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We investigate the (π0,η ,η ′)→ γ∗γ transitions both for the spacelike region and the timelike region using the
light-front quark model (LFQM). In particular, we present the new direct method to explore the timelike region
without resorting to mere analytic continuation from the spacelike region to the timelike region. Our direct
calculation in timelike region shows the complete agreement not only with the analytic continuation result from
the spacelike region but also with the result from the dispersion relation between the real and imaginary parts of
the form factor. For the low energy regime, we compare our LFQM results of the transition form factors (TFFs)
for the low timelike momentum transfer region and the slope parameters at q2 = 0 with the recent experimental
data from the Dalitz decays of (π0,η ,η ′). For the high energy regime, we incorporate the QCD factorization in
our LFQM to examine the asymptotic behavior of TFFs both for the spacelike region and the timelike region.
We compare our results with the available experimental data.

I. INTRODUCTION

The meson-photon transition form factors (TFFs) such as FPγ(Q2)(P= π0,η ,η ′) have been known to be the simplest exclusive
processes involving the strong interaction. They play a significant role in allowing both the low- and high-energy precision tests
of the standard model, in particular, the quantum chromodynamics (QCD)[1].

For the low-energy regime, the TFFs enter the prediction of important observables such as the rates of rare decays P→ ¯̀̀ (`=
e,µ) [2] and the hadronic light-by-light (HLbL) scattering contribution to the muon anomalous magnetic moment (g−2)µ [3, 4].
The HLbL contribution is in principle obtained by integrating some weighting functions times the product of a single-virtual and
a double-virtual TFFs for spacelike momentum [3, 5]. While there are currently no available data for the double-virtual TFFs,
the single-virtual TFFs are available from the γ∗γ → (π0,η ,η ′) processes in the small and intermediate momentum transfer
range up to Q2 ∼ 8 GeV2. The (π0,η ,η ′)→ γ∗γ TFFs of the spacelike regon have been measured experimentally by several
collaborations [6–8]. Recently, the single-virtual TFFs for small timelike momentum transfer (q2 = −Q2 > 0) regions and the
slope parameters at q2 = 0 have also been measured [9–14] from the Dalitz decays P→ ¯̀̀ γ where (2m`)

2 ≤ q2 ≤ m2
P.

For the high-energy regime, the TFFs can be calculated asymptotically at leading twist as a convolution of the perturbative hard
scattering amplitude and the gauge-invariant meson distribution amplitude (DA) [15–17] which incorporates the nonperturbative
dynamics of QCD bound state. In particular, hadronic DA [15–17] provides an essential information on the QCD interaction of
quarks, antiquarks and gluons inside the hadrons and plays an essential role in applying QCD to hard exclusive processes. The
prediction for the single-virtual pion TFF, Fπγ(Q2), at the asymptotic limit Q2→∞ is given by the well-known Brodsky-Lepage
limit [15]: Q2Fπγ(Q2 → ∞) =

√
2 fπ ' 0.185 GeV. However, the BaBar Collaboration [18] has measured the Fπγ(Q2) up to

about Q2 ∼ 35 GeV2 from reaction e+e−→ e+e−π0 in the single tag mode and have shown not only the serious violation of the
Brodsky-Lepage limit but also the rapid growth for Q2 > 15 GeV2. On the other hand, the subsequent Belle Collaboration [19]
has reported their measurement for Fπγ(Q2) and has shown that the measured values of Q2Fπγ(Q2) are consistent with the
asymptotic limit of QCD for Q2 > 15 GeV2. For the reaction e+e− → e+e−η(′), the subsequent BaBar data [20] for the
Q2F

η(′)γ(Q
2) TFFs provided a consistency with the perturbative QCD prediction unlike the case of pion TFF [18]. These

discrepancies for the results of Q2Fπγ(Q2) between the BaBar and the Belle data and between Q2Fπγ(Q2) and Q2F
η(′)γ(Q

2)

TFFs for Q2 > 15 GeV2 region have motivated many theoretical studies using various forms of the meson DAs to understand
and reconcile those discrepancies [21–53].

To examine the issue of the scaling behavior of Q2Fπγ(Q2) in the large Q2, it may be necessary to analyze the corresponding
form factor not only in the spacelike region but also in the timelike region. To explore the timelike region beyond the single
Dalitz decays [9–14], the e+e− colliders access the values q2 > m2

P through the e+e−→ Pγ annihilation processes. Although
the data for Fπγ(q2) in the large timelike q2 region is not available yet, the BaBar Collaboration [54] measured the timelike
F

η(′)γ TFFs from the reaction e+e−→ η(′)γ at an average e+e− center of mass energy of
√

s = 10.58 GeV, which corresponds to
q2 = 112 GeV2. However, the theoretical analysis for the timelike region going beyond q2 > m2

P is highly nontrivial due to the
singular nature and the complexity of the timelike form factor. Some theoretical subtleties regarding on the analytic continuation
from the spacelike region to the timelike region can be found in [28, 55]. While some theoretical analyses [56, 57] for the TFFs
in timelike region can also be found for some Dalitz decays ((2m`)

2 ≤ q2 ≤ m2
P), we do not yet find any theoretical analysis
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FIG. 1: One-loop Feynman diagrams that contribute to P→ γ∗γ . The single covariant Feynman diagram (a) is the same as the sum of the two
LF time-ordered diagrams (b) and (c), respectively.

going beyond the Dalitz decay region, i.e. q2 > m2
P region.

Thus, we attempt to explore the entire timelike region as well as the spacelike region in this work. We extend our previous
analysis [58–60] for the single-virtual P→ γ∗γ (P = π0,η ,η ′) transition in the spacelike region using the light-front quark
model (LFQM) [58–62] to include the entire timelike region. For the low energy regime, we compare our LFQM results of
the TFFs for the low timelike momentum transfer region and the slope parameters at q2 = 0 with the recent experimental data
from the Dalitz decays of (π0,η ,η ′) [9–14]. For the high energy regime, we show the asymptotic behavior of TFFs for both
space- and time-like regions and compare them with the available experimental data. In particular, we present the new direct
method to explore the timelike region without resorting to mere analytic continuation from space- to time-like region. Our direct
calculation in timelike region shows the complete agreement with not only the analytic continuation result from spacelike region
but also the result from the dispersion relation (DR) between the real and imaginary parts of the form factor.

The paper is organized as follows. In Sec. II, we discuss the meson-photon TFFs in an exactly solvable model first based on
the covariant Bethe-Salpeter (BS) model of (3+1)-dimensional fermion field theory. It has been a common practice to utilize
an exactly solvable manifestly covariant BS model to check the existence (or absence) of the LF zero mode [63–66] as one
can pin down the zero mode exactly in the manifestly covariant BS model [67–71]. Performing both manifestly covariant
calculation and the LF calculation, we explicitly show the equivalence between the two results and the absence of the zero-
mode contribution to the TTF. In the LF calculation, we analyze both q+(= q0 + q3) 6= 0 and q+ = 0 frames and show their
equivalence in the numerical calculation. We explicitly demonstrate that our direct LFQM result for the timelike form factor
is in complete agreement with the result obtained from the DR method. The η −η ′ mixing scheme for the calculations of the
(η ,η ′)→ γ∗γ TFFs is also introduced in this section. In Sec. III, we apply the self-consistent correspondence relations (see,
e.g., Eq. (35) in [70]) between the covariant BS model and the LFQM and present the standard LFQM calculation with the more
phenomenologically accessible model wave functions provided by the LFQM analysis of meson mass spectra [58, 61]. The
self-consistent covariant descriptions of the meson TFFs are confirmed in the standard LFQM as we discuss in this section. In
Sec. IV, we present our numerical results for the (π0,η ,η ′)→ γ∗γ TFFs for both space- and time-like regions and compare them
with the available experimental data. Summary and discussion follow in Sec. V. In the Appendix, we provide the comparison of
the η−η ′ mixing angle between the octet-singlet basis and quark-flavor basis.

II. MANIFESTLY COVARIANT MODEL

The transition form factor FPγ for the P→ γ∗γ (P = π0,η ,η ′) decay is defined from the matrix element of electromagnetic
current Γµ = 〈γ(P−q)|Jµ |P(P)〉 as follows:

Γ
µ = ie2FPγ(Q2)εµνρσ Pν ερ qσ , (1)

where P and q are the momenta of the incident pseudoscalar meson and virtual photon, respectively, and ε is the transverse
polarization vector of the final (on-shell) photon. This process is illustrated by the Feynman diagram in Fig. 1 (a), which
represents the amplitude of the virtual photon being attached to the quark line. While we shall only discuss the amplitude shown
in Fig. 1 (a), the total amplitude should of course include the contribution from the amplitude of the virtual photon being attached
to the antiquark line as well as the quark line.

In the exactly solvable manifestly covariant BS model, the covariant amplitude Γµ in Fig. 1 (a) is obtained by the following
momentum integral

Γ
µ = ieQeQ̄Nc

∫ d4k
(2π)4

H0

Np1NkNp2

Sµ , (2)
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where Nc is the number of colors and eQ(Q̄) is the quark (antiquark) electric charge. The denominators Np j(= p2
j−m2

Q + iε)( j =
1,2) and Nk(= k2−m2

Q̄+ iε) come from the intermediate quark and antiquark propagators of mass mQ =mQ̄ carrying the internal
four-momenta p1 = P− k, p2 = P−q− k, and k, respectively. The trace term Sµ in Eq. (2) is obtained as

Sµ = Tr [ΓP (/p1 +mQ)γ
µ (/p2 +mQ)/ε (−/k+mQ)]

= 4imQε
µνρσ{qν ερ kσ +(P− k)ν qρ εσ}, (3)

where we use ΓP = γ5 for the pseudoscalar vertex structure. For the q̄q bound-state vertex function H0 = H0(p2
1,k

2) of the
meson, we simply take the dimensionless constant parameter g since the covariant loop is regularized with this constant vertex
in our model calculation.

Using the following Feynman parametrization for the three propagators

1
Np1NkNp2

=
∫ 1

0
dx
∫ 1−x

0
dy

× 2
[Nk +(Np1 −Nk)x+(Np2 −Nk)y]3

,

(4)

and shifting the variable k to k′ = k− (x+y)P+yq, we obtain the manifestly covariant result by defining the amplitude in Fig. 1
(a) as Γ

µ

(a) = ieQeQ̄[I
mQ
(a) ]

Cov(q2)εµνρσ Pν ερ qσ , where

[I
mQ
(a) ]

Cov =
Ncg
4π2

∫ 1

0
dx
∫ 1−x

0
dy

mQ

x(1− x− y)M2 + xyq2−m2
Q
, (5)

with the physical meson mass M. Similarly, the amplitude of the photon being attached to the antiquark line is obtained by
changing x→ 1−x−y in Eq. (5) but the two results are found to give the same numerical values. Thus, we obtain the total result
as I

mQ
tot = 2[ImQ

(a) ]
Cov.

For the LF calculation in parallel with the manifestly covariant one, we use the plus component (µ = +) of the currents Jµ

but with two different reference frames, i.e., (1) q+ 6= 0 frame and (2) q+ = 0 frame.
In the q+ 6= 0 frame, we take P= (P+,P−,P⊥) = (P+,M2/P+,0) and q= (q+,q−,q⊥) = (αP+,M2/P+,0) so that q2 = q+q−

of the virtual photon is given by

q2 = αM2, (6)

where α = q+/P+ = 1−P′+/P+. We should note that q = (αP+,M2/P+,0) and P′ = P−q = ((1−α)P+,0,0) are valid only
for α 6= 1 but will differ for the α → 1 limit as we shall discuss shortly. In this q+ 6= 0 frame, the Cauchy integration over k− in
Eq. (2) has two nonzero contributions to the residue calculations, i.e., one coming from the interval (i) 0 < k+ < P′+ (see Fig. 1
(b)) and the other from (ii) P′+ < k+ <P+ (see Fig. 1 (c)). That is, the Feynman covariant diagram in Fig. 1 (a) is equivalent to the
sum of two LF time-ordered diagrams in Figs. 1 (b) and 1 (c). The internal momentum k+ is defined by k+ = (1− x)P+, where
x the Lorentz invariant longitudinal momentum variable. In this case, the four momenta of the on-mass-shell quark (p2

1on = m2
Q)

and antiquark (k2
on = m2

Q̄) propagators are defined by p1on = (xP+, p−1on,−k⊥) and kon = ((1− x)P+,k−on,k⊥), respectively.
While the residue is at the pole of k− = k−on, which is placed in the lower half of complex-k− plane for the region of 0 < k+ <

P′+(see Fig. 1 (b)), the residue is at the pole of p−1 = p−1on, which is placed in the upper half of complex-k− plane for the region
of P′+ < k+ < P+ (see Fig. 1 (c)). Thus, by defining the amplitude [Γ+

(b,c)]
LF ≡ ieQeQ̄[I

mQ
(b,c)]

LF
α (q2)ε+νρσ Pν ερ qσ for Figs. 1

(b) and 1 (c), the Cauchy integration of Eq. (2) over k− in the two regions yields

[I
mQ
(b) ]

LF
0<α<1 =

Nc

4π3

∫ 1

α

dx
(1− x)

∫
d2k⊥

mQ

(α−1)M2
0

χ(x,k⊥), (7)

and

[I
mQ
(c) ]

LF
0<α<1 =

Nc

4π3

∫
α

0

x′dx
(1− x)

×
∫

d2k⊥
mQ χ(x,k⊥)

x′(1− x′)M2− x(1− x)M2
0
, (8)
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respectively, where x′ = x/α and

χ(x,k⊥) =
g

x(M2−M2
0)
, (9)

with M2
0 =

k2
⊥+m2

Q
x(1−x) being the invariant mass1. We confirmed numerically that [ImQ

(a) ]
Cov = [I

mQ
(b) ]

LF
0<α<1 +[I

mQ
(c) ]

LF
0<α<1 as expected.

Now, we find very interesting LF result by taking α → 1 limit, which in fact allows our direct calculation of the timelike
TFFs in LFQM possible as we present in the next section, Sec. III. In the α = 1 case, the four momenta q and P′ are given by
q= (P+,q2/P+,0) and P′ = (0,(M2−q2)/P+,0), respectively. Since q and P′ in the α = 1 case are different from the α 6= 1 (i.e.
q2 = αM2) case, one should not directly substitute α = 1 in Eqs. (7) and (8) to obtain the transition amplitudes corresponding to
the α = 1 case. To obtain the amplitude for the α = 1 case, one needs to go back and start from Eq. (2) again to do the Cauchy
integration over k− with the specifically given four momenta q and P′ at α = 1. By doing the Cauchy integration of Eq. (2) over
k− in the α = 1 case, we find [I

mQ
(b) ]

LF
α=1 = 0 and

[I
mQ
(c) ]

LF
α=1 =

Nc

4π3

∫ 1

0

dx
(1− x)2

∫
d2k⊥

mQ

M2
0 −q2 χ(x,k⊥). (10)

That is, we find in the q+ 6= 0 frame at α = 1 that only Fig. 1 (c) contributes to the total transition amplitude. We also numerically
confirm that Eq. (10) exactly coincides with the manifestly covariant result I

mQ
(a) given by Eq. (5) as it must be.

For the q+ = 0 frame, we take P = (P+,M2/P+,0) and q = (0,q−,q⊥) so that q2 = −q2
⊥ ≡ −Q2. Since this q+ = 0 frame

essentially corresponds to the α → 0 limit but with q⊥ 6= 0, we refer this frame as the α = 0 case in contrast to the α = 1 case
discussed above. In the α = 0 case, we find that only Fig. 1 (b) contributes and the Cauchy integration of Eq. (2) over k− in
Fig. 1 (b) yields

[I
mQ
(b) ]

LF
α=0 =

Nc

4π3

∫ 1

0

dx
x(1− x)

∫
d2k⊥

mQ

M′20
χ(x,k⊥), (11)

where M′0 = M0(k⊥→ k′⊥) with k′⊥ = k⊥+(1− x)q⊥. We again confirmed numerically that Eq. (11) exactly coincides with
the manifestly covariant result I

mQ
(a) given by Eq. (5) as it must be. Effectively, we obtain [I

mQ
(a) ]

Cov = [I
mQ
(c) ]

LF
α=1 = [I

mQ
(b) ]

LF
α=0 =

[I
mQ
(b) ]

LF
0<α<1+[I

mQ
(c) ]

LF
0<α<1. This result verifies also the absence of the LF zero-mode in pseudoscalar meson TFFs, i.e., [ImQ

(b) ]
LF
α=1 =

0 and [I
mQ
(c) ]

LF
α=0 = 0.

For (η ,η ′)→ γ∗γ transitions, we take into account the presence of the strange quark and antiquark components in the η and
η ′ mesons as well as their mixing with the non-strange quark and antiquark components. Making use of the η −η ′ mixing
scheme (see Appendix), the flavor assignment of η and η ′ mesons in the quark-flavor basis ηq = (uū+dd̄)/

√
2 and ηs = ss̄ is

given by [72–76] (
η

η ′

)
=

(
cosφ − sinφ

sinφ cosφ

)(
ηq
ηs

)
. (12)

In this mixing scheme, we obtain the transition form factors FPγ for P→ γ∗γ (P = π0,η ,η ′) transitions as follows

Fπγ(q2) =
(e2

u− e2
d)√

2
I

mu(d)
tot ,

Fηγ(q2) = cosφ
(e2

u + e2
d)√

2
I

mu(d)
tot − sinφ e2

s Ims
tot ,

Fη ′γ(q
2) = sinφ

(e2
u + e2

d)√
2

I
mu(d)
tot + cosφ e2

s Ims
tot , (13)

where we again should note that I
mQ
tot = 2[ImQ

(a) ]
Cov = 2([ImQ

(b) ]
LF
0<α<1 + [I

mQ
(c) ]

LF
0<α<1) = 2[ImQ

(c) ]
LF
α=1 = 2[ImQ

(b) ]
LF
α=0 with the factor 2

needed to include the contribution from the amplitude of the photon attached to the antiquark line.

1 For the calculation of the trace term Sµ with µ = +, since the result is given by S+ = 8imQε+−xyP+(ε⊥×q⊥), one should first take q⊥ 6= 0 and then take
q⊥→ 0 limit at the end of the trace calculation.
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For the illustration of the numerical results from the exactly solvable BS model calculation, we show the normalized pion
TFF Fπγ(q2)/Fπγ(0) for both space- and time-like regions of momentum transfer −2≤ q2 ≤ 3 GeV2 in Fig. 2. The used model
parameters are mQ = 0.22 GeV and M = 0.14 GeV. We note that the value of g to yield the experimental data value for FExp.

πγ (0) =
0.272 GeV−1 at q2 = 0 is given by g = 3.22. While Fπγ(q2) in spacelike momentum transfer region (q2 < 0) is real, it becomes
complex in timelike region (q2 > 0), Fπγ(q2) = Re Fπγ(q2)+ iIm Fπγ(q2). Figs. 2 (a) and 2 (b) represent the results obtained
from [I

mQ
(b) ]

LF
0<α<1 in Eq. (7) and [I

mQ
(c) ]

LF
0<α<1 in Eq. (8), respectively. As one can see, the imaginary part Im Fπγ(q2) (red line) of

the form factor comes only from Fig. 1 (c) and starts to appear from the threshold q2 = 4m2
Q. Fig. 2 (c) shows the normalized

pion TFF, Fπγ(q2)/Fπγ(0). The dotted, dashed and solid lines in Fig. 2 (c) represent Re [Fπγ(q2)/Fπγ(0)], Im [Fπγ(q2)/Fπγ(0)]
and |Fπγ(q2)/Fπγ(0)|, respectively. We confirmed numerically that [ImQ

(a) ]
Cov = [I

mQ
(b) ]

LF
0<α<1 +[I

mQ
(c) ]

LF
0<α<1 = [I

mQ
(c) ]

LF
α=1 = [I

mQ
(b) ]

LF
α=0

as mentioned earlier. As a consistency check for our numerical calculations, we also compare our direct results of the form
factor F(q2) = Re F(q2)+ iIm F(q2) with those obtained from the dispersion relations (DR) given by

Re F(q2) =
1
π

P
∫

∞

−∞

Im F(q′2)
q′2−q2 dq′2,

Im F(q2) = − 1
π

P
∫

∞

−∞

Re F(q′2)
q′2−q2 dq′2, (14)

where P indicates the Cauchy principal value. In Fig. 2 (c), the data denoted by (×) represents the DR result of Im F(q2)
obtained from Eq. (14) and shows an excellent agreement with our direct result (dashed line) . This assures the validity of our
numerical calculation in the timelike region.

III. APPLICATION OF THE LIGHT-FRONT QUARK MODEL

In our previous analysis of the twist-2 and twist-3 DAs of pseudoscalar and vector mesons [69–71] and the pion electromag-
netic form factor [70], we have shown that standard LF (SLF) results of the LFQM is obtained by the replacement of the LF
vertex function χ in the BS model with the Gaussian wave function φR as follows [see, e.g., Eq. (35) in [70]]√

2Nc
χ(x,k⊥)

1− x
→ φR(x,k⊥)√

k2
⊥+m2

Q

, M→M0, (15)

where M→ M0 implies that the physical mass M included in the integrand of BS amplitude (except M in the vertex function
χ) has to be replaced with the invariant mass M0 since the SLF results of the LFQM are obtained from the requirement of all
constituents being on their respective mass-shell. The mapping given by Eq.(15) was originally found for the resolution of the
LF zero-mode issue in the vector meson decay constant and its self-consistent covariant description as discussed extensively
in [69]. As the mapping however involves only the radial wavefunction and the meson mass, the same mapping holds for the
pseudoscalar mesons as we have discussed in [70, 71]. Likewise, the correspondence in Eq. (15) is valid again in this analysis
of a P→ γ∗γ transition.

In the standard LFQM [58, 59, 61, 62, 76–79] approach, the wave function of a ground state pseudoscalar meson as a qq̄
bound state is given by

Ψ
λλ̄

(x,k⊥) = φR(x,k⊥)Rλλ̄
(x,k⊥), (16)

where φR is the radial wave function and the spin-orbit wave function R
λλ̄

with the helicity λ (λ̄ ) of a quark (antiquark) is
obtained by the interaction-independent Melosh transformation [80] from the ordinary spin-orbit wave function assigned by the
quantum numbers JPC.

For the equal quark and antiquark mass mQ = mQ̄, the Gaussian wave function φR is given by

φR(x,k⊥) =
4π3/4

β 3/2

√
M0

4x(1− x)
em2

Q/2β 2
e−M2

0/8β 2
, (17)

where ∂kz/∂x = M0/4x(1− x) is the Jacobian of the variable transformation {x,k⊥} →~k = (k⊥,kz) and β is the variational
parameter fixed by our previous analysis of meson mass spectra [58, 61, 62]. The covariant form of the spin-orbit wave function
R

λλ̄
is given by

R
λλ̄

=
ūλ (pQ)γ5v

λ̄
(pQ̄)√

2M0
, (18)
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and it satisfies ∑λλ̄
R†

λλ̄
R

λλ̄
= 1. Thus, the normalization of our wave function is given by

1 =
∫ 1

0
dx
∫ d2k⊥

16π3 |φR(x,k⊥)|2. (19)

Applying the correspondence given by Eq. (15) to [I
mQ
(c) ]

LF
α=1 in Eq. (10) and [I

mQ
(b) ]

LF
α=0 in Eq. (11), we obtain the corresponding

SLF results [ImQ
tot ]

SLF
α=1 and [I

mQ
tot ]

SLF
α=0 in our LFQM as follows:

[I
mQ
tot ]

SLF
α=1 =

√
2Nc

4π3

∫ 1

0

dx
(1− x)

∫
d2k⊥

mQ

M2
0 −q2

φR(x,k⊥)√
k2
⊥+m2

Q

, (20)

and

[I
mQ
tot ]

SLF
α=0 =

√
2Nc

4π3

∫ 1

0

dx
x

∫
d2k⊥

mQ

M′20

φR(x,k⊥)√
k2
⊥+m2

Q

, (21)

respectively. We confirm that our result is frame-independent, i.e., [ImQ
tot ]

SLF
0<α<1 = [I

mQ
tot ]

SLF
α=1 = [I

mQ
tot ]

SLF
α=0. While the TFFs for

P→ γ∗γ can be obtained by substituting either [ImQ
tot ]

SLF
α=1 or [ImQ

tot ]
SLF
α=0 into Eq. (13), we shall use [I

mQ
tot ]

SLF
α=1 for the analysis of the

timelike region due to the simple and clean pole structure given by (M2
0 − q2)−1 in Eq. (20) compared to the pole appearing

through [M′20 ]−1 in Eq. (21). It is important to notice that the internal transverse momentum k⊥ doesn’t mix with the external
virtual photon momentum q = (P+,q2/P+,0) in α = 1 case as shown in Eq.(20) so that the direct timelike TFF calculation can
be done most effectively. For sufficiently high spacelike momentum transfer Q2(= −q2 = q2

⊥) region, both Eqs. (20) and (21)
can be approximated in the leading order of 1/Q2 as follows

[I
mQ
tot ]

SLF ' 2 fP

∫ 1

0

dx
(1− x)Q2

∫
d2k⊥ψP(x,k), (22)

where fP is the pseudoscalar meson decay constant and ψP(x,k⊥) is the transverse momentum dependent DA (TMDA) [81] that
is a 3-dimensional generalization of the twist-2 pseudoscalar meson DA φ2;P(x):

φ2;P(x) =

√
2Nc

fP8π3

∫
d2k⊥

φR(x,k⊥)√
k2
⊥+m2

Q

mQ

=
∫

∞

0
d2k⊥ψP(x,k⊥). (23)

From Eqs. (13), (22) and (23), one can verify that our LFQM result for Fπγ(Q2) at sufficiently high Q2 can be approximated
as

Fπγ(Q2)'
√

2 fπ

3

∫ 1

0

dx
(1− x)Q2 φ2;π(x). (24)

The asymptotic PQCD DA, φ2;π(x) = 6x(1−x), leads to the well-known Brodsky-Lepage limit [15]: Q2Fπγ(Q2→∞) =
√

2 fπ '
0.185 GeV.

Applying our LFQM to calculate the decay widths for P→ γγ (P = π0,η ,η ′) transition, the decay width for P→ γγ is given
by

ΓP→γγ =
π

4
α

2M3|FPγ(0)|2, (25)

where α is the fine structure. The form factor FPγ(0) at Q2 = 0 may also be expressed in terms of the decay constants obtained
from the Adler-Bell-Jackiw (ABJ) anomaly (or the chiral anomaly) [82, 83] as follows

FABJ
πγ (0) =

1
2
√

2π2 fπ

,

FABJ
ηγ (0) =

1
2
√

6π2

[
1
f8

cosθ − 2
√

2
f0

sinθ

]
,

FABJ
η ′γ (0) =

1
2
√

6π2

[
1
f8

sinθ +
2
√

2
f0

cosθ

]
, (26)
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TABLE I: The constituent quark masses mQ(Q= u(d),s) (in GeV) and the Gaussian parameters βQQ̄ (in GeV) for the linear confining potentials
obtained from the variational principle in our LFQM [58, 59, 61].

mu(d) ms βQQ̄ βss̄
0.22 0.45 0.3659 0.4128

TABLE II: Form factor FPγ (0) (in GeV−1) for (P = π0,η ,η ′)→ γγ .

Model FTh.
Pγ

(0) FABJ
Pγ

(0) FExp.
Pγ

(0)
π → γγ 0.242 0.276 0.272(3)
η → γγ (for φ = 37−5◦

+5 ) 0.286+0.024
−0.027 0.232+0.029

−0.030 0.274(5)
η ′→ γγ (for φ = 37−5◦

+5 ) 0.290−0.026
+0.024 0.332−0.021

+0.025 0.344(6)

where θ is the mixing angle in the flavor SU(3) octet-singlet basis and is related with the mixing angle φ in the quark-flavor basis
via θ = φ − arctan

√
2' φ −54.7◦. While the quadratic (linear) Gell-Mann-Okubo mass formula prefers θ '−10◦,φ ' 44.7◦

(θ '−23◦,φ ' 31.7◦), the KLOE Collaboration [84] extracted the pseudoscalar mixing angle φ by measuring the ratio BR(φ →
η ′γ)/BR(φ → ηγ). The measured values are φ = (39.7± 0.7)◦ and (41.5± 0.3stat± 0.7syst± 0.6th)

◦ with and without the
gluonium content for η ′, respectively. The mixing angle has also been analyzed on lattice by RBC-UKQCD Collaboration [85],
where θ = −14.1(2.8)◦ was obtained. However, since the mixing angle for η −η ′ is still a controversial issue, we use more
conservatively φ = 37◦±5◦ to check the sensitivity of our LFQM.

IV. NUMERICAL RESULTS

In our numerical calculations within the standard LFQM, we use the model parameters (i.e. constituent quark masses mQ and
the gaussian parameters βQQ̄) for the linear confining potentials given in Table I, which were obtained from the calculation of
meson mass spectra using the variational principle in our LFQM [58, 59, 61]. For the model parameters given in Table I, our
LFQM predictions of the decay constants for the pion, octet (η8) and singlet (η0) mesons are fπ = 130 MeV, f8/ fπ = 1.32,
and f0/ fπ = 1.16, respectively. Our results of the octet and singlet meson decay constants are quite comparable with other
theoretical predictions such as f8/ fπ = 1.26 and f0/ fπ = 1.17 [72], f8/ fπ = 1.28 and f0/ fπ = 1.25 [74], and f8/ fπ = 1.25 and
f0/ fπ = 1.04±0.04 [86].

For the numerical computations of the TFFs given by Eq. (13) using our LFQM, we use the result [ImQ
tot ]

SLF
α=1 in Eq. (20) since

it is much more convenient to handle the singularities in timelike momentum transfer region than any other reference frame.
In Table II, we summarize our LFQM results of form factor FPγ(0) for (P = π0,η ,η ′)→ γγ obtained from the direct calcula-
tion [FTh.

Pγ
(0)] (see Eqs. (13) and (20) ) and from the ABJ formulae [FABJ

Pγ
(0)] (see Eq. (26)) compared with the experimental

data [87, 88]. For the (η ,η ′)→ γγ processes, we use the mixing angles φ = 37−5◦
+5 in the quark-flavor basis. The experi-

mental values of FExp.
ηγ (0) = 0.274(5) GeV−1 and FExp.

η ′γ (0) = 0.344(6) GeV−1 were extracted from the measured decay widths
ΓExp.(η → γγ) = 0.516(18) keV (obtained after combining the PDG average [87] together with the recent KLOE-2 result [88])
and ΓExp.(η ′ → γγ) = 4.35(14) keV, respectively. For the π0 → γγ case, while our result FABJ

πγ (0) = 0.276 GeV−1 obtained
from ABJ anomaly is in good agreement with the data, the direct result FTh.

πγ (0) = 0.242 GeV−1 accounts for about 90% of the
data. For the (η ,η ′)→ γγ case, while our results FABJ

Pγ
(0) prefer φ ' 32◦ to fit the data, the direct results FTh.

Pγ
(0) prefer φ ' 40◦

for the best fits of both η and η ′ TFFs.
From the point of view of QCD, the twist-2 DA φ2;P(x) of a hadron depends on the scale µ which separates nonperturbative

and perturbative regimes. In our LFQM, we can associate µ with the transverse integration cutoff via |k⊥| ≤ µ , which is the
usual way how the normalization scale is defined for the LF wave function (see, e.g. Ref. [15]). In order to estimate this cutoff
value, we made a three-dimensional plot for TMDA ψP(x,k⊥) in Eq. (23) in the form of ψP(x,y) by changing the variable
k2
⊥ = y/(1− y) so that

φ2;P(x) =
∫

∞

0
d2k⊥ ψP(x,k⊥) =

∫ 1

0
dy ψP(x,y), (27)

where ψP(x,y) = πψP(x, |k⊥|=
√

y/(1− y))/(1− y)2.
Fig. 3 shows the three-dimensional plot (left panel) of ψπ(x,y) for the pion and the corresponding two-dimensional contour

plot (right panel). In fact, we obtain the twist-2 pion DA φ2;π(x) by performing the transverse integration up to infinity (or
equivalently y up to 1) without loss of accuracy due to the presence of Gaussian damping factor. However, we find that the
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integration up to y ' 0.5 (or equivalently µ ' |k⊥| ' 1 GeV) of ψπ(x,y) makes up 99% of the full result for φ2;π(x). This
implies that our cutoff scale corresponds to µ ' |k⊥| ' 1 GeV for the calculation of the twist-2 φ2;π(x). The twist-2 and twist-3
DAs for π can be found in our previous works [59, 70, 71]. In Fig. 4, we show the three-dimensional plot (left panel) of ψss̄(x,y)
for the ss̄ sector and the corresponding two-dimensional contour plot (right panel). In the case of ss̄ sector, the cutoff scale
corresponds to µ ' 1.13 GeV.

In Fig. 5, we show the normalized π0→ γ∗γ TFF Fπγ(Q2)/Fπγ(0) (see Fig. 5 (a)) and |Q2|Fπγ(Q2) (see Fig. 5 (b)) for both
timelike (q2 =−Q2 > 0) and spacelike (q2 =−Q2 < 0) momentum transfer region using Eqs. (13) and (20) and compare them
with the available experimental data for the spacelike region [6, 7, 18, 19] and for the small timelike region (0 < q2 < m2

π GeV2)
obtained from the pion Dalitz decay [13]. The dotted, dashed and solid lines in Fig. 5 (a) represent our LFQM predictions of
Re [Fπγ(q2)/Fπγ(0)], Im [Fπγ(q2)/Fπγ(0)] and |Fπγ(q2)/Fπγ(0)|, respectively. We note that the spacelike region can be easily
obtained by analytically continuing the momentum transfer q2→−q2 in the integrand of Eq. (20). As one can see from Fig. 5,
our result for low- and intermediate- spacelike Q2 region show a good agreement with the data.

As a consistency check of our LFQM calculations for the timelike region, we also include the real (imaginary) part of the form
factor obtained from the DR (denoted by +(×) data points) given by Eq. (14). As one can see, our direct results for the real and
imaginary parts are in perfect agreement with the results obtained from the DR. While the exactly solvable BS model calculation
shows the dominant contribution of Im Fπγ for most of the timelike region, the LFQM result of Im Fπγ with the more realistic
Gaussian radial wave function shows dominant contribution only near the resonance region and the timelike region above q2 > 1
GeV2 is dominated by the real part contribution. That is, the relative contribution between the real and imaginary parts depends
on the shape of the hadron bound state wave function. We also note that Kroll [28] made a rough estimate for the expected size
of the timelike form factor using the modified perturbative approach (MPA) [89, 90], i.e., the timelike form factor is dominantly
real for q2 larger than 5 GeV2, its imaginary part contributes less than about 10% to the absolute value. Kroll’s discussion about
the relative strength between the real and imaginary parts is qualitatively consistent with our LFQM prediction and the reason
for this may be attributed to the usage of similar type of the Gaussian wave function.

As one can see from Fig. 5 (a), our result for the small timelike region is in good agreement with the very recent measurement
of the π0 → e+e−γ Dalitz decay from the A2 Collaboration [13]. The slope parameter can be defined from the vector meson
dominance (VMD) model in which the normalized TFF is typically parametrized as [87]

FP(mll) =
1

1− m2
ll

Λ2
P

' 1+aP
m2

ll

m2
P
, (28)

where mll =
√

q2 is the dilepton invariant mass and aP = (mP/ΛP)
2 reflects the form-factor slope at q2 = 0. Our result for the

slope parameter aπ for the π0 TFF is obtained as

aπ = 0.0355, (29)

which shows a good agreement with the current world average aπ = 0.032± 0.004 [87] obtained from timelike measure-
ments [91–93] and the extrapolation of spacelike data [6] using a VMD model, as well as the two recent experimental data
extracted from the π0→ e+e−γ Dalitz decay, aπ = 0.030±0.010 from A2 Collaboration [13] and aπ = 0.0368±0.0057 from
NA62 Collaboration [10]. Our result should also be compared with other theoretical predictions: aπ = 0.0288(42) from a Lattice
QCD with two flavors of quarks [5]; aπ = 0.0324(12)stat(19)syst from the method of Padé approximants [94]; aπ = 0.032(1)
from a Regge analysis [95]; aπ = 0.036 from the ChPT [96]; aπ = 0.029(5) from a study of the Dalitz decay of π0 [97];
aπ ≈ 0.031 [98] and aπ ≈ 0.035 [99] from a hard-wall holographic model of QCD; and aπ = 0.024(5) [100] from a soft-wall
holographic model of QCD. For the analysis of timelike form factor near resonance region in Fig. 5 (a), the maximum value of
Fπγ(q2) occurs at q2 ' 4m2

Q due to the virtual photon wave function term 1/(M2
0 − q2) in Eq. (20). Since the peak position of

the timelike TFF in our LFQM depends on the value of the constituent quark mass, the ρ-pole type resonance may be obtained
by simply taking mu(d) = Mρ/2.

Fig. 5 (b) shows |Q2|Fπγ(Q2) for the extensive range (−50≤Q2 ≤ 50 GeV2) of both time- and space-like momentum transfer
regions compared with the spacelike experimental data [7, 18, 19]. We note that our LFQM result for |Q2|Fπγ(Q2) for the
spacelike region 10 ≤ Q2 ≤ 45 GeV2 is in good agreement with the data from Belle [19] showing the asymptotic behavior but
disagree with the BaBar data [18] showing the rapid growth for this Q2 regime. In our LFQM calculation for the perturbative
region, we find slightly different values for the timelike and spacelike TFFs, e.g. we find the absolute values of |Q2Fπγ(Q2)| '
0.194 GeV in the spacelike region and |q2Fπγ(q2)| ' 0.186 GeV in the timelike region at |Q2| = 112 GeV2, respectively.
Although there may be some contributions from the higher-twist and higher Fock-state as discussed in [32], however, we infer
from the results shown in Fig. 5 that the higher Fock-state contribution may not be large, especially, for high Q2 regime.

In Fig. 6, we show the normalized η → γ∗γ TFF |Fηγ(Q2)/Fηγ(0)| (see Fig. 6 (a)) and |Q2Fηγ(Q2)| (see Fig. 6 (b)) for both
time- and space-like momentum transfer region. The corresponding figures for η ′ TFFs are shown in Fig. 7. Since the patterns
for the real and imaginary parts of the η and η ′ TFFs are similar to those of π0 TFF, we only show the total results for the η
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and η ′ TFFs but varying the mixing angles. Since they are rather sensitive to the η −η ′ mixing angles, we display the results
with the variation of the mixing angles as a sensitivity check. The dot-dashed, solid, and dashed lines for |Fηγ(q2)/Fηγ(0)| in
Fig. 6 and |Fη ′γ(q2)/Fη ′γ(0)| in Fig. 7 are obtained from the mixing angles with φη−η ′ = 32◦, 37◦ and 42◦, respectively. The
experimental data for spacelike region are taken from [6, 7, 20]. The small timelike data in Figs. 6 (a) and 7 (a) are taken from
the measurements of the η (0≤ q2 ≤M2

η GeV2) and η ′ (0≤ q2 ≤M2
η ′ GeV2) Dalitz decays; η → ` ¯̀γ(`= e,µ) [9, 11, 12] and

η ′→ e+e−γ [14].
For the small and medium momentum transfer in both time- and space-like region (i.e. −8≤Q2≤ 8 GeV2) as shown in Figs. 6

(a) and 7 (a), both normalized TFFs Fηγ and Fη ′γ are not sensitive to the the variation of the the mixing angles φη−η ′ = (37±5)◦

and show good agreement with the available data in spacelike region [6, 7, 20]. For the comparison with the timelike data from
the (η ,η ′) Dalitz decays, we obtain the slope parameters Λ

−2
η(η ′) = aη(η ′)/m2

η(η ′) defined by Eq. (28) as follows

Λ
−2
η = 2.112−0.031

+0.038 GeV−2 for φ = 37−5◦
+5 ,

Λ
−2
η ′ = 1.732−0.035

+0.031 GeV−2 for φ = 37−5◦
+5 . (30)

which correspond to Λη = 688+5
−6 MeV and Λη ′ = 760+8

−7 MeV for φ = 37−5◦
+5 , respectively. Our results for the slope parameters

for η and η ′ TFFs are consistent with the available experimental data within the error bars: Λ−2
η = (1.95±0.22) GeV−2 [9] and

(1.95±0.25) GeV−2 [11] for η TFF, and Λ
−2
η ′ =(1.60±0.16) GeV−2 [6], (1.6±0.25) GeV−2 [14], and (1.7±0.4) GeV−2 [101]

for η ′ TFF, respectively. We also should note that the ratio of Λη ′ to Λη is insensitive to the mixing angle, i.e. Λη ′/Λη ' 1.11
for 32◦ ≤ φ ≤ 42◦.

For the resonance properties of Fηγ and Fη ′γ within our LFQM as shown in Figs. 6 (a) and 7 (a), the primary and secondary
peaks of both Fηγ(q2) and Fη ′γ(q2) occurs at q2 ' 4m2

Q(Q = u,d) and q2 ' 4m2
s , respectively, regardless of their mixing angles.

That is, the η −η ′ mixing effect is not significant for the small timelike region corresponding to the η- and η ′- Dalitz decays.
Particularly, the secondary peak for Fη ′γ is more pronounced than that for Fηγ . This may be ascribed to the fact that Fη ′γ receives
contribution more from ss̄ component than QQ̄(Q = u,d) components. For this kinematic regions of the η- and η ′ Dalitz decays,
while our LFQM result for the Fηγ is quite comparable with the data [9, 11, 12], our result for Fη ′γ shows large deviation from
the recent BESIII data [14] except near q2 = 0 region. This large deviation for Fη ′γ near q2 = M2

ρ may be expected from the
property of our LFQM, in which the primary peak appears at q2 = 4m2

u(d) rather than q2 = M2
ρ . We expect from our LFQM

analysis that the experimental data for both timelike Fηγ and Fη ′γ would show peaks near q2 = M2
ρ and q2 = M2

φ
corresponding

to our primary and secondary peaks at q2 = 4m2
u(d) and q2 = m2

s , respectively.
While the mixing angle effects on Fηγ and Fη ′γ do not appear too significant for small and medium momentum transfer region

(i.e. |Q2| < 8 GeV2) as shown in Figs. 6 (a) and 7 (a), its effects become substantial for large momentum transfer region (i.e.
|Q2|> 10 GeV2) as shown in Figs. 6 (b) and 7 (b). As in the case of π0→ γ∗γ transition, our predictions for both |Q2Fηγ(Q2)|
and |Q2Fη ′γ(Q2)| show asymptotic behavior for |Q2| ≥ 40 GeV2 region. The single timelike data at q2 = s = 112 GeV2 in Fig. 6
(b) and the one in Fig. 7 (b) are taken from the measurement of e+e−→ γ∗→ η(η ′)γ process at the center of mass of

√
s= 10.58

GeV by the BaBar Collaboration [20]:

s|Fηγ | = (0.229±0.031) GeV,

s|Fη ′γ | = (0.251±0.021) GeV. (31)

In our LFQM calculation for the perturbative region, we find slightly different values for the timelike and spacelike η and
η ′ TFFs, e.g. while the absolute spacelike values at Q2 = 112 GeV2 are |Q2Fη(η ′)γ(Q2)| ' 0.191+0.024

−0.025(0.284−0.017
+0.016) GeV,

the timelike value at q2 = 112 GeV2 are |q2Fη(η ′)γ(q2)| ' 0.178+0.024
−0.025(0.280−0.017

+0.016) GeV for φ = 37−5◦
+5 , respectively. But the

corresponding ratios of the spacelike to timelike η and η ′ TFFs at |Q2| = 112 GeV2 are about 1.07 and 1.02, respectively,
regardless of the mixing angles. Our results at the timelike q2 = 112 GeV2 are also consistent with the perturbative QCD
predictions [28], where |q2Fηγ(q2)| ' 0.17 GeV and |q2Fη ′γ(q2)| ' 0.28 GeV were obtained. As stated in [51], while the
BaBar result for q2Fηγ(q2) at q2 = 112 GeV2 is about 2σ larger than the asymptotic prediction, the corresponding result for
q2Fη ′γ(q2) from the BaBar Collaboration is in agreement with the asymptotic expectation. Thus, it is hard to estimate the correct
η−η ′ mixing angle with these two experimental data points at q2 = 112 GeV2 in the present time. More experimental data in
perturbative region may be necessary to draw any definite conclusion on the mixing angle.

V. SUMMARY AND DISCUSSION

In this work, we investigated the (π0,η ,η ′)→ γ∗γ transitions for the entire kinematic regions analyzing both spacelike and
timelike TFFs in the standard LF (SLF) approach within the phenomenologically accessible realistic LFQM [58, 59, 61, 62].
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Performing the LF calculation in the covariant BS model as the first illustration, we used three different reference frames, i.e. (1)
q+ 6= 0 frame with P− = q− and α = q+/P+ = q2/M2, (2) q+ 6= 0 frame with P+ = q+ (i.e., α = 1), and (3) q+ = 0 frame with
q2 = −q2

⊥ = −Q2 (i.e, α = 0), and found that all three different reference LF frames give exactly the same results to the one
obtained from the manifestly covariant calculation as they must be. Especially, the calculation of FPγ using the q+ 6= 0 frame
with α = 1 is found to be most effective for the analysis of the timelike region due to the absence of mixing between the internal
transverse momentum and the external virtual photon momentum that leads to the very simple pole structure 1/(q2−M2

0) in the
form factor. We also confirmed the absence of the LF zero mode in pseudoscalar meson TFFs. As a consequence, the q+ = 0
frame (i.e. α = 0) calculation exhibits that the meson TFF using the plus component of the current is immune to the zero mode.
Thus, in the q+ = 0 frame (i.e., the well-known Drell-Yan-West frame), the complete total amplitude is provided by just the
valence contribution depicted in Fig. 1 (b). As a consistency check for our numerical calculations, we also compared our direct
results of the form factor F(q2) = Re F(q2)+ iIm F(q2) with those obtained from the dispersion relations (DR) and found the
excellent agreement between the two results. This assured the reliability of our numerical calculation in the timelike region.

We then mapped this exactly solvable manifestly covariant BS model to the standard LFQM following the same correspon-
dence relation Eq. (15) between the two models that we found in our previous analysis of two-point and three-point functions
for the pseudoscalar and vector mesons [69, 70]. This allowed us to apply the more phenomenologically accessible Gaussian
wave function provided by the LFQM analysis of meson mass spectra [58, 59, 61, 62]. In the analysis of the meson-photon
TFFs using our LFQM, we took the q+ 6= 0 frame with α = 1 which is the most convenient frame to analyze the timelike region
compare to any other reference frames. For the (η ,η ′)→ γ∗γ transitions, we used the η−η ′ mixing angle φ in the quark-flavor
basis varying the φ values in the range of φ = 37+5◦

−5 to check the sensitivity of our LFQM. For the numerical analyses of the
P→ γ∗γ (P = π0,η ,η ′) TFFs using our LFQM, we investigated both the low-energy and high-energy regimes.

For the low-energy regime, our results for the TFFs and their slope parameters are in good agreement with the available data
from the Dalitz decays of (π0,η ,η ′) mesons. Especially, in the low momentum transfer region, the η and η ′ TFFs are rather
insensitive to the mixing angles. For the analysis of timelike form factor near resonance region, the maximum value of Fπγ occurs
at q2(= −Q2) ' 4m2

Q due to the virtual photon wave function term 1/(M2
0 − q2) in Eq. (20). The ρ-pole type resonance may

be achieved by finding more realistic form of the photon wave function, which is open for the future work. For the resonance
properties of Fηγ and Fη ′γ , the primary and secondary peaks of both Fηγ and Fη ′γ occurs at q2 ' 4m2

Q(Q = u,d) and q2 ' 4m2
s ,

respectively, regardless of their mixing angles. We also anticipate from our LFQM analysis that the experimental data for both
timelike Fηγ and Fη ′γ would show peaks near q2 = M2

ρ (primary) and q2 = M2
φ

(secondary) corresponding to our primary and
secondary peaks at q2 = 4m2

u(d) and m2
s , respectively.

For the high-energy regime, our result of |Q2FPγ(Q2)| does not show any steep rising behavior for high |Q2| region as measured
from the BaBar Collaboration [18] but shows scaling behavior for high |Q2| consistent with the perturbative QCD prediction.
This is ascribed to the fact that our twist-2 DA [59, 70] is highly suppressed at the end points (x = 0,1) unlike the flat DA [22, 23]
showing the enhancement at the end points. Especially, in our LFQM calculation for the perturbative region, we find slightly
different values for the timelike and spacelike TFFs, e.g. the ratios of the spacelike to timelike TFFs at |Q2| = 112 GeV2 are
about 1.04 for π0 TFF and 1.07 (1.02) for η(η ′), regardless of the η −η ′ mixing angles. While the BaBar result [20] for
|q2Fηγ(q2)| at q2 = 112 GeV2 is about 2σ larger than the asymptotic prediction, the corresponding result for |q2Fη ′γ(q2)| from
the BaBar Collaboration is in agreement with the asymptotic expectation. Thus, it is hard to predict the correct η −η ′ mixing
angle with these two experimental data points at q2 = 112 GeV2 at present time. More experimental data in perturbative region
may be necessary to draw any definite conclusion on the mixing angle.

While the pseudoscalar meson vertex ΓP = γ5 is taken in this work, the generalization of the vertex including the axial vector
coupling [102] may be considered for further study. The work along this direction is underway.
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APPENDIX: η−η ′ mixing

In this appendix, we provide the comparison of the η−η ′ mixing angle between the octet-singlet basis and quark-flavor basis.
The octet-singlet mixing angle θ of η and η ′ is known to be in the range of −10o to −23o [87]. The physical η and η ′ are the
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mixtures of the flavor SU(3) octet η8 and singlet η0 states:(
η

η ′

)
=

(
cosθ − sinθ

sinθ cosθ

)(
η8
η0

)
, (32)

where η8 = (uū + dd̄ − 2ss̄)/
√

6 and η0 = (uū + dd̄ + ss̄)/
√

3. Analogously, in terms of the quark-flavor(QF) basis ηq =

(uū+dd̄)/
√

2 and ηs = ss̄, one obtains [72](
η

η ′

)
=

(
cosφ − sinφ

sinφ cosφ

)(
ηq
ηs

)
. (33)

The two schemes are equivalent to each other by φ = θ + arctan
√

2 when SU f (3) symmetry is perfect. Although it was
frequently assumed that the decay constants follow the same pattern of state mixing, the mixing properties of the decay constants
will generally be different from those of the meson state since the decay constants only probe the short-distance properties of
the valence Fock states while the state mixing refers to the mixing of the overall wave function [72].

Defining 〈P(p)|Jq(s)
µ5 |0〉=−i f q(s)

P pµ (P = η ,η ′) in the QF basis, the four parameters f q
P and f s

P can be expressed in terms of
two mixing angles (φq and φs) and two decay constants ( fq and fs), i.e. [72],(

f q
η f s

η

f q
η ′ f s

η ′

)
=

(
cosφq − sinφs
sinφq cosφs

)(
fq 0
0 fs

)
. (34)

The difference between the mixing angles φq−φs is due to the Okubo-Zweig-Iizuka(OZI)-violating effects [73] and is found to
be small (φq−φs < 5◦). The OZI rule implies that the difference between φq and φs vanishes (i.e., φq = φs = φ ) to leading order
in the 1/Nc expansion. Similarly, the four parameters f 8

P and f 0
P in the octet-singlet basis may be written in terms of two angles

(θ8 and θ0) and two decay constants ( f8 and f0). However, in this case, θ8 and θ0 turn out to differ considerably and become
equal only in the SU f (3) symmetry limit [72, 74].

[1] Proceedings of the First MesonNet Workshop on Meson Transition Form Factors, 2012, Cracow, Poland, edited by E. Czerwinski, S.
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(a)

(b)

(c)

FIG. 2: (Color online) The exactly solvable BS model calculation of the normalized Fπγ (q2) for both space- and time-like regions (−2≤ q2 ≤ 3
) [GeV2]: (a) and (b) represent the contributions from Figs. 1 (b) and 1 (c), respectively, for 0 < α < 1 case. (c) shows the normalized
Fπγ (q2)/Fπγ (0) compared with the dispersion relation.
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FIG. 3: (Color online) Transverse momentum dependent distribution amplitude (TMDA) ψπ (x,k⊥) (left panel) for the pion in the form of
ψπ (x,y) [see Eq. (27)] and the corresponding two-dimensional contour plot (right panel).

FIG. 4: (Color online) Transverse momentum dependent distribution amplitude (TMDA) ψss̄(x,k⊥) (left panel) for the ss̄ sector in the form
of ψss̄(x,y) [see Eq. (27)] and the corresponding two-dimensional contour plot (right panel).



16

(a)

(b)

FIG. 5: (Color online) (a) The the normalized π → γ∗γ transition form factor Fπγ (Q2)/Fπγ (0), and (b) |Q2Fπγ (Q2)| for both timelike
(q2 =−Q2 > 0) and spacelike (q2 =−Q2 < 0) momentum transfer regions. The data are taken from [6, 7, 13, 18, 19] and [13].
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(a)

(b)

FIG. 6: (a) The normalized η → γ∗γ transition form factor |Fηγ (Q2)/Fηγ (0)|, and (b) |Q2Fηγ (Q2)| for both timelike (q2 = −Q2 > 0) and
spacelike (q2 = −Q2 < 0) momentum transfer region. The dot-dashed, solid, and dashed lines are results obtained from the mixing angles
with φη−η ′ = 32◦, 37◦ and 42◦, respectively, and the data are taken from [6, 7, 9, 11, 12, 20].
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(a)

(b)

FIG. 7: (a) The normalized η ′→ γ∗γ transition form factor |Fη ′γ (Q2)/Fη ′γ (0)|, and (b) |Q2Fη ′γ (Q2)| for both timelike (q2 =−Q2 > 0) and
spacelike (q2 =−Q2 < 0) momentum transfer region. The same line codes are used as in Fig. 6 and the data are taken from [6, 7, 14, 20].
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