13 3.210 0.17 3.20
SLy 1.20vs1.36 3.07 3.05 3.210 0.35 3.20
SLy 1.16vs1.40 2.97 2.98 3.210 0.49 3.20
SLy 1.11vs1.44 2.97 3.00 3.197 0.43 3.20

APR4 1.17vs1.56 3.49 3.32 3.574 0.50 3.67
SLy 1.17vs1.56 3.31 3.27 3.427 0.31 3.41
H4 1.17vs1.56 2.27 2.37 2.503 0.44 2.25

MS1 1.17vs1.56 1.91 1.90 2.179 2.30 1.88
APR4 1.27vs1.27 3.31 3.17 3.336 0.35 3.47
SLy 1.28vs1.28 3.22 3.17 3.212 0.08 3.20
H4 1.30vs1.30 2.35 2.45 2.382 0.21 2.12

MS1 1.30vs1.30 2.03 2.02 2.081 0.29 1.80

TABLE II. Dominant peak frequency, measured from the full
spectrum f2, or from the spectrum up to 5 ms after the
merger f2i, taking the maximum of the corresponding ampli-
tude spectral density after interpolating it with a cubic spline
with resolution 1 Hz. The values here are slightly different
from the ones in [1] due to the different methodology for com-
puting f2 from the data (in the cited paper it was computed
using a fit of the time domain signal), and the different time
interval used. In addition, the results of simulations with SLy
EOS and M = 1.4M� show different values due to different
initial stars distances (see [2] for a detailed study about its
influence) and the different symmetries imposed during the
evolution. However, they are still fully compatible within the
discrete Fourier transform error (47 Hz). The fourth column
reports the predicted value for fB

2 using the empirical relation
of [18]. The fifth column reports the error in the determina-
tion of the radius of a M = 1.6M� static neutron star using
the aforementioned relation and the real f2 value measured
from our data. Finally, the last column shows the predicted
peak frequency with the relation of [42].

in mind that the authors in [18] already noted that for
an unequal mass q = 0.8 merger, such a relation it is
not naturally fulfilled. We compared the aforementioned
R(fB2 ,Mg) relation with our data of systems with varying
total gravitational mass. The result of such a comparison
are reported in table II, together with the corresponding
errors in the obtained radii. The radii of TOV stars of
mass M = 1.6M� are computed for each EOS using the
rns code [90].
We want to stress that eq. (2) of [18], like most empiri-

cal relationships of this kind so far, does not take mass ra-
tio effects into account. According to our results, this can
cause an error in the inferred radius of the order of 500 m
for the largest mass asymmetries observed in double neu-
tron star systems. To take the mass ratio into account, a
new relation was developed in [42], correlating f2 linearly
with the stars contact frequency, which is sensible to the
mass ratio and can be obtained, to first approximation,
from the stars’ masses and compactness [91]. Results
shown in table II show, however, that the dependency
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Model f1 f3 f0 fmerger
[kHz] [kHz] [kHz] [kHz]

SLy 1.11vs1.11 2.04 - 1.31 1.72
SLy 1.20vs1.20 1.89 4.17 1.31 1.81
SLy 1.28vs1.28 2.15 4.30 1.19 1.91
SLy 1.36vs1.36 2.60 4.30 0.93 1.98
SLy 1.24vs1.32 2.10 4.26 1.18 1.90
SLy 1.20vs1.36 2.01 4.19 1.20 1.82
SLy 1.16vs1.40 1.93 4.11 1.24 1.73
SLy 1.11vs1.44 - - 1.27 1.63

APR4 1.17vs1.56 2.38 4.62 1.13 1.87
SLy 1.17vs1.56 2.25 4.23 1.02 1.67
H4 1.17vs1.56 - - 1.02 1.27

MS1 1.17vs1.56 - - 1.42 1.18
APR4 1.27vs1.27 2.16 4.48 1.27 1.96
SLy 1.28vs1.28 2.12 4.35 1.18 1.87
H4 1.30vs1.30 1.71 - 1.02 1.45

MS1 1.30vs1.30 1.52 - 1.09 1.32

TABLE III. For each model, the second and thirds columns
show the subdominant peak frequencies f1 and f3, measured
taking the local maxima of the amplitude spectral density,
after interpolating it using a cubic spline with a resolution of
1 Hz. See caption of table II for an explanation about the
differences to the numerical values reported in our previous
works [1–3], and between the two simulations with the SLy
EOS and M = 1.4M� for each star. In the fourth column we
report the quasi-radial oscillation frequency f0, evaluated tak-
ing the peak of the maximum density oscillations spectrum,
computed in an 10 ms interval starting at merger, resulting
in an sensitivity of 100 Hz. The last column shows the in-
stantaneous frequency fmerger at merger time by taking the
derivative of the accumulated GW phase at the time of max-
imal GW strain amplitude.

between contact frequency and mass ratio seems to be
too weak to fully account for the differences observed in
f2, as was already observed in figure 4 in ref. [42]. In
essence, this simpler and physically motivated empirical
relation, seems to perform worse on our data than the
correlation with the radius of a M = 1.6M� static star.

E. Physical interpretation and correlations of the
subdominant frequencies

In the literature have been proposed various explana-
tion for the subdominant peaks f1 and f3 (also called f−
and f+) which appear in the spectrum of post-merger
GW emission in most BNS models.

The first hypothesis but forward was to consider them
as the result of the combinations of the m = 0 quasi-
radial oscillation mode and the fundamentalm = 2 mode
[38] . In most models, the subdominant peaks are almost
equidistant from the dominant one. The red horizontal
lines in figure 2, and the corresponding vertical lines in
figure 3, showing on each panel the GW spectrum of a
single model, are drawn at frequencies f2i − f0, which
are the theoretical frequencies of the mode combination.
Here f2i, adopting the notation of [43], is the dominant

frequency in the first milliseconds after the merger, evalu-
ated taking the maximum of the amplitude spectral den-
sity computed up to 5 ms after the merger. f0, instead, is
the frequency of the quasi-radial oscillations, computed
from the spectrum of the maximum density (or mini-
mum lapse) oscillations (see figure 5). In most models
the frequency predicted for the mode combination is a
very good approximation for the subdominant peaks in
the spectrum. However, it is significantly different in the
less compact stars, either low mass models with a soft
EOS (like the equal mass model with the SLy EOS and
M = 1.11M� for each star, top-left panel in figure 3), or
models with a stiff EOS (like the stars withM ' 1.28M�
and the H4 or MS1 EOS).
Before addressing the mode combination interpreta-

tion in the less compact stars one should consider that
in [5, 87, 92] was hypothesized and analyzed the possibil-
ity that all the subdominant peaks are generated by the
modulation of the dominant mode due to the radial oscil-
lation of the rotating double core structure formed right
after the merger and that this modulation could be de-
scribed by a mechanical toy model [5]. According to this
interpretation, it is possible to find a single relationship
connecting f1 to the merging stars characteristics, and,
in particular, to their EOS, since this subdominant peak
is produced by the same mechanism in all models. A
similar relation, fitting f1 with a third order polynomial
in the initial stars average compactness, was developed
in [5] and refined in [43]. Its predictions, for our data,
are reported in figure 3 as the solid green lines. In almost
every model it is able to reproduce well the subdominant
peaks, also for the stiff EOSs, where the mode combina-
tion hypothesis failed. It performs slightly worse than the
mode combination hypothesis in the model close to the
collapse threshold (SLy EOS and M = 1.36M� for each
star). In this case, the only models that are not effectively
described by the proposed universal mechanics are: the
lowest equal-mass model with massM = 1.11M� (that is
quite unlikely to be present in nature) and some of the ex-
tremely un-equal mass models, namely, SLy 1.11vs1.44,
H4 1.17vs1.56, and MS1 1.17vs1.56.
A different possibility was considered in ref. [4] to con-

struct a unified picture. In this case the low frequency
GW subdominant peak in the less compact models (at
frequencies denominated fspiral was interpreted as due to
the emission from the spiral arms structure formed after
the merger, which rotates slower than the central double
core structure, with a rotation frequency of fspiral

2 , while
the subdominant peaks in the more compact stars are
considered to be produced by the m = 2 and m = 0
mode combination, which, as explained before, is consis-
tent also with our data. Indeed, here the word unified
should be interpreted as the assertion that the two asso-
ciated peaks are always present and that the dominant
f1 peak is just the strongest of the two. From the data of
ref. [4], where the fspiral peak was identified in the post-
merger emission of several binary systems with different
EOSs, in [43] an empirical relationship was derived, con-
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FIG. 3. Amplitude of the spectral densities for all models also presented in figure 1, except the promptly collapsing one. The
red vertical lines correspond to f2i − f0 and f2i + f0. The vertical green solid lines correspond to the empirical relationship fT

1
of Eq. (A.5) and the associated frequency fT

3 = 2f2i − fT
1 . The cyan line shows the application of empirical relationship fT

spiral

of Eq. (A.6). It should be noted that although this relationship does not always match the f1 peak, it seems to correspond to
others (even-more) subdominant peaks in the spectrum.

necting fTspiral (see Eq. (A.6)) to the average mass and
compactness of the merging stars, with a second order ex-
pression. Its predictions, applied to our simulations, are
shown in figures-3 by the dash-dotted cyan lines. They
agree very well with the low frequency subdominant peak
in the less compact models, where the mode combina-
tion can not explain the right f1 frequency. In particu-
lar, the spectrograms of some models with intermediate
compactness (the equal mass ones with the SLy EOS and

M = 1.3, 1.4M� for each star) show the presence of two
low-frequency subdominant GW emissions, one close to
the predicted frequency of f2i − f0 or f1 from [5, 43],
and the other, at higher frequency and with a shorter
duration, close to the value predicted for fTspiral. This is
consistent with similar results found in ref. [4, 18] for the
class of models they defined Type II.
In order to investigate further these hypothesis, we

studied the evolution of the maximum density and mini-
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FIG. 4. Evolution of the maximum density in the merger
remnant.

mum lapse in the remnant. Figure 4 shows the maximum
density evolution for all the discussed models. The den-
sity grows after the merger, with, in most models, super-
imposed oscillations in the first milliseconds. At the end
of the longest simulations, the density reaches a stable
maximum value, when the star is in the quasi-stationary
phase. The maximum density is obviously higher in the
more compact stars. In particular, the dominant effect is
due to the EOS. In the stiffest EOS, the last polytropic
piece of our parametrization (at densities higher than
1015g/cm3) is never reached in our models. The density
also appears to grow slower and aim asymptotically to
a lower equilibrium value in systems with a large mass
asymmetry. This is easy to explain, since the remnant
of unequal-mass BNS mergers is less compact due to the
tidal deformation of the lower mass star in the late inspi-
ral and merger phase. Density oscillations, also, have a
higher amplitude in the more compact models, in partic-
ular in those closer to the threshold for quasi-radial col-
lapse (SLy EOS and M = 1.36M� for each star), while
they seem to have a similar frequency in almost all mod-
els, excluding the aforementioned SLy1.5vs1.5 collapsing
model, for which it becomes lower getting closer to the
collapse time. Density oscillations have a negligible am-
plitude, instead, in the less compact stars (the ones with
MS1 EOS or with SLy and M = 1.11M� for each star),
which correspond, also, to the models for which the sub-
dominant peaks in the spectrum are not well explained by
m = 2 and m = 0 mode combination. In unequal-mass

models, density oscillations are still present, but have a
lower amplitude increasing the mass asymmetry, in par-
ticular in the first two milliseconds after the merger. This
is consistent with their connection to the subdominant
peaks in the GW spectrum: there is still an emission
at frequencies around f2 (as seen in the spectrograms,
fig. 2), but the subdominant peaks amplitude in the full
spectrum is lower, decreasing the mass ratio.
In ref. [4] it was claimed that the GW emission mech-

anism at fspiral would leave an observable imprint also
in the maximum density evolution, as a modulation with
frequency f2i − fspiral, due to the relative instantaneous
orientation of the external spiral structure respect to the
internal double core structure. To investigate it in our
data, we computed the Fourier spectrogram of the max-
imum density and minimum lapse oscillations, in the in-
terval from the merger to 10 ms after it. The results
are shown in figure 5, in arbitrary units, normalized to
the spectrum maximum, in order to be able to compare
the spectral features of the two observables. In all mod-
els, both the maximum density and the minimum lapse
spectra show a dominant peak, corresponding to their
oscillation frequency f0. The peaks in both spectra are
remarkably always at the same frequency, except for the
collapsing model with SLy EOS and M = 1.36M� for
each star, confirming their ability to measure the quasi-
radial oscillations frequency. While the α spectrum does
not show any other feature, besides the main peak, in
some models, in particular, the less compact ones, the
ρ spectrum shows also some subdominant peaks. This
difference between the two observables can be easily ex-
plained by the fact that, while soon after the merger the
star lapse profile have only one single maximum located
at the star center, the density keeps a double core struc-
ture, with two rotating local maxima, for several millisec-
onds. For the models where fspiral could be a promising
explanation for the low frequency subdominant peak f1
in the GW spectrum, we drew a vertical, black line at
frequency f1 − f2i in figure 5. In the SLy 1.11vs1.11,
H4 1.3vs1.2,MS1 1.3vs1.3 models, it it falls close to a lo-
cal maximum in the density spectrum, compatible with
it within the Fourier transform frequency error of 60
Hz, confirming the presence of a modulation at that fre-
quency, as predicted in [4]. This finding seems to corrob-
orate the fspiral hypothesis for those models. In the SLy
1.2vs1.2 and SLy 1.28vs1.28 models, which showed sub-
dominant emissions in their spectrograms close both to
the prediction for fspiral and to f2i−f0, instead, only the
main f0 peak is present in the maximum density spec-
trum.

F. Analyzing the post-merger GW spectrum with
the Prony method

Fourier spectrograms are a very informative technique,
but they have also some known drawbacks:

• They consider only the modulus of the GW strain,
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FIG. 5. Fourier spectra of the maximum density and minimum lapse oscillations, computed between the merger and 10 ms
after it. The black vertical lines mark, in models for which the subdominant GW spectral peaks are not well explained by
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not the full complex number;

• They do not allow extraction of information about
the excited mode damping times, nor do they in-
dicate whether the modes are growing or vanishing
in a particular time interval;

• Their accuracy in time and frequency is limited by
the bandwidth theorem.

All these shortcomings can be overcome by a comple-
mentary analysis which fits the time domain signal to a
sum of complex exponentials. These can, at each sam-
pled point n ∈ [1, N ], be expressed as (T is the sampling
time) :

h[n] =
M∑
k=1

Ake
(− 1

τk
+2πifk)T n+iφk =

M∑
k=1

ckz
n
k , (12)

where M is the number of signal components, which a
priori could be unknown. Retrieving the same number
of excited modes with the same frequencies using this

technique and using a Fourier spectrum would be a con-
firmation that the post-merger GW signal is indeed the
superposition of different exponentially-decaying excited
modes.
Fitting a sum of complex exponentials with the stan-

dard least-square technique is known to be problematic,
for the large number of free parameters and the sensi-
tivity to the needed initial guess. Moreover, the number
of excited modes must me chosen a priori with standard
fitting techniques, as adopted for example in [18, 86].
A different class of techniques, descending from

Prony’s method, is known in the signal processing lit-
erature to be a solution to these problems of least-square
fitting a sum of complex exponentials [47, 50, 93]. These
methods have already been adopted in numerical rela-
tivity to extract quasi-normal modes from the ring-down
signal in binary black holes simulations [48, 49], but have
never before been adopted to study the BNS post-merger
GW signal. In particular, we implemented the ESPRIT
Prony variant [51, 94], which is able to reconstruct the
signal features even in the presence of noise. Like many
other modern Prony implementations, it is based on fit-
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ting a sum of a number of complex exponentials L much
larger than the M ones present inside the signal, and
then discriminating between the physical modes and the
ones due to noise. Following a common choice, we used
L = N/3 in this work.

Prony’s original method was developed to fit a noise-
less signal of N = 2M samples. Its starting point was
rewriting eq. (12) as a Vandermonde linear system:

z0
1 z0

2 · · · z0
M

z1
1 z1

2 · · · z1
M

...
...

. . .
...

zM-1
1 zM-1

2 · · · zM-1
M




c1
c2
...
cM

 =


h[0]
h[1]
...

h[M-1]

 .(13)

The goal of Prony’s method is to find in an independent
way a solution for the complex exponentials zk, which
give the frequencies and the damping times of the sig-
nal components. Once they are known, one can solve
system 13 with standard techniques, to get also the am-
plitudes and the phases encoded in the coefficients ck.
The starting point is to construct an M-grade polyno-
mial, whose zeros are the first M zk:

p(z) =
M∏
k=1

(z − zk) =
M−1∑
k=0

akz
k + zM , z ∈ C, (14)

where the coefficient aM has been arbitrarily set to one.
Starting from these Prony polynomials, one can find the
following relation, for each m ∈ N ∗:

M∑
k=0

akh[k +m] =
M∑
k=0

ak

 M∑
j=1

cjz
k+m
j

 =

=
M∑
j=1

cjz
m
j

(
M∑
k=0

akz
k
j

)
=

M∑
j=1

cjz
m
j p(zj) = 0. (15)

Using the sampled values of the signal h[k], k ∈ [0, 2M−
1], this can be translated in a forward linear prediction
system:

M−1∑
k=0

akh[k +m] = −h[M +m],m ∈ [0,M − 1], (16)

which, in matrix form, becomes:


h[0] h[1] · · · h[M − 1]
h[1] h[2] · · · h[M ]
...

...
. . .

...
h[M − 1] h[M ] · · · h[2M − 2]




a[0]
a[1]
...

a[M − 1]

 = −


h[M ]

h[M + 1]
...

h[2M − 1]

 . (17)

In order to fit a sample with noise and N > 2M points,
where M is not known a priori, in the ESPRIT Prony
technique, the starting point is building the rectangular
Hankel matrix

H(0) =


h[0] h[1] · · · h[L]
h[1] h[2] · · · h[L+ 1]
...

...
...

h[N -L-1] h[N -L] · · · h[N -1]

 (18)

and the closely related matrix HN−L,L(1), which is ob-
tained from HN−L,L(0) by removing the first column and
adding a N −L vector of zeros as last column. Following
from eq. (17), an extended companion matrix CL+1 can
be constructed, which allows to transform HN−L,L(0) in
HN−L,L+1(1):

HN−L,L+1(0)CL+1 = HN−L,L+1(1) (19)

CL+1 =
(

CM (a) 0M,L+1−M
0L+1−M,M VL+1−M

)
, (20)

where C(M) is the companion matrix in the original

Prony method:

CM (a) =


0 0 · · · 0 −a0
1 0 · · · 0 −a1
0 1 · · · 0 −a2
...

...
...

...
0 0 · · · 1 −aM−1

 (21)

and the bottom-right block is given by:

VL+1−M =
(

01,L−M 0
IL−M 0L−M,1

)
. (22)

The key of this method is the fact that the companion
matrix CM has the M complex numbers zj , j ∈ [1,M ] as
eigenvalues. Note that in a noiseless sample, its extended
version CL+1 has the same M eigenvalues, plus L+ 1−
M additional eigenvalues which are zero. Therefore, the
technique focuses on finding theM significant eigenvalues
of CL+1 by discriminating them from the eigenvalues due
to noise.
Like in many other Prony-like techniques, this is done

by performing a singular value decomposition (SVD) of
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the Hankel matrix and the closely related matrix H(1):

HN−L,L+1 = UN−LSN−L,L+1WL+1 (23)
HN−L,L+1(1) = UN−LSN−L,L+1WL+1(1), (24)

where U andW are unitary matrices and S is a rectangu-
lar diagonal matrix, whose nonzero values σi, i ∈ [1, L+1]
are called the singular values of the Hankel matrix, ar-
ranged in a non-increasing order. W (1) is, by construc-
tion of the Hankel matrices, built from W by removing
the first column and adding a last column filled with ze-
ros. For noiseless data, only M singular values are non-
zero. For data with noise instead, it is possible to define
a threshold ε depending on the desired accuracy (which
depends also on the input data accuracy), in order to
find a posteriori the number M of complex exponential
components present in the signal, requiring

σM
σ1
≥ ε. (25)

In the present case, we have chosen ε = 10−2.
After the σi rearrangement, and after determining the

value of M , it is possible to remove all L + 1 −M sin-
gular values linked with noise from S by setting them to
zero, and building the rectangular diagonal sub-matrix
SN−L,M . The sub-matrix WM,L+1 is defined accord-
ingly. Those sub-matrices only take into account the
signal-related singular values, are then used to recon-
struct HN−L,L+1 and HN−L,L+1(1) again, choosing also
in this case only the largest M singular values. This al-
lows to rewrite eq. (19) as:

SN−L,MWM,L+1CL+1 = SN−L,MWM,L+1(1). (26)

Multiplying the conjugate transposed equation with(
S∗N−L,M

)† from the left, and setting

WM,L(s) = WM,L+1(1 : M, 1+s : L+s), s = 0, 1, (27)

in order to remove the zero columns, one finally gets

C∗LW
∗
M,L(0) = W ∗M,L(1).. (28)

Since CL has rank M , and its eigenvalues are the zj we
are looking for, one can find them solving eq. (28) in the
least-square sense and computing the eigenvalues of the
solution matrix

FM :=
(
W ∗M,L

)† (0)W ∗M,L(1), (29)

where
(
W ∗M,L

)† is the Moore-Penrose pseudo-inverse of
WM,L. Once one obtains the M complex zJx, as eigen-
values of FM , it is possible to solve the (now overde-
termined) Vandermonde system 13, again in the least-
square sense, to get also the cj , from which the modes
amplitudes a phases can be computed.

Model f1Prony f2iProny f3Prony
[kHz] [kHz] [kHz]

SLy 1.11vs1.11 2.15 2.81 -
SLy 1.20vs1.20 1.86 2.98 3.97
SLy 1.28vs1.28 2.12 3.21 4.28
SLy 1.36vs1.36 2.34 3.40 4.33
SLy 1.24vs1.32 2.06 3.21 4.27
SLy 1.20vs1.36 2.08 3.11 4.09
SLy 1.16vs1.40 - 2.98 -
SLy 1.11vs1.44 - 2.93 -

APR4 1.17vs1.56 2.55 3.54 4.34
SLy 1.17vs1.56 2.45 3.37 4.22
H4 1.17vs1.56 - 2.24 -

MS1 1.17vs1.56 - 2.00 -
APR4 1.27vs1.27 2.00 3.30 4.48
SLy 1.28vs1.28 2.04 3.22 4.23
H4 1.30vs1.30 1.78 2.36 -

MS1 1.30vs1.30 1.52 2.05 -

TABLE IV. Frequencies of the dominant and subdominant
components fitted by the ESPRIT Prony algorithm in an in-
terval between 1 ms and 3 ms after the merger.

G. Applying Prony’s method to our models

The Prony method is designed to fit signal components
with fixed frequencies. It is therefore important to per-
form the Prony analysis only in short time intervals, as
the emission frequencies change with time, as seen before
in the Fourier spectrograms (figure 2). We applied the
ESPRIT Prony algorithm described above to the post-
merger GW strain, in an interval from 1 ms to 3 ms after
the merger (when the subdominant modes are active), in
order to compute the component frequencies and com-
pare them to those computed from the Fourier spectra
(reported in tables II and III). The results of this analy-
sis are reported in table IV. Another useful information
that can be extracted using Prony’s method is the de-
termination of the dumping (growing) time associated
with a specific mode of a given fixed frequency. The
correct determination of the dumping time would had
required a larger time interval (here we use a 2 ms win-
dow) over which the frequncy of the mode is constant.
Unfortunately, the frequency of active emission modes
is changing with time and for this reason the associated
damping times τ are much more sensitive to size of the
time-window and are not reported here. On the contrary,
it allows to perform time-frequency analysis using small
time-window maintaining a high precision in the deter-
mination of the modes frequencies.
Additionally, we built a Prony spectrogram for each

model (shown in figure 6 where darker colors refer to
higher amplitudes), assigning the frequencies of the com-
ponents fitted by an ESPRIT Prony algorithm applied in
a 2 ms interval around each point in time for the simu-
lated post-merger evolution. The points in the plot are
colored with a colormap based on the amplitude of each
mode, normalized to the maximum amplitude for each
model. The dashed lines show the values of f2 (black),
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FIG. 6. Spectrograms constructed applying an ESPRIT Prony algorithm in an interval 2 ms wide around each point. The
color code refers to the signal component amplitude (darker colors refer to higher amplitudes), normalized to the maximum
amplitude for a component in all the post-merger signals for each model. The horizontal lines correspond to the f1 (green), f2i

(dashed-black) and f2i − f0 and f2i + f0 (dotted-red) frequencies reported in Tables II and III.

f1 and f3 (green) from tables II and III. The components
fitted by the Prony method agree well with the Fourier
spectra peaks in most of the simulated models. The anal-
ysis of the Prony spectrogram however show in a precise
way that a three peaks structure:

• it is clearly present only in the two most mas-
sive case, namely model SLy 1.28vs1,28 and SLy
13.6vs1.36,

• it is gradually suppressed changing the mass ration
q = M1/M2, and

• it does not show up for stiffer equations of state,
e.g., in models H4 1.3vs1.3 and MS1 1.3vs1.3.

This presence of a three-peaks structure can be also seen
in the spectrogram of Figure 2, but there is it by far not
as clearly visible as in the Prony spectrogram.

We also note that, while it might be tempting to see f1
and f3 as equidistant to f2 when only considering equal-
mass models, the unequal-mass models show that this

is not the case there. It is apparent especially from fig-
ure 6 (second-row), that f1 and f2 are not only non-
equidistant in those cases, but that their dependency on
the mass ratio seems to be similar: the more unequal a
system is, the lower both frequencies seem to be, while f2
hardly changes in comparison. Also, for cases that show
a pronounced frequency f3, the time evolution of both
f1 and f3 seems to show common features, e.g., common
raises and drops, while maintaining a rough factor of two.
While such a connection has not been shown rigorously,
it suggests a close physical connection between the pro-
cesses generating both frequencies, possibly even being
produced by the same process. Understanding why f3 is
missing for especially the low-mass and soft-EOS models
could help understanding the process(es) for both f1 and
f3, but due to the need for more model data this remains
part of future work.
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IV. CONCLUSIONS

In this paper we studied the GW emission from BNS
merger remnants, focusing in particular on their spec-
tral features. We analyzed the output of several numeri-
cal relativity simulations of models already considered in
our previous works [1–3], which cover a relevant portion
of the BNS mergers parameter space, varying the total
mass, the mass ratio, and the high-density EOS.

We compared the peak frequency of the Fourier spectra
with two different empirical relations, linking it to static
stars characteristics, and, therefore to the EOS [18, 42],
using our dataset as an independent test. The rela-
tion from [18] showed a better agreement, with a differ-
ence between the predicted and measured f2 of less than
twice the Fourier transform sensitivity in most equal-
mass models (except APR4 1.27vs1.27). The error in
the estimated radius for a static neutron star of reference
mass M = 1.6M� is at most 350 m for equal mass mod-
els, while it is higher for most of the simulated unequal-
mass binaries. For example, in the sequence of unequal-
mass binaries with fixed EOS (SLy) and total baryonic
mass (MT = 2.8M�), the radius error increased by about
a factor of three between q = 0 and q = 0.83.

Next, we analyzed the subdominant peaks in the GW
spectrum, comparing different interpretations for their
origin. While in most models the m = 0 and m = 2
mode combination hypothesis agrees well with our data,
it does not work for some of the less compact stars (with
either low mass or stiff EOS), for which, additionally,
only a low-frequency subdominant peak f1 is present,
with no high-frequency counterpart f3. In the stiff EOS
models, the universal relation of [5, 43], which works well
also in all the more compact models, gives a good pre-
diction for the subdominant peak f1, while it does not
work for model SLy 1.11vs1.11. The fspiral hypothesis
of [4, 18], on the other hand, seems to work well in all
the simulations of our sample where the f1 peak can-
not be explained by mode combination. In particular, in
three of our models (SLy 1.11vs1.11, H4 1.3vs1.3, and
MS1 1.3vs1.3) a subdominant peak at frequency close
to (f2i − f1) is found by analyzing the spectrum of the
maximum density to study the quasi-radial oscillation.
This has been attributed in the cited works to the dif-
ferent orientation of the outer spiral-arms structure with
respect to the inner double-core structure, which rotates
with different angular velocity.

We applied, for the first time in the analysis of GW
from BNS post-mergers, a modern variant of Prony’s
method, which is a technique to fit a signal with a sum
of complex exponentials. This allowed us to confirm that
in the initial transient phase the post-merger GW signal
is indeed a combination of different complex exponential
components, whose frequencies were similar to the values
of the spectral peaks. Also, the number of retrieved com-
ponents, which is not imposed a priori in Prony’s analy-
sis, agreed well with the subdominant peaks we were able
to distinguish in the spectrum, confirming the subdom-

inant peak suppression in unequal mass models and the
absence of a high-frequency peak f3 in the less compact
models, where mode combination does not explain the f1
frequency well.
We also analyzed the time evolution of the frequency-

domain signal, utilizing both Fourier spectrograms and
Prony spectrograms. Both share the same dynamical fea-
tures:

• A change in the dominant peak frequency between
the initial transient phase and the following quasi-
stationary phase. It is apparent that this transient
is not a sudden jump, but rather a continuous pro-
cess, in which the dominant frequency first increase
and then decrease;

• A slow increase in the dominant frequency in the
quasi-stationary phase which, in particular in the
Fourier spectrograms, seems more pronounced in
equal mass binaries and suppressed in unequal mass
ones.

Overall, our analysis reveals that the spectral proper-
ties of the post-merger gravitational-wave signal are in
agreement with those proposed by other groups. In par-
ticular, four main peaks appear to be present in all of our
simulations: f1/fspiral, f2, f3 and f20. We also find that
the mechanical toy model of [5] provides an effective de-
scription of the early stages of the post-merger and that
the two main subdominant peaks f1 and f3 are produced
only during a transient stage of a few milliseconds after
the merger, as predicted by the toy model. At the same
time, we find that the analysis of [4] is particularly ef-
fective for binaries with very low masses or small mass
ratios, where the fspiral peak replaces the f1 peak and
provides a better match to the data. This suggests that
at least two different mechanisms should be considered
for the physical interpretation.
A complete understanding, possibily with the aid of the

toy model, of the common dynamics of the subdominant
peaks f1 and f3, and why f3 is suppressed for low-mass
and stiff-EOS models, could help understanding the pro-
cess(es) that originate the presence (or absence) of sub-
dominant peaks. In principle, we expect that merging
binaries will have masses around 1.33 M� and mass ra-
tios around 1. However, we here suggest that the identi-
fication of the low-frequency subdominant mode is made
either with expression (A.5) – which is relative to f1 – or
with expression (A.6) – which is relative to fspiral and
may be more accurate for low-mass binaries and small
mass ratios.
We note that, as discussed in [43], the main character-

istics of the post-merger spectrum are captured by three
main peaks f1, f2, f3 that are closely physical related
plus an additional peak denoted as f20. This general
picture was used to get information on the EOS by per-
forming the stacking of multiple BNS post-merger events
[88]. The idea of multiple stacking was also considered
in [95] focusing on just the main (later time) f2 mode.
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Model M0
1 M0

2 M1 C1 M2 C2 M C MADM JADM Ω0 (krad/s)
SLy 1.11vs1.11 M=1.11 1.20 1.20 1.11 0.139 1.11 0.139 1.11 0.139 2.207 5.076 1.932
SLy 1.20vs1.20 M=1.20 1.30 1.30 1.20 0.150 1.20 0.150 1.20 0.150 2.373 5.730 1.989
SLy 1.28vs1.28 M=1.28 1.40 1.40 1.28 0.161 1.28 0.161 1.28 0.161 2.536 6.405 2.040
SLy 1.36vs1.36 M=1.36 1.50 1.50 1.36 0.171 1.36 0.171 1.36 0.171 2.697 7.108 2.089
SLy 1.44vs1.44 M=1.44 1.60 1.60 1.44 0.182 1.44 0.182 1.44 0.182 2.854 7.832 2.134
SLy 1.24vs1.32 q=0.94 1.35 1.35 1.24 0.155 1.32 0.166 1.28 0.161 2.536 6.397 2.040
SLy 1.20vs1.36 q=0.88 1.30 1.50 1.20 0.150 1.36 0.171 1.28 0.161 2.535 6.376 2.040
SLy 1.16vs1.40 q=0.83 1.25 1.55 1.16 0.145 1.40 0.177 1.28 0.161 2.533 6.337 2.040
SLy 1.11vs1.44 q=0.77 1.20 1.60 1.11 0.139 1.44 0.182 1.27 0.160 2.531 6.281 2.039

APR4 1.17vs1.56 APR4 1.27 1.75 1.17 0.153 1.56 0.204 1.37 0.179 2.708 7.238 1.816
SLy 1.17vs1.56 SLy 1.27 1.74 1.17 0.147 1.56 0.199 1.37 0.173 2.708 7.238 1.816
H4 1.17vs1.56 H4 1.25 1.71 1.17 0.123 1.56 0.167 1.37 0.145 2.708 7.238 1.816

MS1 1.17vs1.56 MS1 1.25 1.70 1.17 0.117 1.56 0.154 1.37 0.135 2.708 7.238 1.816
APR4 1.27vs1.27 APR4 (1.27) 1.40 1.40 1.28 0.166 1.28 0.166 1.28 0.166 2.528 6.577 1.767
SLy 1.28vs1.28 SLy (1.28) 1.40 1.40 1.28 0.161 1.28 0.161 1.28 0.161 2.538 6.623 1.770
H4 1.30vs1.30 H4 (1.3) 1.40 1.40 1.30 0.137 1.30 0.137 1.30 0.137 2.576 6.802 1.783

MS1 1.30vs1.30 MS1 (1.3) 1.40 1.40 1.30 0.129 1.30 0.129 1.30 0.129 2.585 6.850 1.787

TABLE V. Properties of the analyzed models. Here M0
1 and M0

2 are the total baryonic mass of the two stars, M1 and M2 are
the mass at infinite separation of the two stars, C1 and C2 their compactness while M and C are their average mass. MADM ,
JADM are the total mass and angular momentum of the initial data and Ω0 is the initial angular frequency of the binary system:
all the quantities are reported in the unit system where G = c = M� = 1 except Ω0 that is reported in krad/s.

Model f2 f0 f1 f2i f3 fB
2 fpeak fspiral f20 fT

1 fT
spiral fR

1 fR
2

SLy 1.11vs1.11 2.852 1.311 2.04 2.791 2.784 2.257 1.657 1.241 1.641 2.041 1.657 2.360
SLy 1.20vs1.20 2.964 1.311 1.89 3.009 4.17 3.009 2.598 1.905 1.531 1.798 2.176 1.804 2.664
SLy 1.28vs1.28 3.139 1.178 2.15 3.227 4.30 3.212 2.957 2.215 1.887 1.966 2.333 1.958 2.921
SLy 1.36vs1.36 3.506 0.933 2.60 3.483 4.30 3.410 3.358 2.603 2.329 2.211 2.521 2.210 3.156
SLy 1.24vs1.32 3.131 1.178 2.10 3.175 4.26 3.210 2.953 2.212 1.883 1.965 2.331 1.957 2.919
SLy 1.20vs1.36 3.047 1.200 2.01 3.072 4.19 3.210 2.956 2.214 1.886 1.966 2.333 1.958 2.920
SLy 1.16vs1.40 2.984 1.245 1.93 2.967 4.11 3.210 2.959 2.217 1.890 1.968 2.336 1.960 2.922
SLy 1.11vs1.44 2.998 1.267 2.967 3.197 2.943 2.202 1.872 1.959 2.332 1.951 2.911

APR4 1.17vs1.56 3.317 1.133 2.36 3.494 4.62 3.574 3.657 2.914 2.681 2.449 2.756 2.478 3.305
SLy 1.17vs1.56 3.270 1.022 2.25 3.312 4.23 3.427 3.418 2.665 2.399 2.256 2.559 2.258 3.188
H4 1.17vs1.56 2.370 1.022 2.06 2.274 2.503 2.443 1.785 1.391 1.730 1.758 1.743 2.535

MS1 1.17vs1.56 1.902 1.422 1.39 1.913 2.179 2.171 1.606 1.179 1.594 1.539 1.606 2.271
APR4 1.27vs1.27 3.166 1.267 2.16 3.307 4.48 3.336 3.155 2.403 2.101 2.078 2.513 2.069 3.043
SLy 1.28vs1.28 3.172 1.178 2.12 3.219 4.35 3.212 2.957 2.215 1.887 1.966 2.333 1.958 2.921
H4 1.30vs1.30 2.448 1.023 1.71 2.349 2.382 2.218 1.633 1.212 1.620 1.674 1.635 2.320

MS1 1.30vs1.30 2.023 1.089 1.52 2.031 2.081 2.024 1.530 1.087 1.494 1.506 1.489 2.100

TABLE VI. For each model are report (in kHz) the computed frequency from the simulations (f2, f0, f1, f2i, f3 defined in
the main text) and the one derived using the proposed universal relations discussed in the appendix. All the frequencies are
expressed in kHz.
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Appendix: Properties of the analyzed Binary
Neutron Stars Systems

We report in table V the main physical properties of
all analyzed models. For each model, are reported the
total baryonic mass of the two stars (M0

1 and M0
2 ), their

gravitational mass and compactness at infinite separation
and the average gravitational mass M and compactness
C. In the last three columns we report the total mass
(MADM ), angular momentum (JADM ), and rotational
frequency of the initial data, respectively. In table VI we
report and summarize the main computed frequency that
we derived from the simulations and the results of the
applications of some of the proposed universal relations
for the main frequency of the post-merger spectrum.

The details of the proposed universal relations reported
in table VI are the following. For equal mass binaries,
Bauswein et. all. [18] proposed the following universal
relation for the main frequency of the post merger with
respect to the total mass Mtot = 2 ·M (in unit of solar
mass) of the binary system and the properties of the EOS
parametrized as the radius of the corresponding TOV
star of mass M = 1.6M� denoted as R1.6 (expressed in
km). The proposed quasi universal formula is:

fB2 = Mtot

(
0.0157R2

1.6 − 0.5495R1.6 + 5.5030
)

(A.1)

The predictions of the unified model by Stergioulas and
Bauswein [4] are:

fUpeak = 2.33− 28.1 · C + 199 · C2 (A.2)
fUspiral = 6.16− 82.1 · C + 358 · C2 (A.3)

fU20 = 5.95− 88.3 · C + 392 · C2 (A.4)

Analogously we can also check the formula assumed by
Rezzolla [43]

fT1 = −22.07 + 466.62 · C − 3131.63 · C2

+7210.01 · C3 . (A.5)

In [43] was also suggested that the third peak f3 is related
to fT1 from the prescription fT3 = 2f2i − f1 and that
Eq. (A.3) should be improved through a quadratic two
dimensional fit in terms of the compactness and average
gravitational mass of the binary:

fTspiral = 3.28− 8.68 · C + 174 · C2 (A.6)
−2.34 ·M + 0.99 ·M2 − 13.0 · C ·M .

More recently, in order to determine the neutron star ra-
dius from a population of BNS mergers [88], the following
fit was proposed for the determination of the f1 and f2
frequencies as a function of the compactness (since here
we are also considering unequal mass binaries, we use the
average compactness):

fR1 = −35.17 + 727.99 · C − 4858.54 · C2

+10989.88 · C3 (A.7)
fR2 = −3.12 + 51.90 · C − 89.07 · C2 (A.8)

In general, we find that all these formulas show some
agreement with the observed frequencies within a dis-
crepancy at most of 0.2-0.3 kHz that is not much greater
of the half-amplitudes of the peaks.
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