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Abstract
Tunneling is a fascinating aspect of quantum mechanics that renders the local minima of a

potential meta-stable, with important consequences for particle physics, for the early hot stage

of the universe, and more speculatively, for the behavior of the putative multiverse. While this

phenomenon has been studied extensively for systems which have canonical kinetic terms, many

theories of fundamental physics contain fields with non-canonical kinetic structures. It is therefore

desirable to have a detailed framework for calculating tunneling rates and initial states after

tunneling for these theories. In this work we present such a rigorous formulation and illustrate its

use by applying it to a number of examples.
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I. INTRODUCTION

The process of quantum tunneling allows transitions out of local minima of an energy
functional to vacua of lower (or higher) energies. This occurs through a first-order phase
transition mediated by the nucleation of bubbles of the new vacuum inside the old. This
process can have important consequences, not only for particle physics, but also for cosmology
since, starting from its hot initial state, the universe may have gone through several of these
phase transitions before it settled into its current vacuum. It is quite possible that the initial
state for inflation may have been set by the state after quantum tunneling. It is even possible
that our own vacuum may be susceptible to such transitions. Indeed, the Higgs potential
with the currently accepted values of top quark and Higgs masses is metastable and, in the
absence of new physics, can decay, albeit after a rather long time (see, for example, Ref. [1]).

Decay rates are (almost) always calculated in a semiclassical regime using the WKB
approximation. The generalization of the WKB approximation to cases with more than one
degree of freedom was first presented in Refs. [2, 3]. This was extended to field theories in
several important works [4–6] and later to cases which include gravitational back-reaction on
tunneling [7, 8]. Some analytic approximations for tunneling rates in thin-wall regime were
devised in Refs. [5, 9].

The possibility of the existence of the string landscape, and the attendant possibility
of many phase transitions in such a complex potential has attracted further interest in
vacuum decay processes. However, despite progress in understanding vacuum tunneling,
our only analytic insight, through the thin-wall approximation, is solely applicable to cases
where the tunneling action is large, and as such is only relevant to a very specific class of
real-world processes. Accounting for gravity and spacetime curvature brings about a new
set of problems. There are many conceptual complications in the presence of gravity, such
as the measure problem (see Ref. [10] for a review) or the interpretation of Hawking-Moss
channels of tunneling [11]. A further computational issue is that we do not know whether the
tunneling rate in the presence of gravity is dominated by solutions which are O(4) symmetric
in Euclidean space, despite some effort in this direction [12, 13]. Furthermore, the string
landscape and most other putative landscapes usually have a large number of fields. The
process of tunneling here is plagued with many computational difficulties, although these
were recently circumvented in an efficient numerical package [14].

Our goal in this paper is to provide a careful analysis of another important issue in a
number of models relevant to cosmology, that of the problem of tunneling in theories with
non-canonical kinetic terms (for a review of such models, see Refs. [15, 16]). These theories
appear in many cases in modern cosmological models, and, as we shall see, the decay rate
can be highly non-intuitive. In Ref. [17], the tunneling decay rate was shown to be large for
high potential barriers in the presence of a Dirac-Born-Infield (DBI) kinetic term. Some of
the techniques used there are applicable in the cases studied in this paper, and a central aim
of the present paper is to provide a proof of the validity of techniques for calculating the
decay rate in the presence of such non-canonical kinetic terms and to apply them in more
generality.

This paper is organized as follows. In section II we study a general formalism for the
WKB approximation for arbitrary Hamiltonians in quantum mechanics, and in section III
we calculate decay rates. We generalize these results to quantum field theory in section IV,
and provide several applications of our results in section V before concluding in section VI.
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II. WKB FOR ARBITRARY HAMILTONIANS

In a system described by a Hamiltonian H(q,p), we can find the classical motion by
solving the Hamilton-Jacobi equation,

H(q,∇S) +
∂S

∂t
= 0 , (II.1)

where q = (q1, · · · , qn) are the coordinates, p = (p1, · · · , pn) are the canonical momenta, and
S is the Hamilton principal function given by

S(q,α; t) =

∫ q

p(q′,α) · dq′ −
∫
Hdt , (II.2)

satisfying ∇S = p. The corresponding quantum system is described by the Hamiltonian
operator Ĥ, related to the classical one by

Ĥ =
1

(2π~)2n

∫
dp dq du dv F (u · v/~)H(q,p, t)e(i/~)[(q−Q̂)·u+(p−P̂)·v] , (II.3)

where Q̂,P̂ are the coordinate and momentum operators respectively, and F (u · v/~) is the
transformation function [18] that defines the operator ordering and must be real in order to

ensure that Ĥ is Hermitian.1 This Hamiltonian appears in the Schrödinger equation that
describes the quantum system,

i~
∂ψ(q, t)

∂t
= Ĥ

(
q,−i~ ∂

∂q
; t

)
ψ(q, t) . (II.4)

The semi-classical solution, often referred to as the WKB approximation, for this equation
up to O(~) is given by2 [20, 21]

ψ(q, t) = N

√
det

(
∂2S

∂q∂α

)
ei/~ S(q ,α;t), (II.5)

where N is a normalization constant, αi with i = 1, · · · , n are integration constants3

that are determined by the initial conditions. We may fix the first constant as α1 = E,
while the remaining αi’s are chosen depending on the system at hand. For example, if
H = H(x)+H(y)+H(z), we can pick α1 = Etot = H, α2 = Ex = H(x), and α3 = Ey = H(y),
whereas if we have spherical symmetry, then some of the αi’s will correspond to angular
momenta. We can see that the time-independent wave function is approximated in the
semi-classical limit as

ψ(q) = N

√
det

(
∂2S

∂q∂α

)
ei/~

∫ q p(q′,α)·dq′ . (II.6)

1 If the Hamiltonian is not Hermitian, an extra exponential term appears in the WKB wave function [19].
2 As long as F (0) = 1 and F ′(0) = 0, which is satisfied for the most common transformation functions [20].
3 In the Hamilton-Jacobi formalism these are the new momenta; the fact that they are constant in time

follows from the requirement that the transformed Hamiltonian be identically zero.
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FIG. 1. An example of a potential where tunneling can happen from the false vacuum qFV to the

true vacuum qTV.

To O(~0), we may neglect the pre-factor in eq. (II.6), keeping only the leading-order exponen-
tial behavior. This can be understood more easily by recalling that WKB is a semi-classical
approximation in ~; that is, ψWKB = ei(σ0+~σ1)/~. The order ~0 factor is

σ0 ≡ i

∫ q

p(q′,α) · dq′ , (II.7)

while the order ~ contribution, σ1, is logarithmic and gives rise to the aforementioned
pre-factor. The WKB approximation is widely used to solve tunneling problems. The
one-dimensional case is straightforward, since there is only one tunneling path to follow. The
multi-dimensional case becomes more complicated due to the different paths through which
tunneling is possible. Banks, Bender, and Wu [2] solved this problem by considering the
most probable escape paths (MPEPs), which are expected to dominate the amplitude. From
eq. (II.6) we can see that the largest contribution to the amplitude comes from paths which
minimize the WKB exponent, i.e., the MPEPs are the paths that satisfy

δ

∫ qTP

qFV

p · dq = 0 , (II.8)

where qFV and qTP are the locations of the false vacuum and the turning point, defined by
V (qFV) = V (qTP) = E; a typical setup (compressed to one dimension) is illustrated in fig. 1.
In the classically forbidden region, through which tunneling occurs, p is imaginary and thus
the wave function decays exponentially. Equation (II.8) can be written in a more suggestive
form by using the definition of a MPEP. In order to do so, consider [22, 23] a curve Q(λ)
parametrized by λ and notice that, in the classically-forbidden region, we have

∇σ0 · ∇σ0 = |p|2 , (II.9)

where the gradient is taken with respect to q. We can expand the gradient in terms of the
tangent vector to the curve Q, v‖ = ∂Q/∂λ, and the vectors orthogonal to Q, vi⊥, as

∇|q=Q =
v‖
|v‖|2

(
v‖ · ∇

)∣∣
q=Q

+
∑
i

vi⊥
|vi⊥|2

(
vi⊥ · ∇

)∣∣
q=Q

. (II.10)

This decomposition is useful here because MPEPs are defined as the paths that satisfy

vi⊥ · ∇σ0

∣∣
q=Q

= 0 ∀i . (II.11)
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To take advantage of this, let us reparametrize the curve as Q(λ(s)), with s the proper
distance along Q,

ds = |dQ| =
√

dQ

dλ
· dQ

dλ
dλ = |v‖|dλ , (II.12)

so that we have

∇σ0|q=Q =
v‖
|v‖|2

(
v‖ · ∇σ

)∣∣
q=Q

=
v‖
|v‖|

dσ

ds
. (II.13)

Using this in eq. (II.9), we can finally rewrite eq. (II.8) as

δ

∫ s(qTP)

s(qFV)

|p(Q(s), E)|ds = 0 , (II.14)

where |p| is found by solving H(q,p) = E. The variation in eq. (II.14) keeps the starting
point fixed but not the end point,4 with energy conserved along the path. The fact that the
endpoint is not fixed gives rise to the boundary condition

dq

dλ

∣∣∣∣
q=qTP

= 0 . (II.15)

Now let us choose the parameter λ such that

ds

dλ
=

∣∣∣∣∂H∂p
∣∣∣∣ , (II.16)

in which case eq. (II.14) translates to

d

dλ

 |p|∣∣∣∂H∂p ∣∣∣
dQ

dλ

− ∣∣∣∣∂H∂p
∣∣∣∣∇|p| = 0 . (II.17)

In the following, we will assume that there is a well-defined Legendre transformation that
allows us to switch between the Hamiltonian and Lagrangian formulations. A careful analysis,
taking into account that we are in the classically forbidden region, shows that eq. (II.17) can
be written as

d

dλ

(
∂LE

∂ dQ
dλ

)
− ∂LE

∂Q
= 0 , (II.18)

where we have used Hamilton’s equations and LE is the Euclidean Lagrangian. This shows
that the MPEP can be found by solving the Euclidean equations of motion. Note that,
since analytic continuation can lead to multi-valued functions, the MPEP Q(λ) could be
multi-valued.

The fact that the MPEP can be found by solving the Euclidean equations of motion has
previously been shown for canonical kinetic terms and here we have extended the proof for
generic kinetic terms of the form T (q, q̇). That this result applies for generic kinetic terms
T (q, q̇) is one of the main results of this paper. Later, we will show that this result also
holds for scalar fields with second-order equations of motion.

4 This is because in the multidimensional case there is generally not a single point qTP but rather a surface

of points satisfying the condition V (qTP) = E.
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III. COMPUTING THE DECAY RATE

Once we have an approximation for the wave function, we can use it to calculate the
decay rate in a potential with two non-degenerate minima as in fig. 1. The decay rate of a
system is defined as

Γ = − 1

PFV

d

dt
PFV , (III.1)

where PFV is the probability of being in the false vacuum. As discussed in Refs. [24, 25],
this definition is only meaningful for times tslosh � t� tnon-lin, where tslosh = ω−1

FV with ωFV

the frequency of oscillation in the false vacuum and tnon-lin the scale at which non-linearities
become important. During t < tslosh, high energy modes in the initial wave function will
decay, and it is not until these modes decay that we truly observe the decay rate of the false
vacuum. We may write the decay rate as

Γ =
1

m

∫
|ψE(qTP)|2pTP · dqTP∫

FV
dq|ψE(q)|2

, (III.2)

where TP is the turning point, with the integration over all possible turning points, FV
stands for the false vacuum, and ψE is an energy eigenstate. Using the WKB approximation
up to O(~), this translates to

Γ =
det
(

∂2S
∂α∂q

)∣∣∣
q=qTP

|pTP|

m
∫ qFV

0
det
(

∂2S
∂α∂q

)
dq

e−B

∣∣∣∣∣∣∣
q=Q

, B ≡ 2i

~

∫ qTP

qFV

p · dq , (III.3)

where Q is the MPEP and B is the WKB exponent. For a canonical kinetic term in one
dimension we have

det

(
∂2S

∂α∂q

)
=

2m

|p|
, (III.4)

which leads to the well-known result

Γ =
|pFV|
m|qFV|

e−B
∣∣∣∣
q=Q

. (III.5)

In the case of a canonical kinetic term, the pre-factor has a clear physical interpretation:
writing it as vFV/|qFV|, it can be understood as the rate at which the wave function hits the
barrier. However, for the case of non-canonical kinetic terms, it is not simple to find a similar
interpretation, and the rest of this paper will be concerned solely with the exponent B.

We now review the calculation of the WKB exponent to leading order for the tunneling
of the false vacuum, illustrated in fig. 2. The tunneling between an unstable vacuum and a
lower energy (local or global) vacuum, is commonly called the bounce, which is just a specific
kind of instanton5. The WKB exponent is calculated by solving the Euclidean equations of
motion, i.e., with the potentials inverted. In the bounce potential, the particle rolls up to
the turning point and then falls back down to the false vacuum (this is, of course, the origin
of the term “bounce” for this process).

5 In general, an instanton is a configuration with a finite, non-zero action that solves the classical equations

of motion.
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FIG. 2. Lorentzian and Euclidean pictures of the false vacuum tunneling; in the Euclidean picture

the potential is inverted.

To relate the WKB exponent with the Euclidean action SE = iS, we begin by using
eq. (II.2), which tells us that

iS(q) = i

∫ q

p · dq′ + iS(qFV) , (III.6)

where we have used the fact that the kinetic energy at qFV vanishes, so that we can set∫
Hdt =

∫
V (qFV)dt = −S(qFV) , (III.7)

where H = E is conserved. Given this and being careful with the integration limits, we can
write the exponent B for the tunneling of the false vacuum as

Bbounce = SE(q)− SE(qFV) . (III.8)

It is important to note that this relation only holds at stationary points of B (and S), i.e.,
when the equations of motion are satisfied. One should realize that the path in Euclidean
space goes from qFV at τ = −∞ to qTP at a finite τ (which can generally be taken to be
τ = 0) and back to qFV at τ = ∞; this path gives the correct factor in eq. (III.8). Given
this, the unstable vacuum decay rate to O(~0) is written as

Γ = e−B
∣∣
q=Q

= e−
1
~ (SE(q)−SE(qFV))

∣∣∣
q=Q

, (III.9)

which is a well-known result.

IV. WKB IN A GENERAL SCALAR QUANTUM FIELD THEORY

In this section we generalize the results obtained in sections II and III for multi-dimensional
quantum mechanics to quantum field theory with a scalar field, again closely following
Refs. [22, 23]. Crucially, we will allow for a general enough kinetic structure for our formalism
to cover all Lorentz-invariant scalar-field theories with equations of motion that are second
order, and therefore avoid the Ostrogradski ghost instability. As discussed in appendix A, the
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Lagrangians for these theories take the form (up to boundary terms) L = L(φ, φ̇,∇φ,∇2φ),
where ∇2φ = ∂i∂jφ is a matrix (rather than the scalar Laplacian). Defining the canonical

momentum as usual, Π = dL/dφ̇, we can therefore write the Hamiltonian in the form

H =

∫
d3q
[
T (φ,Π,∇φ,∇2φ) +G(∇φ,∇2φ) + V (φ)

]
, (IV.1)

where T (φ,Π,∇φ,∇2φ) contains terms in which the gradients of the field are coupled to φ
and Π, G(∇φ,∇2φ) contains terms which only depend on the gradients of the field, and V (φ)
is the scalar field potential.

Consider a wave functional ψ[φ], a functional of φ(q) whose squared norm is the probability
density for a configuration φ(q). This will obey the generalized Schrödinger equation[∫

d3q T

(
φ,−i~ δ

δφ(q)
,∇φ,∇2φ

)
+ U [φ]

]
ψ[φ] = Eψ[φ] , (IV.2)

where the functional U [φ] is the potential energy that determines the possibility of tunneling,
defined by

U [φ] =

∫
d3q
(
G(∇φ,∇2φ) + V (φ)

)
. (IV.3)

The classically-forbidden region is given by E < U [φ]. The configuration space is the space
of real-valued functions on R3 (or the relevant space depending on the problem at hand)
satisfying the appropriate boundary conditions.

We proceed to make a semi-classical approximation as in the quantum mechanics case; to
do so, we expand the wave function as

ψ[φ] = e
i
~σ[φ] = e

i
~ (σ0[φ]+~σ1[φ]+··· ) . (IV.4)

In the following, we solve for the wave function to O(~0). Substituting the semi-classical
expansion in eq. (IV.2) gives, at leading order,∫

d3q T

(
φ,
δσ0[φ]

δφ(q)
,∇φ,∇2φ

)
+ U [φ] = E . (IV.5)

Expressing the canonical momentum as a function of φ and its gradients, by making use of
the conservation of energy equation, we find that the leading-order contribution is

σ0[φ] =

∫ φ

dφ′ Π(φ′,∇φ′,∇2φ′) . (IV.6)

The next step is to find the MPEP, i.e., the curve in the space of real-valued functions (or
field configurations) that minimizes σ0[φ]. We will call this curve Φ(λ,q), parametrized by λ,
denote the vector parallel to this curve by v‖(λ,q) = ∂Φ/∂λ, and label the continuous set of
perpendicular vectors v⊥(λ,q1;q2). In this case, the condition defining the MPEP is∫

d3q v⊥(λ,q1;q2)
δσ0[φ]

δφ(q1)

∣∣∣∣
φ=Φ

= 0 ∀q2 . (IV.7)
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We reparametrize the curve as Φ(λ(s),q), with s the proper distance along the curve, given
by

ds = |dΦ| =

√∫
d3q

(
dΦ

dλ

)2

dλ . (IV.8)

Using this parametrization, we find that the MPEP satisfies

δ

∫
Π(Φ,∇Φ,∇2Φ)ds = 0 , (IV.9)

and since
ds

dλ
=

∣∣∣∣∂H∂Π

∣∣∣∣ , (IV.10)

we then find that eq. (IV.9) translates into

d

dλ

(
Π∣∣∂H
∂Π

∣∣ dΦ

dλ

)
+∇

(∣∣∣∣∂H∂Π

∣∣∣∣ ∂Π

∂∇Φ

)
−∇2

(∣∣∣∣∂H∂Π

∣∣∣∣ ∂Π

∂∇2Φ

)
−
∣∣∣∣∂H∂Π

∣∣∣∣ ∂Π

∂Φ
= 0 . (IV.11)

This is again equivalent to finding the Euclidean equations of motions,

d

dλ

(
∂LE

∂ dΦ
dλ

)
+∇

(
∂LE

∂∇Φ

)
−∇2

(
∂LE

∂∇2Φ

)
− ∂LE

∂Φ
= 0 , (IV.12)

that is, the MPEP is a stationary solution of the Euclidean action. The generalization of
this calculation to include higher-order gradients in T and G is straightforward, although we
remind the reader that for the most general scalar field theories with second-order equations
of motion, these terms only depend on spatial gradients up to ∇2φ. We conclude that even
in the presence of non-canonical kinetic terms, the dominant contribution to the tunneling
rate comes from paths which extremize the Euclidean action.

V. APPLICATION: DECAY RATES IN GENERAL SCALAR-FIELD THEORIES

To this point we have established a rigorous formalism for computing the decay rates for
tunneling processes in scalar field theories with kinetic terms of the form T (φ, φ̇,∇φ,∇2φ, · · · ).
In this section we explicitly compute decay rates for general theories of a single scalar field
with second-order equations of motion, known broadly as galileons.6 We find a simple and
familiar expression for the decay rate, and discuss how decay of the false vacuum could occur
considerably more quickly than in theories with just a canonical kinetic term.

Consider a scalar field φ defined on flat space and endowed with a potential V (φ) with
two minima, one at slightly higher potential than the other, as shown in fig. 1. A state
localized in the false vacuum, denoted by VFV, can decay to the true vacuum at VTV. We will
denote the value of φ at these minima by φ+ and φ−, respectively. We have shown above
that, regardless of the choice of kinetic term, the decay rate per unit volume for this process
is given by

Γ

V
∼ e−B , (V.1)

6 These theories are introduced in appendix A; in particular, the galileons Lagrangians are given by eq. (A.2).

We emphasize that these Lagrangians completely cover theories of a single scalar field on a flat background

with second-order equations of motion.
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where B ≡ ∆SE is the difference between the Euclidean action for two different solutions: a
“bounce,” in which the scalar field rolls from the true vacuum to the false vacuum,7 and a
solution in which the field lives at the false vacuum for all time. The analysis in this section
largely follows the classic work of Coleman [5].

Before diving into general cases, with all their attendant abstraction, let us start by
considering a particularly simple example of a non-canonical kinetic term: P (X) theories,
with an action of the form8

S =

∫
d4x [P (X) + V (φ)] , (V.2)

where X ≡ −(∂φ)2 and we assume (without loss of generality) that P (0) = 0. The conditions
for the bounce are consistent with an O(4)-symmetric solution for φ [5], so the bounce
solution is generally taken to have this symmetry.9 For a solution with this symmetry, the
Euclidean action is given by

SE = 2π2

∫
ρ3 (P + V ) dρ , (V.3)

with X = φ̇2, where ρ is the Euclidean O(4) radial coordinate. Following Ref. [17] (in which

7 The field rolls from true vacuum to false because motion in Euclidean time can be thought of as motion in

the inverted potential.
8 In fact, we can consider a function P (φ,X) without affecting our results; however, for clarity we will start

off by cleanly separating the kinetic and potential terms. The more general case is discussed later in this

section.
9 For a canonical kinetic term it can be proven that e−B is extremized for an O(4)-symmetric solution [26].

This proof relies crucially on the canonical kinetic structure, and has yet to be extended to account for

non-canonical terms: in particular, defining the “reduced problem” as in Ref. [26], solutions to the reduced

problem do not necessarily minimize the action, and the proof of Ref. [26] that λ ≤ 1 fails in the presences

of terms such as the cubic galileon. If a proof of O(4) invariance exists for general kinetic terms, it is likely

to be substantially different than that of Ref. [26].
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tunneling was studied in a particular P (X) theory) we will make a slightly non-standard
definition of L as the Lagrangian with the spherical measure factor divided out,

SE ≡ 2π2

∫
ρ3Ldρ , (V.4)

and define a similarly non-standard canonical momentum as

πφ ≡
∂L

∂φ̇
. (V.5)

Using as our Lagrangian L = P + V , the canonical momentum is

πφ =
∂L

∂φ̇
= 2PX φ̇ = 2PX

√
X , (V.6)

so that the Hamiltonian defined with respect to this L is

H = πφφ̇− L = 2PXX − P − V . (V.7)

This Hamiltonian is not conserved, since the spherical measure induces a friction term in the
equation of motion. The “true” conserved Hamiltonian is ρ3H, whose associated canonical
momentum is ∂(ρ3L)/∂φ̇ = ρ3πφ. Hamilton’s equations then imply

π̇φ = −∂H
∂φ
− 3

ρ
πφ . (V.8)

Now let us consider the bounce and false-vacuum solutions for φ in the thin-wall approxi-
mation in which

ε ≡ VFV − VTV (V.9)

is small. In this approximation the thickness of the wall is very small compared to the radius
of the wall, ρ̄, which we can define as the point at which φ(ρ̄) = 1

2
(φ+ + φ−). Moreover, in

this limit our nonstandard H is approximately conserved: since the field should be stationary
in the two vacua, the difference in H from one side of the wall to the other should just be
proportional to the difference in the potentials, and therefore to ε. Accordingly we can write
H +O(ε) = E for a conserved E, implying

2PXX − P = E + V +O(ε) . (V.10)

We may obtain the energy E by evaluating this for ρ > ρ̄, where both the bounce solution
and the always-false-vacuum solution are in the false vacuum, φ = φ+. Since φ̇ has to vanish
at this point in both solutions, and P (0) = 0 by construction, the left-hand side vanishes,
so we have E = −VFV. We can simplify this further by defining a new function, V0(φ), as a
deformation of the potential which vanishes, along with its first derivative, at the two vacua,
i.e.,

V0(φ) ≡ V (φ)− VFV +O(ε), V0(φ±) = V ′0(φ±) = 0 . (V.11)

Up to O(ε) we may simply replace the right-hand side of eq. (V.10) with V0(φ),

2PXX − P = V0 +O(ε) . (V.12)
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To calculate the bounce factor B,

B = SE(φ)− SE(φ+) , (V.13)

with φ the bounce solution, we split the computation up into three different regions: in the
true vacuum, in the false vacuum, and on the wall, i.e.,

B = BFV +Bwall +BTV . (V.14)

Equivalently, this can be thought of as splitting the integrals into pieces from 0 to ρ̄ (the
true vacuum), near ρ̄ (the wall), and from ρ̄ to ∞ (the false vacuum).

In the false vacuum we simply have BFV = [SE(φ+)− SE(φ+)]|∞ρ̄ = 0, where in each SE
we are only integrating from ρ = ρ̄ to ρ =∞. In the true vacuum,

BTV = 2π2

∫ ρ̄

0

ρ3(VFV − VTV)dρ = −π
2ρ̄4

2
ε . (V.15)

Finally, on the wall we have ρ ≈ ρ̄, so that in the thin-wall approximation,
∫

wall
ρ3dρf(φ, φ̇) =

ρ̄3
∫ φ+
φ−

dφf/φ̇, for some generic function f(φ, φ̇). We can then calculate the portion of B on

the wall as

Bwall = 2π2ρ̄3

∫ φ+

φ−

P + V

φ̇
dφ− 2π2ρ̄3

∫ φ+

φ−

VFV

φ̇
dφ = 2π2ρ̄3S1 , (V.16)

to leading order in ε, where

S1 ≡
∫ φ+

φ−

πφdφ (V.17)

is the tension of the bubble wall. Putting all these together we find the well-known result [5],

B = 2π2ρ̄3S1 −
π2ρ̄4

2
ε . (V.18)

We can determine ρ̄ by demanding that it extremize B; i.e. that ∂B/∂ρ̄ = 0, yielding

ρ̄ =
3S1

ε
. (V.19)

This gives us the usual result,

B =
27π2S4

1

2ε3
. (V.20)

Our main result for decay rates in P (X) theories, summarized in eqs. (V.17) and (V.20),
reduces to the classic result when we choose a canonical kinetic term [5], and also includes
the results of Ref. [17], which studied the case of a DBI kinetic term, which is a P (X)
theory with P (X) ∼ f−1(

√
1 + fX − 1). As pointed out in Ref. [17], despite the cosmetic

similarities between the tunneling rates for various kinetic terms, even small changes can have
a tremendous impact. The choice of kinetic term modifies the wall tension S1 (cf. eq. (V.17)).

This shows up in the tunneling rate as e−(···)S4
1 , so minor alterations to the kinetic structure

of a theory can affect its tunneling rate by several orders of magnitude.

12



We can see this explicitly by solving for πφ using the conservation equation for the
Hamiltonian,

H = V0 +O(ε) , (V.21)

in order to determine S1 in terms of P (X) and V0(φ). For example, taking a canonical kinetic

term, P (X) = X/2, we have πφ = φ̇ =
√

2V0, leading to

S1 =

∫ φ+

φ−

√
2V0dφ , (V.22)

which appears in the standard result for the tunneling rate [5]. The analogous result for a

general P (X) is obtained by solving eq. (V.12) for πφ = 2PX
√
X. This can lead to important

changes in πφ and therefore, through S1, in the decay rate Γ. We emphasize that by phrasing
our result in terms of the non-standard canonical momentum πφ, we can write the decay rate
for P (X) theories in a simple form that incorporates both the classic result for a canonical
kinetic term [5] as well as more recent extensions [17].

Now let us add one layer of abstraction by considering a general Lagrangian depending
on φ and φ̇; in practice this amounts to a P (X) theory with φ dependence, but it will prove
a useful arena for building a more abstract calculation of the decay rate which we can then
apply to the general second-order scalars.

Energy conservation gives

H = πφφ̇− L = E +O(ε) , (V.23)

and by evaluating this expression at φ = φ+ we find E = −L(φ+, 0). Since φ̇ = 0 at this
point, E is a constant and can be thought of as analogous to −VFV. Calculating B in three
parts as above, we find BFV = 0,

BTV = 2π2

∫ ρ̄

0

ρ3 [L(φ−, 0)− L(φ+, 0)] dρ = −π
2ρ̄4

2
ε , (V.24)

where we have defined ε ≡ L(φ+, 0)− L(φ−, 0), and

Bwall = 2π2ρ̄3

∫ φ+

φ−

πφdφ ≡ 2π2ρ̄3S1 , (V.25)

with the rest of the calculation of Γ/V following as above. We conclude that for a general

Lagrangian depending on φ and φ̇, the tunneling rate is given by a simple generalization of
the classic result,

Γ

V
∼ e−B , (V.26)

where

B =
27π2S4

1

2ε3
, (V.27)

S1 =

∫ φ+

φ−

πφdφ . (V.28)

Finally, let us extend our calculation of the decay rate to the full set of scalar field theories
with second-order equations of motion, the well-known galileons and their generalizations.
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While these Lagrangians can depend on second derivatives of φ in specific, antisymmetric
combinations (cf. eq. (A.2)), integrations by parts can eliminate the dependence of L on φ̈
at the expense of introducing explicit ρ dependence, as shown explicitly in appendix A. This
is a consequence of the galileon structure, which ensures that the equations of motion are
second-order, and would not remain true for Lagrangians with general functions of ∂2φ.

We can therefore consider the full slate of healthy theories of a single scalar field by
generalizing the above analysis to L = L(φ, φ̇, ρ). We will assume that L loses its ρ

dependence when φ̇ = 0, i.e.,
∂L(φ, 0, ρ)

∂ρ
= 0 , (V.29)

as this holds for the galileons and rather simplifies the analysis.10 Note that this implies
that, away from the wall, L is constant.

Most of the features of the above calculation proceed practically unchanged by the
additional ρ dependence in L, with the final result taking the form

B = 2π2ρ̄3S1 −
π2ρ̄4

2
ε , (V.30)

S1 =

∫ φ+

φ−

πφ(φ, φ̇, ρ)dφ . (V.31)

On the face of it, the entire structure of the decay rate up to this point is unaffected by the
ρ dependence. However, the crucial difference is that S1 now depends on ρ̄, so that when
we calculate ρ̄ by minimizing B, as above, we will find that the structure of S1 can play an
additional role, since ∂B/∂ρ̄ = 0 now yields

3S1 − ερ̄+ ρ̄
∂S1

∂ρ̄
= 0 . (V.32)

As a concrete example, consider the cubic galileon with a canonical kinetic term,

SE =

∫
d4x

[
1

2
(∂φ)2 +

1

Λ3
(∂φ)2�φ+ V (φ)

]
, (V.33)

corresponding to

L =
1

2
φ̇2 +

2

Λ3

φ̇3

ρ
+ V . (V.34)

The canonical momentum is

πφ = φ̇+
6

Λ3

φ̇2

ρ
, (V.35)

so that the surface tension of the bubble wall is

S1(ρ̄) =

∫ φ+

φ−

(
φ̇+

6

Λ3

φ̇2

ρ̄

)
dφ ≡ Scan

1 +
1

ρ̄
Sgal

1 , (V.36)

10 When φ̇ = 0, we will write quantities with two arguments rather than three, e.g., writing L(φ, 0, ρ) as

L(φ, 0), reflecting the fact that such objects do not in fact depend on ρ.

14



where Scan
1 and Sgal

1 are defined so as not to depend on ρ̄. Plugging this into eq. (V.30), we
can minimize B to find ρ̄ as usual,

ρ̄ =
3Scan

1

2ε

[
1 +

√
1 +

8

9
λ

]
, (V.37)

where we have defined

λ ≡ Sgal
1 ε

(Scan
1 )2

. (V.38)

Substituting this back into eq. (V.30) we find

B =
27π2(Scan

1 )4

ε3
∆3

(
1 +

2

3

λ

∆

)
, (V.39)

with

∆ ≡ 1

2

(
1 +

√
1 +

8

9
λ

)
. (V.40)

In these expressions for ρ̄ and B we have not yet taken a thin-wall limit, and it is not
hard to see why: the correct limit to take depends on whether the canonical term or the
galileon dominates S1, i.e., whether

Sgal
1 ε

(Scan
1 )2

� 1 , or
Sgal

1 ε

(Scan
1 )2

� 1 . (V.41)

This depends on the free parameters of the theory: ε, which controls the difference between
the potentials of the two vacua; ∆φ ≡ φ+− φ−, the difference between the field values at the
two vacua; and Λ, which controls the size of the galileon term. Given these parameters, we can

estimate the dominant contribution to S1 for a potential of the form V (φ) =
(
φ2 − (∆φ/2)2)2

as follows. Let us approximate the field profile as φ ' ∆φ
2

tanh (∆φ
2

(ρ− ρ̄)); while this simple
ansatz will not exactly solve the equations of motion (although it does in the absence of the
galileon and in the limit ε → 0 [5]), in the thin-wall limit we expect qualitatively similar
behavior, so our choice will be sufficient to relate λ to the theory parameters. Evaluating
this field profile on Scan

1 and Sgal
1 , we find

λ ≡ Sgal
1

(Scan
1 )2

ε = 6
ε

∆φΛ3
. (V.42)

As in the canonical case, the tanh approximation is valid as long as ε
/

∆φ4 is small. In the
small λ case, the damping and galileon terms that were neglected are proportional to λ. In
the large λ case, these terms are suppressed since they involve negative powers of ρ and the
derivatives of the field are large only at ρ = ρ̄ ∝ λ1/2. We see that the canonical kinetic term
dominates the decay rate if ε

∆φ
� Λ3, and the galileon dominates the rate if ε

∆φ
� Λ3. Note

that ε
∆φ

= ∆V
∆φ

is the overall slope of the potential between the two vacua.

We are now in a position to take the thin-wall limit and evaluate the decay rate in the
presence of a cubic galileon. In the limit where the canonical kinetic term dominates we have
the usual decay rate,

Bcan =
27π2(Scan

1 )4

2ε3
, (V.43)
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Bc = 2.09× 105

Bgal = 2.41× 10
5

Bc = 2.09× 105

Bgal = 1.64× 10
7

FIG. 3. In this figure, we observe the behavior of L(φbounce) for two different limits. On the left

side we see the case where the canonical term dominates and on the right side the case where the

galileon term dominates. Bcan and Bgal are the WKB exponents for a canonical scalar field and

for a canonical + cubic galileon scalar field respectively. It is clear that, when the galileon term

dominates we see a drastic change in the decay rate.

while when the galileon dominates, we find

Bgal =
2π2(Sgal

1 )2

ε
. (V.44)

In fig. 3, we can observe the change of the WKB exponent in both limits, when the canonical
term dominates and when the galileon term dominates. We see that the change in the decay
rate will be drastic when the galileon term dominates. We conclude that the galileon can
lower the decay rate, potentially by a rather large amount, compared to a canonical scalar.

In fact, we can apply this reasoning to the full range of galileons (and therefore of healthy
scalar theories). It is not too difficult to show that a general galileon Lagrangian, allowing
for all the galileon terms with any functions of φ and X in front, leads to a Euclidean action
of the form

SE = 2π2

∫
ρ3Ldρ , (V.45)

with

L =
3∑

n=0

fn(φ, φ̇)

ρn
. (V.46)

Note that f0 receives contributions from P (X) terms and the cubic galileon, f1 from the
cubic and quartic terms, f2 from the quartic and quintic terms, and f3 from the quintic term.
The bubble tension is

S1 =
3∑

n=0

gn(φ̇)

ρ̄n
, (V.47)

where we have defined

gn =

∫ φ+

φ−

∂fn

∂φ̇
dφ . (V.48)

Solving for ρ̄ by minimizing B we obtain

ερ̄+
3∑

n=0

(n− 3)gn
ρ̄n

= 0 . (V.49)
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Note that the n = 3 piece does not contribute, so (after multiplying by ρ̄2) this is a cubic
equation for ρ̄,

ερ̄3 − 3g0ρ̄
2 − 2g1ρ̄− g2 = 0 . (V.50)

We have already addressed above the special case where g2 = 0 and this equation is quadratic,
i.e., when only the cubic galileon and a P (X) term are present. If this equation is cubic, we
can perform a similar analysis; solving for B we find

B =
27π2g4

0

2ε3

[
1 +

4

3

g1

g2
0

ε+
4 (3g0g2 + 2g2

1)

27g4
0

ε2 + · · ·
]
, (V.51)

and while neglecting higher-order terms in ε is tempting, the same lesson we learned above
holds: if the gn terms, with n ≥ 1, are larger than g0, one should keep a different set of terms
in eq. (V.51). In this case, we have three expansion parameters given by

gn

gn+1
0

εn, n = 1, 2, 3 , (V.52)

for which an analysis similar to the cubic galileon one can be performed, given a specific
action.

VI. DISCUSSION

Scalar field theories with non-canonical kinetic structures play an important role in
building phenomenologically interesting models of both the early and late universe. Some
classes of such theories arise naturally in supergravity and string theory, and others arise
as limits of massive gravity and brane-world constructions. In each case, it is interesting to
wonder whether the nonperturbative physics of these theories might provide a novel way
to constrain and test them, and whether they can yield results significantly different from
canonical fields.

In this paper we have examined tunneling in general scalar field theories, allowing for the
existence of non-canonical kinetic structures, while demanding the the resulting equations
of motion be second order, and hence ghost-free. We have shown how to construct the
general tunneling formalism for such theories and applied it to several well-known examples,
in the thin-wall limit. While the formal structure of the expressions for the decay rates are
the same for both these theories and for canonical ones, the resulting tunneling rates can
be dramatically altered by the presence of non-canonical terms, giving rise to significant
differences in the decay rates.
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Appendix A: Galileons

In this appendix we briefly discuss the galileons [27] and their generalizations, which are
the most general scalar field theories with second-order equations of motion [28, 29], and
show how they fit into the formalisms discussed in sections IV and V.

Constructing a scalar field theory on flat space and insisting that the equations of motion
be second order in derivatives,12 we are led to the Lagrangian [28, 29]

L =
D∑
n=2

Gn(φ,X)Ln (A.1)

in D spacetime dimensions, where Gn(φ,X) are arbitrary functions of φ and X = −(∂φ)2.
In n = 4 the individual galileon Lagrangians are

L2 = (∂φ)2,

L3 = (∂φ)2�φ,

L4 = (∂φ)2
[
(�φ)2 − φ2

µν

]
,

L5 = (∂φ)2
[
(�φ)3 − 3�φφ2

µν + 2φ3
µν

]
, (A.2)

where we have defined φµ ≡ ∂µ∂νφ. We will frequently refer to L3, L4, and L5 as the cubic,
quartic, and quintic galileons, respectively.

First we will justify the form (IV.1) of the Hamiltonian we considered, in which dependence
on higher spatial gradients but not on higher time derivatives is permitted. A priori it is
not obvious that the Hamiltonians for the galileons (above L2) fall into that class, since the
Lagrangians themselves, in their covariant form, contain second derivatives of φ. However,
the fact that the resulting equations of motion are second order ensures that we are able to
eliminate higher time derivatives up to boundary terms.

As an illustration, consider the cubic galileon,13 with the action

S =

∫
d4x

(
−1

2
(∂φ)2 +

1

Λ3
(∂φ)2�φ− V (φ)

)
, (A.3)

where Λ is a constant with units of mass. Performing a 3 + 1 spacetime decomposition we
have

S =

∫
dtd3x

[
1

2

(
φ̇2 − (∇φ)2

)
+

1

Λ3

(
−φ̇2 + (∇φ)2

)(
−φ̈+∇2φ

)
− V

]
≡
∫

dtd3xL . (A.4)

We may then eliminate the φ̈ dependence by integrating by parts. Consider the term(
−φ̇2 + (∇φ)2

)(
−φ̈+∇2φ

)
= φ̇2φ̈− φ̈(∇φ)2 − φ̇2∇2φ+ (∇φ)2∇2φ . (A.5)

12 This requirement is necessary to avoid the Ostrogradsky instability [30, 31]. This may be loosened

somewhat when multiple fields are present [32], as in the so-called “beyond-Horndeski” theories [33, 34]

and their generalizations [35, 36], but for a single scalar field this loophole is not available.
13 In the above notation, this corresponds to G3 constant.
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The first piece is a total derivative in time, φ̇2φ̈ = 1
3
(φ̇3)̇. The next term can be eliminated

by a pair of total derivatives,

d

dt

[
φ̇(∇φ)2

]
− ∂i

[
φ̇2∂iφ

]
= φ̈(∇φ)2 − φ̇2∇2φ , (A.6)

leaving us with

L =
1

2

(
φ̇2 − (∇φ)2

)
+

1

Λ3

(
−2φ̇2 + (∇φ)2

)
∇2φ− V , (A.7)

up to boundary terms. We can therefore obtain the canonical momentum,

Π =
dL

dφ̇
= φ̇

(
1− 4

Λ3
∇2φ

)
, (A.8)

and solve for H(φ,Π, ∂iφ, ∂i∂jφ). The cubic galileon therefore fits into the form used in
section IV.

This property has also been shown to apply to the quartic and quintic galileons [37]. To
round out the list of second-order field theories, we only need to generalize this to include φ
and X-dependence in the coefficients Gn. For simplicity, let us look at the cubic galileon
with some general φ- and X-dependent coefficient,

L = eα(φ,X)�φ . (A.9)

We will find it convenient to explicitly consider how α separately depends on φ̇ and ∂iφ,

α(φ,X)→ α(φ, ρ, ∂iφ) , (A.10)

where for further convenience we have defined ρ = log(φ̇/Λ2), with Λ a constant with
dimensions of mass. Using

X = −φ̇2 + ∂iφ∂
iφ , (A.11)

we see that, of course, derivatives of α with respect to ρ and ∂iφ are related to each other,

αρ = −2αX φ̇
2 , (A.12)

αi = 2αX∂iφ , (A.13)

where we have defined

αρ ≡
∂α

∂ρ
, αi ≡

∂α

∂∂iφ
, αX ≡

∂α

∂X
. (A.14)

We now write the Lagrangian explicitly in terms of time and space derivatives,

L = −eαφ̈+ eα∇2φ . (A.15)

The second term is already of the form we want: it depends only on φ, φ̇, and spatial
derivatives of φ (but not of φ̇). We now work on the first term. Integrating by parts on the
time derivative, and rearranging, we have

− eαφ̈ ∼ eα

1 + αρ

(
αφφ̇

2 + αiφ̇∂
iφ̇
)
, (A.16)
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where ∼ denotes equivalence up to boundary terms.This explains our choice to use α and ρ
rather than G3 and φ̇. The first term in this expression is of the form we want, but we need
to remove the spatial derivative from φ̇ in the second term. Taking this term separately,
integrating by parts on the spatial derivative, and using (cf. eq. (A.13)), that

αρi =
∂αρ
∂∂iφ

= 2αρX∂iφ =
αρX
αX

∂iφ , (A.17)

we obtain

eα

1 + αρ
αiφ̇∂

iφ̇ ∼ − eα

2 + 3αρ + α2
ρ − αρρ +

αρX
αX

(1 + αρ)

× φ̇2

[(
αφi + αφαi −

αφραi
1 + αρ

)
∂iφ+

(
αij + αiαj −

αρjαi
1 + αρ

)
∂i∂jφ

]
.

(A.18)

Similar proofs apply to the quartic and quintic galileons multiplied by general functions.
A similar (and more straightforward) calculation justifies the formalism used in section V to

compute Euclidean bounce solutions; in particular, the Euclidean action for O(4)-symmetric
solutions can be written in the form

SE = 2π2

∫
ρ3L(φ, φ̇, ρ)dρ , (A.19)

where the ρ dependence in L(φ, φ̇, ρ) comes only from the cubic, quartic, and quintic galileons
after integrating by parts, and

∂L(φ, 0, ρ)

∂ρ
= 0 . (A.20)
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