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Abstract

The factorization of amplitudes into hard, soft and collinear parts is known to be vi-
olated in situations where incoming particles are collinear to outgoing ones. This result
was first derived by studying limits where non-collinear particles become collinear. We
show that through an effective field theory framework with Glauber operators, these
factorization-violating effects can be reproduced from an amplitude that is factorized
before the splitting occurs. We confirm results at one loop, through single Glauber
exchange, and at two loops, through double Glauber exchange. To approach the cal-
culation, we begin by reviewing the importance of Glauber scaling for factorization.
We show that for any situation where initial state and final state particles are not
collinear, the Glauber contribution is entirely contained in the soft contribution. The
contributions coming from Glauber operators are necessarily non-analytic functions of
external momentum, with the non-analyticity arising from the rapidity regulator. The
non-analyticity is critical so that Glauber operators can both preserve factorization
when it holds and produce factorization-violating effects when they are present.
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1 Introduction

That scattering cross sections factorize is critical to the predictive power of quantum field
theory at particle colliders. At proton colliders, such as the Large Hadron Collider currently
running at CERN, factorization allows a cross section to be computed by a convolution of
separate components: a hard part, sensitive only to the net momenta going into particular
directions, a soft part, describing the distribution of radiation of parametrically lower energy
than going into the hard collision, a collinear part, describing the branching of partons into
sets of partons going in nearly the same direction, parton distribution functions, describ-
ing the probability of finding a parton with a given fraction of the proton’s energy, and
fragmentation functions, describing the probability of a quark or gluon to transition into a
given color-neutral baryon or meson. Then each of these components can be computed or
measured separately.

While the above qualitative description of factorization certainly holds to some extent,
it is sometimes violated. The violation might contribute only a phase to the amplitude and
therefore cancel at cross-section level, or it might contribute to the magnitude of the ampli-
tude and have observable consequences. An example such consequence is the appearance of
super-leading logarithms [1–3]. These are contributions to a cross section in a region with
no hard particles that scale like αn lnm x with m > n for some observable x. The predic-
tion from factorization is that only soft radiation should be relevant in the region (since it
has no hard particles) and soft contributions scale at most like αn lnn x. In this paper, we
progress towards understanding when factorization fails by connecting different approaches
to factorization-violation.

To begin, it is important to be precise about what is meant by factorization. There are
certain situations where factorization has been proven to hold. For example, amplitudes
of quarks and gluons in quantum chromodynamics (QCD) are known to factorize when
all the particles are in the final state. Suppose we have a state of going particles 〈X| =
〈Xs| 〈X1| · · · 〈XN | comprising quarks or gluons all of which are either soft, in 〈Xs|, or collinear
to one of N sectors, in 〈X1| through 〈XN |. By soft, we mean the energies of these particles
are all small compared to a scale Q associated with the energy of the particles: Esoft ≤ λsQ
with λs � 1. By collinear to a direction nµj we mean that the projection on nµj of any
momentum pµ in the 〈Xj| sector is small, p · nj ≤ λjQ with λj � 1. In such a situation,
the amplitude for producing 〈X| in full QCD is equal at leading power to the amplitude for
producing 〈X| through a product of matrix elements [4, 5]

〈X|φ? · · ·φ |0〉 ∼= C(Sij)
〈X1|φ?W1 |0〉
〈0|Y †1 W1 |0〉

· · · 〈XN |W †
Nφ |0〉

〈0|W †
NYN |0〉

〈Xs|Y †1 · · ·YN |0〉 (1)

The objects Wj and Yj are collinear and soft Wilson lines (path ordered exponentials of
gluon fields). The difference between Wj and Yj is that the Wj represent the radiation
from all the non-collinear sectors and hence point away from the j direction while the Yj
represent sources for eikonal radiation and point along the j direction. The function C(Sij)
is an infrared-finite Wilson coefficient depending only on the net momenta going into each
collinear sector.
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The symbol ∼= means that the two sides of Eq. (1) are equal at leading power. In
particular, the infrared divergences (soft and collinear) agree on both sides and the finite
parts agree to leading order in λs to leading order in each of the λj. The amplitude level
equivalence implies that and if one computes some infrared safe observable, such as the sum
of the masses τ =

∑
m2
i of all the jets in an event, then all of the singular parts of the

observable distribution will also agree (any term which is singular as τ → 0). The operator
O = φ? · · ·φ is chosen to be a local operator made from scalar fields, for simplicity, but
a similar formula holds for gauge-invariant operators made from quarks or gluons, or for
scattering amplitudes. A more general version of this formula, including spin and color
indices, and the full factorization proof can be found in [5].

In Eq. (1) all the fields are those of full QCD: ordinary quarks and gluons. This formula is
closely related to factorization in Soft-Collinear Effective Theory (SCET) [6–10]. In SCET,
only leading power interactions among fields are kept in the SCET Lagrangian, making the
Feynman rules more complicated than those in QCD. Also in SCET, the soft-collinear overlap
is removed through a diagram-by-diagram zero-bin subtraction procedure [11], rather than
through operator-level subtractions, as in Eq. (1). The two formulations are equivalent, and
also equivalent to factorization formulas in traditional QCD [12].

In the derivation of Eq. (1) in [5], which is similar to traditional factorization proofs [13–
16], it is essential that the eikonal approximation can be used. The eikonal approximation
amounts to equating the limit where momenta are soft (kµ → 0) with the limit where
the energies of all the collinear particles are large (Q → ∞). The Q → ∞ limit allows
collinear particles to be replaced by classical sources (Wilson lines) so that the soft radiation
is insensitive to the structure of the collinear sector. The subtlety is that there are regions
of virtual momenta phase-space in which all of the components are soft, kµ � Q, but Q is
still relevant. For example, kµ → 0 holding Q = ~k2

⊥/k0 fixed is not possible after the eikonal
limit (Q→∞) has been taken. It is phase space regions associated with limits like this that
are dangerous for factorization, as we will review.

In Section 3 we show that the only time the Glauber scaling subtlety might spoil amplitude-
level factorization is when there are initial states collinear to final states. This is of course a
well-known result, but it is helpful to revisit the derivation to set the stage for investigations
into factorization-violation. If we explicitly avoid such configurations, the factorization for-
mula in Eq. (1) has a natural generalization. Let 〈X| = 〈X1, · · ·XN | be the collinear sectors
of final state and |Z〉 = |ZN+1 · · ·ZM〉 be the collinear sectors of the initial state and let
〈Xs| and |Zs〉 be the soft particles in the initial and final states respectively.1 We assume no
two sectors are collinear. Note that this is not a strong requirement – for any set of external
momenta, one can always define the threshold λj for collinearity to be so small that each
momentum is in its own sector (the only time this cannot be done is if two momenta are

1Soft particles in the initial state are not particularly interesting physically, but since factorization holds
if they are included, we allow for |Zs〉 to be nonzero for completeness
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exactly proportional). Then Eq. (1) generalizes to2

〈X|φ? · · ·φ |Y 〉 ∼= C(Sij)
〈X1|φ?W1 |0〉
〈0|Y †1 W1 |0〉

· · · 〈0|W
†
Nφ |ZM〉

〈0|W †
NYN |0〉

〈Xs|Y †1 · · ·YN |Zs〉 (2)

This is a non-trivial generalization of Eq. (1). It requires the Glauber gluon contributions
to be identical on both sides, even when there are initial states involved.

The reason the factorization formula in Eq. (2) holds is because for hard scattering with
no initial state collinear to any final state, the Glauber contribution is always contained in
the eikonal contribution. This containment holds in QCD when contours can be deformed
out of the Glauber region into the eikonal region (where the eikonal approximation can be
used). That is, it holds when there is no pinch in the Glauber region. We review these
observations in Section 3. That the eikonal limit contains the Glauber contribution is often
assumed to study Glauber effects through matrix elements of Wilson lines (see e.g. [17]), so
it is important to understand when it holds.

In the context of Soft-Collinear Effective Theory, being able to deform contours from the
Glauber region into the eikonal region is closely related to the “soft-Glauber correspondence”
or the “Cheshire Glauber” discussed in [18]. To be clear, the soft-Glauber correspondence
is a statement about when Glauber operators in SCET reproduce the Glauber limit of soft
graphs in SCET. One expects that the soft-Glauber correspondence holds if there is no
pinch in the Glauber region, however this has not been shown. Indeed, it is not even a
precise statement, since the pinches are properties of graphs in QCD and the soft-Glauber
correspondence refers to SCET. One goal of our analysis is to clarify the relationship between
Glauber operators in SCET and pinches in QCD.

A corollary of Eq. (2) is that infrared divergences of purely virtual graphs in full QCD,
including all Glauber contributions, are exactly reproduced by the factorized expression.
Factorization violation can only show up in graphs with emissions, that is, in relating an
amplitude to one with an additional collinear or soft particle. In particular, when there are
collinear emissions, it is known that factorization does not hold. To be precise, amplitude-
level splittings are often described through an operator Sp which acts on an n-body matrix
element |M〉 turning it into a matrix element with n+ 1 partons |M〉:

|M〉 = Sp · |M〉 (3)

In a 1 → 2 splitting a parton with momentum P µ splits into two partons with momenta
pµ1 and pµ2 with P µ ∼= pµ1 + pµ2 . Factorization implies that this splitting function Sp should
depend only on the momenta and colors of particles collinear to the P µ direction. This
requirement, called strict factorization, was shown by Catani, de Florian and Rodrigo to be
violated in certain situations [19]. In particular, when pµ1 is incoming, pµ2 is outgoing, there is
another incoming colored particle with some momentum pµ3 not collinear to P µ, and another

2For physical, positive-energy momenta, incoming Wilson lines are denoted with a bar, like Ȳj or W̄j

(see [4]) and have a different iε prescription than outgoing, un-barred, Wilson lines. In this paper, our
convention is that all momenta are outgoing and so distinguishing incoming and outgoing Wilson lines is
unecessary.
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outgoing colored particle with momentum pµj not collinear to pµ2 , then Sp can depend on the
color of the pµ3 and pµj partons.

We review this calculation of strict factorization violation in Section 5. The approach
of [19], and also [20], is to calculate Sp by taking the limit of a matrix element with n + 1
directions as it reduces to a matrix element with n directions. Then Sp can be deduced from
known results about IR singularities of n + 1 parton matrix elements. In other words, one
calculates Sp by turning |M〉 into |M〉.

The necessity of using n + 1-body matrix elements to calculate Sp is a little counterin-
tuitive. Since the splitting originates from |M〉 it seems one should not need information
about a general n+ 1 body matrix element |M〉 to deduce it. Indeed, for timelike splittings
(as in e+e− → hadrons), one can start from a factorized expression, like in Eq. (1), and
calculate Sp from within the collinear sector of |M〉. This calculation is done at leading
order explicitly in [4]. In this paper we show that one can still calculate Sp from |M〉 when
strict factorization is violated, through the inclusion of Glauber operators in the effective
theory.

It is natural to propose including Glauber modes [21–24] into Soft-Collinear Effective
Theory (SCET). However, since Glauber gluons have transverse components much larger
than their energies, they cannot be represented by on-shell fields in a Lagrangian, like soft
and collinear modes are. Recently, a framework to incorporate Glauber contributions into
SCET was proposed by Rothstein and Stewart [18]. The Glauber gluons are introduced not
through new on-shell fields, but as potential interactions among pre-existing collinear and
soft fields. We briefly review this approach in Section 4.4. One of the main new results
of this paper is the direct calculation of 1-loop and (partial) 2-loop factorization violating
contributions to Sp in Sections 6 and 7 with the SCET Glauber formalism. The calculations
are highly non-trivial, depending critically on the effective field theory interactions and the
rapidity regulator. They therefore provide a satisfying cross check on both SCET and the
factorization-violating splitting amplitudes in [19,20].

Stepping back from the technical calculations, we make some general observations about
properties that the Glauber operator contributions in SCET must have. For example, they
must not spoil factorization when factorization holds (as for all outgoing particles). This
forces the Glauber contributions to be non-analytic functions of external momentum. It
is impressive that this required non-analyticity is exactly produced through the Glauber
operators with the non-analytic rapidity regulator. We summarize some of the features of
the SCET calculations that allow this to work in Section 8.

In this paper, we use the convention that all momenta are outgoing, so that incoming
momenta pµ have negative energy, p0 < 0. With this convention p1 · p2 < 0 for a spacelike
splitting (one incoming and one outgoing) and p1 · p2 > 0 for a timelike splitting (both
incoming or both outgoing). It also means energy fractions z = E2

E1+E2
will be negative for

spacelike splittings and positive for timelike splittings. In Section 2, we review the vari-
ous modes appearing in hard-soft-collinear factorization of scattering amplitudes, and their
scaling. In Section 3, we show that for large-angle hard scattering, the effects of Glauber
exchange is contained in the eikonal limit. Therefore amplitude-level factorization formula
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is not modified. In Section 4, we discuss several approaches to isolating the Glauber contri-
bution. In Section 5, we summarize known results about factorization-violation for timelike
splitting. We review the connection between imaginary terms in 1-loop graphs and fac-
torization violation, and how the factorization-violating splitting amplitude is derived from
the infrared structure of n + 1-parton amplitudes in QCD. In Section 6, we compute the
1-loop Glauber contributions to timelike splitting amplitudes that are not contained in the
soft contributions using SCET. Both the IR-divergent and the IR-finite contributions to the
1-loop factorization-violating effects are reproduced. In Section 7, we compute the contri-
butions to two-loop factorization violation in timelike splittings involving double Glauber
exchange. These contributions exactly reproduce the real part of the 2-loop splitting am-
plitude from [19]. We summarize some rather remarkable non-analytic properties of the
Glauber contributions in Section 8 and summarize our results in Section 9.

2 Elements of factorization and Glauber scaling

Glauber gluons play a central role in understanding violations of factorization, so we devote
this section to explaining their origin and relevance. Our goal here is to clarify the concepts
of scaling, the relationship between soft and Glauber regions of momentum space, and the
reasons that Glauber gluons can spoil factorization.

Broadly speaking, the goal of factorization is to write some scattering amplitude M,
which is a function of lightlike external momenta p1 · · · pn as

|M(p1, · · · , pn)〉 ∼= |Mfactorized(p1, · · · , pn)〉 (4)

where |Mfactorized〉 is simpler in some way. Here the symbol ∼= implies that the two are not
exactly equal, but equal up to parametrically small power corrections in some function of
the momenta (e.g. in λ = p1 ·p2/Q

2 with Q the center of mass energy).
A necessary condition for Eq. (4) to hold is that the infrared divergences agree on both

sides. Since factorization involves writing an amplitude as products of simpler amplitudes
each of which contain some subset of the infrared divergences, a first step to understanding
factorization is to classify infrared divergences.

Classifying the infrared divergences amounts the following consideration. Take a given
Feynman diagram written as an integral over various loop momenta kµi . We associate given
values kµi,0 of these momenta to an infrared divergence if the integral is infinite when inte-
grated in an infinitesimal compact volume around kµi,0. The singularity requires a pole in the
integration region, so at least one of the propagators must go on-shell within this volume.
More precisely, the pole must be on the integration contour at ε = 0 (ε here refers to the
iε in the Feynman propagator). However, at small finite ε, the poles are necessarily off the
contour of integration, so the singularity only occurs if there are two coalescing poles on dif-
ferent sides of the contour, or a pole at the end-point of the contour. This condition is often
described as saying that the integration contour cannot be deformed away from the singular
region, so that the singularity becomes pinched on the integration contour as ε→ 0. This
necessary condition is encoded in the Landau equations [25]. For a theory with massless
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particles with external momenta pµj , the Landau equations imply that the possible values
for the infrared singular regions of integration are either soft, kµi,0 = 0 exactly, or collinear
kµi,0 = zpµj for some z and some pµj . Thus, we say that the pinch surface for a theory with
massless particles comprises the soft region (ki = 0) and regions collinear to the direction of
each external momentum.

The Landau equations are derived using only the denominators in a Feynman diagram.
It can certainly happen that the numerator structure makes the diagram infrared-finite even
though the contour is pinched according to the denominators. In addition, whether a diagram
is divergent or not can depend on gauge. So the Landau conditions give a necessary but not
sufficient condition for a singularity.

Although knowing the pinch surface, that is, the exactly singular region of loop momenta
is a good start, this surface does not immediately tell us anything about factorization. It
does however refine the problem: to match the infrared divergences of a given amplitude, it
is enough to match the integral in all the regions around the pinch surface. Thus it inspires
us to look for a factorized expression by Taylor expanding the integrand around the pinch
surface.

To expand around the kµi = 0 part of the pinch surface, we can equivalently expand
around the limit where all of the external momenta become infinitely energetic (|p0

j | → ∞).
Generically, this lets us replace propagator involving a loop momentum kµ and an external
lightlike momentum pµ as

1

(p+ k)2 + iε
→ 1

2p · k + iε
(5)

This replacement is known as taking the eikonal limit. Treating the momentum pµ as
infinite allows us to ignore the recoil of pµ when kµ is emitted, so that the pµ is essentially a
classical background source. This approximation is at the heart of all factorization proofs.

The subtlety where Glauber scaling comes in is that in taking the eikonal limit, in deriving
Eq. (5), it is not enough to have kµ � Q for all components of kµ, where Q = p0 is the
external particle’s energy. Rather, we must also have k2 � p·k. To appreciate the difference
between these two limits, rather than taking the limit, as in Eq. (5), let us write the
propagator as its eikonal version plus a remainder

1

(p+ k)2 + iε
=

1

2p · k + iε
− k2

((p+ k)2 + iε)(2p · k + iε)
(6)

This exact relation lets us write a diagram in the full theory as the sum of diagrams, each of
which represents an explicit integral with the original propagator replaced by one of these
two terms. The first term generates the soft part 〈Xs|Y †1 · · ·YN |0〉 of factorized expressions
like Eq. (1), and the second term generates collinear parts. Factorization holds only if the
collinear parts do not have infrared divergences associated with soft singularities.

Scaling arguments are powerful tools for determining whether soft singularities are present.
The replacement in Eq. (5) amounts to taking k2/k ·p → 0. One can apply this limit by
rescaling all the loop momenta as kµi → κ2kµi and keeping the leading terms as κ→ 0. This
guarantees that the remaining integral, that is the difference between the original integral
and the one with this replacement, must scale like κn with n > 0.
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Let us call this type of scaling, where all the components of all the loop momenta scale
the same way, eikonal scaling. We could take kµ → κ2kµ, which we call ultrasoft scaling
or kµ → κkµ, which we call soft scaling. Soft and ultrasoft scaling are both examples of
eikonal scaling and equivalent for determining whether an integral is superficially divergent.
To see this, consider changing variables from kµ to {κ,Ω}, with κ the radial variable and
Ω representing generically some angular variables. Then a diagram which scales like κn

transforms to a
∫
dΩ
∫
κn−1dκ integral which is divergent near κ = 0 if and only if n ≤ 0.

Using ultrasoft rather than soft scaling would have the diagram scale like κ2n which is still
divergent under the same conditions.

Next, we must ask whether a diagram could still be divergent when integrated around
kµ = 0 pinch surface even if it is power-counting finite under eikonal scaling. After trans-
forming kµ to {κ,Ω}, such a divergence could come from the angular integrals over the Ω’s.
A sufficient condition to guarantee infrared finiteness is if the integral scales like κn with
n > 0 under any possible scalings of the different components of kµ [5].

To examine this possibility, let us go to lightcone coordinates. We can decompose an
arbitrary momentum kµ with respect to two given lightlike momenta pµ and qµ as

kµ =
1

Q
k−pµ +

1

Q
k+qµ + kµ⊥ (7)

where

k− =
2

Q
k · q, k+ =

2

Q
k · p (8)

with Q2 = 2p · q. We also often use the 2-vector perpendicular component ~k⊥ with ~k2
⊥ =

−(kµ⊥)2. Then Eq. (6) becomes (ignoring the iε prescription temporarily)

1

(p+ k)2
=

1

Qk+

[
1− k+k− − ~k2

⊥

Qk+ + k+k− − ~k2
⊥

]
(9)

Under ultrasoft (eikonal) scaling,

(k+, k−, ~k⊥)→ (κ2 k+, κ2 k−, κ2 ~k⊥) (10)

and the second term on the right in Eq. (9) is suppressed by a factor of κ2 with respect
to the first term. Since diagrams are at most logarithmically divergent, the strongest a
divergence can be is κ0, and therefore integrals involving the second term are finite under
eikonal scaling [5].

What other scalings can we consider? We need to send kµ → 0, so let us normalize
k+ → κ2k+. Then we can generally write k− → κ2ak− and ~k⊥ → κb~k⊥ with a > 0 and b > 0.
The second term then scales like

k+k− − ~k2
⊥

Qk+ + k+k− − ~k2
⊥

→ κ2+2ak+k− − κ2b~k2
⊥

κ2Qk+ + κ2+2ak+k− − κ2b~k2
⊥

(11)

8



Now, if b > 1, then the ~k2
⊥ terms in the denominator can be neglected and the integral scales

like κmin(2a,2b−2). However, since a > 0 (so that we approach the soft pinch), this term is

power-counting finite. Thus we must have b ≤ 1. For b ≤ 1, the ~k2
⊥ term dominates both

numerator and denominator and this term scales like κ0. The scaling is independent of a
and b (for b ≤ 1) so we can take a = 2 and b = 1 to represent this case. Thus the only
possible approach to kµ = 0 which is not automatically infrared finite is

(k+, k−, ~k⊥)→ (κ2 k+, κ2 k−, κ~k⊥) (12)

This is known as Glauber scaling. It is the only possible scaling towards the kµ = 0 pinch
under which the substitution in Eq. (6) might not leave an infrared-finite remainder. Gluons
with momenta that have Glauber scaling are often called Glauber gluons. These gluons
are spacelike and purely virtual: as κ→ 0 they approach the soft singularity from a direction
in which k2 < 0, in contrast with soft or collinear gluons, which can have k2 = 0 for finite κ.

As an aside, note that we are taking a > 0 and b > 0 so that we zoom in on the soft region
of the pinch surface. If we take a = 0, then the numerator and denominator of Eq. (11) both
scale the same way and there is no additional suppression. However, if a = 0 then kµ remains
finite as κ → 0. In fact, it approaches the direction pµ of the line that we are expanding
around (as in Eq. (9)). Thus this is collinear scaling. We can represent this scaling with
b = 1 so that under collinear scaling

(k+, k−, ~k⊥)→ (κ2 k+, k−, κ~k⊥) (13)

That the expansion in Eq. (9) does not improve the convergence under collinear scaling is
neither surprising nor a problem. That collinear singularities are completely reproduced in
the factorized expression was shown in [5].

3 Glauber containment in hard scattering

In this section, we will show that, for scattering amplitudes, singularities associated with
Glauber scaling are already contained in the soft factor when no incoming momentum is
collinear to an outgoing momentum. Because of the simplicity of the pinch surface with
massless external particles, all of the relevant issues already appear at 1 loop in a vertex cor-
rection graph. Thus we begin with the 1-loop example, then work out the general argument.

3.1 1-loop example

The example we will study in great detail is the Sudakov form factor in scalar QED:

Ifull =

p1 ↗

p2 ↘

↑ k = ig2
s

∫
d4k

(2π)4

(2p1 − k)µ

[(p1 − k)2 + iε]

Πµν(k)

k2 + iε

(2p2 + k)ν

[(p2 + k)2 + iε]
(14)
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Here, iΠµν is the numerator of the photon propagator. In Feynman gauge, iΠµν = −igµν .
While Feynman gauge can be very efficient for calculations, physical gauges are often better
for understanding factorization. In physical gauges, such as lightcone gauge, the numerator
Πµν represents a sum over physical polarizations and ghosts decouple. In lightcone gauge

Πµν(k) = −gµν +
rµkν + rνkµ

r · k (15)

with rµ a reference lightlike 4-vector. Note that rµΠµν = 0 and kµΠµν = k2

r·kr
ν .

According to the Landau equations, which ignore the numerator structure, a necessary
condition for a singularity is that all of the propagators go on-shell at once. This can happen
when kµ = zpµ1 for some z, kµ = zpµ2 for some z or when kµ = 0. Under ultrasoft scaling,
the integration measure scales like κ8 and the denominator factors scale like κ2, κ4 and κ2

respectively. The numerator scales like κ0 in either Feynman gauge or lightcone gauge,
thus this integral is soft-sensitive. Under collinear scaling, the measure scales like κ4 and
the denominator factors scale like κ2, κ2 and κ0 respectively. Thus, in Feynman gauge where
Πµν ∼ κ0, the graph is collinear-sensitive. However in lightcone gauge, since kµΠµν ∼ k2

r·kr
ν ∼

κ1 and kµ ∝ pµ1 on the collinear pinch surface, there is extra suppression. Thus this graph is
actually collinear-finite in physical gauges. (In general, graphs which involve lines connecting
different collinear sectors are collinear finite in physical gauges according to Lemma 3 of [5].)
Thus for this graph, integrations around the collinear regions of the pinch surface, kµ = zpµ1
and kµ = zpµ2 for z 6= 0 are finite.

To study the singularity structure of this diagram, it is useful to go to lightcone coordi-
nates with respect to pµ1 and pµ2 , with k+ = 2k · p2/Q, k− = 2k · p1/Q, and Q2 = 2p1 · p2:

Ifull = ig2
s

∫
dk+dk−d2k⊥

2(2π)4

(2p1 − k)µ

[−Qk− + k+k− − ~k2
⊥ + iε]

Πµν(k)

[k+k− − ~k2
⊥ + iε]

(2p2 + k)ν

[Qk+ + k+k− − ~k2
⊥ + iε]
(16)

The denominator has zeros in the complex plane at

k− = −
~k2
⊥

Q− k+
+ iε

1

Q− k+
, k− =

~k2
⊥
k+
− iε 1

k+
, k− =

~k2
⊥ −Qk+

k+
− iε 1

k+
(17)

These are on the same side of the real axis unless 0 < k+ < Q. Thus the integral vanishes
outside of this range and we can restrict 0 ≤ k+ ≤ Q. This configuration is shown on
the left side of Fig. 1. Looking at the poles in the k+ plane shows that we must also have
−Q ≤ k− ≤ 0.

Since we are only interested here in the soft pinch surface, we can restrict the integration
region so that all components of kµ have magnitude less than Q. We also take Πµν = −gµν ,
since the other terms in lightcone gauge do not affect the power counting around the soft
pinch surface. Then,

Ifull
∼= −i2Q2g2

s

∫ κQ

−κQ

dk+dk−d2k⊥
2(2π)4

1

[−Qk− − ~k2
⊥ + iε]

1

[k+k− − ~k2
⊥ + iε]

1

[Qk+ − ~k2
⊥ + iε]

(18)
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k2
⊥

k+ − iε

b

− k2
⊥

Q−k+ + iε

−Q+
k2
⊥

k+ − iε

k−

b

b
k2
⊥

k+ − iε

b

−k2
⊥
Q + iε

k−

b−κQ κQ

|k−| ∼ k2
⊥

Qκ

b
−Q− iε

Figure 1: Left: poles in the complex k− plane for Ifull. Right: the complex k− plane of
Ifull in the region around kµ = 0. In this region, all components of kµ are less than κQ.
The integration contour, −κQ ≤ k− ≤ κQ, (the dashed red line on the real axis) can be
deformed (to the solid green contour) to avoid the Glauber region (hashed blue) for any

values of |k+| < κQ and |~k⊥| < κQ.

Here, ∼= means we are restricting the integral to the soft pinch surface, with κ � 1. This
has poles in the complex k− plane at

k− = −
~k2
⊥
Q

+ iε, k− =
~k2
⊥
k+
− iε (19)

The third pole from the original integral in Eq. (17) has moved off to k− = −∞− iε.
What we we would like is to drop the ~k2

⊥ terms compared to Qk+ and Qk−. This can
only be justified if it is parametrically true everywhere in the integration region. It cannot
be justified in the Glauber region, that is, in regions of kµ where k− . ~k2

⊥/Q. But let us
look at the complex k− plane in more detail at fixed k⊥ and k+, both of which are soft
(< κQ). The dangerous Glauber region is shown as the hatched area that nearly touches the

pole at k− = −~k2⊥
Q

+ iε. The integration contour (the real k− line) goes right through this

region. To avoid this region, we note that since k+ < κQ, the pole at k− = ~k2
⊥/k

+ − iε is
parametrically far away from the Glauber region. Thus we can deform the contour downward
into the complex plane avoiding the Glauber region explicitly. For example, we could take
move onto the arc with |k−| = ~k2

⊥/Qκ. This arc avoids the Glauber region without crossing
the non-Glauber pole. Once the contour is out of the Glauber region, we can use eikonal
scaling ~k2

⊥ � k−Q to simplify the integrand. Then we can deform the contour back. Note

that we can do this deformation for any k+ and ~k⊥. We can then do the same manipulation
for the k+ integral to justify dropping ~k2

⊥ � k+Q. The result is

Isoft = −2iQ2g2
s

∫ κQ

−κQ

dk−dk+d2k⊥
2(2π)4

1

[−Qk− + iε]

1

[k−k+ − ~k2
⊥ + iε]

1

[Qk+ + iε]
(20)
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which is the same integral we would get from taking the eikonal limit of Ifull. Thus all of the
soft singularities of Ifull, including those from the Glauber region (the hatched region), are
contained in Isoft.

One can also confirm directly that the Glauber region is contained in the soft integral
through direct calculation. In pure dimensional regularization, Isoft is scaleless and vanishes.
The UV and IR divergences can be separated using a photon mass and a rapidity regulator,
as in Eq. (10.3) of [18]. There it is shown that the imaginary part of the soft amplitude
agrees with the Glauber contribution. In pure dimensional regularization, the imaginary
part of the soft (or Glauber) contribution is in Eq. (37) below.

An implication of the contour deformation argument is that all the integrals coming from
the use of the second (not eikonal) term in the replacement in Eq. (6) (diagrams with all-
blue lines, in the language of [5]) are completely IR finite. For example, performing this
replacement on the p2 line results in

Iremain = 2iQ2g2
s

∫ κQ

−κQ

d4k

(2π)4

1

[−Qk− − ~k2
⊥ + iε][k−k+ − ~k2

⊥ + iε][Qk+ + iε]

k−k+ − ~k2
⊥

Qk+ − ~k2
⊥ + iε

(21)
That this integral is IR finite is easy to see – the k2 pole is canceled by the expansion and
the remaining poles in the k+ plane (or k− plane) are on the same side of the real axis and
so the integral vanishes. A more general argument is that once the contour is deformed out
of the Glauber region, the new term suppresses the IR divergent part of the amplitude in
the entire integration region. Thus the amplitude is power-counting finite (scaling like κn

with n > 0), as it would be under eikonal scaling without the contour deformation.

3.2 Spacelike example

Next, let us look at a diagram with a particle in the initial state and one in the final state:

ISL
full =

p1 − k ↙

↘ p2p1 ↙ ← k

↘ p2 + k

= ig2
s

∫
d4k

(2π)4

(2p1 − k)µ

[(p1 − k)2 + iε]

Πµν(k)

k2 + iε

(2p2 + k)ν

[(p2 + k)2 + iε]
(22)

Recall our convention that the incoming momentum, pµ1 is treated as outgoing with negative
energy. Let us assume that pµ1 and pµ2 are not proportional to each other. Then we define
Q2 = −2p1·p2 > 0. As Q is the only scale in the problem, we zoom in on the soft singularity
again by applying kµ � Q. We can go to lightcone coordinates in the pµ1 , p

µ
2 frame, as before.

The integral then becomes

ISL
full
∼= 2iQ2g2

s

∫ κQ

−κQ

dk−dk+d2k⊥
2(2π)4

1

[Qk− − ~k2
⊥ + iε]

1

[k−k+ − ~k2
⊥ + iε]

1

[Qk+ − ~k2
⊥ + iε]

(23)

Now the poles are at

k− =
~k2
⊥
Q
− iε, k− =

~k2
⊥
k+
− sign(k+)iε (24)
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As in the spacelike case, one pole is in the Glauber region, but the other is not. Thus we can
deform the contour away from the Glauber region and justify the eikonal expansion here as
well. As it happens (see Section 4 below), the Glauber contribution to this integral exactly
vanishes. But the point is that the Glauber contribution is contained in the eikonal limit for
either timelike or spacelike kinematics, whether or not it happens to vanish.

3.3 General argument

Now let us generalize the argument from the previous section to the n-loop case with arbitrary
final and initial states. All we will assume is that none of the final states are collinear to
any of the initial states. The proof of factorization in [5] did not use any information about
initial or final states or about integration contours. What was shown is that all the terms
which are power-counting divergent under eikonal scaling and collinear scaling in any of the
directions in the full theory are reproduced in the factorized expression.

What we need to show is that integrals inlolving the second term when the substitution
in Eq. (6) is used, do not have any soft singularities despite their being power-counting
divergent under Glauber scaling. Since the factorized expression in Eq. (1) reproduces the
self-energy graphs in the full theory exactly, the only graphs we need to be concerned about
are the ones which would ordinarily be part of the hard vertex. That is, those connecting
to more than one collinear direction. We need to show that the eikonal expansion can be
justified for such diagrams.

In order for there to be a singularity in a diagram, according to the Landau criteria, all
the propagators have to be either exactly zero or proportional to an external momentum. So
let us put all the loop momenta except for one exactly on the singular surface. This leaves a
single loop integration variable we call kµ. We can trace this momentum along the diagram.
For example,

p2

p1

k↖

k↗

k↖

↓k

↓ k

=

∫
d4k

(2π)4

N

k2 + iε

1

k2 + iε

1

(k − p2)2 + iε

1

(k − p2)2 + iε

1

(k + p1)2 + iε

(25)
where N is some numerator structure. This is almost identical to the Sudakov form factor
diagram we studied in the previous subsection. The only difference is that now there are
multiple poles at each singular point. Although the other loop integrations that we are
neglecting make the actual diagram much less singular than this (no diagram can scale to
a negative power of κ under any soft scaling), we do not need to make use of the extra
cancellations. The only thing to observe is that the poles are all in the same parts of the
kµ phase space as in the simple vertex correction. Thus the contour deformation works in
exactly the same way and the eikonal expansion can be justified.
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What happens if the loop momentum connects to an incoming and an outgoing direction?
As long as pµ1 and pµ2 are not proportional to each other, one can still justify the eikonal
expansion, as in Section 3.2.

The only time a problem can arise is if an incoming momentum and an outgoing momen-
tum are collinear. For example, consider a configuration like this

p1↖

p1 + p2 + k↖

p2 + k
p2 →

↓ k ∼
∫ κQ

−κQ

d4k

(2π)4

1

[(p2 + k)2 + iε]

1

[(p1 + p2 + k)2 + iε]

1

[k2 + iε]
· · · (26)

If pµ1 and pµ2 are collinear then 2p1 · k = −Q1k
− and 2p2 · k = Q2k

− for two energies Q1

and Q2 and the same lightcone component k− is in both products. Moreover Q1 ≥ Q2 by
momentum conservation. Then

I ∼=
∫ κQ

−κQ

d4k

(2π)4

1

[Q2k− − ~k2
⊥ + iε]

1

[−(Q1 −Q2)k− − ~k2
⊥ + iε]

1

[k−k+ − ~k2
⊥ + iε]

· · · (27)

This type of diagram has poles at

k− =
~k2
⊥
Q2

− iε, k− = −
~k2
⊥

Q1 −Q2

+ iε, k− =
~k2
⊥
k+
− iε, (28)

The first two poles, coming from the two collinear propagators are on opposite sides of the
real axis and not parametrically separated so one cannot deform the contour out of the
Glauber region. Therefore one cannot justify dropping ~k2

⊥ � Qik
− in the integrand since

such a modification may miss infrared divergences.
From this example, we see that for the Glauber region to deserve special concern, we

need to have the momentum kµ flowing in opposite directions through two lines that are
collinear to each other. Thus a graph like Eq. (22) is not problematic, even if pµ1 and pµ2 are
proportional. Graphs in which the two collinear lines that the loop momenta runs through
are in the same final state sector are also not problematic – the collinear sector in the
factorized expression is the same as in full QCD so all of the singularities are necessarily
reproduced in this region.

So far, we have considered only virtual graphs. Equivalently, we assumed that each
sector has one particle, with no two momenta proportional to each other. We can weaken
this requirement and allow for multiple particles in each sector. For particles with momenta
pµ and qµ to be in the same collinear sector, we require p · q < λ2Q2 with Q a hard scale (e.g.
the center of mass energy). The parameter λ is presumed to be small and the factorization
formula is supposed to hold to leading power in λ. Soft external particles can have energies
up to λ2Q. The effect of having multiple collinear particles in a sector or soft particles is
to make some lines in diagrams like Eq. (25) off-shell, so that p2 = λ2Q2. For λ = 0, these
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lines would be massless and the graph would be infrared divergent, however, at finite λ, the
IR divergence is regulated. That is, a graph which would be logarithmically divergent may
now be finite proportional to lnλ. In this way, the factorization formula which reproduces
the infrared singularities at λ = 0 also reproduces the amplitude to leading power in λ when
there are soft particles or multiple collinear particles.

The key point is that adding soft or collinear particles does not invalidate the argument
that justifies the eikonal approximation. On the pinch surface, which characterizes both
the IR divergences and the leading power behavior at small λ, the contours can always be
deformed out of the Glauber region. When a graph only involves particles in a single collinear
sector with only outgoing (or only incoming) particles, there can be Glauber singularities,
however these graphs are identical in the factorized and full theory amplitudes, and so
factorization still holds. Thus factorization holds for arbitrary soft and collinear sectors, as
long as no final state particles are collinear to any initial state particles.

3.4 Summary

In this section, we analyzed when the eikonal approximation can be trusted to reproduce
all the soft singularities of an amplitude in full QCD. This is important because using the
eikonal approximation is crucial to proving factorization formulas like Eq. (1). We found
that the eikonal approximation can be used in any situation in which no incoming and
outgoing particles are collinear. Thus Eq. (1) can be generalized. Take any initial state
|Z〉 = |Z1〉 · · · |ZM〉 |Zs〉, with the momenta in |Zj〉 all collinear to a direction nj and all the
momenta in |Zs〉 soft, and any final state 〈X| = 〈X1| · · · 〈XN | 〈Xs|, with similar definitions,
and assuming no initial state direction is collinear to any final state direction, then to leading
power in λ

〈X|φ? · · ·φ |Z〉 ∼=IR C(Sij)
〈X1|φ?W1 |0〉
〈0|Y †1 W1 |0〉

· · · 〈0|W
†
Nφ |ZN〉

〈0|W †
NYN |0〉

〈Xs|Y †1 · · ·YN |Zs〉 (29)

Since λ is arbitrary, a corollary is that for all virtual diagrams for hard scattering in which
no final state and initial state momenta are proportional, the complete IR divergences of the
full graphs in QCD, including any coming from the Glauber region, are exactly reproduced
by the factorized expressions. Another corollary is that all possible violations of factorization
are associated with situations where initial states and final state momenta are collinear.

4 Isolating the Glauber contribution

We have seen that most of the time, singularities associated with Glauber scaling are auto-
matically contained in the expansion around zero momentum, using homogeneous, eikonal
scaling. Factorization violation is associated with situations where this containment fails,
so that the eikonal limit does not reproduce all of the soft singularities. To clarify the role
that Glauber gluons play in amplitude-level factorization, it may be helpful to isolate their
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contributions. In this section, we explore some approaches to identifying the Glauber con-
tribution and we explore the connection between the Glauber limit and the imaginary part
of amplitudes.

In this section we will mostly be concerned, once again, with the 1-loop vertex correction
diagram in scalar QED, Eq. (14):

Ifull =

p1 ↗

p2 ↘

↑ k ∼= −i2Q2g2
s

∫
d4k

(2π)4

1

[−Qk− − ~k2
⊥ + iε]

1

[k−k+ − ~k2
⊥ + iε]

1

[Qk+ − ~k2
⊥ + iε]

(30)
We have ignored the numerator structure because it is irrelevant to our discussion. The
following analysis is very similar for QCD.

In QED, the amplitude in 4− 2ε dimensions is

Ifull =
αs
2π

(
µ2

−2p1 ·p2 − iε

)ε(
1

ε2
+ finite

)
(31)

This is an analytic function of p1 ·p2 with a branch cut when p1 ·p2 > 0. Expanding around
ε = 0 gives

Ifull =
αs
2π

(
1

ε2
− 1

ε
ln
−2p1 ·p2 − iε

µ2
+ finite

)
(32)

This has an imaginary part if and only if p1 · p2 > 0. The Glauber contribution produces
only the imaginary part of this result, as we will now see in a number of different ways.

4.1 Method of regions

According to the method of regions, we can isolate the Glauber contribution by assuming
k± ∼ κ2, ~k⊥ ∼ κ and expanding the integrand to leading order in κ. This gives

IGlauber = −i2Q2g2
s

∫
d4k

(2π)4

1

[−Qk− − ~k2
⊥ + iε]

1

[−~k2
⊥ + iε]

1

[Qk+ − ~k2
⊥ + iε]

(33)

In this form, one cannot integrate over k− and k+ using Cauchy’s theorem since the integrand
does not die off fast enough as k± →∞. Changing to k− = k0 − kz and k+ = k0 + kz gives

IGlauber = −i2Q2g2
s

∫
d4k

(2π)4

1

[−Qk0 +Qkz − ~k2
⊥ + iε]

1

[−~k2
⊥ + iε]

1

[Qk0 +Qkz − ~k2
⊥ + iε]

(34)
Ordinarily, the k2 term is quadratic in k0 and kz so using k± is simpler, but in the Glauber
limit the transverse components dominate so there is no advantage.
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For timelike separation (both outgoing) as written, the poles in the k0 plane are at

k0 = ∓~k2
⊥/Q±kz± iε. Closing the k0 contour downwards to pick up the k0 = ~k2

⊥/Q−kz− iε
pole results in an integral which is divergent at large |kz|. This divergence can be regulated
by a rapidity regulator. Following Ref. [18], we use the η regulator of Ref. [26]. Adding also
a small mass m to regulate the infrared singularity and working in d = 4− 2ε dimensions to
regulate the UV divergence gives

IGlauber = −2Qg2
sµ

4−d
∫
dd−2k⊥dkz

(2π)d−1

ν2η

|2kz|2η
1

[2Qkz − 2~k2
⊥ + iε]

1

[−~k2
⊥ −m2 + iε]

(35)

= −αs
2π

(iπ)

(
1

εUV

+ ln
µ2

m2

)
(36)

Note that the result is independent of η (see also Appendix B.2 of [18]). Essentially, adding
the |2kz|2η term allows us to do the kz integral. The imaginary part of the full soft graph
with these regulatoris is identical [18] confirming that the Glauber is contained in the soft.

If we also use dimensional regularization to regulate IR, the integral would be scaleless
and vanish. We then deduce that in pure dimensional regularization

IGlauber =
αs
2π

(−iπ)

(
1

εUV

− 1

εIR

)
(37)

Thus the Glauber contribution is IR divergent and purely imaginary.
Note that if pµ2 were incoming, then Qk+ term would flip sign and the poles in the k0

plane would be at k0 = −~k2
⊥/Q±kz + iε. Since both poles are above the integration contour,

we can close the contour downwards giving zero. In other words, the Glauber limit with
spacelike separation gives zero for this diagram.

Thus we find that the Glauber limit gives zero in the spacelike case (p1 · p2 < 0) and
a purely imaginary number in the timelike case (p1 · p2 > 0). Since the amplitude is zero
in a compact region of p1 ·p2, it cannot be an analytic function of p1 ·p2 without vanishing
completely. The non-analyticity comes from the rapidity regulator, since |2kz|2η is a non-
analytic function. This non-analyticity is therefore unavoidable if the Glauber contribution
is to give only the imaginary part of the amplitude.

4.2 Cut-based approach

Yet another way to study Glauber gluon is through discontinuity of scattering amplitudes.
This is natural from the viewpoint that Glauber gluon is associated with the imaginary part
of scattering amplitudes at lowest order.

Using Cutkosky’s cutting rule, the s-channel discontinuity of Eq. (30) can be written as

DiscsIfull = i(−2πi)2g2
s

∫
dk−dk+d2k⊥

2(2π)4
δ((p1 − k)2)θ((p1 − k)0)δ((p2 + k)2)(θ(p2 + k)0)

× (2p1 − k)µΠµν(k)(2p2 + k)ν

[k−k+ − ~k2
⊥ + iε]

(38)
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where the only possible cut is through the top and bottom line in the vertex diagram. We
shall see that at this order, the Glauber contribution is given by the forward limit of the
discontinuity, ~k⊥ � Q. The on-shell conditions of p1−k and p2 +k automatically enforce the
Glauber scaling, k− ∼ k+ ∼ k2

⊥/Q. In the forward limit, the two-body phase space measure
becomes

i(−2πi)2g2
s

∫
dk−dk+d2k⊥

2(2π)4
δ((p1 − k)2)θ((p1 − k)0)δ((p2 + k)2)(θ(p2 + k)0)

−→ − ig2
s

2Q2

∫
d2k⊥
(2π)2

(39)

and the matrix element to the right of the cut becomes forward scattering amplitude

(2p1 − k)µΠµν(k)(2p2 + k)ν

[k−k+ − ~k2
⊥ + iε]

−→ 2Q2

~k2
⊥ − iε

(40)

The one-loop Glauber contribution is thus given by

IGlauber ≡
1

2
lim

k⊥/Q→0
DiscsIfull = − iαs

2π2

∫
d2k⊥
~k2
⊥

(41)

in agreement with the other definition of Glauber contribution (Eq. (36) after the kz integral
is done). It is interesting to note that defining the Glauber contribution in this way avoids
the use of the rapidity regulator in intermediate steps of the calculation. This is comforting,
as the result should be regulator independent.

Isolating the Glauber contribution in momentum space at 1-loop level with this approach
was introduced in [27], and a similar cutting prescription in position space was explored more
in [17]. The idea is similar to the s-channel unitarity approach for extracting the Reggie
trajectory of scattering amplitudes [28]. However, it should be noted that only at 1-loop
level can one identify the leading term in the ε expansion of the Glauber contribution with a
discontinuity. At higher loop, there is no direct relation anymore. For example, at 2 loops,
double Glauber exchange contributes (iπ)2 = −π2, which is real and has no discontinuity.

4.3 Position space

One can interpret Eq. (41) as describing a potential Ṽ (k) ∼ g2s
~k2⊥

between the two outgo-

ing particles. Fourier transforming, the potential V (x) ∼ g2
s ln |x⊥| depends only on the

transverse separation x⊥ between the particles. Like the Coulomb potential, V (r) ∼ g2s
r

,
the Glauber potential is time-independent, but unlike the Coulomb potential, the Glauber
potential additionally does not depend on the longitudinal separation xL [18].

Since the Glauber contribution is contained in the soft contribution for this graph, we
can simplify the calculation from one in full QCD by taking the energies of pµ1 and pµ2 to
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infinity. Following [17], to regulate some of the divergence, we also take pµ1 and pµ2 timelike.
Thus we write pµ1 = Q1n

µ
1 and pµ2 = Q2n

µ
2 with n2

1 = n2
2 = 1. The integral then becomes

Isoft = g2
s

∫
d4k

(2π)4

n12

(−n1 · k + iε)(n2 · k + iε)(k2 + iε)
(42)

= g2
s

∫
d4k

(2π)4

∫ ∞
0

ds1

∫ ∞
0

ds2
n12

k2 + iε
e−is1(n1·k)+is2(n2·k) (43)

= g2
s

∫ ∞
0

ds1

∫ ∞
0

ds2
n12

(s1n
µ
q − s2n

µ
2)2 − iε (44)

where n12 = n1 · n2. Schwinger parameters s1 and s2 have been introduced on the second
line. They represent the proper time that the particles have travelled from the hard vertex.
The result of course matches the matrix element of timelike Wilson lines, which we could
have written down directly.

A nice observation from [17] is that, in this form, we can see that an imaginary part can
only come from times s1 and s2 for which particles along the nµ1 and nµ2 direction are lightlike
separated. That is, the Glauber contribution is associated with spacetime points under which
particles moving in the two directions can causally influence each other. As an analogy, think
of passengers on trains going in two different directions shining a light at each other. The
light from one train can be seen on the other train only at the appropriate spacetime point.
In contrast, if one particle is incoming and the other outgoing, as in Eq. (22), it is impossible
for the two to be lightlike separated – one cannot see light from a train which arrived in
the station before your train left (except at the origin of time). Thus, there is no imaginary
part in that situation, and no Glauber contribution. Taking the limit where the trajectories
become lightlike in the timelike separation (both outgoing) case, the support of the imaginary
part lies on the lightcone, s1 = 0 or s2 = 0. For spacelike separation, the lightlike limit is
zero.

The amplitude in Eq. (44) is the soft amplitude, from reducing the full diagram in QCD
in the eikonal limit. As shown in the previous section, it contains the complete Glauber
contribution, which is now identified as the imaginary part of the diagram. Defining the
cusp angle γ through cosh γ = −n12 and changing variables s1 = seτ and s2 = s, the integral
becomes [29]:

Isoft =
αs
4π

∫ ∞
0

ds

s

∫ ∞
−∞

dτ
cosh γ

cosh τ + cosh γ
=
αs
8π

∫ ∞
0

ds

s
γ cosh γ (45)

This is again UV and IR divegent. In the spacelike speparation case (one incoming and one
outgoing) n12 < 0 and γ > 0 is real. Then this integral is real. The timelike case (both
outgoing) corresponds to n12 > 0 whereby cosh γ < 0 and γ is complex. Thus only in the
case of timelike sepration does the amplitude have an imaginary part.

The fact that the Glauber contribution is purely imaginary at 1-loop implies that it
will necessarily cancel in cross section calculations at next-to-leading order. More generally,
the 1-loop Glauber contribution exponentiates into a phase which cancels in cross sections
to all orders. This exponentiation comes about in the same way that the exponentiation
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of the Coulomb phase comes about. One way to see it is by computing the energy of a
moving charge in the potential of another moving charge, either classically or in quantum
mechanics [30] or by mapping to AdS [29]. These considerations also lead to the shockwave
picture of Glauber exchange in forward scattering [18]. As exponentiation of the Glauber
phase corresponds very closely to Abelian exponentiation, it naturally is also limited in
the non-Abelian theory. For example, irreducible 2-loop contributions or beyond with both
Glauber and soft/collinear loops present may not exponentiate.

4.4 Effective field theory Glauber operator

We have seen that taking the Glauber limit of the integrand, according to the method of
regions, gives a result which is purely imaginary and non-vanishing only in the timelike
case. The effective field theory (EFT) approach tries to write down a Lagrangian whose
Feynman rules generate the integral so that one no longer has to take limits of integrands.
This Lagrangian can be derived by matching (writing down all possible operators consistent
with symmetries and working out their coefficients to agree with QCD) or by performing
a multipole expansion in the classical theory, keeping the leading interactions according to
some specified scalings. In general, there is not a 1-to-1 correspondence between diagrams in
the effective theory and diagrams in QCD, even after those diagrams are expanded according
to some scaling. For example, EFT operators often include Wilson lines for gauge invariance.
These Wilson lines represent the leading power contribution of many diagrams in QCD.

The effective field theory that isolates the infrared singular regions of QCD is called Soft-
Collinear Effective Theory [6–10] (see [31] for a review). If a process involves hard directions
pµ1 and pµ2 , then in SCET collinear fields denoted by ξj are introduced in the pµ1 and pµ2
direction. These fields have labels fixing the large and perpendicular components of their
momenta, with the dynamics determined by fluctuations around these parametrically large
components. The extension of SCET to include Glauber contributions was recently achieved
in [18]. The prescription is to add Glauber operators to the Lagrangian for each pair of
directions in the theory. For example, in QED we would add

OQED
G12 = 8πα

[
ξ̄1
/n2

2
ξ1

]
1

P2
⊥

[
ξ̄2
/n1

2
ξ2

]
(46)

Here P⊥ is an operator which picks out the ⊥ component of the collinear fields it acts. In
QCD, the operator is significantly more complicated [18]

OQCD
G12 = 8παs

[
ξ̄1W1

/̄n1

2
TAW †

1 ξ1

]
1

P2
⊥

×
[
Pµ⊥Y†1Y2P⊥µ − gP⊥µ Bµ1S⊥Y†1Y2 − gY†1Y2Bµ2S⊥P⊥µ − gBµ1S⊥Y†1Y2Bµ2S⊥ −

ig

2
nµ1n

ν
2Y†1G̃S

µνY2

]AB
× 1

P2
⊥

[
ξ̄2W2

/̄n2

2
TBW †

2 ξ2

]
(47)
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The additional terms involve collinear Wilson lines Wj, soft Wilson lines Yj in the adjoint

representation, soft gluon fields B⊥µ, and soft gluon field strengths G̃S
µν . For definitions of

all of these objects, see [18]. The collinear Wilson lines are necessary to ensure collinear
gauge-invariance. The terms on the second line all involve soft fields and are separately
soft-gauge-invariant. The variety of terms in this expression is determined by matching
amplitudes in SCET and in full QCD. Although one might imagine their coefficients get
corrected order-by-order in perturbation theory through this matching, it seems that in fact
they do not; remarkably this operator appears to not receive any corrections and is not
renormalized.

In the Abelian limit, G̃S
µν = Bµ = 0 since these are both proportional to fabc and the

adjoint Wilson lines are trivial: Y1 = Y2 = 1. With these substitutions, Eq. (47) reduces to
Eq. (46).

At leading order in gs, the QCD operator reduces to the QED one up to the group theory
factors. The leading order interaction of this operator is a 4-point interaction connecting
lines in the nµ1 direction with lines in the nµ2 directions. The Feynman rule produces a

factor of ig2s
~k2⊥

wIth kµ the momentum transferred between the two lines. Operator insertions

are drawn either with a red oval, indicating its pointlike nature, or with a red dotted line,
indicating its origin in gluon exchange. For example,

IOG12
=

p1 ↗

p2 ↘

↑ k ∼= −i2Q2g2
s

∫
d4k

(2π)4

1

[−Qk− − ~k2
⊥ + iε]

1

[−~k2
⊥ + iε]

1

[Qk+ − ~k2
⊥ + iε]

(48)

This is identical to the Glauber limit of the original diagram, in Eq. (30).
Just adding this operator to the SCET Lagrangian with no other modification will lead

to overcounting. As we already observed, in most situations the Glauber contribution is
contained in the soft diagrams. The resolution proposed in [18] is to subtract off the overlap,
diagram by diagram. The viewpoint of [18] is that the Glauber mode is a separate mode from
the soft. Thus the true soft contribution, S, meaning soft without Glauber, should be defined
as the naive soft contribution S̃ (including Glaubers) with its Glauber limit S(G) subtracted:
S = S̃−S(G). This subtraction is done using the zero-bin subtraction method [11] – subtract
from the soft diagram its limit where only the terms to leading power in Glauber scaling
are kept. For those cases where the soft-Glauber contribution is identical to the Glauber
contribution, which includes active-active and active-spectator interactions [18], the result
is the same as using the naive soft graph only.

5 Factorization-violation in collinear splittings

As observed in Section 3.3, the only time hard-soft-collinear factorization can break down
is in situations where an incoming particle is collinear to an outgoing one, the space-like

21



collinear limit. In fact, it is known that in the space-like limit, amplitude-level factorization
is violated [19]. We now proceed to reproduce and discuss this important result.

Collinear factorization implies that the matrix element |M〉 for an amplitude with m
particles collinear to a particular direction is related to the amplitude |M〉 with only one
particle collinear to that direction. For simplicity, we consider here only the case with m = 1,
describing 1→ 2 collinear splittings. Let us say there are n total particles in |M〉, of which
only pµ2 is collinear to pµ1 . In this case, the splitting function Sp is defined as

|M(p1, · · · , pn, )〉 ∼= Sp(p1, p2; p3, · · · , pn) · |M(P, p3, · · · pn)〉 (49)

Here, P µ ∼= pµ1 +pµ2 , meaning P µ is an onshell momentum (P 2 = 0) which is equal to the sum
of the two momenta that split, up to power corrections in λ2 = 2p1 ·p2/Q

2, with Q the center-
of-mass energy or some other hard scale. The object Sp is an (amplitude-level) splitting
function, or splitting amplitude. The matrix elements should be thought of as vectors in
color space and Sp as an operator acting on these vectors.

Eq.(49), which has the splitting function depending on all the momenta, is called gen-
eralized collinear factorization [19]. Even generalized factorization is non-trivial. The
non-trivial part is that the splitting function is universal, independent of the short-distance
physics encoded in the matrix element |M〉.

Generalized factorization is not terribly useful for computing cross sections. For example,
since generalized splitting amplitudes depend on all the hard directions and colors in the
processes, they do not allow us to use the semi-classical parton-shower simulation method
to generate jet substructure to all orders. The parton shower can be justified when the Sp
depends only on the momenta pµ1 and pµ2 in the relevant collinear sector, Sp = Sp(p1, p2),
and only on the color T1 in that sector. When Sp has this special form, we say, following [19]
that strict collinear factorization holds.

Using results from the previous sections, we first confirm that strict factorization holds
when there are zero or one colored particles in the initial state. We then discuss the case
with two or more initial state particles where strict factorization may fail. We review the
calculation of the 1-loop factorization-violating effect in the IR-divergent part of Sp from [19]
and summarize other results from QCD. In the next sections we will reproduce these results
from SCET with Glauber operators.

5.1 Strict factorization

Let us start with the situation where pµ1 is the momentum of an outgoing quark, pµ2 is the
momentum of an outgoing gluon and none of the other n − 2 momenta are collinear to
pµ1 and pµ2 . We also take our matrix elements to be of operators with n − 1 fields, e.g.
O = ψ̄1 · · ·ψn−1. In this situation, the hard-soft-collinear factorization formula in Eq. (2)
holds for |M〉 and for |M〉. We can write

|M〉 ∼= 〈P | ψ̄ W1 |0〉
tr 〈0|Y †1 W1 |0〉

· |Mrest〉 , |M〉 ∼= 〈p1, p2| ψ̄ W1 |0〉
tr 〈0|Y †1 W1 |0〉

· |Mrest〉 (50)

22



Here, spin and color indices are suppressed (see Section 12 of [5] for more details) and tr
indicates a color trace. |Mrest〉 represents the product of the Wilson coefficient with the
matrix element of soft Wilson lines and the collinear matrix elements involving momenta in
other directions. Critically, the form of |Mrest〉 is identical for both factorization formulas.
Thus the splitting function is the ratio of the two:

Sp =
〈p1, p2| ψ̄ W1 |0〉
〈P | ψ̄ W1 |0〉

(51)

To be explicit, at tree-level, the splitting function for a right-handed quark and a negative
helicity gluon can be derived in this way [5]

Sp0
R−(p1, p2) = gs

√
2

[p2p1]

z√
1− zT1 (52)

Which agrees with the well-known tree-level QCD splitting amplitudes [32]. Derivations for
other amplitude-level splitting functions in this way can be found in [5].

Note that in this case (both pµ1 and pµ2 outgoing), the splitting function depends only on
these two momenta and also only on the net color in the 1 direction. This is what is referred
to as strict factorization.

5.2 Strict factorization violation from iπ/ε terms

Next, let us consider a general process where pµ1 and pµ2 are to become collinear and the other
momenta point in generic directions. We do not yet specify which particles are incoming or
outgoing and want to see what sufficient conditions are for strict factorization to be violated.

Since pµ1 or pµ2 may be incoming, we cannot assume the hard-soft-collinear factorization
formula in Eq. (2) is correct at leading power in λ2 = p1 · p2/Q

2. However, as long as pµ1
and pµ2 are not pointing in exactly the same direction (so λ 6= 0), then the factorization
formula guarantees that all of the infrared divergences of the full theory are reproduced in
the factorized expression. That is, the Glauber contribution is contained in the soft except
at the exceptional point in phase space where pµ1 ∝ pµ2 . This is very powerful, as we can then
determine the IR divergences of |M〉 and |M〉 separately and then explore the limit where
pµ1 becomes collinear to pµ2 [19].

Consider the matrix element |M〉 of a hard operator with n−1 fields. |M〉 is the matrix
element before the emission, where the parton in the 1 direction has momentum P µ ∼= pµ1 +pµ2 .

|M〉 = 3

(12)

· · · n− 1

n

(53)

The color associated with P µ we write as (12). This means that the color operator acts as
the sum of the color operators for pµ1 and pµ2 : T(12) ·X = (T1 + T2) ·X.
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Now, as long as pµ1 and pµ2 are not proportional, nothing stops us from treating them as
separate hard directions. Then |M〉 is also given by a the matrix element of a local operator
whose infrared divergences are reproduced by the factorized expression

|M〉 = 3

1

· · · n− 1

2

n

(54)

For strict factorization to hold, these two expressions should be related by a splitting function
Sp that depends only on the (12) system, independent of the rest of the process.

Let us now look at the 1-loop corrections to |M〉 and |M〉. In particular, we are interested
in the Glauber contribution since that is where factorization violation might come from. The
Glauber contribution is contained in the soft contribution and at 1-loop is purely imaginary,
as shown in Section 4. Indeed, at 1-loop the Glauber contribution is particular simple: it gives
a factor of αs

2π
( iπ
εIR
− iπ

εUV
), as in Eq. (37) if the two lines the loop connects are both outgoing or

both incoming. Here we keeps the IR poles only as the UV poles will be renormalized away.
In QCD, one gets this 1-loop contribution multiplied by a group theory factor of Ti ·Tj. For
example, a gluon connecting lines 1 and 3 gives

|MG1〉 =

j

i

=
∑
i<j

both in or both out

Ti ·Tj
αs
2π

iπ

ε
· |M0〉 (55)

where G1 stands for the 1-loop Glauber contribution to |M〉 and |M0〉 is |M〉 to lowest
order in gs. We have neglected the UV pole in Eq. (55). Although we draw the contribution
as a dotted red line, as in the SCET approach, all we are using here is that the Glauber
contribution is identified with the imaginary part at 1-loop which follows from any method
of computation. The 1-loop Glauber corrections to |M〉 is given by the same formula, but
summed over the n− 1 partons.

Let us first consider the case where all the particles are outgoing or all incoming. To
simplify the expression we can use color conservation,

∑
j Tj = 0 and Ti ·Ti = Ci where Ci

is the group Casimir (a number not an operator). We then find

|MG1〉 =
αs
2π

iπ

ε

1

2

n∑
i=1

Ti · (−Ti) · |M0〉 = −αs
4π

iπ

ε

n∑
i=1

Ci · |M0〉 (all outgoing) (56)

For |M〉 we have

|MG1〉 =
αs
4π

iπ

ε

[
−T(12) ·T(12) −

n∑
i=3

Ti ·Ti

]
·|M0〉 = −αs

4π

iπ

ε

[
C(12) +

n∑
i=3

Ci

]
·|M0〉 (57)
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The splitting function has to reproduce the ratio of these two. Thus

iIm Sp1 =
αs
4π

iπ

ε

[
C(12) − C1 − C2

]
· Sp0 + finite terms (all outgoing) (58)

This color factor only depends on the colors of the particles in the 12 sector, independent of
the rest of the event, consistent with strict collinear factorization.

Next, suppose that pµ1 is in the initial state but all other particles are in the final state.
Then there is no Glauber contribution from anything connecting to pµ1 nor from anything
connecting to P µ = pµ(12) in the case of |M〉. With this arrangement,

|MG1〉 =
αs
4π

iπ

ε

n∑
i=2

Ti·(−Ti−T1)·|M0〉 = −αs
4π

iπ

ε

[
−C1 +

n∑
i=2

Ci

]
·|M0〉 (one incoming)

(59)
where

∑n
i=2 Ti = −T1 has been used twice. Similarly,

|MG1〉 =
αs
4π

iπ

ε

n∑
i=3

Ti·(−Ti−T(12))·|M
0〉 = −αs

4π

iπ

ε

[
−C(12) +

n∑
i=3

Ci

]
·|M0〉 (1 incoming)

(60)
Thus, with one incoming colored particle

iIm Sp1 =
αs
4π

iπ

ε

[
−C(12) + C1 − C2

]
· Sp0 + finite terms (one incoming) (61)

Although this splitting function is different from the all outgoing case, Eq. (58), both depend
only on the colors of the particles in the 12 sector. Thus with one incoming particle, we
cannot conclude that strict collinear factorization is violated.

Now suppose pµ1 and another particle, pµ3 are both in the initial state, with pµ3 still generic
(not collinear to any other direction). For M, which has pµ2 outgoing, we get

|MG1〉 =
αs
2π

iπ

ε

[
T1 ·T3 +

1

2

∑
i=2,4···n

Ti · (−Ti −T1 −T3)

]
· |M0〉 (62)

=
αs
2π

iπ

ε

[
2T1 ·T3 +

1

2
C1 +

1

2
C3 −

1

2
C2 −

1

2

n∑
i=4

Ci

]
· |M0〉 (1 and 3 incoming)

(63)

The matrix element |M〉, correspondingly has (12) and 3 incoming. Its 1-loop Glauber
contribution is

|MG1〉 =
αs
2π

iπ

ε

[
2T(12) ·T3 +

1

2
C(12) +

1

2
C3 −

1

2

n∑
i=4

Ci

]
· |M0〉 (64)

So we find

Sp1,non-fact = iIm Sp1 =
αs
4π

iπ

ε

[
−C(12) + C1 − C2 − 4T2 ·T3

]
·Sp0+finite terms (1 and 3 incoming)

(65)
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where Spnon-fact denotes strict-factorization-violating contributions. This form indicates a
violation of strict collinear factorization: the splitting function depends on the color of
particles in the matrix element other than those involved in the splitting (T3 in this case).
The result in Eq. (65) was first derived in Ref. [19] by examining IR singularities of full QCD
amplitudes [33–35] in different kinematical regions. The authors of Ref. [19] also derived
the 1-loop finite part and the 2-loop IR singular part of factorization violating splitting
amplitudes, as we discuss next.

5.3 Strict-factorization violation from full QCD

Next, we summarize some known additional results about factorization-violation from full
QCD, including the 1-loop finite parts and the 2-loop divergent parts of Spnon-fact.

The IR divergent part of a 1-loop amplitude is defined relative to the tree-level amplitude
as

|M1〉 = I1(ε) |M0〉+ |M1,fin.〉 (66)

where |M1,fin.〉 is a finite, analytic function of the momenta. The general expression for
I1(ε) follows from Eq. (32) with the appropriate sum over pairs of external legs to which the
virtual gluon can attach and appropriate color factors. The 1/ε2 poles are color diagonal.
Using color conservation to simplify the result, an amplitude in QCD with n external partons
with colors Ti has IR divergences given by [33]

I1(ε) =
αs
2π

1

2

[
−

n∑
i=1

(
Ci
ε2

+
γi
ε

)
− 1

ε

n∑
i 6=j

Ti ·Tj ln
−sij − iε

µ2

]
(67)

Here γi is the regular (non-cusp) anomalous dimension: γq = 3CF/2 for quarks and γg = β0 =
11
6
CA − 2

3
TFnf for gluons. Although anomalous dimensions are usually associated with UV

divergences, they appear in this expression because they can be extracted using properties
of scaleless integrals in dimensional regularization, in which the UV and IR divergences
cancel [34].

We are interested here in the order-by-order expansion of the splitting amplitudes. We
write

|M0 +M1 + · · ·〉 ∼= (Sp0 + Sp1 + · · · ) |M0
+M1

+ · · ·〉 (68)

So that |M0〉 = Sp0 |M0〉 at tree-level, |M1〉 = Sp0 |M1〉+ Sp1 |M0〉 at 1-loop, and so on.
It can be helpful to separate out the divergent parts of the splitting function too. We define,

Sp1 = I1
C · Sp0 + Sp1,fin. (69)

where Sp1,fin. is an IR-finite analytic function of momenta. All the IR divergences are
absorbed in I1

C . It is not hard to show that [19,20]

I1
C = I1 − I

1
(70)

where I
1

is the divergent part of |M1〉, as in Eq. (66).
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Plugging in Eq. (67) gives

I1
C =

αs
2π

1

2

[
C(12) − C1 − C2

ε2
− γ(12) − γ1 − γ2

ε
− 2

ε
T1 ·T2 ln

−s12 − iε
µ2

−2

ε

n∑
j=3

(
T1 ·Tj ln

−s1j − iε
µ2

+ T2 ·Tj ln
−s2j − iε

µ2
−T(12) ·Tj ln

−s(12)j − iε
µ2

)]
(71)

The factorization violation in Sp1 is contained in the imaginary part of I1
C . Explicity, when

there are two incoming momenta,

iIm I1
C =

αs
4π

iπ

ε

[
−C(12) + C1 − C2 − 4T2 ·T3

]
(1 and 3 incoming) (72)

in agreement with Eq. (65).
The same approach can be used to extract the finite parts of the 1-loop splitting functions.

The expression for I1
C from [19], including terms that are IR-finite is

I1
C = cΓ

(−s12 − iε
µ2

)−ε
αs
2π

1

2

{
C(12) − C1 − C2

ε2
+
γ(12) − γ1 − γ2 + β0

ε

+
2

ε

[
n∑
j=3

T1 ·Tjf(ε, 1− z) +
n∑
j=3

T2 ·Tjf(ε, z − iεsj2)

]}
(73)

where cΓ ≡ Γ(1+ε)Γ2(1−ε)
(4π)2−εΓ(1−2ε)

. The function f(ε, z) is a hypergeometric function, defined by

f(ε, 1/x) ≡ 1

ε

[
2F1(1,−ε; 1− ε; 1− x)− 1

]
= lnx− εLi2(1− x) +O(ε2) (74)

The convention taken is that 1 − z > 0. This can be assumed for timelike or spacelike
splittings without loss of generality since z + (1 − z) = 1 (i.e. z can still be positive or
negative). Thus the f(ε, 1 − z) factor in Eq. (73) is real and unambiguous. The function
f(ε, z) has a cut for negative real z, i.e. for spacelike splittings. Writing f(ε, z − iεpj · p2) in
Eq. (73) makes the result well-defined. In particular, the sign of the imaginary part of the
function is determined by the sign of pj · p2. This dependence of the analytic continuition on
the momentum pj obstructs the reduction of Eq. (73) to a form that obeys strict factorization.

To see the factorization violating part of the ε0 term, we can use

Im Li2(1− 1

z ± iε) = ±π ln(1− 1

z
) (75)

Then the factorization violating contribution is seen to be

Sp1,non-fact = iIm Sp1

= cΓ
αs
4π

(iπ)

(
1

ε
+ ln

z − 1

z
+ ln

µ2

−s12

)
[−4T2 ·T3] Sp0 + · · · (1 and 3 incoming) (76)
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where the · · · include terms that do not violate strict factorization, such as the C1 and C2

terms in Eq. (72).
The factorization-violating IR-divergent part of the 2-loop splitting function is also pre-

sented in [19]. The 2-loop splitting amplitude can be written as

Sp2 =

[
∆2

C(ε) +
1

2
(I1
C)2

]
· Sp0 +

1

ε
terms + finite (77)

where

∆2
C(ε) =

(αs
2π

)2
(−s12 − iε

µ2

)−2ε

πfabc
∑
i=1,2

n∑
j,k=3

Ta
iT

b
jT

c
kΘ(−zi)sign(sij)Θ(−sjk)

× ln

(
−sjP skP z1z2

sjks12

− iε
)[
− 1

2ε2
+

1

ε
ln

( −zi
1− zi

)]
(78)

This contribution is non-vanishing only if the amplitude involves both incoming and out-
ing colored partons. The most important part of this 2-loop splitting function is the real
component, since it can contribute to the cross section. The real part is contained in the
anti-Hermitian combination of ∆2

C(ε) is

1

2

(
∆2

C(ε)− ∆̃2,†
C (ε)

)
= −iα

2
s

4

(−s12 − iε
µ2

)−2ε

fabc
∑
i=1,2

n∑
j,k=3

Ta
iT

b
jT

c
kΘ(−zi)sign(sij)Θ(−sjk)

×
[
− 1

2ε2
+

1

ε
ln

( −zi
1− zi

)]
(79)

In a representation where the Ta
j are purely imaginary, this contribution is purely real.

6 Factorization violation from SCET

We have seen that splitting functions violate strict factorization starting at 1-loop. The
condition for strict-factorization violation is that there be more than one colored particle in
both the initial and final state. In such a situation the amplitude for producing a final-state
particle collinear to one of of the initial-state particles (a spacelike splitting) depends on the
colors and momenta of particles not collinear to it. The factorization-violating contribution
was derived in [19, 20] by taking limits of the full n + 1-body matrix elements in QCD. We
reviewed the procedure for the 1-loop IR divergent part and discussed the extension to also
include the finite part and to 2-loops.

In SCET the IR divergences of both |M〉 and |M〉 agree with full QCD, so the derivation
of Eq. (71), which encodes 1-loop factorization violation, could be done in SCET by taking
limits of n+1 amplitudes, as in QCD. Note that all the IR divergences of QCD are reproduced
in SCET without any special consideration of the Glauber contribution (i.e. because Glauber
modes are contained in soft modes for hard scattering, as discussed in Section 3). However,
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SCET should also be able to produce the splitting functions using an effective field theory
constructed using only the n collinear directions of |M〉, i.e. not by taking the limit of an
effective field theory with n + 1 collinear directions. In that case, we do need the Glauber
operators. We we would like to know is whether the generalized splitting function can be
derived without knowing features of the full n+1 body amplitudes by the addition of Glauber
operators to SCET.

6.1 Tree-level splitting amplitudes in SCET

To begin, let’s discuss how a splitting amplitude would be calculated in SCET with soft
and collinear modes, but no Glauber operators. SCET without Glaubers can produce the
strict-factorization-preserving splitting amplitude Spfact, but not the factorization-violating
parts in Spnon-fact. Recall our notation that P µ ∼= pµ1 + pµ2 is mother parton momentum.
We take P µ and the daughter momentum pµ1 to be incoming and pµ2 to be outgoing. The
strictly-factorizing splitting amplitude is then as in Eq. (51):

Spfact =
〈p2|W †

1 ψ |p1〉
〈0|W †

1 ψ |P 〉
(80)

Here ψ̄ is an ordinary Dirac fermion and W1 is a collinear Wilson line pointing in a direction
tµ not collinear to P µ. In the traditional formulation of SCET ψ̄ carries a label specifying
the large and perpendicular components of its momentum, and the interactions of ψ with
collinear gluons are power expanded. However it is simpler to use the full QCD Feynman
rules as we do here.

The tree-level splitting amplitudes are easily computed from Eq. (80) (see [4]):

Sp0 =
〈p2|W †

1 ψ |p1〉tree

〈0|W †
1 ψ |P 〉tree

= p1 ←
p2 ↗

+ − (81)

The first diagram has the gluon coming off the fermion from a Lagrangian interaction,
the second diagram has the gluon coming out of the Wilson line. These graphs evaluate to

〈p2|W †
1 ψ |p1〉tree = gs T1

[
t · ε
t · p2

− �ε(p/1 + p/2)

(p1 + p2)2

]
v(p1) (82)

The dependence on the Wilson line direction tµ drops out for physical polarizations. The
result is [4]

Sp0
R− = gs

√
2

[p2p1]

z√
1− zT1, Sp0

R+ = gs

√
2

〈p1p2〉
1√

1− zT1, (83)

Sp0
L± are related to Sp0

R∓ by parity conjugation. Here R and L refer to the spin of the
fermion (right or left) and ± refer to the helicities of the emitted gluon. These tree-level
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splitting functions hold for any kinematical configuration, as strict-factorization holds at tree
level.

In Eq.(82), we used QCD Feynman rules, as is appropriate for evaluating the splitting
function defined in Eq. (80). This is based on the reformulation of SCET in [4] and [5]. In
traditional SCET, the splitting function is computed from 〈p2|Wn̄

† ξn |p1〉 with ξn a collinear
quark, i.e. one whose interactions are truncated to leading power. The denominator in
Eq. (80) is replaced by the diagram-level zero-bin subtraction procedure outlined in [11].
The SCET Feynman rules [36] then give

〈p2|Wn̄
† ξn |p1〉tree = −gsT1

[
n/

2

n · (p1 + p2)

(p1 + p2)2

(
n · ε+

p/2,⊥ε/⊥
n̄ · (p1 + p2)

)
n̄/

2
+

n̄ · ε
n̄ · p2

]
vn(p1) (84)

where pµ1 ∝ nµ has been used and the Wilson line direction tµ is set to n̄µ. Simplifying this
expression for the various helicity/spin combinations gives the same splitting functions as in
Eq. (83).

To compute the 1-loop corrections to Spfact we need to evaluate Eq. (80) to next order.
non-collinear sectors encapsulated by the Wilson lines. Evaluating the relevant graphs should
produce a result equivalent to known results about 1-loop splitting amplitudes from full QCD.
This calculation has not been done in SCET, to our knowledge, and would certainly be a
interesting check on the formalism that we leave to future work.

6.2 Factorization violating contributions

To compute the contributions to the generalized splitting function that violate strict fac-
torization, we obviously cannot start from the factorized expression Eq. (2) which leads
to Eq. (80). The advantages of writing a factorized expression as in Eq. (2) include first,
that it involves only QCD fields and the familiar QCD Feynman rules, and second, that
the soft-collinear overlap is removed through an operator matrix element. The inclusion of
Glauber effects has so far only been formulated in the traditional presentation of SCET [18],
with collinear and soft fields and their associated SCET Feynman rules and with the overlap
removed by a diagram-by-diagram zero-bin subtraction procedure. In this approach, one
writes matrix elements in the effective theory as one big operator product

|M〉 ∼= C(Sij) 〈p2; · · ·XN ;XS|φ?W1Y
†

1 · · ·W †
NYNφ |p1;X3〉 (85)

Similarly,
|M〉 ∼= C(Sij) 〈· · ·XN ;XS|φ?W1Y

†
1 · · ·W †

NYNφ |P ;X3〉 (86)

The generalized splitting function can be computed as the ratio of these matrix elements
using SCET Feynman rules and appropriate zero-bin subtractions.

As indicated in Section 4.4, Glauber effects are included in SCET through the addition
of potential operators that couple pairwise all possible fields in all possible collinear sectors.
These operators are schematically of the form OG ∼ ψ̄iψi

1
P2
⊥
ψ̄jψj, as in Eq. (46), with a

plethora of terms in QCD, as in Eq. (47). There are different operators coupling quarks to
quarks, gluons to gluons and quarks to gluons. See [18] for all the details.
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Most of the time, the effects of these Glauber operators are identical to the effects of the
Glauber limit of the soft diagrams (connecting the soft Wilson lines Yj in Eq. (85)). Thus
one must either subtract the overlap, as is done in [18], or more simply compute the full soft
graphs without the soft-Glauber subtraction, and not bother including the Glauber operator
contribution when it is not needed. Thus for example, the following graphs contribute to
|M〉:

ISa = soft

3

1

p2

, IGa = Glauber

3

1

p2

(87)

Here the horizontal gluon with a line through it is a collinear emission, the vertical gluon
is soft, and the dots are Glauber. Since the Glauber limit of ISa gives exactly IGa, we can
simply compute ISa without zero-bin subtracting and not include IGa. Moreover, ISa gives
the same result as the analogous contribution to |M〉 (the graph is the same without the
emitted gluon), thus we can ignore both of these graphs when computing the 1-loop splitting
amplitude.

The Glauber graphs that cannot be ignored are those for which there is not a correspond-
ing soft graph. In SCET, the interactions of soft gluons with collinear fields are completely
removed from the Lagrangian; they only come from the Wilson lines in Eqs. (85) and (86).
These can be drawn coming out of the blob, since that represents the operator containing
the Wilson lines, or slightly shifted away from the blob, as in the diagrams in Eq. (87). Thus
thus graphs like

ISb =

j

1

p2

, IGb =

j

1

p2

(88)

give identical Glauber contributions to |M〉. We can therefore ignore both due to the soft-
Glauber zero-bin subtractions. Note that while the soft graph factorizes into the product of a
soft matrix element and a collinear emission, the Glauber graph does not factorize. Thus we
cannot claim that IGb is identical to the contribution from the analogous graph contributing
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to |M〉. Instead, we need to look at the graphs contributing to |M〉:

ĪSb =

j

1

, ĪGb =

j

1

(89)

These have identical Glauber contributions and can be dropped by the zero-bin subtraction.
The Glauber graphs that have no corresponding soft graph are:

IjGc =

j

1

p2

, IjGd =

j

1

p2

, IjGe =

j

1

p2

(90)
The upper Glauber vertex in IjGc comes from the expansion of the collinear Wilson line in
the quark-quark Glauber operator connecting the 1 and j directions. One must consider
these three graphs for any direction j = 3 · · ·N .

To evaluate IjGc, we first note that the collinear Wilson line direction tµ1 can be anything
not collinear to the pµ1 direction. We can therefore choose a basis of polarization vectors
ε±(p2) for the outgoing collinear gluon with momentum pµ2 so that t1 · ε± = 0. Doing so
makes graph IjGc = 0 for any j.

Next, we turn to IjGd. In position space, this graph describes a Glauber exchange that
takes place earlier in time than the collinear emission. That is, the emission interrupts the
Glauber loop. In such a situation, a general argument as given in [18] that the graph must
vanish. We can also see it directly from the integral itself. Working in lightcone coordinates,
pµ1 = −1

2
Qnµ and pµ2 = 1

2
p+

2 n
µ + 1

2
p−2 n̄

µ + pµ2,⊥. For j ≥ 3, we have pµj = 1
2
Qjn

µ
j (for outgoing

pµj ) or pµj = −1
2
Qjn

µ
j (for incoming pµj ). And we decompose the Glauber momentum kµ with

respect to nµ and nµj so that for each diagram k− = n · k, k+ = nj · k. This gives

IjGd =

pj ↙

p1 ↖

k ↓

→ p2

j

1

∼
g2
s

∫
d4k

(2π)4

1

~k2
⊥

n · nj
2

∓1

∓Qjk+ − ~k2
⊥ + iε

× 1

Qk− − ~k2
⊥ + iε

1

Qk− − (~k⊥ + ~p2,⊥)2 −Qp+
2 + iε

× · · ·

(91)
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with the · · · at the end representing the numerator and spin structure that are irrelevant
here. Here the ∓ sign denotes either outgoing (−) or incoming (+) pj. We note that only
two propagators depend on k−, and both of the corresponding poles in the complex k− plane
are below the real k− axis. Thus we can close the k− contour downward and the integral
vanishes.3

Note that if there were no emission, the graph would reduce to the Glauber vertex
correction in Eq. (30) which does not vanish. The extra emission adds a propagator that
causes the integral to be convergent at |k−| = ∞ allowing us to evaluate it using Cauchy’s
theorem. Adding more propagators interrupting the Glauber loop will only add more poles
on the same side of the real k+ axis. This is the momentum-space version of the argument
in [18] that Glauber exchanges cannot be interrupted.

Finally, we turn to graph IjGe. This one will not vanish, so we have to work out the full
numerator structure. It is

IjGe =

pj ↙

p1 ↖

k↙

→ p2

j

1

2

=

2ig3
s(T2 ·Tj)T1M0

∫
ddk

(2π)d
1

|2kz|η
n · nj

2

× ∓1

∓k+ − δj + iε

Nµ(p1, p2, k)

~k2
⊥

1

k− − δ2 + iε

1

−k− + δ1 + iε
εµ(p2)

(92)
with the upper (lower) signs on the second line corresponding to pµj outgoing (incoming).
Here, the |2kz|−η factor comes from the rapidity regulator. The denominator factors are

δj =
~k2
⊥
Qj

, δ2 =
(~p2,⊥ + ~k⊥)2

p+
2

− p−2 , δ1 = −(~p2,⊥ + ~k⊥)2

Q− p+
2

− p−2 . (93)

Recall that p1 = −1
2
Qnµ, which explains how δ2 becomes δ1 under pµ2 → pµ2 + pµ1 . The

numerator factor is

Nµ(p1, p2, k) =
n/

2

[
− 2(p2,⊥ + k⊥)µ

p+
2

+
(p/2,⊥ + k/⊥)γµ⊥
−Q+ p+

2

] n̄/
2
v(p1) (94)

where γµ⊥ are the perpendicular components of γµ, projected out as with a 4-vector: γµ⊥ =
γµ − 1

2
n̄/nµ − 1

2
n/n̄µ. In the numerator expression, the n/ and n̄/ factors at the beginning

and the end project onto the collinear spinors. The part in bracket comes from expanding
the QCD vertex at leading power, according to the SCET Feynman rules, using the vertex
coming from the quark-gluon Glauber operator, and simplifying. That this numerator factor
depends only on kµ⊥, not on k+ or k− greatly simplifies the calculation. This simplification
comes from keeping only the leading-power interactions, as in SCET.

To evaluate this graph we first write k± = k0 ± kz and perform the k0 integration by
contours. The poles at k0 = kz + δ2 − iε and k0 = kz + δ1 + iε pinch the contour in the

3This argument only works if the integral is convergent, which requires the rapidity regulator. See the
longer discussion in Section 8.
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Glauber region [37]. If we take pµj to be outgoing (upper signs in Eq. (92)), then the pole
from the first propagator is at k0 = −kz − δj + iε. We then close the contour downwards
setting k0 = kz + δ2 so that k− = δ2 and k+ = 2kz + δ2. This gives

IjGe = −2g3
s(T2 ·Tj)T1M0

∫
dd−2k⊥
(2π)d−1

Nµ

~k2
⊥

1

δ1 − δ2

εµ(p2)

∫
dkz

1

|2kz|η
1

−2kz − δ2 − δj + iε

(95)

The kz integral is straightforward to evaluate (see. Eq. (B.4) of [18]):∫ ∞
−∞

dkz

2π

1

|2kz|η
1

2kz + 2∆ + iε
=

1

4π

[
(−2πi) csc(2πη) sin(πη)(−i∆)−2η

]
(96)

=
1

4π
(−iπ) +O(η) (97)

Note that the kz integral cares only about the discontinuity of [−2kz− δ2− δj + iε]−1, which
is independent of the value of δ2 and δj. Even though the result is independent of η as η → 0,
one still needs the rapidity regulator to make the integral well-defined. Indeed, the rapidity
regulator imparts critical non-analyticity allowing the graph to vanish for pµ2 incoming but
not for pµ2 outgoing.

If the non-collinear leg pµj that the Glauber gluon connects to is incoming (+ sign in
Eq. (92)) , then the pole for from the first propagator is at k0 = −kz + δj− iε. We then close
the contour upwards setting k0 = kz + δ1 so that k− = δ1 and k+ = 2kz + δ1. This gives

I3
Ge = 2g3

s(T2·Tj)T1M0
∫

dd−2k⊥
(2π)d−2

Nµ

~k2
⊥

1

δ1 − δ2

εµ(p2)

∫
dkz

2π

1

|2kz|η
1

2kz + δ1 − δj + iε
(98)

Compared to Eq. (95), we have a relative minus sign from the integrand. The result is the
same as Eq. (95) with a − out front. That is.

IjGe = ∓2g3
s(T2 ·Tj)T1 · M0n/

2

[
−2ε⊥,µ

p+
2

+
γ⊥,µ/ε⊥
Q− p+

2

]
n̄/

2
u(p1)

× 1

4π
(iπ)

p+
2 (Q− p+

2 )

Q

∫
dd−2k⊥
(2π)d−2

pµ2,⊥ + kµ⊥

(~p2,⊥ + ~k⊥)2

1

~k2
⊥

(99)

Here the ∓ sign denotes either outgoing (−) or incoming (+) pj. The k⊥ integral is regulated
in d− 2 = 2− 2ε dimensions:

µ4−d
∫

dd−2k⊥
(2π)d−2

pµ2,⊥ + kµ⊥
~k2
⊥ (~p2,⊥ + ~k⊥)2

=
1

4π

pµ2,⊥
~p2

2,⊥

(
4πµ2

~p2
2,⊥

)ε
Γ(−ε)Γ(1 + ε)

Γ(1− 2ε)

=
1

4π

pµ2,⊥
~p2

2,⊥

(
4πe−γEµ2

~p2
2,⊥

)ε(
−1

ε
+O(ε)

)
(100)
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Putting things together, this diagram is

IjGe = ±αs
2π

(
4πe−γEµ2

p2
2,⊥

)ε(
iπ

ε
+O(ε)

)
(T2 ·Tj)T1 · M0

× gs
p+

2 (Q− p+
2 )

Q~p2
2,⊥

n/

2

[
−2p2,⊥ ·ε⊥

p+
2

+
p/2,⊥/ε⊥
Q+ p+

2

]
n̄/

2
u(p1) (101)

where the +(−) sign corresponds to pj outgoing (incoming). Using the on-shell condition:

p2,⊥ ·ε⊥ = −1
2
p+

2 n ·ε− 1
2
p−2 n̄ ·ε

r=n̄
= −1

2
p+

2 n ·ε, we recognize the spin structure in Eq. (101) to
be the same as the tree-level splitting amplitude, as in Eq. (84). Thus,

IjGe = ±αs
2π

(
4πe−γEµ2

~p2
2,⊥

)ε(
iπ

ε
+O(ε)

)
(T2 ·Tj) Sp0 · M0

(102)

= ±αs
2π

(4πe−γE)ε(iπ)

(
1

ε
+ ln

µ2

~p2
2,⊥

+O(ε)

)
(T2 ·Tj) Sp0 · M0

(103)

Recall that
z

1− z =
p+

2

p+
1

(104)

we have ~p2
2,⊥ = (−2p1 ·p2) z

(z−1)
, and

IjGe = ±αs
2π

(4πe−γE)ε(iπ)

(
1

ε
+ ln

µ2

−2p1 · p2

+ ln
z − 1

z
+O(ε)

)
(T2 ·Tj) Sp0 · M0

(105)

Summing over all j, and let p3 be an incoming parton, we then get

Sp1,non-fact =
αs
2π

(4πe−γE)ε(iπ)

(
1

ε
+ ln

µ2

−2p1 · p2

+ ln
z − 1

z

)(
−T2 ·T3 +

∑
j>3

T2 ·Tj

)
Sp0

(106)

= iαs(4πe
−γE)ε

(
1

ε
+ ln

µ2

−2p1 · p2

+ ln
z − 1

z

)
(−T2 ·T3) Sp0 + · · · (107)

where the · · · respect strict factorization. This reproduces both the singular and the finite
parts of the 1-loop factorization-violating splitting function, as in Eq. (76).

7 Two-loop factorization-violation from SCET

In SCET, the 2-loop splitting function comes from expanding the ratio of |M〉 to |M〉
as in Eqs. (85) and (86) to 2-loop order. Physical effects of factorization violation must
occur at the cross-section level, thus the most important effect we are looking for is a real
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(a) (b) (c) (d)

Figure 2: Example Glauber diagrams that can be ignored for the 2-loop splitting amplitude.

(a) (b)

Figure 3: Example Glauber-soft and Glauber-collinear mixing diagrams that may break
strict collinear factorization.

contribution to Sp2,non-fact.. We will therefore focus on isolating this real part, which should
match Eq. (79). Factorization violating effects at 2-loops will necessarily involve insertions
of the Glauber operator, and at 2-loops there can be 1 or 2 exchanged Glauber gluons.

Not all 2-loop diagrams involving Glauber gluons can contribute to factorization-violation.
For example, none of the diagrams in Fig. 2 are relevant. Fig. 2(a) and Fig. 2(b) describe
Glauber exchange right next to the hard interaction. For these graphs, as at 1-loop, the
Glauber is contained in the soft contribution and does not generate factorization violation.
Diagrams like Fig. 2(c) with a disconnected soft loop cancel with the product of a 1-loop
Glauber exchange and a 1-loop soft contribution. Fig. 2(d) is an example of diagram with
collinear loops in the nj sector, with j 6= 1. Since the flow of Glauber momentum fol-
lows the direction of energy flow in the nj−collinear propagators, the nj−component of
Glauber momentum is not pinched. Thus the Glauber contribution is contained in the soft
contribution, or, more physically, the Glauber contribution acts coherently on the on the
nj−collinear fields. The sum of such diagrams will cancel with the product of the 1-loop
Glauber contribution and the 1-loop collinear contribution. It is not hard to see that that
loop corrections due to interactions between fields in the non-collinear sectors do not con-
tribute to the factorization-violating part of the splitting amplitude.

Two-loop diagrams that can contribute to factorization violation must involve color ex-
change between the daughter gluon and hard non-collinear partons. They can be categorized
as double Glauber exchange, Glauber-soft mixing and Glauber-collinear mixing diagrams.
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The splitting amplitude is thus given by

Sp2,non-fac. · |M0〉 = |M2〉double Glauber − Sp1,non-fac. · |M1〉Glauber loops

+ |M2〉
non-fac.

Glauber-soft + |M2〉
non-fac.

Glauber-coll. − Sp1,non-fac. · |M1〉n1−coll. loops (108)

The first term on the right-hand-side of Eq. (108) corresponds to double Glauber diagrams,
with examples given in Fig. 4 and Fig. 5. Since each Glauber sub-loop produces a factor
of (iπ), these terms are purely real. Similar to the 1-loop Glauber diagrams, we expect
that double Glauber diagrams to be rapidity-finite and have no logarithmic dependence on
the momenta of non-collinear partons. The second term in Eq. (108) takes away the 1-loop
factorization-breaking effect. The second line of Eq. (108) comes from Glauber-soft and
Glauber-collinear diagrams that violates factorization. Representative diagrams for each set
are shown in Fig. 3. These diagrams have highly non-trivial kinematic dependence on all
external partons and involve two-loop multi-leg loop integrals with rapidity divergences. A
full explicit calculation of these diagram is beyond the scope of our paper. In the following
section we will carry out the calculation of double Glauber diagrams and show that the first
line of Eq. (108) reproduces the leading pole of the real part of Sp2,non-fac..

7.1 Double-Glauber diagrams

In this section, we give explicit results for double-Glauber exchange diagrams that can violate
strict factorization. To evaluate the diagrams, we use the rapidity-regularization scheme
given in [18], which adds a convergence factor of 1

|kz |η to the integrand for both Glauber
momenta. We refer to p1 and p2 as collinear partons and all other partons as non-collinear.
We discuss and summarize the calculation here, leaving the details of some representative
calculations to Appendix A.

All of the relevant double Glauber diagrams have at least one Glauber attached to the
p2 gluon. Diagrams where neither Glauber attaches to p2 either vanish or are contained in

|M1〉Glauber loops. None of the relevant diagrams have Glauber gluons attached to p1; when
the Glauber gluon attaches to p1, the Glauber loop is interrupted by the real emission and
the diagram will vanish (just as IjGd = 0 in Section 6.2). The relevant diagrams can be
divided into two categories, those involving two hard-collinear directions (Fig. 4), and those
involving three hard-collinear directions (Fig. 5).

We will start with diagrams in Fig. 4 involving two hard-collinear directions. These can
either have two Glauber vertices on p2 and two on a non-collinear parton pj or they can have
one Glauber vertex on p2, one on the internal collinear line labeled as p(12), and the other
two on pj.
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(a) (b) (c)

(d) (e) (f)

Figure 4: Double Glauber exchange diagrams that involve two collinear sectors.

Fig. 4(a) and Fig. 4(b) describe Glauber exchange with outgoing non-collinear partons.
Fig. 4(a) has two parallel Glauber rungs which can be ordered in time. We find

1

3 j

(12)

2

=

(Tb
2T

c
2)(Tb

jT
c
j) Sp0M0

× 1

2!

(αs
2π

)2

(iπ)2

(
4πµ2

~p2
2,⊥

)2ε

[Γ(−ε)]2 Γ(1− ε)Γ(1 + 2ε)

Γ(1− 3ε)

(109)
The 1/2! is a symmetry factor coming from time-ordering of the two Glaubers. Fig. 4(b)
has two crossed Glauber rungs such that the ordering of the Glauber vertices in light-cone
time are the opposite on each line. The integral vanishes since all poles lie on the same side
of k0−complex contour:

= 0 (110)

The sum of these two diagrams gives

+
double pole

=
1

2!
(T2 ·Tj)

2 Sp0M0
(αs

2π

)2

(iπ)2 1

ε2
(111)
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Note that this is exactly half of the 1-loop Glauber exchange diagram squared (see Eq. (103)).
This contribution must be summed over all outgoing legs j.

Fig. 4(c) and Fig. 4(d) describe Glauber exchanges between p2 and the other incoming
parton p3:

=

(Tb
2T

c
2)(Tc

3T
b
3) Sp0M0

× 1

2!

(αs
2π

)2

(iπ)2

(
4πµ2

~p2
2,⊥

)2ε

[Γ(−ε)]2 Γ(1− ε)Γ(1 + 2ε)

Γ(1− 3ε)

(112)

Compared with Fig. 4(a), the order of color generators switches on the non-collinear leg.
Similar to Fig. 4(b), the cross Glauber graph vanishes:

= 0 (113)

Now we write (Tb
2T

c
2)(Tc

3T
b
3) as (T2 ·T3)2 +CAT2 ·T3, and focus on the leading pole. The

sum of these two diagrams is

+
double pole

=
1

2!

[
(T2 ·T3)2 + CAT2 ·T3

]
Sp0M0

(αs
2π

)2

(iπ)2 1

ε2

(114)
Note that this result is similar to half the square of the leading pole from the corresponding
1-loop diagram; it contains, however, an additional CA term that comes from the switching
the order of color generators as compared to Fig. 4(a).

So far we considered diagrams with two Glauber vertices on p2. Now we move on to
diagrams with one Glauber vertex on p2 and the other on the internal collinear line, namely
p(12). The diagram where a Glauber completes a loop connecting p(12) to a non-collinear
parton pj looks like the vertex diagram IGlauber discussed in Section 4. It vanishes if pj is
outgoing such that p(12) ·pj < 0. When pj is incoming, we can write down two such diagrams
Fig. 4(e) and Fig. 4(f); both are non-vanishing and they only differ in color structure:

=

(Tb
2)(Tb

3T
c
3) Sp0 (−Tc

(12))M
0

× 1

2!

(αs
2π

)2

(iπ)2

(
4πµ2

~p2
2,⊥

)2ε

Γ(−ε) Γ(1− ε)Γ(1 + ε)

Γ(1− 2ε)

(
1

εUV

− 1

ε

)
(115)

39



(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 5: Double Glauber diagrams involving three collinear sectors.

and

=

(Tb
2)(Tc

3T
b
3) Sp0 (−Tc

(12))M
0

× 1

2!

(αs
2π

)2

(iπ)2

(
4πµ2

~p2
2,⊥

)2ε

Γ(−ε) Γ(1− ε)Γ(1 + ε)

Γ(1− 2ε)

(
1

εUV

− 1

ε

)
(116)

where 1/ε is associated with the IR divergence. Using color conservation relation: T(12) =
−T3 − · · · −Tm, the sum of these two diagrams can be written as

+
double pole

=
{

(−T3 ·T2) Sp0 (T(12) ·T3)M0

+
(
− 1

2
CA T2 ·T3 +

m∑
j=4

i

2
fbcd Tb

2 Tc
3 Td

j

)
Sp0M0

}(αs
2π

)2

(iπ)2 1

ε2
(117)

The first line in Eq. (117) will be removed by the corresponding term in Sp(1)non-fac.M1

Glauber loops

in Eq. (108).
Now we turn to the diagrams with three different collinear directions, as shown in Fig. 5.

Here we omitted diagrams where four Glauber vertices are on different legs, since those
diagrams trivially factorize into the product of two one-loop results, which are contained

in Sp1,non.fac |M1〉Glauber loop. Therefore we focus on diagrams where two Glauber vertices
are on the same leg. The first line of Fig. 5 are diagrams with two Glauber vertices on p2.
Diagrams in the second line have only one Glauber vertex on p2.
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First consider diagrams in the first line with two Glaubers exchanged between p2 and two
non-collinear partons pi and pj with i 6= j and (i, j = 3, · · · ,m). One immediate concern
is that with 3 directions one cannot choose lightcone coordinates aligned with all of them.
Fortunately, this is not a problem for Glauber graphs – at leading power in the Glauber
expansion the ~k⊥ components dominate over the projection of kµ on any lightcone direction.
Thus we can choose one lightcone direction nµ1 alligned with the collinear pµ1 direction and
the other nµ2 algned with any other direction and the calculation is basically the same as
if there are only two directions involved. More details of the decomposition are given in
Appendix A. The result is:

=

−(T2 ·Tj)(T2 ·T3) Sp0M0

×
(αs

2π

)2

(iπ)2

(
4πµ2

~p2
2,⊥

)2ε

[Γ(−ε)]2 Γ(1− ε)Γ(1 + 2ε)

Γ(1− 3ε)

In Fig. 5(b) the Glauber vertices on the outgoing gluon line are switched. The k− integral
then vanishes since all three poles are on the same side of the contour:

= 0 (118)

The sum of the two diagram is

+
double pole

=

(
−1

2
(T2 ·Tj)(T2 ·T3)− i

2
fabcT

a
2 Tb

3 Tc
j

)
Sp0M0

(αs
2π

)2

(iπ)2 1

ε2
(119)

We have broken up the color factor into terms that are symmetric and antisymmetric under
3↔ j , The first term can be identified with the cross terms coming from the exponentiation
of the sum of I3

Ge and IjGe computed in Section 6.2.
Graphs with two outgoing legs as in Fig. 5(c) are similar with an extra factor of 1/2 from

the time-ordering:

=

1

2!

(
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(120)
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Fig. 5(d) can be obtained from Fig. 5(c) by switching j and k:

+
double pole

=

1

2!
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)
Sp0M0 ×

(αs
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)2

(iπ)2 1

ε2
(121)

These diagrams produce the cross term from the exponentiation of IjGe and IkGe.
The remaining diagrams on the second line of Fig. 5 can be computed in the same way.

We find for the sum:

+ + +
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(
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(122)

The sum of these last four diagrams will cancel the corresponding terms in the contribution

Sp1,non-fac.M1

Glauber loops to Eq. (108).
Let us summarize and put together the results for double Glauber diagrams in Fig. 4 and

Fig. 5. As expected, these diagrams have no explicit dependence on the momenta of non-
collinear partons. They are only sensitive to the physical scale associated with the splitting.
All the non-vanishing double Glauber graphs have a ladder-type topology, where two vertical
rungs represent Glauber interactions ordered in time.

Fig. 4 + Fig. 5− Sp(1),non-fac.M1

Glauber loops

=
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double pole
=

1

2

[
αs
2π

iπ

ε

(
−T2 ·T3 +

m∑
j=4

T2 ·Tj

)]2

− α2
s

4ε2

m∑
j=4

ifabc Ta
2 Tb

3 Tc
j

Sp0M0

(124)

42



The first term in Eq. (124) comes directly from exponentiating the one-loop Glauber
phase given by Eq. (106). The second term with a purely non-abelian color structure
ifabc Ta

2 Tb
3 Tc

j corresponds to the anti-hermitian part of ∆2
C(ε) shown in Eq. (79). Thus

we find that the real part of the 1/ε2 IR poles in Spnon-fact at 2-loops from [19] are exactly
reproduced by SCET. The subleading terms and the imaginary part of Spnon-fact at 2-loops
involve graphs other than the double Glauber ones. We leave the complete computation of
Spnon-fact at 2-loops to future work.

8 Analytic properties of Glauber gluons in SCET

We have shown that SCET with the addition of Glauber operators as proposed in [18]
reproduces known results about factorization violating contributions to splitting amplitudes
from QCD. For the effective theory to be consistent it is critical that the Glauber operators
do not destroy factorization in situations where it supposed to hold.

SCET graphs involving Glauber gluons have unusual properties compared to graphs in
QCD. For example, the form-factor graph vanishes if p1 · p2 < 0 but is non-zero if p1 · p2 > 0:

p1

p2

=
αs
2π

iπ

εIR
,

p1p2
= 0 (125)

This implies in particular that the Glauber graph is not an analytic function of the external
momenta. The non-analyticity comes about through the non-analytic rapidity regulator.
This regulator is an essential part of the definition of SCET with Glaubers.

Glauber gluons have an intimate connection to soft gluons. For example, the amplitudes
in Eq. (125) are exactly the imaginary part of the corresponding soft graphs. More generally,
the Glauber region corresponds to a particular approach to the soft singularity: kµ → 0 with

k± . k2⊥
Q

for a hard scale Q. Thus, Glauber gluons can be understood by studying the region
around the soft pinch surface, as we did in Section 3. In that section, we showed that when
factorization holds, Glauber gluons can be safely ignored. More precisely, we showed that
when there is no pinch in the Glauber region the eikonal approximation can be justified to
reproduce the complete soft singularity. While these observations about pinched contours are
useful for studying factorization in QCD, they do not immediately translate to observations
about graphs involving Glauber operator insertions in SCET.

In SCET, when the Glauber operator contribution is entirely contained in the soft con-
tribution, the soft-Glauber correspondence is said to hold [18]. When the soft-Glauber
correspondance holds, the Glauber contributions can be completely ignored due to the zero-
bin subtraction. More precisely, in [18], Rothstein and Stewart called a soft graph in SCET

without its Glauber subtraction a“naive” soft graph denoted by S̃. Then the ”pure” soft con-
tribution S is the naive soft contribution with its Glauber limit subtracted off: S = S̃−S(G).

43



The pure soft graphs have nice properties, such as that they are independent of the direction
of the soft Wilson lines; all of the unusual properties of the Glauber-gluon graphs, such as the
non-analytic behavior of Eq. (125) and the necessity of a rapidity regulator are eliminated
by this subtraction. When the soft-Glauber correspondence holds, S(G) = G.

What we would like to be true is that, in momenta configurations for which there is
no Glauber pinch in QCD, then the soft-Glauber correspondence holds. This is not easy to
show, since there is not a 1-to-1 correspondence between the Glauber limit of graphs in QCD
(via the method of regions) and graphs in SCET with Glauber operator insertions. Thus,
the check that Glauber operators do not destroy factorization in SCET is non-trivial. Here,
we provide a general argument for why it should be true in general.

To study factorization violating effects of Glauber gluons, it is not particularly useful to
subtract off the Glauber limit of each soft graph and add it back in through a pure Glauber
contribution. The graphs in Eq. (125) are irrelevant to factorization violation since there is
no pinch in the Glauber region for either kinematic configuration. Instead, we want to start
with factorization in SCET without Glaubers, and look at what new effects adding Glaubers
will have. That is, we would like to consider Gnon-fact = G − Gfact where G refers to any
graph with Glaubers and Gfact are the Glauber graphs that double count contributions from
the factorized expression in SCET without Glaubers.

A critical property that Gnon-fact must have is that it does not spoil factorization in
situations where factorization is supposed to hold. For example, consider the canonical
Glauber pinch graph as in Eq. (25). We suppose there are two collinear momenta p1 ‖ p2

and want to look at how the contribution changes when pµ2 goes from incoming to outgoing:

p2 ←

↖ p1

= 0,

p1 ↖

p2→

6= 0 (126)

In the configuration on the left, p1 ·p2 > 0, there is no Glauber pinch, and factorization should
hold. For this graph, there is no corresponding soft graph for the Glauber to be contained
in.4 Thus the graph on the left must vanish or else factorization would be violated. The right
graph, with p1 ·p2 < 0, must reproduce known factorization-violating results from QCD (as
we have shown it does). Note that the corresponding graphs in QCD are analytic functions
of momenta and generically do not vanish for either sign of p1 ·p2.

The remarkable non-analytic property of the diagrams in Eq. (126) as a function of pµ2 is
achieved through a conspiracy of the power expansion in SCET and the rapidity regulator.

4 Soft graphs are only sensitive to the net momenta in the collinear sector. The soft graph with a gluon
exchanged from the p1 sector has a Glauber limit given by the graph where the Glauber connects between
the two legs closest to the hard vertex, as in Eq. (88).
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The power expansion sequesters all of the k+ and k− dependence:

p1 ↖

k+ ∼ 0↖

k+ ∼ 0→

k− ∼ 0↗

p2→

↓ k± ∼ 0
∼
∫

d4k

(2π)4

f(k⊥, pi)

k− − δ1 − iε
1

k− − δ2 + iε

1

k+ − δj + iε
(127)

As indicated in the figure, the power expansion lets us drop certain components of the loop
momentum kµ on each leg that it flows through. The propagator for the red, dotted Glauber
leg, with momentum kµ, only depends on the largest component, which is ~k⊥ according
to Glauber scaling. This propagator has been absorbed into the f(k⊥, pi) function in the
numerator. Similarly, the k+ component is dropped when kµ is added to pµ1 or pµ2 and the
k− component is dropped when kµ is added to whatever momentum qµ flows into the hard
vertex from the rest of the diagram. Note that this momentum qµ must be lightlike or there
is no pinch and the entire diagram is not infrared sensitive and can be dropped at leading
power. The leading power expansion also forces both the locations of the poles δi and the
numerator to depend only on the largest components of kµ, namely k⊥. That is, δ1, δ2, δj
and f depend only on k⊥ and components of the external momenta pi, but not on k+ or k−.
An explicit example is given in Eq. (92).

In the case where pµ2 is incoming the diagram has the same form but the δ2 pole crosses
the real axis. That is, we make the replacement k−−δ2 +iε→ k−−δ′2−iε in Eq. (127). This
flip removes the pinch from the Glauber region. In fact, it naively seems that since both the
poles in the k+ plane are on the same side of the axis, then Eq. (127) vanishes, as we expect
for pµ2 incoming. Unfortunately, things are not that simple: if the integral vanishes for pµ2
incoming and is an analytic function of momenta, then it must also vanish for pµ2 outgoing.
In fact, we cannot conclude that it vanishes simply because the k− integral seems to give
zero. The problem is that the power expansion has made the k− integral infinite. Although
k− has nothing to do with the pinch in k+ in the Glauber region, we need to regulate the
whole integral to make the calculation well-defined.

After adding a factor of |kz|−η from the rapidity regulator it is natural to change variables
from (k−, k+) to (k−, kz). Doing the k− integral in Eq. (127) then gives∫

dkzd
2k⊥

(2π)3

1

|kz|η
f(k⊥, pi)

2kz + δ1(k⊥)− δj(k⊥)− iε
1

δ1(k⊥)− δ2(k⊥)
6= 0 (128)

For the spacelike splitting case, the k− poles are on the same side of the real axis and the
integral gives zero.

This 1-loop example is all that is required to show that Glauber operator contributions do
not destroy factorization for timelike splittings in general. In the n-loop case, the infrared
sensitive region has all the loop momenta near the pinch surface. Thus we can focus on
a single loop, over a momentum kµ, with the other momenta placed on the pinch surface
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(kµi = 0 or kµi proportional to some external momentum). For timelike splittings, the energies
and large light-cone components of all the momenta in each collinear sector have the same
sign. This places all the poles in poles in k− on the same side of the real axis. Therefore,
once the integral is regulated with the rapidity regulator, the integral over k− will give zero
just as in the 1-loop case.

In this way, the Glauber contribution with the rapidity regulator remarkably produces di-
agrams with the right properties: they vanish when factorization holds but contribute when
factorization is violated. If a QCD diagram does not have a pinch in the Glauber region,
then the corresponding diagram with Glauber gluon exchange in SCET with a rapidity reg-
ulator will vanish. This is a non-trivial consistency check on the SCET-Glauber formulation,
requiring both the power expansion and the rapidity regulator. It is only possible because
Glauber contributions in SCET are non-analytic functions of external momenta.

The above arguments suggest that there may be a way to identify the contribution from
operators in SCET with properties of amplitudes computed in QCD. Since the Glauber
contributions are non-analytic and vanish when pµ2 → −pµ2 , we might identify the Glauber
contribution as G = M(p2, pj) −M(−p2, pj). At 1-loop order, this is equivalent to half
the discontinuity across the cut on the real p2 ·pj axis. Beyond 1-loop, taking the discon-
tinuity across the cut can only reproduce the imaginary part of the amplitude, not terms
like (iπ)2 coming from double-Glauber exchange; flipping the sign of p2 could get all of the
multi-Glauber effects correct. It would certainly be interesting to investigate the connec-
tion between Glauber contributions in SCET and analyticity of QCD amplitudes in greater
detail.

9 Summary and conclusions

In this paper we have studied factorization-violation in collinear splittings from the effective
field theory point of view. The first few sections of the paper discussed situations where
factorization holds. In particular, the importance of Glauber scaling was reviewed. We
discussed how factorization requires application of the eikonal approximation to preserve all
of the singularities in a small ball around the soft pinch surface. This requirement fails when
there is a pinch in the Glauber region. Understanding the interplay between factorization,
the eikonal approximation, and Glauber pinches allowed us to extend the precise amplitude-
level formulation of factorization developed in [4,5,38] to situations where there are colored
particles in the initial state. In particular, as long as no incoming direction and outgoing
direction are collinear, strict factorization holds. This result, although implicit in much of the
early literature on factorization, has never been stated explicitly or proven to our knowledge,
so we include it here for completeness. Understanding where and why factorization does hold
is a firm starting point for an analysis of factorization violation.

Regarding factorization violation, it had been shown from full QCD that in spacelike
splittings (as in initial state radiation) the splitting amplitude is different from timelike
splittings (as in final state radiation) [19, 20]. In particular, for spacelike splittings, strict
factorization is violated, in that the collinear splitting amplitude depends on the colors and
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kinematics of non-collinear partons. These results were derived in QCD by looking at the IR
divergences of amplitudes with n+m well-separated partons and taking the limit where m of
the partons become collinear. We showed that these results can be reproduced using SCET
with the inclusion of Glauber operators as proposed in [18]. In particular, we confirmed the
divergent and finite factorization-violating terms at 1-loop and the leading real divergent
part at 2-loops, for m = 1. These calculations are non-trivial in SCET and require careful
use of the rapidity regulator and the power expansion.

In the SCET approach, the splitting is computed from emissions off an amplitude with n
collinear sectors, rather than by taking limits of m+ n parton amplitudes. This conceptual
difference might be advantageous in studying physical implications of factorization-violation,
for example, by sequestering factorization-violating effects to certain operator matrix ele-
ments. However, this is not yet possible as it is not clear how the Glauber contributions in
SCET can be disentangled from the factorization-preserving soft and collinear contributions.

In [18] it was shown that much of the time the contribution from Glauber operators
is identical to the Glauber limit of the soft contribution. This equivalence, G = S(G) was
called the “soft-Glauber correspondence” in [18]. It is important to understand when the
soft-Glauber correspondence holds, as the soft-Glauber overlap (as well as the collinear-
Glauber overlap) must be zero-bin subtracted to avoid overcounting. Unfortunately, it seems
very hard to establish the soft-Glauber correspondence to all orders. Some examples and
suggestive general arguments were given in [18]. In this paper, we connected the soft-
Glauber correspondence (a feature of SCET) to situations in which integration contours
can be deformed out of the Glauber region into the eikonal region in full QCD. When this
deformation is possible, as in situations where no incoming parton is collinear to an outgoing
parton, the soft-Glauber correspondence must hold.

One intriguing feature of the SCET-Glauber contributions is that they produce necessar-
ily non-analytic functions of external momentum. Non-analyticity is critical for the Glauber
contributions both to vanish when a momentum is outgoing (E > 0) and to not vanish when
a momentum is incoming (E < 0). In QCD, amplitudes are analytic functions of momenta
(up to poles and branch cuts) but in SCET they are not. An example of how this works is
the 1-loop Sudakov form factor, where QCD gives a 1

ε
ln(−p1 ·p2 − iε) term, which is ana-

lytic, while the Glauber contribution gives just the discontinuity of this result, − iπ
ε
θ(p1 ·p2),

which is non-analytic. For this form factor, the Glauber contribution is not factorization-
violating, as the soft-Glauber correspondence holds, but the same non-analyticity is critical
in factorization-violating cases. Indeed, the 1-loop 1-emission Glauber graphs are also non-
analytic functions of a momentum p2, as they must vanish when p2 is outgoing (so as not
to spoil factorization when it holds) and reproduce factorization-violating results from QCD
when p2 is incoming. The SCET formalism achieves this through a combination of the
power expansion, which sequesters all the dependence on certain momentum components
into certain parts of the Feynman diagrams so that Glauber graphs can exactly vanish when
factorization holds, and the rapidity regulator, which is non-analytic.

These observations, summarized in Section 8 are suggestive that the factorization-violating
Glauber contributions may be identified with a sort of generalized discontinuity of the QCD
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amplitude: they reproduce the difference between |M(p2, pj)〉 and |M(−p2, pj)〉. Another
corollary of these observations is that the rapidity divergences in the Glauber graphs must
be regulated with a non-analytic regulator. The non-analyticity is helpful, in that it allows
for the Glauber graphs to isolate the factorization-violating effects, but it also makes com-
puting Glauber contributions beyond 1-loop order more challenging than for graphs where
dimensional regularization can be used.
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A Double Glauber integrals

In the Appendix we give more details of some representative 2-loop double-Glauber-exchange
diagrams.

First consider Fig. 4(c) with two parallel Glauber rungs between p2 and p3:

Fig. 4(c) = l − k k
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where
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The `z and kz integrals can be conveniently carried out in position space. After Fourier trans-
forming the light-cone propagators, the integral becomes integrals of light-cone coordinates
x and y,
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where κη = 2−ηΓ(1 − η) sin(πη/2)/(πη/2) = 1 + O(η). The effective diagram with the
η−regulator preserves the physical property of Glauber interactions: they are instantaneous
Coulomb interactions that are ordered in time. The θ-functions in Eq. (133) guarantee that
the Glauber exchanges take place at light-cone time −x < −y < 0, both earlier than the
hard interaction. Time ordering between the two Glaubers produces a 1/2! symmetry factor.

The `⊥, k⊥ integral contains an 1/ε2 divergence,
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As expected, the two-loop Glauber diagram has the same spin structure as the tree-level
diagram, and thus proportional to the Sp0,
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4πµ2

~p2
2,⊥

)2ε

[Γ(−ε)]2 Γ(1− ε)Γ(1 + 2ε)

Γ(1− 3ε)

Next we consider diagrams with two Glaubers gluons exchanged between pµ2 and two
non-collinear partons pµi and pµj , (i, j = 3, · · · ,m). In these diagrams we insert Glauber

operators On1

1
P2
⊥
Oni and On1

1
P2
⊥
Onj , where nµi and nµj are not generically related to nµ1 .

Stictly speaking, the transverse label momentum P⊥ should be replaced by P⊥1j to extract
the components of a 4-vector in the plane transverse to nµ1 and nµj in Minkowski space.
Take 1〉[j and 1]〈j to be an orthogonal basis in the transverse plane with respect to nµ1 and
nµj . Bases with different choice of light-cone directions can be related through the following
equations

1〉[j
[j1]

= 1〉[1 [ji]

[1i][j1]
+

1〉[i
[i1]

j〉[1
〈1j〉 = 1〉[1 〈ij〉

〈i1〉〈1j〉 +
i〉[1
〈1i〉 (137)

Projecting a 4−vector pµ onto transverse direction 1〉[j and j〉[1, we have

p⊥,µ1j =
n1 · p
n1 · nj

(nj)
⊥,µ
1i + p⊥,µ1i (138)

If pµ has collinear or Glauber scaling, (n1 · p) ∼ λ2 while p⊥1i ∼ λ, then at leading power we
can drop (n1 · p) with respect to p⊥. Thus, Thus,

p⊥,µ1i
∼= p⊥,µ1j , (pµ Glauber or collinear to nµ1) (139)

The operator P2
⊥ sandwiched between Oni and Onj will pull out the virtuality of the ex-

changed Glauber gluon, which takes the same form no matter what light-cone coordinates
we choose.

We will show the explicit calculation of Fig. 5(a) and Fig. 5(c) in the following. In
Fig. 5(a), one Glauber connecting parton p2 and an incoming parton p3 has virtual momen-
tum ` − k, the other Glauber with virtual momentum k connects p2 and outgoing parton
pj. As we argued above, at leading power both Glaubers can be treated in the same way
as those exchanged between back-to-back jets. The integrand is the following, where the
propagators still depend linearly on the light-cone components of loop momenta,

Fig. 5(a) = (140)
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= 4g5
s (Tb

2T
c
2)Tc

3T
b
j T1M0∫

dd`

(2π)d
ddk

(2π)d
|n1 · (`− k)− n2 · (`− k)|−η|n1 · k − nj · k|−ηNµ(p1, p2, `⊥)εµ(p2)

1

(~̀⊥ − ~k⊥)2

1

~k2
⊥

× κ13κ1j
1

n1 · k − δ′2 + iε

−1

n3 · (`− k)− δ′3 + iε

1

−(nj · k)− δj + iε

1

n1 · `− δ2 + iε

1

−n1 · `− δ1 + iε
(141)

Here, δ1, δ2, δ
′
2, δ
′
3 are the same as those defined in Eq. (132). We also define δj = ~k2

⊥/Qj

and δ′j = (~̀⊥ − ~k⊥)2/Qj, with pµj ≡ 1
2
Qjn

µ
j , for any outgoing non-collinear parton j. In

Eq. (141), κij ≡ (ni · nj)/2, which is equal to 1 only for back-to-back directions. These
factors are inserted at the operator level to guarantee the RPI-III invariance of the SCETG

Lagrangian [18]. Let us choose integration variables to be

`− = n1 · `, k− = n1 · k, kz1 =
n3 · (`− k)− n1 · (`− k)

2
, kz2 =

nj · k − n1 · k
2

(142)

so that ∫
dd` ddk → 1

κ13κ1j

∫
d`− dk− dkz1 dk

z
2 d

d−2`⊥d
d−2k⊥ (143)

After change of integration variables, the κij terms drops out and the integrand looks inde-
pendent of the direction of pj. After integrating over `− and k−, each collinear propagator
depends linearly on kz1, k

z
2. Hence we can easily transform into position space

Fig. 5(a) = 4g5
s (Tb

2T
c
2)(−Tc

3) Tb
j T1M0

×
∫

dd−2`⊥
(2π)d−2

dd−2k⊥
(2π)d−2

Nµ(p1, p2, `⊥)εµ(p2)
1

(~̀⊥ − ~k⊥)2

1

~k2
⊥

1

δ2 − δ1

×
∫
dkz1
2π

dkz2
2π
|2kz1|−η|2kz2|−η

1

2kz1 − δ1 − δ′2 − δ′3 + iε

1

−2kz2 − δ′2 − δj + iε
(144)

= 4g5
s (Tb

2T
c
2)(−Tc

3) Tb
j T1M0

× p+
2 (p+

1 − p+
2 )

p+
1

∫
dd−2`⊥
(2π)d−2

dd−2k⊥
(2π)d−2

Nµ(p1, p2, `⊥)εµ(p2)
1

(~̀⊥ − ~k⊥)2

1

~k2
⊥

1
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× 1

4

(
κη
η

2

)2
∫
dxdy θ(x)θ(y)

1

|x|1+η

1

|y|1+η
e−ix(δ′3+δ′2+δ1)/2−iy(δj+δ

′
2)/2 (145)

= (i)2g5
s (Tb

2T
c
2)(−Tc

3) Tb
j T1M0

× p+
2 (Q− p+

2 )

Q

∫
dd−2`⊥
(2π)d−2

dd−2k⊥
(2π)d−2

Nµ(p1, p2, `⊥)

(~p2,⊥ + ~̀⊥)2

1

(~̀⊥ − ~k⊥)2
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~k2
⊥

(
1

2

)2

(1 +O(η))

(146)

The position-space picture describes Glauber exchange before and after the hard interaction,
taking place at light-cone time −x and y with −x < 0 < y. The integration region is the
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quarter (x, y)−plane. At O(η0), the dx and dy integrals are symmetric, the result being
twice of the parallel box diagrams in Fig. 4,

Fig. 5(a) = −(T2 ·T3)(T2 ·Tj) Sp0M0

×
(αs

2π

)2

(iπ)2

(
4πµ2

~p2
2,⊥

)2ε

[Γ(−ε)]2 Γ(1− ε)Γ(1 + 2ε)

Γ(1− 3ε)
(147)

Fig. 5(c) has two Glaubers connecting p2 with two outgoing partons pj and pk, with
virtual momenta k and `− k, respectively. Choose integration variables to be

`− = n1 · `, k− = n1 · k, kz1 =
nj · (`− k)− n1 · (`− k)

2
, kz2 =

nk · k − n1 · k
2

(148)

then

Fig. 5(c) = (149)

= 4g5
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2) Tb
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(151)

Here the θ-functions ensure that both Glaubers are produced after the hard interaction with
a particular ordering. The time-ordering between the two Glaubers gives a 1

2!
symmetry

factor.

Fig. 5(c) =
1

2!
(T2 ·Tj)(T2 ·Tk) Sp0M0
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×
(αs

2π

)2

(iπ)2

(
4πµ2

~p2
2,⊥

)2ε

[Γ(−ε)]2 Γ(1− ε)Γ(1 + 2ε)

Γ(1− 3ε)
(152)

References

[1] J. R. Forshaw, A. Kyrieleis, and M. H. Seymour, “Super-leading logarithms in
non-global observables in QCD,” JHEP 08 (2006) 059, arXiv:hep-ph/0604094
[hep-ph].

[2] J. R. Forshaw, A. Kyrieleis, and M. H. Seymour, “Super-leading logarithms in
non-global observables in QCD: Colour basis independent calculation,” JHEP 09
(2008) 128, arXiv:0808.1269 [hep-ph].

[3] J. Keates and M. H. Seymour, “Super-leading logarithms in non-global observables in
QCD: Fixed order calculation,” JHEP 04 (2009) 040, arXiv:0902.0477 [hep-ph].

[4] I. Feige and M. D. Schwartz, “An on-shell approach to factorization,” Phys.Rev. D88
(2013) 065021, arXiv:1306.6341 [hep-th].

[5] I. Feige and M. D. Schwartz, “Hard-Soft-Collinear Factorization to All Orders,” Phys.
Rev. D90 no. 10, (2014) 105020, arXiv:1403.6472 [hep-ph].

[6] C. W. Bauer, S. Fleming, and M. E. Luke, “Summing Sudakov logarithms in B -¿ X(s
gamma) in effective field theory,” Phys.Rev. D63 (2000) 014006,
arXiv:hep-ph/0005275 [hep-ph].

[7] C. W. Bauer and I. W. Stewart, “Invariant operators in collinear effective theory,”
Phys.Lett. B516 (2001) 134–142, arXiv:hep-ph/0107001 [hep-ph].

[8] C. W. Bauer, S. Fleming, D. Pirjol, I. Z. Rothstein, and I. W. Stewart, “Hard
scattering factorization from effective field theory,” Phys.Rev. D66 (2002) 014017,
arXiv:hep-ph/0202088 [hep-ph].

[9] M. Beneke and T. Feldmann, “Multipole expanded soft collinear effective theory with
nonAbelian gauge symmetry,” Phys.Lett. B553 (2003) 267–276,
arXiv:hep-ph/0211358 [hep-ph].

[10] M. Beneke, A. Chapovsky, M. Diehl, and T. Feldmann, “Soft collinear effective theory
and heavy to light currents beyond leading power,” Nucl.Phys. B643 (2002) 431–476,
arXiv:hep-ph/0206152 [hep-ph].

[11] A. V. Manohar and I. W. Stewart, “The Zero-Bin and Mode Factorization in Quantum
Field Theory,” Phys.Rev. D76 (2007) 074002, arXiv:hep-ph/0605001 [hep-ph].

53

http://dx.doi.org/10.1088/1126-6708/2006/08/059
http://arxiv.org/abs/hep-ph/0604094
http://arxiv.org/abs/hep-ph/0604094
http://dx.doi.org/10.1088/1126-6708/2008/09/128
http://dx.doi.org/10.1088/1126-6708/2008/09/128
http://arxiv.org/abs/0808.1269
http://dx.doi.org/10.1088/1126-6708/2009/04/040
http://arxiv.org/abs/0902.0477
http://dx.doi.org/10.1103/PhysRevD.88.065021
http://dx.doi.org/10.1103/PhysRevD.88.065021
http://arxiv.org/abs/1306.6341
http://dx.doi.org/10.1103/PhysRevD.90.105020
http://dx.doi.org/10.1103/PhysRevD.90.105020
http://arxiv.org/abs/1403.6472
http://dx.doi.org/10.1103/PhysRevD.63.014006
http://arxiv.org/abs/hep-ph/0005275
http://dx.doi.org/10.1016/S0370-2693(01)00902-9
http://arxiv.org/abs/hep-ph/0107001
http://dx.doi.org/10.1103/PhysRevD.66.014017
http://arxiv.org/abs/hep-ph/0202088
http://dx.doi.org/10.1016/S0370-2693(02)03204-5
http://arxiv.org/abs/hep-ph/0211358
http://dx.doi.org/10.1016/S0550-3213(02)00687-9
http://arxiv.org/abs/hep-ph/0206152
http://dx.doi.org/10.1103/PhysRevD.76.074002
http://arxiv.org/abs/hep-ph/0605001


[12] L. G. Almeida, S. D. Ellis, C. Lee, G. Sterman, I. Sung, and J. R. Walsh, “Comparing
and counting logs in direct and effective methods of QCD resummation,” JHEP 04
(2014) 174, arXiv:1401.4460 [hep-ph].

[13] J. C. Collins and D. E. Soper, “Back-To-Back Jets in QCD,” Nucl.Phys. B193 (1981)
381.

[14] A. Sen, “Asymptotic Behavior of the Sudakov Form-Factor in QCD,” Phys.Rev. D24
(1981) 3281.

[15] A. Sen, “Asymptotic Behavior of the Wide Angle On-Shell Quark Scattering
Amplitudes in Nonabelian Gauge Theories,” Phys.Rev. D28 (1983) 860.

[16] J. C. Collins, D. E. Soper, and G. F. Sterman, “Transverse Momentum Distribution in
Drell-Yan Pair and W and Z Boson Production,” Nucl. Phys. B250 (1985) 199.

[17] E. Laenen, K. J. Larsen, and R. Rietkerk, “Position-space cuts for Wilson line
correlators,” JHEP 07 (2015) 083, arXiv:1505.02555 [hep-th].

[18] I. Z. Rothstein and I. W. Stewart, “An Effective Field Theory for Forward Scattering
and Factorization Violation,” JHEP 08 (2016) 025, arXiv:1601.04695 [hep-ph].

[19] S. Catani, D. de Florian, and G. Rodrigo, “Space-like (versus time-like) collinear
limits in QCD: Is factorization violated?,” JHEP 07 (2012) 026, arXiv:1112.4405
[hep-ph].

[20] J. R. Forshaw, M. H. Seymour, and A. Siodmok, “On the Breaking of Collinear
Factorization in QCD,” JHEP 11 (2012) 066, arXiv:1206.6363 [hep-ph].

[21] F. Liu and J. P. Ma, “Glauber Gluons in Soft Collinear Effective Theory and
Factorization of Drell-Yan Processes,” arXiv:0802.2973 [hep-ph].

[22] J. F. Donoghue and D. Wyler, “On Regge kinematics in SCET,” Phys. Rev. D81
(2010) 114023, arXiv:0908.4559 [hep-ph].

[23] C. W. Bauer, B. O. Lange, and G. Ovanesyan, “On Glauber modes in Soft-Collinear
Effective Theory,” JHEP 07 (2011) 077, arXiv:1010.1027 [hep-ph].

[24] S. Fleming, “The role of Glauber exchange in soft collinear effective theory and the
Balitsky?Fadin?Kuraev?Lipatov Equation,” Phys. Lett. B735 (2014) 266–271,
arXiv:1404.5672 [hep-ph].

[25] L. Landau, “On analytic properties of vertex parts in quantum field theory,”
Nucl.Phys. 13 (1959) 181–192.

[26] J.-Y. Chiu, A. Jain, D. Neill, and I. Z. Rothstein, “A Formalism for the Systematic
Treatment of Rapidity Logarithms in Quantum Field Theory,” JHEP 05 (2012) 084,
arXiv:1202.0814 [hep-ph].

54

http://dx.doi.org/10.1007/JHEP04(2014)174
http://dx.doi.org/10.1007/JHEP04(2014)174
http://arxiv.org/abs/1401.4460
http://dx.doi.org/10.1016/0550-3213(81)90339-4
http://dx.doi.org/10.1016/0550-3213(81)90339-4
http://dx.doi.org/10.1103/PhysRevD.24.3281
http://dx.doi.org/10.1103/PhysRevD.24.3281
http://dx.doi.org/10.1103/PhysRevD.28.860
http://dx.doi.org/10.1016/0550-3213(85)90479-1
http://dx.doi.org/10.1007/JHEP07(2015)083
http://arxiv.org/abs/1505.02555
http://dx.doi.org/10.1007/JHEP08(2016)025
http://arxiv.org/abs/1601.04695
http://dx.doi.org/10.1007/JHEP07(2012)026
http://arxiv.org/abs/1112.4405
http://arxiv.org/abs/1112.4405
http://dx.doi.org/10.1007/JHEP11(2012)066
http://arxiv.org/abs/1206.6363
http://arxiv.org/abs/0802.2973
http://dx.doi.org/10.1103/PhysRevD.81.114023
http://dx.doi.org/10.1103/PhysRevD.81.114023
http://arxiv.org/abs/0908.4559
http://dx.doi.org/10.1007/JHEP07(2011)077
http://arxiv.org/abs/1010.1027
http://dx.doi.org/10.1016/j.physletb.2014.06.045
http://arxiv.org/abs/1404.5672
http://dx.doi.org/10.1016/0029-5582(59)90154-3
http://dx.doi.org/10.1007/JHEP05(2012)084
http://arxiv.org/abs/1202.0814


[27] G. P. Korchemsky and A. V. Radyushkin, “Renormalization of the Wilson Loops
Beyond the Leading Order,” Nucl. Phys. B283 (1987) 342–364.

[28] V. S. Fadin, R. Fiore, and A. Quartarolo, “Reggeization of quark quark scattering
amplitude in QCD,” Phys. Rev. D53 (1996) 2729–2741, arXiv:hep-ph/9506432
[hep-ph].

[29] Y.-T. Chien, M. D. Schwartz, D. Simmons-Duffin, and I. W. Stewart, “Jet Physics
from Static Charges in AdS,” Phys.Rev. D85 (2012) 045010, arXiv:1109.6010
[hep-th].

[30] R. Jackiw, D. N. Kabat, and M. Ortiz, “Electromagnetic fields of a massless particle
and the eikonal,” Phys. Lett. B277 (1992) 148–152, arXiv:hep-th/9112020
[hep-th].

[31] T. Becher, A. Broggio, and A. Ferroglia, “Introduction to Soft-Collinear Effective
Theory,” Lect. Notes Phys. 896 (2015) pp.1–206, arXiv:1410.1892 [hep-ph].

[32] M. L. Mangano and S. J. Parke, “Multiparton amplitudes in gauge theories,” Phys.
Rept. 200 (1991) 301–367, arXiv:hep-th/0509223 [hep-th].

[33] S. Catani, “The Singular behavior of QCD amplitudes at two loop order,” Phys. Lett.
B427 (1998) 161–171, arXiv:hep-ph/9802439 [hep-ph].

[34] T. Becher and M. Neubert, “On the Structure of Infrared Singularities of
Gauge-Theory Amplitudes,” JHEP 0906 (2009) 081, arXiv:0903.1126 [hep-ph].

[35] E. Gardi and L. Magnea, “Factorization constraints for soft anomalous dimensions in
QCD scattering amplitudes,” JHEP 03 (2009) 079, arXiv:0901.1091 [hep-ph].

[36] C. W. Bauer, S. Fleming, D. Pirjol, and I. W. Stewart, “An Effective field theory for
collinear and soft gluons: Heavy to light decays,” Phys.Rev. D63 (2001) 114020,
arXiv:hep-ph/0011336 [hep-ph].

[37] J. C. Collins, D. E. Soper, and G. F. Sterman, “Soft Gluons and Factorization,”
Nucl.Phys. B308 (1988) 833.

[38] I. Feige, M. D. Schwartz, and K. Yan, “Removing phase-space restrictions in factorized
cross sections,” Phys. Rev. D91 (2015) 094027, arXiv:1502.05411 [hep-ph].

55

http://dx.doi.org/10.1016/0550-3213(87)90277-X
http://dx.doi.org/10.1103/PhysRevD.53.2729
http://arxiv.org/abs/hep-ph/9506432
http://arxiv.org/abs/hep-ph/9506432
http://dx.doi.org/10.1103/PhysRevD.85.045010
http://arxiv.org/abs/1109.6010
http://arxiv.org/abs/1109.6010
http://dx.doi.org/10.1016/0370-2693(92)90971-6
http://arxiv.org/abs/hep-th/9112020
http://arxiv.org/abs/hep-th/9112020
http://dx.doi.org/10.1007/978-3-319-14848-9
http://arxiv.org/abs/1410.1892
http://dx.doi.org/10.1016/0370-1573(91)90091-Y
http://dx.doi.org/10.1016/0370-1573(91)90091-Y
http://arxiv.org/abs/hep-th/0509223
http://dx.doi.org/10.1016/S0370-2693(98)00332-3
http://dx.doi.org/10.1016/S0370-2693(98)00332-3
http://arxiv.org/abs/hep-ph/9802439
http://dx.doi.org/10.1088/1126-6708/2009/06/081
http://arxiv.org/abs/0903.1126
http://dx.doi.org/10.1088/1126-6708/2009/03/079
http://arxiv.org/abs/0901.1091
http://dx.doi.org/10.1103/PhysRevD.63.114020
http://arxiv.org/abs/hep-ph/0011336
http://dx.doi.org/10.1016/0550-3213(88)90130-7
http://dx.doi.org/10.1103/PhysRevD.91.094027
http://arxiv.org/abs/1502.05411

	Introduction
	Elements of factorization and Glauber scaling 
	Glauber containment in hard scattering 
	1-loop example
	Spacelike example 
	General argument 
	Summary

	Isolating the Glauber contribution 
	Method of regions
	Cut-based approach
	Position space
	Effective field theory Glauber operator 

	Factorization-violation in collinear splittings 
	Strict factorization
	Strict factorization violation from i/ terms
	Strict-factorization violation from full QCD

	Factorization violation from SCET 
	Tree-level splitting amplitudes in SCET
	Factorization violating contributions 

	Two-loop factorization-violation from SCET 
	Double-Glauber diagrams

	Analytic properties of Glauber gluons in SCET 
	Summary and conclusions
	Acknowledgments
	Double Glauber integrals 

