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The mass splitting between the quarkonium spin-singlet state h (JPC = 1+−) and the spin average
of the quarkonium spin-triplet states χ (JPC = 0++, 1++, 2++) is seen to be astonishingly small,
not only in the charmonium and bottomonium cases where the relevant masses have been measured,
but in positronium as well. We find, both in nonrelativistic quark models and in NRQCD, that this
hyperfine splitting is so small that it can be used as a test of the pure QQ̄ content of the states. We
discuss the 2P states of charmonium in the vicinity of 3.9 GeV, where the putative exotics X(3872)
and X(3915) have been seen and a new χc0(2P ) candidate has been observed at Belle.
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I. INTRODUCTION

The spectrum of charmonium-like states in the region
near 3.9 GeV is exceptionally intricate and interesting.
In addition to containing states that are believed to be
the conventional cc̄ 13D1 [ψ(3770)], 13D2 [ψ(3823)], and
23P2 [χc2(2P )] [1], this range has produced several un-
expected states, including the most famous exotic can-
didate X(3872) (JPC = 1++), as well as the 0++ (or
even possibly 2++ [6]) X(3915), the 1+− Z0

c (3900) that
is the neutral isospin partner of the Z+

c (3900), and the
X(3940), whose JPC remains unknown. For a review of
these states and more, see Ref. [2].

Missing from this list are several expected states in the
2P band, such as the conventional 0++ χc0(2P ) and 1++

χc1(2P ), and the 1+− hc(2P ). Indeed, the X(3872) has
long been argued to have at least a substantial χc1(2P )
component, while the X(3915) was briefly listed by the
Particle Data Group as χc0(2P ) until serious doubts were
raised about this identification (especially its lack of DD̄
final states) [3–5]; for example, X(3915) might even be
the lightest cc̄ss̄ state [7]. The crucial importance of
sorting out the states in the 2P charmonium sector, in
order to determine which states are (mostly) exotic and
which are not, was emphasized as a central experimental
goal in Ref. [8]. A very recent attempt in this direction
appears in Ref. [9].

The latest chapter in this saga is the Belle observa-
tion [10] of a χc0(2P ) candidate decaying to DD̄, with
mass 3862+26+40

−32−13 MeV and width 201+154+88
−67−82 MeV. While

these uncertainties are quite large, the significance of the
signal is substantial (6.5σ). With the χc2(2P ) and hope-
fully the χc0(2P ) now in hand, one can at last begin a se-
rious study of mass splittings within this multiplet, with
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an eye toward testing the expectations for pure cc̄ com-
position versus mixing with multiquark or hybrid com-
ponents.
The mass difference of interest in this paper is the

hyperfine splitting between the quarkonium spin-singlet
state h (1P1, J

PC = 1+−) and the spin average of
the quarkonium spin-triplet states χ (3P0,1,2, J

PC =
0++, 1++, 2++):

∆ ≡Mh −
1

9
[1·Mχ0

+ 3·Mχ1
+ 5·Mχ2

] . (1)

A complete set of experimental data for determining ∆
is currently available in only 4 cases: 2P positronium
(which, in the standard notation for positronium, is the
lowest P wave) [11, 12], 1P charmonium, and 1P and
2P bottomonium [1]. The corresponding ∆ values are
presented in Table I. In every case, the value of ∆ is zero
to within experimental uncertainties, making the tight
relationship among P -level states highly predictive for
cases (such as 2P charmonium) in which some of the
states have not yet been observed.
In this short paper we explore the physical reason for

this remarkable relationship in quarkonium; indeed, ∆
is so small that one may call it an ultrafine splitting.
We then show how it may be applied to the confusing
set of charmonium states around 3.9 GeV to uncover an
unambiguous signal of exoticity, by which we mean a non-
cc̄ state component. Finally, we remind the reader of the
ongoing and proposed experiments designed to uncover
missing quarkonium states.
This paper is organized as follows. In Sec. II we iden-

tify and discuss the operators potentially contributing to
the “ultrafine” mass difference Eq. (1) and related com-
binations. Section III identifies the origin of the relevant
operator in quark potential models and explains the ori-
gin of its numerical suppression; Sec. IV does the same
for the non-relativistic QCD effective theory. In Sec. V
we discuss the nonperturbative heavy-quark limit and the
effect of the appearance of partonic degrees of freedom
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TABLE I: Experimental values of ∆ in MeV for quarkonium and in MHz for positronium. For quarkonium the state masses
entering Eq. (1) are listed, while for positronium the differences (23S1 − 22S+1PJ) are presented.

System h(1P1) χ0(
3P0) χ1(

3P1) χ2(
3P2) ∆

cc̄(1P ) 3525.38(11) 3414.75(31) 3510.66(7) 3556.20(9) +0.08(13)

cc̄(2P ) − 3862+26+40

−32−13 − 3927.2(2.6) −

bb̄(1P ) 9899.3(8) 9859.44(42)(31) 9892.78(26)(31) 9912.21(26)(31) −0.57(88)

bb̄(2P ) 10259.8(1.2) 10232.5(4)(5) 10255.46(22)(50) 10268.65(22)(50) −0.44(1.31)

Ps 11180(5)(4) 18499.65(1.20)(4.00) 13012.42(67)(1.54) 8624.38(54)(1.40) +4.31(6.50)

beyond the heavy quark-antiquark pair, and in Sec. VI
describe the use of the “ultrafine” relation in identifying
the presence of exotic (non-QQ̄) components in the can-
didate states and the prospects for observing the missing
states. Section VII summarizes and concludes.

II. OPERATORS CONTRIBUTING TO ∆

The hyperfine interaction is defined, as usual, as a di-
rect coupling between the intrinsic spins of the compo-
nent fermions of the state. In the case of f f̄ bound states,
where f is a spin- 12 fermion, one can produce only a finite
number of linearly independent operators contributing to
the mass from the basic ingredients of quark-spin Sf , Sf̄
and orbital angular momentum L operators. For exam-
ple, a quark-spin operator that transforms under an irre-
ducible representation with spin greater than two cannot,
by the Wigner-Eckart theorem, contribute to matrix el-
ements of states containing only two spin- 12 quarks. On
the other hand, operators sensitive to arbitrarily high
powers of squared quark momenta (but no spin depen-
dence) might be generated by the fine details of quark
distributions within the hadron, but their contributions
to hadron masses are proportional to those arising from
any spin-symmetric operator, such as the quark-mass op-
erator.

To put the discussion on a firm footing, we define the
usual operators in configuration space:

Sf · Sf̄ (hyperfine) , (2)

S · L (spin-orbit) , (3)
↔

T ≡ (Sf · r̂)(Sf · r̂)−
1

3
Sf · Sf̄ (tensor) , (4)

where S ≡ Sf+Sf̄ . The operators can be expressed just

as easily in momentum space by replacing f -f̄ relative
position operator r with the relative momentum operator
q and replacing L with q × p, where p is the total mo-
mentum operator. In any case, these are the only three
independent spin-dependent operators that arise up to
quadratic order in Sf,f̄ ; and since all linearly indepen-
dent operators arising beyond quadratic order transform
as spin greater than two, the list in Eqs. (2)–(4) is com-

plete. For example, the operator (S· L)2 can be shown1

for any given multiplet of f f̄ states to be linearly depen-
dent on the ones above plus the operator S2L2.

Now consider any multiplet of f f̄ states that, in the
language of a quark potential model, carry the same prin-
cipal quantum number n and orbital angular momentum
L. For states with S = 0 [and hence J = L: quarko-
nium η and h], matrix elements of both the spin-orbit
and tensor operator vanish by the Wigner-Eckart theo-
rem since the operators transform as S = 1 and S = 2,
respectively. The same matrix elements vanish for all
L = 0 states, so one immediately sees that any n3S1-n

1S0

hyperfine splitting—in which all spin-independent mass
terms cancel—depends only on the hyperfine operator,
as one might expect. For L > 0 and S = 1, J = L − 1,
L, and L+ 1 are allowed, and using the results

〈S· L〉 = 1

2
[J(J + 1)− L(L+ 1)− S(S + 1)] , (5)

and

〈

↔

T
〉

=











− L+1
6(2L−1) , J = L− 1 ,

+ 1
6 , J = L ,

− L
6(2L+3) , J = L+ 1 ,

(6)

one can quickly check that adding these matrix elements
weighted by the 2J + 1 degenerate spin states for each
level gives a vanishing result. In other words, the spin-
averaged matrix elements of any trio of spin-triplet states
n3LJ=L−1, n

3LJ=L, n
3LJ=L−1 with orbital angular mo-

mentum larger than zero vanish for the spin-orbit and
tensor operators. The reason is not so mysterious: Al-
though expressed in the |J, Jz, L, S = 1〉 basis, the states
form a complete multiplet in the |L,Lz, S = 1, Sz〉 ba-
sis, while the spin-orbit and tensor operators, being irre-
ducible operators of rank greater than zero, are traceless.
On the other hand, all of these states have the same spin-
independent mass terms, which is also the same as that
of the corresponding spin-singlet n1SJ=L. In total, the
mass combination for orbital angular momentum larger

1 This fact provides one convenient method [13] for calculating

matrix elements of
↔

T , such as those given in Eq. (6).
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than zero defined by:

∆n,L ≡ M(n1LJ=L)

− 2L− 1

3(2L+ 1)
M(n3LJ=L−1)

− 2L+ 1

3(2L+ 1)
M(n3LJ=L)

− 2L+ 3

3(2L+ 1)
M(n3LJ=L+1) , (7)

of which Eq. (1) is simply the case L = 1 for quarko-
nium, receives contributions only through the hyperfine
operator.
All mass combinations ∆n,0 ≡ M(n1S0) − M(n3S1)

and ∆n,L of Eq. (7) for L > 0 are thus pure hyperfine
splittings. In order to see why the latter deserve the la-
bel “ultrafine,” we consider the origin of the hyperfine
operator in three useful dynamical formalisms: quark-
potential models, nonrelativistic QCD (pNRQCD), and
the heavy-quark expansion of QCD, including nonpertur-
bative effects.

III. QUARK POTENTIAL MODELS

The form of the operator multiplying Sf · Sf̄ is clearly
crucial for determining the relative size of various hyper-
fine interactions. In the case of electromagnetic inter-
actions, the direct spin-spin coupling is pointlike, being
proportional to the wave function of the state at zero
spatial separation r between the spins, a fact first noted
by Fermi [14]. Such a term is proportional to δ(3)(r), and
arises naturally in the nonrelativistic reduction of terms
in the Dirac equation (and more generally, QED) de-
scribing the interaction of two charged particles, known
as the Breit Hamiltonian [15]. In that context, it ap-
pears through the Laplacian operator acting upon the
Coulomb potential 1/r. Of course, this 1/r simply oc-
curs as the Fourier transform of the momentum-space
propagator 1/q2 of the massless photon.
The equivalent Breit Hamiltonian for the case of

potential interactions in quark systems, as applied to
hadron masses, was expressed in De Rujula, Georgi,
and Glashow [16]. Since QCD also has massless gauge
bosons in the form of gluons, one finds that the cor-
responding spin-spin term is proportional to δ(3)(r) in
the short-distance limit in which the interaction is domi-
nated by one-gluon exchange. Any quark potential model
in which the potential V (r) contains a piece represent-
ing one-gluon exchange will exhibit this feature. This
term is represented for example, in the most thorough
recent analysis of charmonium masses [17] as a Gaussian
of width 1/σ:

δ(3)(r) → δ̃σ(r) ≡
(

σ√
π

)3

e−σ
2r2 . (8)

“Smearing” of this sort is necessary to regularize the
delta function (thereby making it a well-defined three-

dimensional quantum-mechanical operator), and because
nonzero hyperfine splitting is evident in the spectrum for
radially excited S-wave states.

The most interesting feature of the δ(3)(r) dependence
is that it is only supported by wave functions that are
nonvanishing at the origin. Of course, one well-known
feature of quantum mechanics is that wave functions with
orbital angular momentum quantum number L scale as
rL near the origin. Therefore, one naturally expects the
S-wave hyperfine splittings to be numerically much larger
than those with L > 0, hence the term “ultrafine.” The
evidence from Table I strongly supports this conclusion;
for example, the S-wave hyperfine splitting in the n = 1
level of charmonium is mJ/ψ − mηc = 113.5(5) MeV.
One anticipates that the D-wave splittings would be even
smaller than those in the P -wave.

Using the smearing function of Eq. (8) and the param-
eter value [17] σ = 1.0946 GeV, we find values of ∆n,1 of
order 3–10 MeV, which are much larger than those ob-
served. This result is a reflection of the relatively small
value of σ used in the model, which is driven by the much
larger observed S-wave hyperfine splittings, ∆n,0.

IV. NRQCD

In the heavy-quark limit of QCD, all operators de-
pendent upon the heavy-quark flavor or spin are sup-
pressed by powers of the heavy-quark mass mQ, and the
relevant finite dynamical parameter becomes the heavy-
quark four-velocity v. Effects at energy scales higher than
mQ are integrated out in the usual Wilsonian fashion,
leading to the heavy-quark effective theory [18]. Spin-
spin and tensor operators, containing two heavy-quark
spin operators, are therefore suppressed by 1/m2

Q.

When more than one heavy quark is present, as in
quarkonium, new scales arise, and their modes must be
integrated out successively: in decreasing magnitude,
these are the “hard” scale mQ (leading to the effective
theory of non-relativistic QCD (NRQCD) [19, 20], the
“soft” scale mQv, and the “potential” scale (energies
∼ mQv

2, momenta ∼ mQv), leading to the effective the-
ory called potential non-relativistic QCD (pNRQCD) [21,
22]. The remaining modes are “ultrasoft” (energies and
momenta ∼ mQv

2).

The state-of-the-art calculations in this program are
now performed at next-to-next-to-next-to leading order
(NNNLO) in NRQCD; the corresponding Hamiltonian
was obtained in Ref. [23] and the heavy-quarkonium spec-
trum for states of arbitrary quantum numbers, including
terms of O(mQα

5
s lnαs), was presented in Ref. [24]. The

corresponding expressions including O(mQα
5
s) terms,

which we use here, appear in Ref. [25].

Using the NNNLO results from Ref. [25], one computes
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the 1S hyperfine splitting:

∆1,0 =
1

3
mQα

4
sC

4
F

−mQα
5
sC

4
F

108π

[

6π2β0 − 72β0 + 20CA + 18CF

+63CA log

(

1

αsCF

)

− 72β0 log

(

µ

αsCFmQ

)

+8TFnℓ − 54TF + 54TF log 2

]

, (9)

where β0 = (11CA−2nℓ)/3, with nℓ being the number of
light fermion species appearing in loop corrections (i.e.,
as short-distance degrees of freedom only) and µ being
the renormalization point. The usual color and trace fac-
tors CA = Nc → 3, CF = (N2

c −1)/2Nc → 4
3 , and TF = 1

2

also appear. It is worth noting that the leading [O(α4
s)]

term in this expression gives only 13 MeV for αs = 0.3
and mc = 1.5 GeV – too low by a factor of nearly 9 com-
pared to the experimental value given above; however,
the O(α5

s) term not only exhibits a strong dependence
upon µ but turns out to be of the same numerical order as
the leading term. One concludes that the splitting ∆1,0

is not yet under control in the NRQCD result Eq. (9).
In comparison, the ultrafine combination at this order

in NRQCD computed using Ref. [25] is much simpler:

∆n,1 =
mQC

4
Fα

5
s

432π(n+ 1)3
(8TFnℓ − CA) . (10)

This expression is smaller both parametrically [by a
power of αs(mQ)] and numerically (by the large denom-
inator factor) than the usual hyperfine splitting.
The origin of the extra suppression, leading to the

“ultrafine” label, arises for precisely the same algebraic
reason as it does for the nonrelativistic quark potential
model: The same set of spin-dependent operators as in
Eqs. (2)–(4) arises in NRQCD, and the spin-spin oper-
ator Eq. (2) again appears with the contact interaction
coefficient δ(3)(r) [23]. The L > 0 overlap integrals are
again severely suppressed, and indeed only survive due
to the renormalization of the αs coefficient to Eq. (2)
to include terms of the form ln(r) that are singular for
r → 0. One thus obtains the ultrafine suppression in
effective field theory treatments of QCD.
The values obtained from Eq. (10) are remarkably

small: One obtains 9.5 keV, 2.8 keV, 3.8 keV, and
1.1 keV for 1P and 2P charmonium, and 1P and 2P bot-
tomonium, respectively; such differences are far smaller
than the central values given in Table I. The positron-
ium result is expected to be even further suppressed, to
O(α6) [26].
In comparison, the Schnitzer ratio [27],

R1 ≡ M(3P2)−M(3P1)

M(3P1)−M(3P0)
, (11)

is known to be exactly 4
5 at leading order in αs, and this

result is borne out in NRQCD calculations [25]. How-
ever, the O(αs) corrections to this ratio have a strong

µ dependence, which can be used to accommodate its
rather different experimental value for 1P charmonium,
∼ 0.47. One may anticipate a similar strong µ depen-
dence to arise in the next (uncomputed) O(α6

s) correc-
tions to Eq. (10), but one still expects the measured val-
ues for ∆n,1 to remain no larger than O(10 keV).

V. NONPERTURBATIVE HEAVY-QUARK

LIMIT

The matrix elements that appear in the NRQCD re-
sults reported in the previous section are evaluated in
the heavy-quark limit, for which nonrelativistic Coulom-
bic meson wave functions are appropriate. This approx-
imation breaks down as the quarks become lighter and
the scale ΛQCD becomes more relevant. Furthermore,
the nonperturbative regime also becomes more relevant
as the radial quantum number increases, because larger
spatial scales are probed. Under these conditions, mass
splittings that had been proportional to the heavy quark
mass can scale as Λ3

QCD/m
2
Q. It is thus prudent to en-

quire into the regime of validity of the NRQCD compu-
tations presented above.

An analogous problem arises in the application of the
operator-product formalism to the interaction of heavy
mesons with hadronic matter. In this case, Peskin [28–
31] has estimated that the method is reliable if:

mQ ≫ n2 ΛQCD

α2
s(r

−1
Q )

. (12)

It was subsequently argued that this expression should
contain a numerical coefficient of order 10 [32]. As a
result, the operator-product expansion (in this context)
is never valid for physical quarks.

In view of this issue, we seek to estimate the nonper-
turbative behavior of the hyperfine matrix element that
contributes to the hyperfine and ultrafine splittings. A
formalism for examining this question was developed long
ago by Eichten and Feinberg [33], who applied the heavy-
quark expansion to the Wilson loop to obtain expressions
for the spin-dependent interaction of heavy quarks at or-
der 1/m2

Q. The result for the coefficient of the spin-spin
term is proportional to the temporal integral of the ma-
trix element of chromomagnetic fields. Subsequently, a
somewhat more transparent, but equivalent, expression
was obtained with a Foldy-Wouthuysen reduction of the
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QCD Hamiltonian in Coulomb gauge [34]:

V
(n

R
)

hyp (R = rQ − rQ̄) = αs
4π

3m2
Q

Sf · Sf̄

×
∑

m 6=n

1

ǫn(R)− ǫm(R)

×
〈

nR; rQ, rQ̄

∣

∣

∣

∣

∫

d3xh†(x)B(x)h(x)

∣

∣

∣

∣

mR; rQ, rQ̄

〉

·
〈

mR; rQ, rQ̄

∣

∣

∣

∣

∫

d3y χ†(y)B(y)χ(y)

∣

∣

∣

∣

nR; rQ, rQ̄

〉

+ (h ↔ χ) . (13)

States are labeled with the coordinates of the static
quarks, rQ, rQ̄, and gluonic quantum numbers are de-
noted by mR, nR. Heavy-quark and -antiquark creation
operators are labeled by h† and χ†, respectively. The
operators B are chromomagnetic fields. One of the fields
is evaluated at the position of the quark rQ, while the
other is evaluated at the antiquark position rQ̄. Evalu-
ating both fields on a single quark line is possible, but
does not yield a spin-dependent interaction.
Perturbatively, the matrix element of Eq. (13) becomes

V
(nR)
hyp (R) ∝ ∇Q · ∇Q̄ 〈A(rQ, t)·A(rQ̄, t

′)〉 .

The matrix element is proportional to 1/R, and the hy-
perfine interaction is then proportional to δ(3)(R). A
simple nonperturbative estimate can be made by intro-
ducing a gluon effective mass term into the gluon prop-
agator. In this case, one obtains a Yukawa-type inter-
action, with a range given by the inverse gluon effective
mass, which is also seen to be short-ranged.
More generally, one can argue that infinitely many

strongly interacting virtual gluons tend to decorrelate
the chromomagnetic fields rapidly as the interquark sep-
aration is increased [34]. This expectation is confirmed
in quenched lattice computations of the chromomagnetic
field correlation in the presence of a Wilson loop [35], in
which it is found that a Yukawa potential with a gluon
mass of approximately 2.5 GeV fits the simulation well.
The potential itself is zero, within statistical error, for
R > 0.2 fm.

VI. ULTRAFINE SPLITTINGS AND EXOTICS

All of the previous discussion leads to the same con-
clusion: The heavy-quark hyperfine interaction is short-
ranged. Thus, matrix elements of the interaction must
decrease with radial and orbital quantum number. Fur-
thermore, experiment indicates that ∆1,1(cc̄), ∆1,1(bb̄),
and ∆2,1(bb̄) are all small, and hence this quantity must
be small for all n and L in the charmonium and bottomo-
nium systems.
This conclusion follows from the quark model, which

does not consider coupled channels; NRQCD, which only
considers the short-range contribution of light quarks;

heavy-quark QCD, which suppresses the effect of light
quarks; or quenched lattice computations. Thus it is pos-
sible that long-distance light-quark effects – such as those
manifested in meson-meson contributions to quarkonium
states, or by QQ̄qq̄ wave function components – can ruin
the relationship ∆n,L ≪ ΛQCD. But this condition can
be taken as the definition of a crypto-exotic state that
contains important light-quark degrees of freedom.
In view of this observation and the putative exotic

nature of the X(3872), we suggest that measuring the
mass of the hc(2P ) and computing ∆2,1(cc̄) will unam-
biguously reveal if the X(3872) contains important light-
quark degrees of freedom. This conclusion, of course,
relies upon assuming that χc2(2P ), the new χc0(2P ) can-
didate, and the undiscovered hc(2P ) are pure cc̄ states;
at minimum, one can conclude that a substantial viola-
tion of the relation ∆n,L ≪ ΛQCD in heavy quarkonium
points to at least one of the states containing a signifi-
cant non-QQ̄ component. Indeed, even an effect giving
∆n,L > O(Λ3

QCD/m
2
Q), the heavy-quark spin-symmetry

expectation, will warrant close attention.
The same comments hold for the D-wave cc̄ states: the

ψ(3770) and ψ(3823) are believed to be 13D1 and 13D2,
respectively; the observation of a spin-0 ηc 1

1D1 or spin-3
ψ 13D3 will allow a precise prediction of the mass of the
other, while a measurement of both will allow one to test
for a non-cc̄ component in this multiplet.
The prospects for experimentally measuring the 2P

charmonium ultrafine splitting are encouraging. For ex-
ample, BESIII observed the Z0

c (4020) in the reaction
e+e− → ππhc(1P ) [36]. A similar effort could yield a
signal for ππhc(2P ), with the hc(2P ) being detected in
its DD̄∗ decay mode [37].
Alternatively, attempting to find χcJ(2P ) with J > 0

in the recoil mass products X of e+e− → J/ψX is not
expected to be profitable, since this channel has been
seen to be dominated by ηc(1S), ηc(2S), χc0(1P ), and
the X(3940), with little evidence for χc1(1P ), χc2(1P ),
or any of the expected χcJ(2P ) [38].
Examining the process B → KωJ/ψ should shed light

on the enigmatic X(3915), which likely plays a role in the
charmonium 2P spectrum. Finally, collecting sufficient
data in B → KDD̄∗ should permit observation of the
hc(2P ) and the χc1(2P ) [39].

VII. CONCLUSIONS

We have argued that the splitting ∆n,L defined in
Eq. (7) is robustly “ultrafine” in the absence of explicit
long-distance light-quark degrees of freedom, and there-
fore can serve as an unambiguous test of the “coupled-
channel exoticity” of quarkonium states. Prospects for
applying this test in the charmonium 2P sector appear
to be good.
It is interesting to speculate on the applicability of this

idea to quarkonium hybrid states. The chromomagnetic
matrix element of Sec. V, which gives the direct quark-
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antiquark spin coupling Sf · Sf̄ , depends upon the glu-
onic state of the heavy-quark meson [which is explicit
in Eq. (13) and is implicit in the Eichten-Feinberg for-
malism]. Naively, the ultrafine splitting could be large
in states with substantial hybrid components. However,
the arguments of Sec. V lead us to believe that this will
not be the case, because the addition of valence gluonic
degrees of freedom should not reverse the rapid decorre-
lation of the chromomagnetic fields. This expectation
can be checked directly with lattice measurements of

V
(hybrid)
hyp [Eq. (13)], which should be readily achievable

with present capabilities. The application of this result

to splittings in complete hybrid multiplets will be com-
plicated by the addition of many new spin-dependent op-
erators in the heavy-quark expansion, but should, never-
theless, also be of interest.
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