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The computation of observables in high energy QCD involves an average over stochastic semi-
classical small-x gluon fields. The weight of various configurations is determined by the effective
action. We introduce a method to study fluctuations of observables, functionals of the small-x
fields, which does not explicitly involve dipoles. We integrate out those fluctuations of the semi-
classical gluon field under which a given observable is invariant. Thereby we obtain the effective
potential for that observable describing its fluctuations about the average. We determine explicitly
the effective potential for the covariant gauge gluon distribution both for the McLerran-Venugopalan
(MV) model and for a (non-local) Gaussian approximation for the small-x effective action. This
provides insight into the correlation of fluctuations of the number of hard gluons versus their typical
transverse momentum. We find that the spectral shape of the fluctuations of the gluon distribution
is fundamentally different in the MV model, where there is a pile-up of gluons near the saturation
scale, versus the solution of the small-x JIMWLK renormalization group, which generates essentially
scale invariant fluctuations above the absorptive boundary set by the saturation scale.

I. INTRODUCTION

High-energy scattering in QCD at fixed transverse momentum scales probes strong color fields, i.e. the regime of
high gluon densities [1]. In the high-energy limit physical observables, such as the forward scattering amplitude of a
dipole from a hadron or nucleus, are typically expressed in terms of expectation values of various Wilson line operators
O; see, for example, Ref. [2]. The expectation value 〈O〉 corresponds to a statistical average1 over the distribution of
“small-x gluon fields”. For example, if quantum corrections are neglected this distribution is commonly described by
the McLerran-Venugopalan (MV) model [4]:

−∇2
⊥A

+(x−, x⊥) = gρ(x−, x⊥) , (1)

Z =

∫
Dρ e−S[ρ] , S[ρ] =

∫
dx−d2x⊥

tr ρ(x−, x⊥) ρ(x−, x⊥)

2µ2(x−)
. (2)

Here, A+ is the covariant gauge classical field (describing the small-x gluon fields) sourced by the random valence
charge density ρ which one averages over.

∫
dx− µ2(x−) corresponds to the average color charge density squared per

unit transverse area and is the only parameter of the model; it is proportional to the thickness of the nucleus ∼ A1/3.
The expectation value of an electric Wilson line V (x⊥), for example, is then computed as2

〈trV (x⊥)〉 =
1

Z

∫
Dρ e−S[ρ] trPe

−ig
∞∫
−∞

dx−A+(x−,x⊥)

. (3)

The forward scattering amplitude N (r) of a quark - antiquark dipole of size r = |y⊥ − x⊥| is given by

N (r) =

〈
1− 1

Nc
trV †(x⊥)V (y⊥)

〉
=

1

Z

∫
Dρ e−S[ρ]

1− 1

Nc
trPe

ig
∞∫
−∞

dx−A+(x−,x⊥)

Pe
−ig

∞∫
−∞

dx−A+(x−,y⊥)

 . (4)

We employ hermitian generators. The size r where N (r) grows to order 1 defines the (inverse) saturation scale Q−1
s .

In the MV model one finds that Q2
s ∼ CF g4

∫
dx−µ2(x−). For transverse momenta q2 � Q2

s the Fourier transform of

1 Kovner describes this as an average over the Hilbert space of the target, i.e. that the weight W [A+] ≡ exp(−S[A+]) which determines
the probability for a given configuration of A+ is analogous to the modulus squared of the wave function of the target [3].

2 log 〈trV 〉 is power divergent in the IR and so requires a cutoff. We simply write the formal Eq. (3) to illustrate the averaging procedure.
The dipole probe from Eq. (4) does not exhibit such a power-law divergence in the IR.
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the forward scattering amplitude defines the dipole unintegrated gluon distribution

xG(x, q2) ' g2
〈
tr |A+(q)|2

〉
. (5)

Quantum corrections to the MV model modify the statistical weight W [ρ] ≡ exp(−S[ρ]). Ref. [5] proposed a
Gaussian “mean-field” approximation for W [ρ] at small light-cone momentum fractions (far from the valence sources)
which reproduces the proper gluon distribution (or dipole scattering amplitude) both at small (q2 � Q2

s) as well as
at high (q2 � Q2

s) transverse momentum:

WG[ρ] = e−SG[ρ] , SG[ρ] =

∫
d2x⊥d2y⊥

tr ρ(x⊥) ρ(y⊥)

µ2(x⊥ − y⊥)
. (6)

This non-local Gaussian can be rewritten in q-space as3

SG[ρ] =

∫
d2q

(2π)2
tr ρ(q) ρ(−q)

∫
d2r

e−iqr

µ2(r)

≡
∫

d2q

(2π)2

tr ρ(q) ρ(−q)
µ2(q2)

. (7)

This action reproduces the correct dipole scattering amplitude and Weizsäcker-Williams gluon distribution in the
short distance (high transverse momentum) limit, c.f. ref [5], with

µ2(q2) ' µ2
0

(
q2

Q2
s

)1−γ

. (8)

Here, γ ' 0.64 is the BFKL anomalous dimension [6] (in the presence of a saturation boundary [7]). Q2
s and µ2

0 are
evaluated at the rapidity of interest (like in the MV model µ2

0 is again proportional to the thickness of the nucleus
∼ A1/3). We will not spell out this dependence on Y explicitly since our focus here is not on the growth of Qs with Y
which is well known. For the present purposes the most important effect of the resummation of quantum fluctuations
is that µ2(q2) increases with transverse momentum when q2 > Q2

s.
The paper is organized as follows. In Sec. II we present the basic idea for computing an effective potential for a

given observable by introducing a constraint into the functional integral. In Sec. III, in order to illustrate the approach
with a simple example we compute the effective potential for the number tr ρ2 in the MV model on a single site. We
then compute the effective potential for the covariant gauge gluon distribution function in Sec. IV. We proceed to
calculate the fluctuations of the gluon multiplicity and of the average squared transverse momentum in Sec. V. In
Sec. VI we present results of numerical Monte-Carlo simulations within the MV model and for the solution of the
JIMWLK renormalization group equation. We end with a discussion and outlook in Sec. VII.

II. THE BASIC IDEA: INTRODUCING THE CONSTRAINT EFFECTIVE POTENTIAL

Expectation values such as those written in Eqs. (3,4) refer to a statistical average of an observable O[ρ] over
all configurations ρ(x−, x⊥) from the ensemble W [ρ]. On the other hand, we may be interested in the value of an
observable for a specific subset of configurations such as configurations with a high number of gluons or with a specific
unintegrated gluon distribution. These represent more “global” measures averaging over all fluctuations of ρ(x−, x⊥)
which do not affect, say, the unintegrated gluon distribution. In other words, our goal is to perform the integral over
ρ subject to the contraint that, for example, O[A+] = g2tr |A+(q)|2 is fixed, thereby decomposing the space of all
ρ(q), or A+(q), into invariant subspaces (w.r.t. the given observable).

We illustrate the fluctuations of the gluon distribution originating from the fluctuations of the classical valence color
charge density ρ in Fig. 1. For simplicity we show a simple example corresponding to the fluctuations of the color
charge representation of a system composed of a quark and an anti-quark. The MV model describes the fluctuations
of a system of many valence charges in a high-dimensional representation about the most likely representation [8, 9].

3 Note that we define 1/µ2(q2) ≡
∫

d2r e−iqr/µ2(r).
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3⊗ 3 = 8⊕ 1
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FIG. 1: Illustration of the fluctuation of the gluon distribution g2trA+(k)A+(−k) of a system of a quark and an anti-quark.
The gluon couples coherently to the charges. Left: if the qq̄ system is in the color singlet state there is no coupling to the field
and the gluon distribution vanishes. Right: the octet representation has a non-vanishing gluon distribution.

The logarithm of the inverse of the partition function obtained after integrating out the orthogonal fluctuations of
ρ then defines an effective potential4 for O[ρ(q)] = g2tr |A+(q)|2:

Z =

∫
DX(q) e−Veff [X(q)] , (9)

e−Veff [X(q)] =

∫
Dρ(q)W [ρ(q)] δ(X(q)−O[ρ(q)]) . (10)

The stationary point of Veff [X] corresponds to the extremal gluon distribution Xs(q). In the limit of an infinite
number of degrees of freedom, i.e. the large-Nc limit in our case5, Xs(q) of course is equal to the expectation value of
〈g2tr |A+(q)|2〉. Away from the stationary solution, the potential Veff [X] provides insight into the form of fluctuations
about the extremum. Specifically, we shall analyze the correlation of fluctuations of the number of gluons (above the
saturation scale) and their typical transverse momentum.

Fluctuations of various observables induced by the fluctuations of ρ(x⊥) have been analyzed before. For example,
the multiplicity distribution of gluons with transverse momenta above Qs [10] and the fluctuations of the real and
imaginary parts of spatial Wilson loops [11] in the central region of a collision of two sheets of color charge have been
analyzed. Angular harmonics of the dipole scattering amplitude N (r) for random individual configurations ρ(x⊥) of
the target have been shown in Ref. [12] (the ensemble average is, of course, isotropic). The evolution of the imaginary
part of the dipole S-matrix, i.e. of the odderon O[A+] = (−i/2Nc)tr [VxV

†
y − h.c.], has been discussed in Ref. [13].

Here, we describe how one can explicitly integrate out the fluctuations of ρ or A+ under which a given observable is
invariant in order to derive an effective potential for the observable itself. We apply our method specifically to compute
the effective potential for the covariant gauge gluon distribution tr |A+(q)|2 from which we deduce the correlation
of fluctuations of the multiplicity of hard gluons and of their typical transverse momentum. A somewhat similar
procedure was previously used to compute the density matrix of the soft gluon fields and the associated entanglement
entropy, see Ref. [14].

III. WARM-UP: EFFECTIVE POTENTIAL FOR tr ρ2

We begin with the effective potential for tr ρ2 on a single site. The procedure is essentially identical to that used
in sec. III of Ref. [15] to compute the effective potential for Polyakov loops in a single-site matrix model.

4 More generally, this would give the effective action for the field g2tr |A+(q)|2.
5 To go beyond the large-Nc limit one would have to actually compute the integral over X(q) in Eq. (9) which can be done by means of

a Legendre transformation.
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The partition function for a single site is

Z =

∫ (∏
a

dρa

)
e−tr ρ2/µ2

. (11)

ρ ≡ ρata denotes the random color charge density at the site and is an element of the algebra of the color group in
the fundamental representation: tr tatb = 1

2δ
ab. We shall keep only contributions to Veff(X) of order N2

c and drop
terms of order 1.

The goal is to write (11) in the form

Z =

∫
dXe−Veff (X) , X ≡ tr ρ2 =

1

2
ρaρa , (12)

where Veff(X) is the effective potential for tr ρ2. In other words, e−Veff (X) is the partition sum for N2
c scalars ρa

satisfying the constraint ρaρa = 2X.
To compute Veff(X) we introduce a δ-function constraint in Eq. (11),

Z =

∫
dλ

∫ (∏
a

dρa

)
e−tr ρ2/µ2

δ
(
λ− tr ρ2

)
=

∫
dλ

∫
dω

2π
e
− λ
µ2
−iωλ

∫ (∏
a

dρa

)
eiω tr ρ2

︸ ︷︷ ︸
Z̃(ω)

. (13)

The integral for Z̃(ω) is easily computed in spherical coordinates,

Z̃(ω) =

∫
dX

∫ (∏
a

dρa

)
δ

(
X − 1

2
ρbρb

)
e

1
2 iωρ

cρc

∼
∫

dX eiωX+ 1
2N

2
c logX . (14)

In the last step we have dropped an irrelevant ω-independent normalization factor. This expression for Z̃(ω) then
leads to

Z =

∫
dX e

− X
µ2

+ 1
2N

2
c logX

. (15)

Hence, the effective potential is given by

Veff(X) =
X

µ2
− 1

2
N2
c logX . (16)

The stationary point of this potential is

Xs ≡ 〈tr ρ2〉 =
1

2
N2
c µ

2 . (17)

Of course, this result can be obtained directly from the correlator 〈ρaρb〉 = δabµ2 which follows from the action in
Eq. (11).

IV. EFFECTIVE POTENTIAL FOR THE GLUON DISTRIBUTION

In this section we compute the effective potential for the gluon distribution tr |A+(q)|2 obtained from the field in
covariant gauge. We will also comment briefly on the potential for the gluon distribution obtained from the light-cone
gauge field tr |Ai(q)|2.

It is convenient to work directly in momentum space. The partition function of the Gaussian model is taken as

Z =

∫ (∏
q

∏
a

dρaq

)
e−S[ρ] , S[ρ] =

∫
d2q

(2π)2

tr |ρq|2
µ2(q)

. (18)
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The constraint (ρq)
∗ = ρ−q is implicit. In general, µ2(q) may depend on the transverse momentum which would

correspond to a non-local Gaussian action in coordinate space; this dependence is also left implicit from now on since
it is not essential for the following steps.

Our goal is to obtain an expression of the form

Z =

∫
DX(q) e−Veff [X(q)] (19)

for

X(q) ≡ g2tr |A+(q)|2 =

∫
d2bd2r e−iq·r g2trA+(x⊥)A+(y⊥) , (20)

where b = (x⊥ + y⊥)/2 and r = y⊥ − x⊥. Since A+(q) = (g/q2) ρ(q) we can write the partition sum as

Z =
∏
q

∫
dλq

dωq
2π

(∏
a

dρaq

)
e
−iωqλq+iωq g

4

q4
tr |ρq|2e

− d2q

(2π)2
q4

g4
λq

µ2

=

[∏
q

∫
dλq

dωq
2π

e−iωqλqe
− d2q

(2π)2
q4

g4
λq

µ2

]∏
q

∫ (∏
a

dρaq

)
e
iωq

g4

q4
tr |ρq|2

︸ ︷︷ ︸
Z̃[ωq ]

. (21)

The first line of the equation above is obtained from the original partition sum (18) by inserting a δ-functional

1 =

∫ ∏
q

dλq δ

(
λq −

g4

q4
tr |ρq|2

)
(22)

which fixes λ(q) = (g4/q4)tr |ρ(q)|2. To compute Z̃(ωq) we again introduce the constraint field g2tr |A+(q)|2 = X(q),

Z̃[ωq] =

∫ ∏
q

dXq

(∏
a

dρaq

)
δ

(
Xq −

g4

q4
tr |ρq|2

)
e
iωq

g4

q4
tr |ρq|2

∼
∏
q

∫
dXqX

N2
c
2
q eiωqXq . (23)

Inserting this into Eq. (21) we obtain

Z =
∏
q

∫
dXq e

− d2q

(2π)2
q4

g4
Xq

µ2
+ 1

2N
2
c logXq

=

∫
DX(q) e

−
∫ d2q

(2π)2

[
q4

g4µ2
X(q)− 1

2A⊥N
2
c logX(q)

]
. (24)

In the last step we have taken the continuum limit, A⊥ is the transverse area covered by the integration over the
impact parameter b in Eq. (20). The effective potential for the function X(q) is therefore

Veff [X(q)] =

∫
d2q

(2π)2

[
q4

g4µ2
X(q)− 1

2
A⊥N

2
c logX(q)

]
, (25)

and its stationary point corresponds to the average gluon distribution (at order ∼ N2
c )

δ

δX(k)
Veff [X(q)] = 0 → Xs(k) ≡ 〈g2tr |A+(k)|2〉 =

1

2
N2
cA⊥

g4µ2

k4
. (26)

The contribution to Veff [X(q)] at zeroth order in Nc can be restored by comparing to Xs(k) obtained directly from
the Gaussian two-point function:

〈
ρa(k) ρb(q)

〉
= δab (2π)2δ(k + q)µ2 → Xs(k) =

1

2

(
N2
c − 1

)
A⊥

g4µ2

k4
. (27)
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Hence, to restore the O(1) contribution to Veff [X(q)] Eq. (25) should be modified to

Veff [X(q)] =

∫
d2q

(2π)2

[
q4

g4µ2
X(q)− 1

2
A⊥

(
N2
c − 1

)
logX(q)

]
. (28)

We shall mostly focus on Eq. (25) in what follows but refer to (28) when O(N0
c ) accuracy of the gluon distribution

X(q) would be needed.
The two-point correlator 〈ρa(q)ρb(k)〉 of the color charge, averaged over all of its fluctuations, follows from the

action S[ρ] and is written in Eq. (27). In order to explicitly split off the fluctuations of ρ(q) at fixed X(q) we can
write this in the form

〈ρa(q)ρb(k)〉 = 2
q4

g4

1

N2
cA⊥

δab (2π)2 δ(k + q)

∫
DX(q) e−Veff [X]X(q) . (29)

Replacing the integration over X(q) by the extremal solution Xs(q) reproduces the correlator from Eq. (27). This
last expression should be useful for future applications where one may want to explicitly isolate the fluctuations of
the gluon distribution X(q) from more complicated expressions involving two-point functions of ρ(q).

We briefly pause our derivation at this point to comment on the potential describing fluctuations of the Weizsäcker-
Williams gluon distribution defined via the light-cone gauge field Ai(q). Because of the non-linear dependence of Ai

on ρ we are unable to compute the effective potential analytically except in the weak field regime where Ai(q) =
ig(qi/q2)ρ(q). Hence, in this regime both the diagonal as well as the off-diagonal components of the WW gluon
distribution, δijtrAi(q)Aj(−q) and (2qiqj/q2− δij)trAi(q)Aj(−q), respectively, are equal to q2trA+(q)A+(−q). The
effective potential for these distributions is therefore again given by Eq. (25) with the replacement q4 → q2 in the
first term of the integrand.

As a second aside we briefly illustrate the modifications due to adding a quartic color charge operator to the
quadratic action. We choose a particularly simple form in order to be able to compute the effective potential exactly
without having to resort to a perturbative expansion:

S4 =
1

β

∫
d2xd2y ρa(x)ρa(x)ρb(y)ρb(y) =

1

β

∫
d2q1

(2π)2

d2q2

(2π)2
ρa(q1)ρa(−q1)ρb(q2)ρb(−q2) . (30)

This replaces eq. (21) by

Z =

[∏
q

∫
dλq

dωq
2π

e−iωqλq

]
e
− d2q

(2π)2

∑
q
q4

g4
λq

µ2
− d2q

(2π)2
d2q

(2π)2
1

β g4

∑
q1,q2

q41q
4
2λ(q1)λ(q2)

Z̃[ωq] (31)

=

∫
DX(q) e

−
∫ d2q

(2π)2

[
q4

g4µ2
X(q)− 1

2A⊥N
2
c logX(q)

]
− 1
β g4

(∫ d2q

(2π)2
q4X(q)

)2

. (32)

Hence, in this case

Veff [X(q)] =

∫
d2q

(2π)2

[
q4

g4µ2
X(q)− 1

2
A⊥N

2
c logX(q)

]
+

1

β g4

(∫
d2q

(2π)2
q4X(q)

)2

. (33)

In the MV model µ2 ∼ g2A1/3, where A1/3 denotes the thickness of the nucleus, while the coupling β for the quartic
color charge density operator involves two additional powers of gA1/3 � 1 [9]. Such a quartic in ρ operator therefore
represents a higher order correction in the high gluon density power counting scheme where g4A1/3 = O(1), c.f. next
subsection. Moreover, in fig. 5 below we shall show that the exact numerical solution of the LO small-x evolution
equation agrees rather well with the effective potential for the gluon distribution derived from a quadratic action. We
will therefore neglect S4 in what follows.

We now return to our discussion of the fluctuations of X(q) = g2tr |A+(q)|2 in the model with a quadratic action
and write

X(q) = Xs(q) + δX(q) (34)
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and expand Veff [X(q)] to quadratic order in δX(q). This “one loop” approximation leads to

∆Veff [δX(q)] ≡ Veff [X(q)]− Veff [Xs(q)]

' 1

2

∫
d2l

(2π)2

d2k

(2π)2
δX(l)

{
δ

δX(l)

δ

δX(k)
Veff [δX(q)]

}
δX(k)

=
1

2

∫
d2q

(2π)2

δX(q)2

Xs(q)2

1

2
N2
cA⊥ (35)

→
∫
D δX(q) e−Veff [δX(q)] = e

− 1
2 tr log

(
1
2

N2
cA⊥

Xs(q)2

)
. (36)

However, it is clear from the form of Veff [X(q)] that the quadratic approximation can not describe fluctuations
far from the extremal solution Xs(q). We therefore follow a different route. We introduce the fluctuation field η(q)
through

X(q) = Xs(q) η(q) , (37)

with Xs(q) as written in Eq. (26). A fluctuation from the extremal “path” Xs(q) has action

∆Veff [η(q)] ≡ Veff [η(q)]− Veff [η(q) = 1]

=
1

2
N2
cA⊥

∫
d2q

(2π)2
[η(q)− 1− log η(q)] . (38)

This is a Liouville action (without kinetic term and with negative Ricci scalar) for the field φ(q) = log η(q) in two
dimensional q-space6. Indeed, the canonical dimension of the fluctuation field η(q) as introduced in Eq. (37) is zero.
This will become important below to understand the spectrum of fluctuations from small-x evolution.

In the following section we use expression (38) to analyze the correlation of gluon number and transverse momentum
fluctuations.

A. Parametric dependence on the number of colors and on the thickness of the target

In this subsection we discuss the parametric dependence of the fluctuations on Nc and on the thickness of the
target nucleus which is proportional to the third root of its atomic number, A1/3. In particular, we outline that the
fluctuations of the gluon distribution considered here are of the same order in A1/3 as the “extremal” (or average)
gluon distribution Xs(q), and of the same or lower order in Nc. As explained by Kovchegov [17], quantum evolution
at leading order applies when αs � 1 with α2

sA
1/3 ∼ 1. The latter condition implies that contributions which do

not exhibit longitudinal coherence, i.e. those which are not proportional to the thickness of the nucleus, in this power
counting scheme formally correspond to higher order corrections.

Recall from the previous section that the average gluon distribution Xs(q) ∼ N2
c g

4µ2 ∼ N2
c α

2
sA

1/3. The action
(25) evaluated at Xs(q) is Veff [Xs(q)] ∼ N2

c (times a numerical factor equal to zero in dimensional regularization in
D = 2− ε dimensions). This corresponds to the action of classical gluon fields times a factor of g2 from the coupling
to the sources (see Fig. 1).

In order to be able to evolve initial fluctuations to small x using leading order evolution these fluctuations δX(q) ≡
Xs(q) η(q) must also be of order A1/3. This is satisfied since the effective action (38) for the fluctuation field η(q) does
not involve the thickness ∼ A1/3 explicitly. Indeed, the MV model [4] outlined in the Introduction describes precisely
these longitudinally coherent valence color charge fluctuations. In other words, fluctuations δX(q) ≡ Xs(q) η(q)
corresponding to a penalty action ∆Veff [η(q)] which is independent of A1/3 are of the same order in A1/3 as the average
gluon distribution Xs(q) and can be evolved to small x. However, one can not study fluctuations with a suppression
probability p such that log p−1 = Veff [η(q)] ∼ (A1/3)−1 since that would correspond to η(q) = O((A1/3)−1) and
δX(q) = O((A1/3)0). Such fluctuations are of higher order in the coupling [17].

Power counting in Nc proceeds along similar lines. ∆Veff [η(q)] is explicitly proportional to N2
c , so η(q) = O(N0

c )
corresponds to fluctuations δX(q) at the same order in Nc as the average gluon distribution Xs(q). These can be

6 In Ref. [16] Iancu and McLerran proposed a Liouville action to describe the fluctuations of Qs in the transverse impact parameter plane
(x-space) due to stochastic high-energy evolution; this is unrelated to our discussion of fluctuations in the ensemble of gluon distributions
X(q) which occur even at fixed Qs, as considered here, and exist even in the absence of QCD evolution (MV model).
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selected by an external “trigger” probability p such that log p−1 = Veff [η(q)] ∼ N2
c . However, it is allowed to select

less suppressed fluctuations corresponding to log p−1 ∼ N0
c provided such terms in the effective action are accounted

for, c.f. Eq. (28).

V. GLUON MULTIPLICITY AND TRANSVERSE MOMENTUM FLUCTUATIONS

In this section we analyze fluctuations of the semi-hard gluons above the saturation momentum Qs and up to a
maximum momentum scale Qmax � Qs. The number of such gluons for a given X(q) = g2tr |A+(q)|2 is given by

Ng[X(q)] =

∫
d2q

(2π)2
q2X(q) =

∫
d2q

(2π)2
q2Xs(q) η(q) . (39)

The integral extends from q2 = Q2
s up to q2 = Q2

max. As already mentioned above in the linear regime q2 g2tr |A+(q)|2
approaches the Weizsäcker-Williams gluon distribution g2tr |Ai(q)|2, so Ng counts the number of Weizsäcker-Williams
gluons from Q2

s to Q2
max. We focus first on the MV model with µ2=const; analogous results for a q-dependent µ2(q)

shall be summarized at the end of this section.
The number of additional gluons due to the fluctuation about the extremal gluon distribution is given by

∆Ng[η(q)] =

∫
d2q

(2π)2
q2Xs(q) [η(q)− 1] . (40)

This quantity does not depend on the UV cutoff Q2
max because the fluctuation has finite support in order to have a

finite action.
The average (squared) transverse momentum of gluons between q2 = Q2

s and q2 = Q2
max can be defined through

(see analogous discussion in Ref. [18])

q2[X(q)] =

∫
d2q

(2π)2 q
2X(q)∫

d2q
(2π)2X(q)

=
Ng[X(q)]∫

d2q
(2π)2X(q)

. (41)

Here q2 refers to an average over the transverse momentum distribution for a given gluon distribution X(q) but not
to an average over all configurations of A+. Once again we subtract the value at the saddle point,

∆q2[η(q)] =
∆Ng[η(q)]∫
d2q

(2π)2Xs(q)η(q)
. (42)

We now proceed to discuss the effect of fluctuations, η(q) 6= 1. Our strategy is to introduce a trial function for η(q)

for which we then evaluate Ng, q2, and the “penalty action” ∆S via Eq. (38). Consider the ansatz

η(q) = 1 + η0

(
g4µ2

q2

)a
Θ
(
q2 − Λ2

)
Θ
(
Q2 − q2

)
. (43)

Thus, the fluctuation has support on the interval Λ2 < q2 < Q2 within the window Q2
s < q2 < Q2

max, i.e. Λ2 ≥ Q2
s,

Q2 ≤ Q2
max with Λ2 � Q2. Also, by dimensional analysis the multiplicative fluctuation can depend only on q2/µ2 since

µ2 is the only dimensionful scale in the MV action (2). We recall from our discussion in sec. IV A that, parametrically,

η0 ∼
1

N2
c (g4µ2)a

∆S , (44)

so that for ∆S ∼ N2
c , δX(q) = Xs(q) η(q) is of the same order in Nc and A1/3 as the average gluon distribution Xs(q).

For a fluctuation of the form (43) the excess gluon multiplicity is given by

∆Ng '
1

8π
N2
cA⊥g

4µ2η0 ×


1
a

(
g4µ2

Λ2

)a
(a > 0) ,

log Q2

Λ2 (a = 0) ,

1
|a|

(
Q2

g4µ2

)|a|
(a < 0) .

(45)
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The excess (squared) transverse momentum of gluons with transverse momentum above the saturation scale is given
by

∆q2 ' Q2
s η0 ×


1
a

(
g4µ2

Λ2

)a
(a > 0) ,

log Q2

Λ2 (a = 0) ,

1
|a|

(
Q2

g4µ2

)|a|
(a < 0) ,

(46)

or

∆Ng ' NcA⊥∆q2 . (47)

We have simplified the expression by linearizing in the fluctuation amplitude. The factor of Nc in this equation arises
due to the fact that we only integrate over gluons with q2 > Q2

s with Q2
s ∼ Nc g4µ2. According to Eq. (47) the average

squared transverse momentum due to the fluctuation is proportional to the excess number of gluons it contains. In
the next section we shall confirm such a tight nearly linear correlation of ∆Ng and ∆q2 via Monte-Carlo simulations.

Finally, the penalty action for such a fluctuation η(q) is

∆S[η(q)] ' 1

8π
N2
cA⊥ g

4µ2 η0 ×


1

1−a

(
Q2

g4µ2

)1−a
(a < 1) ,

log Q2

Λ2 (a = 1) ,

1
a−1

(
g4µ2

Λ2

)a−1

(a > 1) .

(48)

The goal now is to pay as low a price ∆S[η(q)] as possible while maximizing ∆Ng and ∆q2. Fluctuations with a < 0,
corresponding to increasing η(q), come with a large penalty ∆S. In fact, even a flat η(q) with a→ 0 corresponds to

∆S ∼ Q2 while, at the same time, ∆Ng and ∆q2 increase only logarithmically with Q2. Similarly, fluctuations with
a > 1, which drop off very rapidly with q2, give small ∆S, but also a small multiplicity excess ∆Ng. Therefore, we
expect that in the MV model the dominant “high multiplicity” fluctuations would have a high-q tail corresponding
to 1 > a > 0.

We now turn to a q-dependent µ2(q) as written in Eq. (8). This corresponds to the non-local Gaussian approximation
to the JIMWLK action at small x proposed in Ref. [5] which accounts for the small-x anomalous dimension. Here,
the gluon excess above Q2

s is

∆Ng[η(q)] ' 1

8π
N2
cA⊥g

4µ2
0

η0

1− γ − a

(
Q2

Q2
s

)1−γ (
g4µ2

0

Q2

)a
, (1− γ > a) (49)

while the additional transverse momentum contributed by the fluctuation is

∆q2[η(q)] ' Q2
s

η0

1− γ − a

(
Q2

Q2
s

)1−γ (
g4µ2

0

Q2

)a
(−γ < a < 1− γ) . (50)

Once again we have linearized this expression in η0. In this approximation the proportionality (47) of ∆Ng and ∆q2

still holds.
The “penalty” action for a fluctuation η(q) 6= 1 is again given by Eq. (48) with µ2 → µ2

0. Contrary to the MV
model, near scale invariant fluctuations with a ≈ 0 may now be significant. While they do come with a “penalty”
proportional to Q2 (∆S ∼ η0N

2
cA⊥Q

2) they also increase substantially the gluon number ∆Ng and the transverse

momentum ∆q2 by a power rather than a logarithm of Q2.

VI. MONTE-CARLO SIMULATIONS

In this section we show results of numerical Monte-Carlo simulations. The technical aspects of these Monte-Carlo
simulations are standard by now, our specific implementation has been discussed in some detail in Ref. [12]. We
generate random color charge configurations according to the MV model action; for each configuration we have
computed the number of gluons Ng as well as their average (squared) transverse momentum q2 as described in the
previous section. These quantities have been integrated up to the lattice cutoff at about Q ∼ 85Qs (for Y = 0) resp.
Q ∼ 35Qs (for αsY = 1). We should stress that these initial configurations have been generated with a uniform µ2
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across the transverse impact parameter plane. Hence, there are no “voids” in the target nor is there a boundary to
vacuum.

We have also solved the leading order B-JIMWLK renormalization group equation [19, 20] at fixed coupling to
a rapidity Y = 1/αs and performed a similar analysis on those configurations. JIMWLK evolves each Wilson line
V (x⊥) from rapidity 0 to Y where we take

X(q) =

∫
d2b

∫
d2r e−iqr tr

[
VY

(
b− r

2

)
V †Y

(
b+

r

2

)
− 1
]
. (51)

The saturation scale Qs(Y ) is determined implicitly from the dipole forward scattering amplitude introduced in Eq. (4)

above: NY (r =
√

2/Qs) = 1− 1/
√
e. Note that NY (r) is averaged over all configurations.

The gluon distribution at a fixed impact parameter b is given by the Wigner distribution

XW(q, b) ≡ dX(q)

d2b
=

∫
d2r e−iqr tr

[
VY

(
b− r

2

)
V †Y

(
b+

r

2

)
− 1
]
. (52)

XW(q, b) is neither real (for Nc ≥ 3 colors) nor positive definite since gluons can not be localized both in transverse
momentum and impact parameter space. The Wigner distribution has to be averaged over transverse area patches of
linear dimension ∼> 1/Qs to be interpreted as the distribution of gluons with transverse momenta q ≥ Qs.

Computationally instead it is much more efficient to analyze

XR(q, b) =

∫
d2x

∫
d2y e−iq(y−x) e−

(b−x)2

2R2 e−
(b−y)2

2R2 tr
[
VY (x)V †Y (y)− 1

]
, (53)

which is similar to the smeared Wigner distribution of hard gluons. It corresponds to the gluon distribution at impact
parameter b averaged over distance scales of order R. The limit R→∞ takes XR(q, b) back to X(q). The numerical
results presented below were obtained using R = 2/Qs(Y ).

The B-JIMWLK equations describe fluctuations only up to scales where the dipole scattering amplitude drops to
O(α2

s), see the review [21] and references therein. At such scales the fact that the number of gluons in the hadron is
discrete leads to large fluctuations in the evolution speed [22]. However, the running of the coupling in QCD delays
the effects of these fluctuations (related to the discrete number of gluons) to very high rapidities [23]. Hence, for
rapidities and transverse momenta of practical interest the JIMWLK equations may be a useful approximation, at
least for those regions in impact parameter space where the gluon density is not too low.

We now present the results obtained from the Monte-Carlo simulation. In Fig. 2 we show the correlation of ∆q2

−0.3 −0.2 −0.1 0.0 0.1 0.2 0.3 0.4

∆Ng/(A⊥Q
2
s)

−1.5

−1.0

−0.5

0.0

0.5

1.0

1.5

∆
q2
/Q

2 s

αsY = 0

R = 2/Qs

R = L

−3 −2 −1 0 1 2 3

∆Ng/(A⊥Q
2
s)

−15

−10

−5

0

5

10

∆
q2
/Q

2 s

αsY = 1

R = 2/Qs

R = L

FIG. 2: Fluctuations of the gluon density and average squared transverse momentum in a random Monte-Carlo sample of 150
configurations of the small-x fields. The gluon distribution has either been averaged over a Gaussian of width R = 2/Qs(Y )
centered at a random impact parameter or over the entire 2d impact parameter plane of a large lattice (L ' 18/Qs(Y = 0)).
The transverse area is taken as A⊥ = 2πR2 or A⊥ = L2, respectively. A bar refers to an average over all gluons with transverse
momentum q > Qs(Y ) for a given configuration. Left: evolution rapidity Y = 0 corresponds to the MV model. Right: the
fields have been evolved to Y = 1/αs via the JIMWLK equations.

and ∆Ng. The MC data shows a tight positive correlation of the transverse momentum vs. gluon density fluctuation,
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as expected. The magnitude of the fluctuations of both the gluon density per unit transverse area ∆Ng/A⊥ as

well as of the typical squared transverse momentum ∆q2 has increased by essentially an order of magnitude from
Y = 0 to Y = 1/αs; this is despite the fact that both axes in Fig. 2 have been scaled by 1/Q2

s(Y ) to make them
dimensionless. It is also interesting to see that in the MV model the fluctuations essentially scale with “volume”, i.e.
∆Ng is approximately proportional to A⊥ while ∆q2 is independent of A⊥. At Y = 1/αs on the other hand, the
solution of JIMWLK clearly exhibits finite range correlations since averaging over a large “volume” strongly reduces
∆q2 at fixed density ∆Ng/A⊥.

It is interesting to obtain a rough idea of the magnitude of ∆Ng for reasonable values of A⊥ and Qs(Y ). A semi-
hard process may effectively average the target gluon fields over an area of order A⊥ ' 0.1 fm2. Choosing a target
saturation momentum of Qs(Y ) = 1 GeV we can then translate ∆Ng/(A⊥Q

2
s) = 1, 2, 3 on the horizontal axis of

Fig. 2 to ∆Ng ' 5, 10, 15 additional semi-hard gluons; for Qs(Y ) ' 2.5 GeV this increases to about ∆Ng ' 30, 60,
90 excess gluons in the target.
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(q
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〈X

(q
)〉

R = 2/Qs
αsY = 0

αsY = 1

0 2 4 6 8 10
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1.4
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(q
)〉

R = L αsY = 0

αsY = 1

FIG. 3: Fluctuation of the gluon distribution X(q) = g2tr |A+(q)|2 in the MV model (Y = 0, solid line) and after leading order,
fixed coupling JIMWLK evolution to αsY = 1 (dashed line). The left panel corresponds to the gluon distribution integrated
over a Gaussian of width R = 2/Qs(Y ) centered at a random impact parameter; for the panel on the right the gluon distribution
has been integrated over the entire 2d impact parameter plane of a large lattice (L ' 18/Qs(Y = 0)). To obtain smooth curves
we have averaged over a subsample of 100 configurations (out of 1000 total) with the highest gluon multiplicity Ng.

The spectral shape of high-multiplicity fluctuations is shown in Fig. 3. For the MV model the dominant fluctuations
contain additional gluons with transverse momenta up to a few times Qs, then drop off smoothly to unity for q � Qs.
Qualitatively, this tail corresponds to our ansatz (43) with a > 0. At high rapidity quantum fluctuations change
the shape of fluctuations to a flat, essentially scale independent distribution, so a ≈ 0 in Eq. (43). The different
q-dependence of the fluctuations illustrates the different role of the saturation scale Qs in the MV model vs. JIMWLK
evolution: in the MV model this scale truly affects the dynamics of fluctuations which “pile up” just above Qs.
If the hadronic wave function evolves to much smaller x, on the other hand, Qs is not a prominent scale in the
fluctuation spectrum but acts merely as an absorptive boundary for BFKL emissions [7]. Indeed, recall that the
canonical dimension of η(q) is zero and that the JIMWLK evolution kernel at fixed coupling is scale invariant.

Fig. 3 also shows that as expected fluctuations in a smaller “volume” have greater amplitude. Other than that the
spectral shape of η(q) averaged over small (R = 2/Qs(Y )) or large scales in the impact parameter plane is similar.

Amusingly, Fig. 3 resembles qualitatively the “disappearance of the Cronin peak” due to small-x evolution [24]. Of
course, the latter refers to the averaged evolution of the ratio of the gluon distributions of a dense to a dilute target. In
contrast, Fig. 3 shows the transverse momentum spectrum of fluctuations of the gluon distribution of a single target
about the average/extremal function.

Configurations with lower than average gluon multiplicity exhibit fluctuations with a similar spectral shape as high
multiplicity configurations as shown in Fig. 4. In the MV model there is a dip in the gluon distribution just above
the saturation momentum, and the gluon distribution then smoothly approaches the average distribution at higher
q. On the other hand, JIMWLK evolution again generates a scale invariant fluctuation and a uniform depletion of
gluons for transverse momenta greater than (one or two times) Qs(Y ).

We have also checked that the fluctuations of the gluon distribution are indeed described by the Liouville potential
(up to a field redefinition) derived above in Eq. (38). In the MC simulation this can be achieved by recording a
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FIG. 4: Spectral shape of low gluon multiplicity configurations. See Fig. 3 for further details.
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FIG. 5: The effective potential describing fluctuations of the covariant gauge gluon distribution (beyond the saturation scale)
in a transverse area patch of order 2πR2 = 8π/Q2

s(Y ). Symbols show the results obtained from the MC simulation, lines
correspond to the potential derived analytically (see text).

histogram of η(q) = XR(q, b)/〈XR(q, b)〉 in the vicinity of an arbitrary impact parameter. See appendix A for details.
We compare the simulation results to

dVeff

dq2
=

1

8π
N2
cA⊥ [η − 1− log η] . (54)

The gluon distribution XR(q, b) has been “smeared out” over a Gaussian of area 2πR2 centered at impact parameter
b as described above. Nevertheless, the quantity A⊥ in Eq. (54) is a dynamical scale corresponding to the transverse
area occupied by the fluctuations η(q) of the gluon distribution. In particular, A⊥ may very well be less than 2πR2

if fluctuations occur over shorter length scales.
In Fig. 5 we compare the numerical results to Eq. (54); A⊥ in that equation has been treated as a free parameter

adjusted to best fit the MC data7. Most significantly we observe that the linear minus logarithmic potential from
Eq. (54) indeed does describe the simulation results rather well (within statistical uncertainties).

7 The simulation is carried out for Nc = 3 colors while Eq. (54) applies in the large-Nc limit. Subleading corrections simply rescale A⊥.
With the prefactor from Eq. (54) the best fits correspond to A⊥Q

2
s ' 23.75 at Y = 0, which is close to the geometric area 2πR2Q2

s = 8π;
and A⊥Q

2
s = 10.22 at rapidity αsY = 1.
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VII. DISCUSSION AND OUTLOOK

In this paper we have described a new attempt at understanding fluctuations of a physical observable O[A+], for
example of the (covariant gauge) gluon distribution O[A+] = g2tr |A+(q)|2, induced by fluctuations of the classical
small-x color fields. Of course, fluctuations of the multiplicity in small-x evolution have been studied before, see for
example the recent paper [25] and references therein. These are typically formulated in terms of dipole splitting pro-
cesses. Instead, our approach here involves the small-x effective action S[A+], resp. the weight functional W [A+]. We
stress that here A+ refers to the soft classical field generated by integrating out hard partons [4, 20] and representing
them by random valence charge sources. The semi-classical treatment of fluctuations requires that one selects fluctua-
tions which are suppressed by a probability p which is independent of the thickness ∼ A1/3 of the target nucleus. The
resulting fluctuation of the two-point function of A+ is then proportional to the thickness, just like the extremal gluon
distribution itself. That is, such fluctuations of the small-x field are induced by longitudinally coherent fluctuations of
the valence charges as described (at moderately small x) by the MV model, and as re-summed by JIMWLK evolution.
In contrast, the treament of fluctuations corresponding to a suppression factor p ∼ exp

(
−1/A1/3

)
require higher-order

corrections in the coupling [17].
Our approach allows us to discuss fluctuations even in the absence of strong small-x evolution, e.g. in the McLerran-

Venugopalan model. Furthermore, it can be applied to observables which may be more difficult to access in dipole split-
ting approaches. For example, we can define, and in principle compute, the functional distribution of the Weizsäcker-
Williams gluon distribution:

e−Veff [X(q)] =

∫
Dρ(q)W [ρ(q)] δ(X(q)− g2tr |Ai(q)|2) . (55)

We have computed this potential analytically in the weak field limit (Ai ∼ 1), and for a large number of colors
(Nc � 1). Nevertheless, it is feasible, in principle, to compute it from Eq. (55) even when gAi ∼ 1 and for any Nc,
perhaps numerically. At next to leading order in the field strength, for example, we have in terms of the covariant
gauge field

δij g2trAi(q)Aj(−q) =
1

2
q2g2A+a(q)A+a(−q)

−g
4

8
fabef cde

(
δlm − qlqm

q2

)∫
d2k

(2π)2

d2p

(2π)2
klpmA+a(q − k)A+b(k)A+c(−q − p)A+d(p) ,(56)(

2
qiqj

q2
− δij

)
g2trAi(q)Aj(−q) =

1

2
q2g2A+a(q)A+a(−q)

+
g4

8
fabef cde

(
δlm − qlqm

q2

)∫
d2k

(2π)2

d2p

(2π)2
klpmA+a(q − k)A+b(k)A+c(−q − p)A+d(p) .(57)

The first line is the conventional Weizsäcker-Williams gluon distribution, the second line is the so-called distribution
of linearly polarized gluons8. The fluctuations of these distributions can be determined by substituting the r.h.s. of
Eqs. (56,57) into the delta-functional in Eq. (55). An explicit analytic calculation at next to leading order in gA+ is
complicated by the fact that the corrections are non-local in transverse momentum space. We leave this computation
for future work.

As an application of interest to us we have used our approach to determine the fluctuations of the (covariant gauge)
gluon distribution g2tr |A+(q)|2. This allowed us to study the correlation of the fluctuations of the number of gluons
(above the saturation scale) and of their typical transverse momentum squared9. We find that these quantities are
very tightly correlated so that an increase (decrease) in the gluon density per unit transverse area corresponds to
an upward (downward) fluctuation of the squared transverse momentum. The solution of the JIMWLK small-x RG

exhibits a much stronger increase of ∆q2 with the gluon density ∆Ng/A⊥ in small “volumes” (transverse patches of
size a few times 1/Q2

s(Y )), presumably due to the presence of finite range correlations in the impact parameter plane.
The shape of such high-multiplicity fluctuations in transverse momentum space is modified significantly by JIMWLK

evolution to small x as compared to the MV model. The latter adds hard gluons mainly right above the saturation

8 For an introduction into these gluon distributions see, for example, Ref. [26]. Their expectation values, i.e. their values at the extremum
of Veff , have been computed to all orders in gA+ within the MV model [27] as well as at small x [28]. Expectation values of other such
“transverse momentum dependent” (TMD) gluon distributions at small x have been computed in Ref. [29].

9 We stress that we consider the number or transverse momentum of gluons in a single hadron or nucleus and not multiplicity or transverse
momentum fluctuations in a collision of two hadrons or nuclei. The latter has been investigated, for example, in Refs. [30].
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scale. On the other hand, the solution of the small-x renormalization group (in the JIMWLK approximation) gives
approximately scale independent multiplicative fluctuations. In other words, the fluctuations that emerge in the small-
x limit are better characterized as scale invariant fluctuations of a dimensionless field which multiplies the average gluon
distribution, rather than as fluctuations of the absorptive boundary [7] set by the saturation momentum. A nearly scale
invariant spectral distribution of high (or low) multiplicity fluctuations are a clear signature for perturbative quantum
evolution with a conformal evolution kernel. It would be interesting to check the modification of the fluctuation
spectrum due either to a running coupling or at full NLO level.

Appendix A: Obtaining the effective potential from numerical MC simulations

In this appendix we present more details on how the effective potential presented in Fig. 5 has been extracted from
the numerical simulation.

At a given rapidity, Y , for a given configuration of Wilson lines VY (x⊥), we compute the observable XR(q, b = 0)
using Eq. (53) on a square N ×N lattice in q−space. Next, we split XR(q) into bins of q2 defined by

q2 =
4

a2

∑
n=1,2

sin2 πin
N

, (A1)

where in denotes the lattice site in the n-direction and a is the lattice spacing. We then compute the ratio η(q2) =
XR(q2)/〈XR(q2)〉 for each configuration in each momentum bin. In each bin of q2 we again construct a histogram of
the distribution of values of η(q2) as it fluctuates configuration by configuration. This results in a two-dimensional
histogram of the number of counts C as a function of η and q2. The logarithm of the number of counts, modulo an
additive constant logN , is the differential effective potential with negative sign, i.e.

dVeff

dq2
= − log

(
NC(η, q2)

)
. (A2)

The constant N is chosen such that dVeff

dq2 = 0 at η = 1. We have checked that within numerical uncertainties this

shift of the potential is about the same in each momentum bin within the range 4 < q2/Q2
s < 50. We have also found

that in this range dVeff

dq2 is momentum independent, within statistical uncertainties. This enabled us to average over

all momenta in this range. The resulting potential is presented in Fig. 5.
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