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A relativistic formalism for relating the energies of the states of three scalar particles in finite
volume to infinite volume scattering amplitudes has recently been developed. This formalism has
been used to predict the energy of the state closest to threshold in an expansion in powers of 1/L,
with L the box length. This expansion has been tested previously by a perturbative calculation of
the threshold energy in λφ4 theory, working to third order in λ and up to O(1/L6) in the volume
expansion. However, several aspects of the predicted threshold behavior do not enter until fourth
(three-loop) order in perturbation theory. Here I extend the perturbative calculation to fourth order
and find agreement with the general prediction. This check also requires a two-loop calculation of
the infinite-volume off-shell two-particle scattering amplitude near threshold. As a spin-off, I check
the threshold expansion for two particles to the same order, finding agreement with the result that
follows from Lüscher’s formalism.
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I. INTRODUCTION

There is considerable interest in developing theoretical formalism to allow lattice QCD to determine the properties
of resonances for which some of the decay channels involve three or more particles. Such formalism is needed for
the study of most of the strong-interaction resonances that appear in nature, e.g. the ω meson and the Roper
baryon. Specifically, what is needed on the theoretical side is a quantization condition that relates the energies of
multiparticle states in a finite volume to the infinite-volume scattering amplitudes of these particles. While such a
quantization has long been known for two particles (based on Refs. [1, 2] and subsequent generalizations), the three
particle quantization condition is relatively new [3–5] (and not yet completely general). Since the formalism is rather
involved, it is important to provide detailed checks that test all aspects of the approach.1

The present work is aimed at extending previous tests of the formalism of Refs. [3–5] by considering the prediction of
the quantization condition for a system of three identical scalar particles near threshold. These particles are confined to
a cubic box of side L (as in a lattice simulation) and it is assumed that there is a Z2 symmetry restricting interactions
to those involving an even number of particles. The total momentum2 is taken to be zero. Under these assumptions,
Ref. [8] derived the expansion of the energy of the three-particle threshold state in powers of 1/L, keeping terms up
to O(1/L6). This threshold expansion was derived for an arbitrary Z2-symmetric effective field theory. Unlike the
two-particle case, where the derivation of the threshold expansion is rather straightforward, the derivation for three
particles is itself very involved, requiring the summation of several infinite series. Thus the test presented here is a
check of the derivation of the threshold expansion as well as of the underlying formalism.

The general formula for the threshold expansion is given in terms of infinite-volume quantities such as the two-
particle scattering length. This result is tested here by calculating the same expansion in a specific Z2-symmetric
theory—λφ4 theory—and expressing the result in terms of the same infinite-volume quantities. This test has previously
been passed at third order in λ, and through O(1/L6) in the volume expansion, in Ref. [9], and what is presented here
is the fourth-order calculation to the same order in 1/L. The specific motivation for carrying out this lengthy and
quite tedious calculation is that the fourth-order calculation tests qualitatively new aspects of the general prediction.
Specifically, the general formalism contains a “divergence-free” three-particle scattering amplitude that is obtained
from the three-to-three amplitudeM3 by subtracting an infinite series of terms such that the physical singularities are
removed. I stress that such singularities are inevitably present inM3 and must be dealt with. A simplified version of
this subtraction procedure is sufficient at threshold [8], and defines a quantity called M3,thr. The O(λ3) calculation
did not test all the subtraction terms in the definition of M3,thr, but the present calculation does.

It turns out that, as part of the calculation of the three-particle threshold energy, one needs all the ingredients
necessary to determine the two-particle threshold energy. Thus the latter energy can also be compared to the general
result that follows from the formalism of Refs. [1, 2]. Since by now there is no doubt that this formalism is correct,
this subsidiary calculation provides a check on the methods used here.

This paper is organized as follows. The following section contains a summary of the methods introduced in Ref. [9]
to determine the threshold energy in perturbation theory, and presents the general results from Ref. [8] that are
being tested. Section III concerns the two-particle energy shift, and provides a sketch of the calculation and the
final results. These require the two-loop contribution to the effective range. Section IV describes the calculation of
the contributions to the energy shift that are specific to three particles. This requires a particular off-shell version
of the two-loop infinite-volume scattering amplitude, the calculation of which is similar to, but different from, that
of the effective range. I conclude in Sec. V. Technical details are collected in three appendices: the first recalling
some general results for finite-volume sums, the second listing the needed counterterms, and the third describing the
calculation of the on- and off-shell two-loop scattering amplitude near threshold.

II. OVERVIEW OF METHODS AND RESULTS TO BE TESTED

The method I use is that introduced in Ref. [9], and I recall here only the essential features. The theory has the
Euclidean Lagrangian density

L =
1

2
∂µφ∂µφ+

m2

2
φ2 +

λ

4!
φ4 +

δZ

2
∂µφ∂µφ+

δZm
2

m2φ2 +
δZλ
4!

φ4 , (1)

with φ a scalar field. An on-shell renormalization scheme is used: δZ and δZm are tuned so that m is the physical
mass and the residue of the (infinite-volume) propagator at the pole is unity. The counterterm δZλ is defined by the

1 An alternative approach to the three-particle quantization condition was proposed very recently in Refs. [6, 7]. The threshold expansion
in this new approach has not yet been derived.

2 I use ”momentum” for three-momentum throughout this work aside from in Appendix C.



3

requirement that the scattering amplitude at threshold is given by −λ to all orders. Since this threshold amplitude
is, by definition, proportional to the scattering length, a, this renormalization condition implies the exact relation

λ = 32πma . (2)

I will need the two-loop form of δZλ, and this is given in Appendix B.
The finite-volume (FV) energies are extracted from the long-time behavior of the following correlation functions:

C2(τ) =
(2m)2

2L6
e2mτ

〈
φ̃~0(τ)2φ̃~0(0)2

〉
, (3)

C3(τ) =
(2m)3

6L9
e3mτ

〈
φ̃~0(τ)3φ̃~0(0)3

〉
. (4)

Here τ is Euclidean time, which is always taken to be positive or zero, and the interpolating fields are

φ̃~p(τ) =

∫
L

d3x e−i~p·~xφ(~x, τ) , (5)

with the subscript L indicating that the integral is over the cubic box. Periodic boundary conditions are applied to
φ, so that momenta are quantized as ~p = 2π~n/L, with ~n a vector of integers. Euclidean time is taken to have infinite
range. The prefactors in Eqs. (3) and (4) are chosen so that Cj(τ) = 1 for all τ if λ = 0. In this limit the interpolating
operators couple to the states consisting of j particles at rest.

When λ 6= 0 the correlators behave as (recalling that τ ≥ 0)

Cj(τ) =
∑
k

Aj,k e
−∆Ej,kτ , ∆Ej,k ≡ Ej,k − jm , (6)

where j = 2 or 3, k labels the finite-volume states that couple to the interpolators, and Aj,k are the corresponding
amplitudes. The state of interest is that nearest threshold for which ∆Ej,k → 0 as λ→ 0. This is labeled by k = thr.
The procedure developed in Ref. [9] for picking out its energy is to first calculate C2(τ) and C3(τ) order by order in
PT, then remove by hand exponentially growing or falling contributions. The resulting subtracted correlators have
the form

Cj,thr(τ) = Cj,thr(0) + τ
[
∂τCj,thr(0)

]
+O(τ2) . (7)

Finally, the shift of the desired energy from threshold is given by

∆Ej,thr = −∂τCj,thr(0)

Cj,thr(0)
. (8)

The justification for this method is explained in Ref. [9].
The perturbative expansions of the quantities appearing in this expression are3

Cj,thr(0) = 1 +
∞∑
n=1

λnC
(n)
j,thr(0) , (9)

∂τCj,thr(0) =

∞∑
n=1

λn
[
∂τC

(n)
j,thr(0)

]
, (10)

∆Ej,thr =

∞∑
n=1

λn∆E
(n)
j,thr . (11)

Inserting these expansions into Eq. (8), the result for the fourth order term in ∆Ej,thr is

∆E
(4)
j,thr = −∂τC(4)

j,thr(0) + C
(1)
j,thr(0)

[
∂τC

(3)
j,thr(0)

]
+ C

(2)
j,thr(0)

[
∂τC

(2)
j,thr(0)

]
+ C

(3)
j,thr(0)

[
∂τC

(1)
j,thr(0)

]
−
[
C

(1)
j,thr(0)

]2[
∂τC

(2)
j,thr(0)

]
− 2C

(1)
j,thr(0)C

(2)
j,thr(0)

[
∂τC

(1)
j,thr(0)

]
+
[
C

(1)
j,thr(0)

]3[
∂τC

(1)
j,thr(0)

]
. (12)

3 Here I am expanding in the renormalized coupling, whereas the corresponding expansions in Ref. [9] were in powers of the bare coupling.
For the sake of brevity, I continue to use the same notation for the expansion coefficients, although the values of these coefficients differ.
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I calculate ∆E
(4)
j,thr only up to order 1/L6 in the volume expansion. From Ref. [9] the leading 1/L behavior of the

terms in Eq. (12) is known to be

C
(2)
j,thr(0) ∼ 1/L2 , C

(1)
j,thr(0) ∼

[
∂τC

(1)
j,thr(0)

]
∼ 1/L3 ,[

∂τC
(2)
j,thr(0)

]
∼ 1/L4 ,

[
∂τC

(3)
j,thr(0)

]
∼ 1/L5 .

(13)

Explicit examples are given below. Thus the only contributions that must be kept are

∆E
(4)
j,thr = −∂τC(4)

j,thr(0) + C
(2)
j,thr(0)

[
∂τC

(2)
j,thr(0)

]
+ C

(3)
j,thr(0)

[
∂τC

(1)
j,thr(0)

]
+O(1/L7) . (14)

Since C
(2)
j,thr(0),

[
∂τC

(2)
j,thr(0)

]
and

[
∂τC

(1)
j,thr(0)

]
are determined in Ref. [9], the only new quantities needed here are the

1/L6 contributions to
[
∂τC

(4)
j,thr(0)

]
and the 1/L3 contributions to C

(3)
j,thr(0). For both quantities these are the leading

contributions in the 1/L expansion.

I now describe the results that I aim to check. The threshold expansion for the energy shift for two particles follows
from the general formalism of Refs. [1, 2]. It is worked out through O(1/L5) in Ref. [1] and the 1/L6 term is given in
Ref. [9]. The result is

∆E2,thr =
4πa

mL3

{
1−

( a

πL

)
I +

( a

πL

)2

(I2 − J ) +
( a

πL

)3 [
−I3 + 3IJ − K

]
+

2πra2

L3
− πa

m2L3

}
+O(L−7) , (15)

with a the scattering length (defined to be positive for repulsive interactions), r the effective range, and I, J , K are
known sums over functions of integer vectors (see Appendix A). The result for the three-particle threshold energy
is [8]4

∆E3,thr =
12πa

mL3

{
1−

( a

πL

)
I +

( a

πL

)2

(I2 + J ) +
64π2a2C3
mL3

+
3πa

m2L3
+

6πra2

L3

+
( a

πL

)3 [
−I3 + IJ + 15K + cL log(Ncut) + CF + C4 + C5

]}
− M3,thr

48m3L6
+O(L−7) , (16)

where Ncut = mL/(2π), cL = 16π3(
√

3− 4π/3), and CF , C3, C4 and C5 are sums over integer vectors that are defined
and evaluated in Ref. [8]. The new amplitude entering at O(1/L6) is the divergence-free three-to-three threshold
amplitude M3,thr, which begins at O(λ2) in perturbation theory. The numerical values of C3, C4 and C5 depend
on the choice of UV cutoff, but this dependence cancels with that of M3,thr. This cancelation is necessary because
∆E3,thr is a physical quantity.

Since a and λ are proportional [Eq. (2)], the dependence of ∆Ej,thr on λ is manifest except for the terms involving
r and M3,thr. To make the perturbative expansion clearer I rewrite r, using its definition, as

32πm3ra2 ≡ −λ− 2K′2,s,thr , (17)

where

K′2,s,thr ≡ m2 dK2,s

dq2

∣∣∣∣
thr

, (18)

Here K2,s is the two-particle s-wave K matrix, and q is the momentum of each particle in the two-particle CM frame.
The perturbative series for K′2,s,thr and M3,thr both begin at O(λ2):

K′2,s,thr =

∞∑
n=2

λnK′(n)
2,s,thr , M3,thr =

∞∑
n=2

λnM(n)
3,thr . (19)

4 In the initial published version the coefficient of K was −9, but this was corrected in an Erratum to +15 [8].
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Combining these results, the predictions above imply that the fourth-order terms are

∆E
(4)
2,thr =

1

218π6m5L6

[
−I3 + 3IJ − K

]
−
K′(3)

2,s,thr

26m5L6
+O(L−7) , (20)

∆E
(4)
3,thr =

3

218π6m5L6

[
−I3 + IJ + 15K + cL log(Ncut) + CF + C4 + C5

]
−

9K′(3)
2,s,thr

26m5L6
−
M(4)

3,thr

48m3L6
+O(L−7) . (21)

In order to separate out effects that are particular to the three-particle case, it is convenient to consider the difference

∆32 = ∆E3,thr − 9∆E2,thr =

∞∑
n=2

λn∆
(n)
32 , (22)

for which the fourth-order coefficient is predicted to be

∆
(4)
32 =

3

218π6m5L6

[
2I3 − 8IJ + 18K + cL log(Ncut) + CF + C4 + C5

]
−
M(4)

3,thr

48m3L6
+O(L−7) . (23)

Note that the effective range has canceled from this expression.
To motivate the definition of ∆32, I recall from Ref. [9] that the three-particle correlators can be split into a “con-

nected” part, containing contributions in which the Feynman diagram connects all three particles, a “disconnected”
part in which one particle is a spectator (possibly having self-energy insertions) and the other two are connected,
and the fully disconnected remainder (which does not lead to power-law finite-volume effects). Since there are three
possible two-particle pairs in a three-particle system, the following relations hold for all n,

C
(n)
3,thr,disc(0) = 3C

(n)
2,thr(0) , ∂τC

(n)
3,thr,disc(0) = 3 ∂τC

(n)
2,thr(0) . (24)

As noted in Ref. [9], for n = 1 and 2, connected contributions to C3 do not begin until O(1/L6), so that

C
(n)
3,thr(0) = 3C

(n)
2,thr(0) +O(L−6) (n = 1, 2) . (25)

while the low order contributions to the connected part of C
(n)
3,thr(0) satisfy

∂τC
(1)
3,thr,conn(0) = 0 , ∂τC

(2)
3,thr,conn(0) = O(L−6) . (26)

Combining these results yields

∆
(4)
32 = −∂τC(4)

3,thr,conn(0) + 3C
(3)
3,thr,conn(0)∂τC

(1)
2,thr(0) + 6 ∂τC

(4)
2,thr(0) +O(L−7) . (27)

showing that several two-particle quantities have canceled in the difference.

To summarize the previous discussion, the new quantities that are needed to determine ∆E
(4)
3,thr are C

(3)
2,thr(0),

∂τC
(4)
2,thr(0), ∂τC

(3)
3,thr,conn and ∂τC

(4)
3,thr,conn. Once these quantities have been calculated it requires no extra work to

determine the result for ∆E
(4)
2,thr. Having done so, it is convenient to consider ∆

(4)
32 instead of ∆E

(4)
3,thr. Breaking up

the calculation in this way also proved useful in practice for tracking down errors.

The calculation of the finite-volume correlation functions proceeds as in Ref. [9]. Propagators are written in their

time-momentum form, i.e. exp(−|∆t|ωp)/(2ωp) with ωp =
√
m2 + p2 and p = |~p|. The integrals over the vertex times,

τi, are then straightforward but tedious.5 This leaves a sum over momenta of a summand that is, in general, quite
complicated. For the sake of brevity, I do not display these summands except in a few cases.6 The sums are always
UV finite after inclusion of counterterms. There are up to three loop-momenta in the diagrams considered.

At this stage the sums are replaced by integrals plus a volume-dependent difference. The general analysis of
Refs. [1, 9, 10], implies that the sum-integral difference is exponentially suppressed in L (typically as e−mL) except for
loops in which intermediate particles can go on shell. Such loops have summands that diverge in the IR, and the results
collected in Appendix A can be used to pull out the dominant volume dependence. What is left is a finite integral that
is, in the present calculation, at most of two-loop order. Such integrals can easily be evaluated numerically. The tests
presented here also requires a two-loop calculation of the scattering length and the three-particle subtracted threshold
amplitude, M3,thr. These are infinite-volume quantities where the calculations are most easily done using standard
momentum-space Feynman rules and dimensional regularization. The calculations are outlined in Appendix C.

5 I use Mathematica to do these integrals, and have found that doing more than two integrals at once can lead to incorrect results. Thus
all integrals are done stepwise, with numerical checks at each stage.

6 Expressions for all integrands or summands are available upon request from the author.
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III. DETERMINING ∆E
(4)
2,thr.

In this section I calculate the λ4 contribution to ∆E2,thr. Given the form of the expected answer, I write

∆E
(4)
2,thr =

a
(4)
2

218π6m5L6
+O(L−7) , (28)

and quote results for a
(4)
2 .

I begin by collecting results from Ref. [9] that are needed in order to evaluate ∆E
(4)
2,thr using Eq. (14):7

C
(1)
2,thr(0) = − 1

16m3L3
, ∂τC

(1)
2,thr(0) = − 1

8m2L3
, (29)

C
(2)
2,thr(0) =

I
28π2m3L4

+O(L−6) , ∂τC
(2)
2,thr(0) = − J

210π4m2L2
+O(L−3) , (30)

Using these results one can immediately determine the C
(2)
2,thr(0)∂τC

(2)
2,thr(0) contribution in Eq. (14), leading to8

a
(4)
2 ⊃ −IJ (31)

What remains is to calculate C
(3)
2,thr(0) and ∂τC

(4)
2,thr(0).

A. Calculating C
(3)
2,thr(0)

(a) (b) (c) (d) (e) (f)

3 2
2 q1

q2 q3

q4
q1

q2 q3

q4

(g)

FIG. 1. Feynman diagrams contributing to C2(τ) at O(λ3). Solid squares are vertex counterterms, with the number indicating
the power of λ. External particles have zero three-momentum. Diagrams related by vertical or horizontal reflection are not
shown explicitly. Interpreted as contributions to the infinite-volume scattering amplitude, these are the diagrams required to
calculate the two-loop counterterms in Appendix B, and the two-loop K matrix in Appendix C. The momentum labels in (f)
and (g) are used in the latter calculation. Time runs from left to right in both applications.

The diagrams needed to calculate C
(3)
2,thr(0) are shown in Fig. 1. Since C

(3)
2,thr(0) appears in Eq. (14) multiplied by

∂τC
(1)
2,thr(0) = O(L−3), C

(3)
2,thr(0) itself is needed only up to O(L−3).

1. SS diagram

I begin by determining the contribution of Fig. 1(d), together with the A2s contribution to Fig. 1(b), plus its
horizontal reflection, and the A3ss contribution to Fig. 1(a). I label the left- and right-hand loop momenta p and q,
respectively. If both momenta vanish then the contribution is of O(L−9), well below the order of interest. Contribu-
tions of O(L−3) do arise, however, if one or both momenta are nonzero.

7 The results in Eq. (30) look different from those given in Eqs. (27) and (28) of Ref. [9] because here I expand in the renormalized rather
than the bare coupling. In particular, terms proportional to A2/L3 present in Ref. [9] are canceled here by contributions from the O(λ2)
counterterm.

8 Here and in the following I use the proper superset symbol ⊃ to indicate individual contributions to quantities (with the quantity here

being a
(4)
2 ). In the course of the calculation I determine all contributions of the desired order and collect them in a final result.
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Consider first the case in which one momentum vanishes, say q. Then it is possible for all three time integrals to
give factors of 1/p2, each arising from integrals of the form∫ τk

τi

dτj e
−(τk−τj)2(ωp−m) ∝ 1− e−(τk−τi)2(ωp−m)

2(ωp −m)
∼ 1

p2
. (32)

Explicit evaluation (including a factor of 2 from the fact that either loop momentum can vanish) yields

C
(3)
2,thr(0) ⊃ − 1

28m3L9

∑
~p6=0

1

p6

[
1 +O(p2)

]
(33)

= − K
214π6m3L3

[
1 +O(L−1)

]
, (34)

Here I have kept only the most singular part of the summand, since less singular terms contribute at subleading order
in L−1. To obtain the second line I have used Eq. (A4). Note that, although a sum over p usually absorbs a single
factor of L−3 (in order to become an integral), the presence of the 1/p6 IR divergence means that a factor of L−6 is
absorbed. This brings the contribution up to the desired order.

If both loop momenta are nonvanishing, the summand is simple and so I display the complete result:

C
(3)
2,thr(0) ⊃ 1

29m3L3

{
1

L3

∑
~p6=0

m2

ωpp4

 1

L3

∑
~q 6=0

−
∫
q

 1

ωqq2
+ (p↔ q)− 1

2

 1

L3

∑
~p6=0

−
∫
p

 1

ωpp2

 1

L3

∑
~q 6=0

−
∫
q

 1

ωqq2

}
(35)

=
IJ

214π6m3L3

[
1 +O(L−1)

]
. (36)

To obtain the second line I have used Eqs. (A1) and (A2). Note that the maximal degree of IR divergence is the same
as for when one momentum vanishes, but now the divergence is split between p and q. The final term in Eq. (35) has
a lower degree of IR divergence, and gives a subleading contribution.

2. Remaining diagrams

The TT diagram, Fig. 1(e), combines with the A2t contribution to Fig. 1(c), and the A3tt contribution to Fig. 1(a).
In this case, the absence of physical cuts allows the replacement of sums with integrals. The combined integrand,
including counterterms, is UV and IR convergent:

C
(3)
2,thr(0) ⊃ − 1

212π4m3L3
ITT , (37)

ITT = 8π4

∫
p

∫
q

m3

ω3
p(ωp +m)ω3

q (ωq +m)(ωp + ωq)
=

2(π − 3)

3
. (38)

The SU diagram of Fig. 1(f) combines wtih the the A2s +A2u contribution to Fig. 1(c), and the A3su contribution
to Fig. 1(a). Again, sums can be replaced by integrals, leading to

C
(3)
2,thr(0) ⊃ − 1

29π4m3L3
ISU , ISU = 0.0396563 . (39)

I only give the result of numerical integration, since the integrand is long and uninformative.
Finally, the ST diagram, Fig. 1(e), combines the A2t +A2u contribution to Fig. 1(b), and the A3st contribution to

Fig. 1(a), together with their horizontal reflections. The total contribution only scales as 1/p2 in the IR, with no IR
divergence in q. Thus both sums can be replaced by integrals up to corrections of relative size L−1, leading to

C
(3)
2,thr(0) ⊃ − IST

29π4m3L3
, IST = 0.099447 . (40)

3. Total contribution to ∆E
(4)
2,thr

Multiplying the above results by ∂τC
(1)
2,thr(0) from Eq. (29) yields

a
(4)
2 ⊃ −2IJ + 2K + 26π2(IST + 1

8I
TT + ISU) . (41)
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B. Contribution of ∂τC
(4)
2,thr(0)

(a) (b) (d) (e)

(g) (h) (i)

4 3 2

(j) (k) (l)

22

(c)

2

(f)

FIG. 2. Subset of Feynman diagrams contributing C2(τ) at O(λ4). Notation as in Fig. 1. Figures (b)-(k) show all the diagrams
(aside from reflections, and additional placements of counterterms) for which there is a two-particle cut. Figure (l) shows a
single example of the many diagrams without such cuts. See text for further discussion.

In this section I calculate the contribution to a
(4)
2 from ∂τC

(4)
2,thr(0). A large number of diagrams contribute to

∂τC
(4)
2,thr(0), a subset of which is shown in Fig. 2. I first describe some general properties of the contributions of these

diagrams if all loop momenta are nonzero. In this case, a term linear in τ arises only from a configuration in which
all vertices lie close in time and are integrated as a group over the full time interval. Configurations in which some

vertices are separated by O(τ) are exponentially suppressed. Thus the contribution to ∂τC
(4)
2,thr(0) arises from two

particles at rest propagating freely between 0 and τ , except for a single quasi-local interaction. From this one can show

that, as L→∞, the leading volume dependence of ∂τC
(4)
2,thr(0) has the form c/(8m2L3), where c is the contribution of

the diagram (now viewed as an infinite-volume scattering diagram) to the scattering amplitude at threshold,M2,thr.
9

Note that, when taking the L→∞ limit, all sums are replaced by integrals, (1/L3)
∑

~p →
∫
p
.

This result has two important consequences. The first is practical: it allows the determination of the integrand of

M2,thr from the summand appearing in ∂τC
(4)
2,thr(0) on a diagram by diagram basis. The prescription is simply to

multiply the summand by 8m2L12. Here the factor of 8m2L3 noted above is multiplied by L9 due to the conversion
of three momentum sums into integrals. I use this result the calculate the counterterms quoted in Appendix B.

The second consequence is that the constant c vanishes when each three-loop diagram is combined with the cor-
responding counterterms. This is because the O(λ4) contributions to M2,thr vanish in the renormalization scheme I
use. (Indeed, the only contribution is of O(λ).) Since c is obtained by replacing momentum sums with integrals, it
follows that all finite-volume corrections arise from sum-integral differences. I stress again that this argument holds
for the case in which all loop momenta are nonvanishing.

From this result follows a key simplification in the calculation of ∂τC
(4)
2,thr(0): only diagrams containing two-particle

cuts can contribute. These are the diagrams shown in Fig. 2(f)-(k). For diagrams without such cuts, such as Fig. 2(l),
sum-integral differences are exponentially suppressed and do not lead to power law volume dependence. Furthermore,
for diagrams without cuts, the cases in which loop momenta vanish do not require separate consideration, as there
are no IR divergences.

For the diagrams with two-particle cuts, one must also consider the cases in which one or more loop momenta
vanish. In these cases the summands are not related to integrands of M2,thr, do not vanish, and must be calculated
explicitly. If one loop momentum vanishes, then the contribution is of O(L−6) if the other loop sums are replaced by
integrals.10 If two loop momenta vanish then the contribution begins at O(L−9) and can only be raised to the desired
L−6 behavior if there is a 1/p6 IR divergence. This only occurs for Fig. 2(f). If all three loop momenta vanish, then
the contribution is of O(L−12) and can be dropped.

9 Indeed, this is exactly the form that arises at tree level, where λ∂τC
(1)
2,thr(0) = −λ/(8m2L3).

10 It is possible in principle that IR divergences could reduce the power of 1/L, but this does not occur in practice.
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I now consider Figs. 2(f)-(k) in turn, calling them, respectively, the SSS, SST, STS, STT, SSU and TST diagrams.

1. SSS diagram

Figure. 2(f) combines with the A4sss part of Fig. 2(a), the A3ss part from Fig. 2(b), the A2
2s part from Fig. 2(c)

and the A2s part from Fig. 2(d). I find

∂τC
(4)
2,thr(0) ⊃ I

3 − 6IJ + 3K
218π6m5L6

, (42)

with the three terms arising, respectively, from having zero, one and two nonzero loop momenta.

2. SST diagram

Next I consider Fig. 2(g), together with the A4sst contribution to Fig. 2(a), the A3st contribution to Fig. 2(b),
the A2s(A2t + A2u) contribution to Fig. 2(c), the A2t + A2u contribution to Fig. 2(d), and the A2s contribution to
Fig. 2(e).

The sum over the momenta in the rightmost loop can always be converted to an integral since the summand is
non-singular. Thus at most one of the remaining loops can have vanishing momenta. I describe the calculations in
some detail.

If all three loop momenta are nonvanishing, contributions arise from (a) a sum-integral difference on the left loop
(with the other loops integrated), (b) a sum-integral difference on the central loop (with other loops integrated),
and (c) sum-integral differences on left and central loops (with the rightmost loop integrated). I find by explicit
calculation that the summands/integrands for the first two cases vanish identically. The explicit expression for case
(c) is (including the horizontal reflection):

∂τC
(4)
2,thr(0) ⊃ 1

210L3


 1

L3

∑
~p 6=0

−
∫
p

 1

ωp~p2



 1

L3

∑
~k 6=0

−
∫
k

 1

ωk~k2

∫
q

fSST(~k, ~q)

ω3
q

 , (43)

fSST(~k, ~q) = −1 +
2ω2

q (ωk +Wqk)

ωqk(W 2
qk − 1)

, (44)

where Wqk = ωq + ωk + ωqk and ω2
qk = m2 + (~q + ~k)2. A key result is that fSST (0, ~q) = 0. Using Eq. (A1), one sees

that the expression in the left-hand curly braces is proportional to 1/L, while that in the right-hand curly braces is

proportional to 1/L3, so that the overall contribution to ∂τC
(4)
2,thr(0) is proportional to 1/L7 and can be dropped.

If the leftmost loop momentum vanishes, it turns out the the central loop has an integrable 1/k2 IR divergence.
Replacing the central momentum sum with an integral [valid up to corrections of O(L−1)], and including the horizontal
reflection, yields the result

∂τC
(4)
2,thr(0) ⊃ ISST0

213π4m5L6
, ISST0 = 0.19889 . (45)

Here ISST0 is a UV convergent two-loop integral of a lengthy expression that I evaluate numerically. I note that the
relation ISST0 = 2IST holds numerically.

If the central loop momentum vanishes, then, if the left-hand momentum sum is replaced by an integral, the result

vanishes identically. It follows that there is no O(L−6) contribution to ∂τC
(4)
2,thr(0).

3. STS diagram

Figure 2(h), combines with the Fig. 2(d) (in which the A2t + A2u counterterm is placed on the middle vertex), as
well as the A3st contribution to Fig. 2(b) (together with its reflection) and the A4sts contribution to Fig. 2(a).
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The central loop sum can always be converted to an integral without power-law volume corrections. If both of the

outer loop momenta are nonzero, I find (with ~p and ~k the momenta in the outer loops, and ~q the central momentum)

∂τC
(4)
2,thr(0) ⊃ 1

211m2L3

 1

L3

∑
~p6=0

−
∫
p

 1

L3

∑
~k 6=0

−
∫
k

 1

~p2~k2

∫
q

fSTS1(~p,~k, ~q)

+
1

210m2L3

 1

L3

∑
~p 6=0

−
∫
p

 1

~p2

∫
k

∫
q

fSTS2(~p,~k, ~q) . (46)

The relevant properties of the functions fSTS1 and fSTS2 will be given below. To study the first term in Eq. (46), I
introduce

gSTS1(~p 2,~k 2, ~p · ~k) =

∫
q

fSTS1(~p,~k, ~q) , (47)

where the form of the arguments of g(STS1) is determined by rotation invariance. Generalizing the analysis leading
to Eq. (A1) gives 1

L3

∑
~p 6=0

−
∫
p

 1

L3

∑
~k 6=0

−
∫
k

 g(~p 2,~k 2, ~p · ~k)

~p2~k2
=

(
I

4π2L

)2

g(0, 0, 0) − I
4π2L4

[
∂

∂p2
+

∂

∂k2

]
g

∣∣∣∣∣
~p=~k=0

+ O(1/L6) .

(48)

Using the result gSTS1(0, 0, 0) = 0, which follows from the renormalization condition, I find that the leading finite-
volume term is proportional to L−7.

Turning to the second term in Eq. (46), I introduce

gSTS2(~p 2) =

∫
k

∫
q

fSTS2(~p,~k, ~q) , (49)

which is a function of ~p 2 by rotation invariance. Using

gSTS2(0) = 0 , gSTS2′(0) =
ISTS

8m3π4
, ISTS = −0.37115 , (50)

together with Eq. (A1), the second term in Eq. (46) contributes

∂τC
(4)
2,thr(0) ⊃ −ISTS

213π4m5L6
. (51)

If one or other of the outer momenta vanishes, then I find

∂τC
(4)
2,thr(0) ⊃ ISTS0

213π4m5L6
, ISTS0 = ISST0 , (52)

where the latter equality holds to numerical precision.

4. STT diagram

Figure 2(i) combines with the A2t contribution to Fig. 2(e) (with the counterterm on the two right-hand vertices),
the A3tt contribution to Fig. 2(b) and the A4stt contribution to Fig. 2(a).

The sums over momenta in the right-hand loops can be converted to integrals. If no loop momenta vanish then the
result, including the horizontal reflection, is

∂τC
(4)
2,thr(0) ⊃ 1

210m3L3

 1

L3

∑
p 6=0

−
∫
p

 fSTT (p2)

p2
, (53)

fSTT (0) = 0 , fSTT
′
(0) =

ITT

32π4
. (54)
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Using Eq. (A1), this yeilds

∂τC
(4)
2,thr(0) ⊃ − ITT

215π4m5L6
. (55)

If the lefthand loop momentum vanishes, I find

∂τC
(4)
2,thr(0) ⊃ ITT

214π4m5L6
, (56)

with ITT given in Eq. (38).

5. SSU diagram

Figure 2(j) combines with the A2s+A2u contributions on the right-hand vertices in Fig. 2(e), the A3su contribution
to in Fig. 2(b) and the A4ssu counterterm in Fig. 2(a). The fact that A2u contributes is not obvious but can be
understood by a careful accounting of the Wick contractions. Momentum sums in the two right-hand loops can be
replaced by integrals. I label the momenta in these loops q and k, while that in the left-hand loop is denoted p. This
is the most tedious of the diagrams to calculate.

If ~p 6= 0 then the contribution takes the form

∂τC
(4)
2,thr(0) ⊃ 1

28m5L3

 1

L3

∑
~p6=0

−
∫
p

 1

p2

∫
q,k

gSSU(~p, ~q,~k) . (57)

Using the fact that gSSU vanishes when ~p = 0 (which again follows from the renormalization condition), expanding
gSSU in powers of ~p, and using Eq. (A1), I find

∂τC
(4)
2,thr(0) = − 1

211π4m5L6
ISSU , ISSU = 0.156906 . (58)

If ~p = 0, the result is

∂τC
(4)
2,thr(0) =

1

211π4m5L6
ISU . (59)

where ISU is given in Eq. (39).

6. TST diagram

The final diagram is the box-like Fig. 2(k), which is combined with the A2t + A2u contribution to Fig. 2(e), and
the (A2t +A2u)2 contribution to Fig. 2(c).

The sums over the outer momenta can be replaced by integrals. If the central loop momentum (denoted ~p) is
nonvanishing, I find

∂τC
(4)
2,thr(0) ⊃ 1

210m5L3

 1

L3

∑
p 6=0

−
∫
p

 fTST(p2)

p2
, (60)

fTST(0) = 0 , fTST′
=

ITT

32π4
. (61)

Using Eq. (A1) then yields

∂τC
(4)
2,thr(0) ⊃ − ITT

215m5L6
. (62)

If ~p = 0, the result is

∂τC
(4)
2,thr(0) ⊃ ITT

215m5L6
. (63)

Thus the total contribution from this diagram vanishes.
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7. Total contribution to ∆E
(4)
2,thr

Combining the results from Eqs. (42), (45), (51), (52), (55), (56), (58), (59), (62) and (63), I obtain

a
(4)
2 ⊃ −I3 + 6IJ − 3K − 25π2

(
ISST0 − ISTS + ISTS0 + 1

4I
TT − 4ISSU + 4ISU

)
. (64)

C. Mass and wavefunction renormalization

(a) (b) (c) (d) (e) (f)

1

1

22

FIG. 3. Examples of Feynman diagrams contributing to ∂τC
(4)
2,thr(0) involving mass and wavefunction renormalization subdia-

grams. Mass and wavefunction counterterms are indicated by filled boxes.

Both C
(3)
2,thr(0) and ∂τC

(4)
2,thr(0) receive contributions from many diagrams involving mass and wavefunction renor-

malization parts. Examples are shown in Fig. 3. In all cases loop sums can be replaced by integrals. As explained
in Ref. [9], tadpole bubbles, such as those in Fig. 3(a), cancel identically with the corresponding counterterms, here
shown in Fig. 3(d). For loop diagrams such as those in Figs. 3(b) and (c), however, the cancelation with the coun-
terterms of Figs. 3(e) and (f), is not exact. When one constructs the renormalized propagator by the usual geometric
sum, what remains are contact terms in position space. These, however, cannot go on shell, and thus cannot be cut,
so loops involving them do not lead to finite-volume dependence. Instead, they either lead to contributions to the
amplitudes Aj,k [see Eq. (6)] which thus cancel from ∆E2—exemplified by the case of Fig. 3(b)—or their contribution
is canceled by coupling-constant counterterms—as is the case for Fig. 3(c). I have checked this explicitly for several
examples. The net result is that this class of diagrams does not need to be considered.

D. Total result and comparison with expectation

Combining the results in Eqs. (31), (41) and (64) gives the final result for the two-particle energy shift

a
(4)
2 = −I3 + 3IJ − K − 25π2

(
ISST0 − 2IST − ISTS + ISTS0 − 4ISSU + 2ISU

)
. (65)

This should be compared to the result expected from the quantization condition, Eq. (20), which yields

a
(4)
2 = −I3 + 3IJ − K − 212π6K′(3)

2,s,thr . (66)

The coefficients of the geometric constants agree. For the remaining part the result for K′(3)
2,s,thr from Appendix C is

needed. Combining Eqs. (C19) and (C24), the result is

K′(3)
2,s,thr =

ISTr

28π4
+
ISUr

26π4
. (67)

Agreement between Eqs. (65) and (66) holds because of the numerical relations

ISST0 − 2IST − ISTS + ISTS0 = 1
2I

STr , (68)

−4ISSU + 2ISU = 2ISUr . (69)

From the point of view of the present calculation this agreement appears highly nontrivial, as the two sides of these
equations are obtained in very different ways. I stress that the agreement holds separately for subsets of diagrams: the
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SSU contribution to ∂τC
(4)
2,thr(0), combined with the SU contribution to C

(3)
2,thr(0)∂τC

(1)
2,thr(0) matches with to K′(3,su)

2,s,thr ,

while the SST and STS contributions to ∂τC
(4)
2,thr(0), combined with the ST contribution to C

(3)
2,thr(0)∂τC

(1)
2,thr(0),

matches with K′(3,st)2,s,thr. This diagram-level matching holds also for the SSS, STT and TST classes of diagrams, where

there is no contribution to K′(3)
2,s,thr.

IV. DETERMINING ∆
(4)
32

In this section I calculate ∆
(4)
32 in order to test the result (27) obtained from the three-particle quantization condition.

It is convenient to write

∆
(4)
32 =

3a
(4)
3

218π6m5L6
+O(L−7) , (70)

and quote results for a
(4)
3 . As shown in Eq. (23), the calculation requires determining ∂τC

(4)
2,thr(0), C

(3)
3,thr,conn(0) and

∂τC
(4)
3,thr,conn. The former was worked out in Sec. III B, and from Eq. (64) I find

a
(4)
3

∣∣∣
∂τC

(4)
2,thr(0)

= 2I3 − 12IJ + 6K + 26π2
(
ISST0 + ISTS0 − ISTS + 1

4I
TT + 4ISU − 4ISSU

)
. (71)

In the following two subsections I calculate the other two required quantities.

A. Calculation of C
(3)
3,thr,conn(0)

(a) (b)

FIG. 4. Feynman diagrams for C
(3)
3,thr,conn(0) that give contributions of O(L−3).

In order to give rise to an O(L−6) contribution to ∆
(4)
32 , C

(3)
3,thr,conn(0) must scale as L−3. Since connected diagrams

begin at O(1/L6), to reach the required dependence requires a 1/p6 IR divergence. This is only possible in third order
diagrams if there is a time ordering of vertices in which all intermediate states contain only three particles (for each
such intermediate state can yield a factor of 1/p2). This singles out the two diagrams shown in Fig. 4, which I denote,
following Ref. [9], as (a) the bull’s head and (b) the s-channel fish diagram.

The calculation is very straightforward as only one time-ordering is required. The contribution from the bull’s head
diagram is

C
(3)
3,thr,conn(0) ⊃ − 3

27m3L9

∑
~p6=0

−2 +O(p2)

p6
=

3

213π6m3L3
(2K) +O(1/L4) , (72)

while that from the s-channel fish (together with its horizontal reflection) is

C
(3)
3,thr,conn(0) ⊃ − 3

27m3L9

∑
~q 6=0

1 +O(q2)

q6
=

3

213π6m3L3
(−K) +O(1/L4) . (73)

In both cases I have used Eq. (A4). Combining these results and multiplying by 3 ∂τC
(1)
2,thr(0) yields

a
(4)
3

∣∣∣
C

(3)
3,thr,conn(0)

= −12K . (74)
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B. Calculation of ∂τC
(4)
3,thr,conn

At O(λ4), connected three-particle diagrams contain two loops. A selection of the many such diagrams is shown

in Figs. 5, 6 and 7, including the subset that will need to be considered in detail. As for ∂τC
(4)
2,thr(0), the diagrams

have an initial volume scaling of L−12. This can be raised to the desired L−6 dependence either by converting two
sums over intermediate momenta to integrals or by having a single loop sum that diverges in the IR as 1/p6. The
latter case requires that the second loop momentum vanishes.11 As already noted above, to obtain the most singular
IR divergence the diagram must be such that there is a time ordering in which all intermediate states involve three
particles. The diagrams for which this holds are Figs. 5(a), (d) and (g), Fig. 6(a) and Fig. 7(a).

If both loop momenta vanish then the contributions are proportional to 1/L12 and thus of too high order.
When both loop momenta are nonzero, there are two further general results that simplify the calculations. The

first is that, as for ∂τC
(4)
2,thr(0), the vertex times, τi, must satisfy 0 < τi < τ . The second concerns the summand

that remains after the time integrals are done (leaving only momentum sums). For ∂τC
(4)
2,thr(0), this summand was

proportional to the integrand of M2 at threshold. Here, by a similar argument, one can show that the summand of

a contribution to ∂τC
(4)
3,thr,conn, when multiplied by 48m3L12, gives the integrand of M3 at threshold.12 This implies

that if both loop sums can be replaced by integrals, which is allowed in the absence of IR divergences, then the
diagram will give a contribution of the form13

∂τC
(4)
3,thr,conn ⊃

M3,thr

48m3L6
+O(L−7) . (75)

I will refer to this as the “standard form” of contribution.
Thus the only diagrams that need to be considered in detail are those containing IR divergences. These arise when

the diagram has three-particle cuts. Thus, for example, Fig. 5(b) need not be considered, since it has no three-particle
cuts and thus contributes only to the standard form, Eq. (75). All diagrams having three-particles cuts are included
in Figs. 5, 6 and 7, with the exception of those with self-energy insertions or that are one-particle reducible. The
latter do not lead to nonstandard contributions are and discussed in Sec. IV C.

A further distinction allows a subset of the diagrams with three-particle cuts to be removed from consideration. If
the IR divergence occurs inside a loop, then it must be stronger than 1/p2 in order for Eq. (75) to be invalidated, as
such an IR divergence is integrable. Since each three-particle cut only leads to a 1/p2 divergence, this implies that,
for diagrams in which the three-particle cuts run through loops, there must be at least two such cuts if in order to
obtain a result different from Eq. (75). Thus Fig. 5(c) need not be considered. The alternative is that the single
three-particle cut does not pass through a loop, which is the case for Fig. 6(c) and Figs. 6(d), (e) and (f). These
diagrams can lead to contributions of a form differing from Eq. (75) and must be considered in detail.

The final general issue arises from the fact that M3 at threshold is IR divergent and thus ill-defined. This is
not the case for M2, and adds another level of complication to the three-particle analysis. To obtain a well-defined
three-particle amplitude at threshold one must add an IR regulator, make some subtractions, and then remove
the regulator [3]. The choice of subtraction introduces scheme dependence, and a particularly simple choice was
introduced in Ref. [8] and used to define the quantityM3,thr that occurs in the prediction that I am testing, Eq. (23).
The general implication is that, for diagrams with IR divergences that are not integrable, one must determine both

their contributions to ∂τC
(4)
3,thr,conn and, in a separate infinite-volume calculation, to M3,thr, so that the deviation

from the standard result (75) can be found. In the following I work systematically through all such diagrams carrying
out this procedure.

It will be useful to have in mind the form of the IR subtractions that are needed. These are defined in Eq. (114)
of Ref. [8] and the subsequent text. The schematic form is

M3,thr ≡ lim
δ→0

{
M3,δ − I0,δ −

∫
k1,δ

Ξ1(~k1)−
∫
k1,δ

∫
k2,δ

Ξ2(~k1,~k2)

}
. (76)

Here δ is an IR regulator defined such that threshold is attained when δ → 0. The specific form of this regulator, as
well as the explicit expressions for I0,δ, Ξ1 and Ξ2, will be given below when needed. I0,δ contains terms of all orders

11 This is the most IR singular summand possible at this order because, of the four integrals over the times of the vertices, one is needed
to produce the factor of τ , while each of the other three can lead to a factor of 1/p2.

12 The factor of 48 can be understood from the case of a local λ6φ6/6! interaction, for whichM3 = −λ6. The contribution to ∂τC
(4)
3,thr,conn

is then −λ6/[6(2m)3], with the 6 arising from the numerator in ratio defining ∂τC
(4)
3,thr(0), Eq. (4), and the (2m)−3 arising from the

three propagators that are not canceled in this ratio.
13 In the remainder of this section the fact that there are contributions of O(L−7) will not be noted explicitly.
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in λ starting at λ2, while Ξ1 contains terms proportional to λ3 and λ4, and Ξ2 is proportional to λ4. Thus several
new features of the subtraction scheme are being tested by working at O(λ4). I also note that I0,δ is used to subtract
IR divergences in the diagrams of Figs. 6 and 7, while Ξ1 and Ξ2 are needed for some of the diagrams in Fig. 5.

(a) (b) (c)

(d) (e) (f)

(h) (i)

2

(g)

2

FIG. 5. A subset of Feynman diagrams contributing to ∂τC
(4)
3,thr(0) and M3,thr. Solid squares are vertex counterterms, with the

number indicating the power of λ. External particles have zero three-momentum. Diagrams related by vertical or horizontal
reflection are not shown.

1. Double triangle diagram: Fig. 5(a)

This is the first example of a class of diagrams arising first at fourth order, which involve a double triangle or
diamond. Its IR behavior arises from a process in which there are three 2→ 2 scatterings, with the spectator particle
alternating. As shown in Ref. [8], this leads to a logarithmic IR divergence in the corresponding threshold amplitude,
requiring the subtraction of the fourth-order term Ξ2.

If one of the loop momenta vanishes, the result is

∂τC
(4)
3,thr,conn ⊃

3

28m5L12

∑
~p6=0

−2 +O(p2)

p6
⇒ a

(4)
3 ⊃ 32K , (77)

where I have used Eq. (A4) to obtain the second result.
The result if both loop momenta are nonzero is

∂τC
(4)
3,thr,conn ⊃

1

48m3L12

∑
~p6=0

∑
~q 6=0

9

16

g(~p, ~q)

p2q2(W 2
pq − 9m2)

, (78)
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where Wpq = ωp +ωq +ωpq, ω
2
pq = m2 + (~p+ ~q)2, and g(~p, ~q) is a nonsingular function that I do not reproduce, except

to note that g(0, 0) = 3/m2. The logarithmic IR divergence can be seen by noting that, for small momenta,

W 2
pq − 9m2 = 6

(
p2 + q2 + ~p · ~q

)
+ · · · . (79)

As explained in the introduction to this section, the summand in Eq. (78) is the integrand of the contribution of
the double-triangle diagram to M3 at threshold. The prescription of Ref. [8] to remove the IR divergences in this
case is to subtract the quanitty

1

λ4
Ξ2(~p, ~q) =

9

16m2

H(~p)2H(~q)2

p2q2[p2 + q2 + (~p+ ~q)2]
, (80)

where H(~p) is a UV regulator whose detailed form will not matter here other than the property H(0) = 1. After
subtraction the result can be integrated and defines the contribution of this diagram to the threshold amplitude,
which I label MDT

3,thr. Thus I proceed by adding and subtract the Ξ2 term, leading to

∂τC
(4)
3,thr,conn ⊃

1

48m3L12

∑
~p 6=0

∑
~q 6=0

[
9

16

g(~p, ~q)

p2q2(W 2
pq − 9m2)

− Ξ2(~p, ~q)

λ4

]
+

1

48m3L12

∑
~p6=0

∑
~q 6=0

Ξ2(~p, ~q)

λ4
(81)

=
1

48m3L6

∫
p,q

[
9

16

g(~p, ~q)

p2q2(W 2
pq − 9m2)

− Ξ2(~p, ~q)

λ4

]
+

1

48m3L12

∑
~p6=0

∑
~q 6=0

Ξ2(~p, ~q)

λ4
(82)

=
M(4,DT)

3,thr

48m3L6
+

3

218π6m5L6

(
64π4

3
logNcut − C5

)
. (83)

In the second line, the sum of the IR regulated difference has been replaced by an integral, which is valid up to a
1/L7 contribution arising from the difference between the sum and integral of an integrand with a 1/p2 divergence.
To obtain the final form, the expression for the sum over Ξ2 given in Eqs. (C18) and (C19) of Ref. [8] has been used.

2. Diver diagram: Fig. 5(d)

This diagram is combined with the A2s part of the counterterm diagram Fig. 5(f). This turns out to be the most
involved calculation from Fig. 5. I denote the momentum in the outer loop by p, while that in the diver’s head loop
by q.

If ~p = 0, the IR divergence is sufficient to lead to a contribution at the desired order, specifically

∂τC
(4)
3,thr,conn ⊃

3

210m5L6

1

L6

∑
~q 6=0

1 +O(q2)

q6
⇒ a

(4)
3 ⊃ −4K . (84)

If ~p 6= 0, Fig. 5(d) alone gives

∂τC
(4)
3,thr,conn ⊃

3

211m3L12

∑
~p6=0

∑
~q

1

ω3
pωq

gD(~p, ~q)

p4(W 2
pq − 9m2)

, (85)

where gD is a complicated function that is finite when p and/or q vanish. Thus the summand does not diverge when
~q = 0, allowing the sum over ~q to include this point. The sum over ~q is UV divergent, but this is canceled by the
counterterm contribution, which is

∂τC
(4)
3,thr,conn ⊃ −

3A2s

28m3L9

∑
~p6=0

3ω2
p −m2

ω3
pp

4
. (86)
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Combining, I find

∂τC
(4)
3,thr,conn ⊃

3

211m3L6
(S1 + S2) , (87)

S1 =
1

L3

∑
~p6=0

fD(p)

ω3
pp

4
, (88)

fD(p) =

∫
q

1

ωqq2

[
q2 gD(~p, ~q)

(W 2
pq − 9m2)

− (3ω2
p −m2)

]
, (89)

S2 =
1

L3

∑
~p6=0

1

ω3
pp

4

 1

L3

∑
~q

−
∫
q

 gD(~p, ~q)

ωq(W 2
pq − 9m2)

. (90)

Consider first S1. Its IR behavior is determined by the form of fD(p) near p = 0. Using the explicit form of gD I
find that fD(0) = 0. To next pull out the leading IR behavior of the integrand using Eq. (79):

fD(p) = f̃D(p) + 2mID(p) , (91)

f̃D(p) =

∫
q

[
gD(ωp, ωq, ωpq)

ωq(W 2 − 9m2)
− 2m

p2 + q2 + ~p · ~q
−

3ω2
p −m2 − 2mωq

ωqq2

]
, (92)

ID(p) =

∫
q

[
1

p2 + q2 + ~p · ~q
− 1

q2

]
, (93)

The key property of the residue function is that fD(p) ∝ p2 near p = 0. The integral ID is well defined as long as
one does the angular integral first, and gives

ID(p) = −
√

3 p

8π
. (94)

This shows that fD(p) is a function of p and not p2. Combining these results yields the S1 contribution to ∂τC
(4)
3,thr,conn:

∂τC
(4)
3,thr,conn ⊃

1

48m3L6

9

27L3

∑
~p6=0

[
−
√

3m

4πω3
pp

3
+
f̃D(p)

ω3
pp

4

]
. (95)

The next step is to express this result in terms of the contribution of the diver diagram to M3,thr, which I denote
MD

3,thr, and determine the remainder. Using the general result described in the introduction to this subsection, it

follows from Eq. (95) that the contribution of the diver diagram to the amplitude at threshold is

M(4,D)
3 =

9

27

∫
p

[
−
√

3m

4πω3
pp

3
+
f̃D(p)

ω3
pp

4

]
. (96)

This is IR divergent, and to obtain M(4,D)
3,thr one must subtract from this integral of the λ4 part of Ξ1. The full

expression for Ξ1 is [see Eqs. (191)-(121) of Ref. [8]]

Ξ1(p) = −9λ3

8m

[
H(~p)2

p4
+

λ

32πm

√
3

2

H(~p)3

p3

]
, (97)

and I need here only the second term. Thus I find

M(4,D)
3,thr =

9

27

∫
p

[
−
√

3m

4πω3
pp

3
+

√
3H(~p)3

4πm2p3
+
f̃D(p)

ω3
pp

4

]
, (98)



18

which indeed is IR (as well as UV) convergent. This allows the result (95) to be rewritten as

∂τC
(4)
3,thr,conn ⊃

M(4,D)
3,thr

48m3L6
− 3

211m3L9

∑
~p6=0

√
3H(~p)3

4πm2p3
(99)

=
M(4,D)

3,thr

48m3L6
− 1

48m3L6

χ1,B

λ4
(100)

=
M(4,D)

3,thr

48m3L6
− 3

218π6m5L6

(
16π3

√
3 logNcut + C4

)
. (101)

In the second step I use the definition of χ1,B given in Eq. (C13) of Ref. [8], and in the last step I use the evaluation
of χ1,B presented in Eq. (C15) of that work.

Now I turn to S2. Naively, it appears that the sum-integral difference appearing in Eq. (90) is exponentially
suppressed, because there are no singularities in the region of integration over ~q when ~p 6= 0 (since Wpq > 3m).
However the singularities are nearby, and the “suppression” is by exp(−pL) ∼ O(L0). It follows that this term must

be kept. Fortunately, it turns out that it can be related analytically to the CF contribution to ∆
(4)
32 in Eq. (23).

To do so I rewrite S2 by setting Wpq → 3m everywhere except for the 1/(Wpq − 3m) pole. This leads only to
corrections suppressed by exp(−mL). Using the result

gD(ωp, ωq, ωpq)

Wpq + 3m

∣∣∣∣∣
Wpq=3m

=
ω2
p(m+ ωp)

2

2m2
, (102)

I find

S2 = − 1

L3

∑
~p6=0

1

p4

(m+ ωp)
2

2m2

 1

L3

∑
~q

−
∫
q

 1

ωpωqωpq(3m−Wpq)
. (103)

Observing that the sum over ~p is dominated by p ∼ 1/L, and dropping higher order corrections in 1/L, this can be
rewritten as

S2 = − 1

L3

∑
~p6=0

2

p4

 1

L3

∑
~q

−
∫
q

 1

ωpωqωpq(3m−Wpq)
= −27

9

χF
λ4

. (104)

Here χF is a quantity introduced in Ref.[8], which evaluates to

χF = λ4 9

214π6m2
CF . (105)

Combining these results with Eq. (87) I find the contribution of the S2 term to be

∂τC
(4)
3,thr,conn ⊃ −

3

218π6m5L6
CF . (106)

3. Figure 5(e)

This diagram is combined with the A2t+A2u contribution from Fig. 5(f). I denote the momentum in the bull’s head
loop by p and the other loop momentum by q. The sum over ~q can be replaced by an integral since the summand is IR
finite. For any nonzero choice of ~p, the factorization of the two loops then implies that there is an exact cancellation
between Figs. 5(e) and (f). For ~p = 0 the absence of an IR divergence in ~q implies that the contribution is of O(L−9).

Thus these diagrams make no contribution to ∂τC
(4)
3,thr,conn.

They also make no contribution to M3,thr. To understand this first note that both the relevant IR subtraction
terms in the definition ofM3,thr, Eq. (76), namely Ξ1 and Ξ2, have already been used for the earlier diagrams. Thus
the contribution of Fig. 5(e) together with the counterterm must be IR finite by itself. This is a somewhat subtle
issue since the bull’s head loop alone has a nonintegrable 1/p4 dependence in the IR [9]. To understand this issue
requires using the IR regularization defined in Ref. [8]: external momenta are set to zero, and an IR cutoff is applied
to the loop momentum, p ≥ δ. The result should then be IR finite when δ → 0. The point is that, since the two loops
factorize, the cancelation with the counterterm is exact for any nonzero ~p, and so the contribution toM3,thr vanishes
for all nonzero δ and thus also in the limit δ → 0.
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4. Figure 5(g)

Figure. 5(g) combines with the A2s part of Fig. 5(i), together with horizontal reflections. Viewed as a contribution
to M3,thr, the argument given for the previous diagram continues to hold: there is an exact cancelation between the
s-channel loop and its counterterm. This is not the case, however, when the diagram is evaluated as a contribution to

∂τC
(4)
3,thr(0). This is because the s-channel loop momentum is summed in Fig. 5(g) but integrated (in A2s) in Fig. 5(i).

The sum-integral difference leads to a finite-volume residue that, combined with the IR divergence from the bull’s
head diagram, leads to a 1/L6 correction.

There are three contributions of this type. The first occurs when both loop momenta are nonzero:

∂τC
(4)
3,thr,conn ⊃

3

29m5L6

1

L3

∑
~p6=0

m4

ω3
pp

4

 1

L3

∑
~q 6=0

−
∫
q

 1 + 3~p2/(2m2)

ωqq2
(107)

=
3

218m5L6
(8IJ ) . (108)

The second arises when the s-channel loop momentum vanishes:

∂τC
(4)
3,thr,conn ⊃

3

29m5L6

1

L6

∑
~p6=0

−2 +O(p2)

p6
=

3

218π6m5L6
(−16K) , (109)

The final contribution occurs when the bull’s head loop momentum vanishes:

∂τC
(4)
3,thr,conn ⊃

3

29m5L6

1

L6

∑
~q 6=0

1 +O(q2)

q6
=

3

218π6m5L6
(8K) . (110)

In total, this diagram gives

a
(4)
2 ⊃ −8IJ + 8K . (111)

5. Figure 5(h)

The final diagram of this class is Fig. 5(h), which combines with the A2t + A2u part of Fig. 5(i). Here the
argumentation is not so straightforward since the two loops do not factorize. Thus, while the UV divergence is
canceled by the counterterm, there will be a finite residue. This residue vanishes, however, when the momentum in
the bull’s head loop itself vanishes. This in turn implies that the IR divergence in the bull’s head loop is canceled.
It then follows that the difference between the momentum sum and integral is exponentially suppressed, so that the

contribution to ∂τC
(4)
3,thr(0) is simply of the standard form, Eq. (75).

6. Double fish diagram: Fig. 6(a)

I now turn to the two-loop radiative corrections to the three-particle tree diagram, starting with those involving
two separate loops, shown in Fig. 6. The first diagram is that containing two s-channel fish, Fig. 6(a), which combines
with the contributions to Fig. 6(d) and (f) in which the counterterms are A2s.

If one momentum vanishes the result is

∂τC
(4)
3,thr,conn ⊃ 2× 3

211m5L6

1

L6

∑
~p6=0

1 +O(p2)

p6
⇒ a

(4)
2 ⊃ −4K , (112)

where the initial factor of 2 arises because there are two choices of vanishing loop momentum.
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(a) (b) (c)

(e) (f)

2
2

(d)

2 2

p

b

ka

q

FIG. 6. Further diagrams contributing to ∂τC
(4)
3,thr,conn and M3,thr. Reflections are not shown.

If both momenta are nonvanishing then I find

∂τC
(4)
3,thr,conn ⊃

3

211m5L6

{ 1

L3

∑
~p6=0

−
∫
p

 1

L3

∑
~q 6=0

−
∫
q

 1

ωpp2

1

ωqq2

− 1

L3

∑
~p6=0

 1

L3

∑
~q 6=0

−
∫
q

 m2

ωpp4

1

ωqq2
− 1

L3

∑
~q 6=0

 1

L3

∑
~p 6=0

−
∫
p

 1

ωpp2

m2

ωqq4

}
(113)

⇒ a
(4)
2 ⊃ −4IJ . (114)

All contributions here involve at least one sum-integral difference, a result that arises due to the cancelation with

counterterms. Thus there is no contribution to ∂τC
(4)
3,thr,conn of the standard form involving M3,thr, Eq. (75). This

implies that, in order to be consistent with Eq. (23), the double-fish diagram, viewed as an infinite-volume scattering

diagram, must give a vanishing contribution to M(4)
3,thr.

To see that this is indeed the case, I recall how the IR regulation and subtraction of Ref. [8] works for such a
diagram. Since the diagram diverges at threshold (due to the intermediate propagator), one must insert momenta,
then perform the subtraction (in this case of I0,δ), and then take the threshold limit. Using the labeling in Fig. 6(a),

the momentum configuration chosen in Ref. [8] is that the spectator momenta vanish (~p = ~k = 0), implying that the

momentum flowing through the intermediate propagator also vanishes, ~q = ~P − ~p − ~k = 0, while the “nonspectator

pair” have nonzero momenta, ~a = −~b 6= 0. The CM energy flowing through the diagram is then

E = 3m+
a2

m
+O(a4/m3) . (115)

The intermediate propagator is

∆(q) =
i

q2 −m2 + iε
=

i

(E −m)(E − 3m+ iε)
, (116)

and the iε can be dropped provided a 6= 0. The scattering amplitudes attached to both vertices are then partially

off shell, since q2 6= m2. I label them M(2,S)
2,off , with the superscript indicating 2 for second order and S for s-channel

loop. According the definition in Ref. [8], this amplitude should be s-wave projected. However, this is automatically
satisfied here, since the amplitude depends only on s = 4(m2 + a2) ≡ sa and not on the direction of ~a. The result is
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thus

iM(u,u)
3 ⊃ iM(2,S)

2,off (sa)
i

(E −m)(E − 3m)
iM(2,S)

2,off (sa) . (117)

The superscript (u, u) on M3 follows the notation of Ref. [8] and indicates that the amplitude is unsymmetrized.
In order to obtain a finite threshold amplitude, the appropriate part of I0,δ must be subtracted. This is [8]

iI
(u,u)
0 = iM(2,S)

2,s (sa)iG∞s iM
(2,S)
2,s (sa) , (118)

iG∞s =
i

2m(E − 3m+ iε)
, (119)

where again the iε can be dropped. Here the subscript 2, s indicates that this is contribution to the two-particle
s-wave scattering amplitude. Now I note that the s-channel loop amplitude is independent of the value of q2, so that,

in fact, M(2,S)
2,off =M(2,S)

2,s . Thus the difference between Eqs. (117) and (118) can be simplified to

i
(
M(u,u)

3 − I(u,u)
0

)
= iM(2,S)

2,s (sa)
1

2m(E −m)
M(2,S)

2,s (sa)
E→3m−−−−→ iM(2,S)

2,s (4m2)
1

(2m)2
M(2,S)

2,s (4m2) = 0 . (120)

In the last step I have taken the threshold limit by sending a → 0, which is possible since the IR divergence has
canceled. I find that the result vanishes in this limit because, by definition, all second and higher-order contributions
to the scattering amplitude vanish at threshold. The final step is to symmetrize the result, which does not change

the fact that the result vanishes. Thus the double-fish diagram does not contribute to M(4)
3,thr.

7. Fish and sinker diagram: Fig. 6(b)

This diagram combines with the A2t +A2u part of Fig. 6(d), the A2s part of Fig. 6(e), and the (A2t +A2u)A2s part

of Fig. 6(f), together with horizontal reflections. When evaluating the contribution to ∂τC
(4)
3,thr,conn, the momentum

integrals in the counterterms can be converted into sums at the order I work. I then find that the total summand

vanishes identically, so that there is no contribution to ∂τC
(4)
3,thr,conn. As for the double-fish diagram, this implies that,

if Eq. (23) is to hold, then the fish and sinker diagram must give no contribution to M(4)
3,thr.

The argument that this is the case is more subtle than for the double-fish diagram, because the off-shell two-to-two

amplitude appearing at the right-hand vertex in Fig. 6(b) now depends on q2. I label this amplitudeM(2,T)
2,off (sa, ta, ua),

with the superscript T indicating the t/u-channel loop. Because it is off shell it depends on all three Mandlestam
variables, and thus on q2 through the relation sa + ta + ua = 3m2 + q2. For the kinematic configuration explained
above the Mandlestam variables are sa = 4(m2 + a2) and ta = ua = m(3m − E). Since these are independent of
the direction of ~a, the off-shell amplitude is pure s-wave so there is no need to apply the s-wave projection. The IR
subtraction now takes the form (before symmetrization)

iM(2,S)
2,off (sa)

i

(E −m)(E − 3m)
iM(2,T)

2,off (sa, ta, ua)− iM(2,S)
2,s (sa)

i

2m(E − 3m)
iM(2,T)

2,s (sa) , (121)

where in the second term M(2,T )
2,s is the contribution to the on-shell, s-wave, two-particle amplitude coming from the

t/u-channel diagram. I stress that this is not the same as M(2,T)
2,off , although the difference vanishes at threshold since

both quantities vanish there. The difference can be rewritten as

iM(2,S)
2,s (sa)

i

2m(E −m)
iM(2,T)

2,s (sa) + iM(2,S)
2,s (sa)

i

2m(E − 3m)

[
iM(2,T)

2,off (sa, ta, ua)− iM(2,T)
2,s (sa)

]
, (122)

Both terms are finite when E → 3m, but again the limiting value is zero because M(2,S)
2,s vanishes at threshold.

8. Double-sinker diagram: Fig. 6(c)

This diagram combines with the contributions from Figs. 6(e) and (f) in which the counterterms are A2t + A2u.
Here both loop sums can be converted to integrals, and the cancelation with the counterterms is exact. Thus there is

no contribution to ∂τC
(4)
3,thr,conn.
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Because of this I expect no contribution from these diagrams also to M(4)
3,thr. Including the subtraction, the result

for the unsymmetrized amplitude is

iM(2,T)
2,off (sa, ta, ua)

i

(E −m)(E − 3m)
iM(2,T)

2,off (sa, ta, ua)− iM(2,T)
2,s (sa)

i

2m(E − 3m)
iM(2,T)

2,s (sa) . (123)

Using the facts that M(2,T)
2,off (sa, ta, ua) −M(2,T)

2,s (sa) ∝ (E − 3m) [with the explicit form of this difference given in

Eq. (58) of Ref. [8]] and M(2,T)
2,s (4m2) = 0, the difference (123) can be shown to vanish when E → 3m.

9. SS single-fish diagram: Fig. 7(a)

(a) (b) (c) (d)

(e) (f) (g)

3
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(h)

(i)

2

(j)

2

(k)

FIG. 7. Further diagrams contributing to ∂τC
(4)
3,thr,conn and M3,thr. Reflections are not shown.

I now move to radiative corrections to the three-particle tree diagram that involve a single two-loop correction.
These diagrams are shown in Fig. 7, and I begin with that involving a “fish” with two s-channel loops, Fig. 7(a),
which combines with the A2s parts of Figs. 7(g) and (h) and the A3ss part of Fig. 7(k), along with their horizontal
reflections.

If both momenta are nonzero, the result has the same form as that for the double-fish diagram, Eq. (113), except
for an overall additional factor of 2 because of the reflected diagram. Similarly there are contributions when one of
the loop momenta vanishes that are twice those from the double-fish diagram. Thus in total I find

a
(4)
2 ⊃ 8IJ − 8K . (124)

Turning now to the contribution to M(4)
3,thr, the subtracted amplitude takes the form

iM(3,SS)
2,off (sa)

i

(E −m)(E − 3m)
(−i)− iM(3,SS)

2,s (sa)
i

2m(E − 3m)
(−i) , (125)
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where the superscript indicates the third-order contribution involving two s-channel loops. As above, the s-channel

loops give a result that does not depend on the off-shellness, q2, soM(3,SS)
2,off =M(3,SS)

2,s . Thus the difference (125) can
be written as

iM(3,SS)
2,s (sa)

1

m(m− E)

E→3m−−−−→ −iM(3,SS)
2,s (4m2)

1

2m2
, (126)

which vanishes because M(3,SS)
2,s (4m2) = 0.

10. TS fish diagram: Fig. 7(b)

This diagram combines with the A2t +A2u part of Fig. 7(g), and the A3st part of Fig. 7(k), plus reflections.

In this case the contribution to ∂τC
(4)
3,thr(0) does not vanish because the cancelation with the counterterms is not

exact. The result can be written (after converting counterterm integrals into sums) as

∂τC
(4)
3,thr,conn ⊃

3

29m5L6

1

L6

∑
~p,~q

fTS(~p, ~q) . (127)

The sum is convergent in the IR and UV and thus can be replaced by an integral at the order I work. The result of
the numerical integration is

∂τC
(4)
3,thr,conn ⊃

3

29m5L6

ITSf

8π4
, ITSf = ISTS0 . (128)

The agreement with ISTS0 is to the accuracy of the numerical evaluation.
Turning now to the contribution to M3,thr, I again find it vanishes. The argument is as for the SS fish diagram,

and relies on the result that M(3,TS)
2,off depends only on sa (and not on q2), implying that it equals M(3,TS)

2,s , and also

that M(3,TS)
2,s (4m2) = 0.

11. ST fish diagram: Fig 7(c)

The ST fish diagram combines with the A2t +A2u part of Fig. 7(h) and the A3st part of Fig. 7(k), plus reflections.

As for the TS diagram the contribution to ∂τC
(4)
3,thr(0) involves an IR and UV convergent sum that can be converted

to an integral. Numerical evaluation leads to

∂τC
(4)
3,thr,conn ⊃

3

29m5L6

ISTf

8π4
, ISTf = 0.355066 . (129)

The ST fish diagram also gives a nonvanishing contribution to M(4)
3,thr. This can be written as

iM(4,STf)
3,thr = lim

E→3m
2S
{
i
[
M(3,ST )

2,off (sa, ta, ua)−M(3,ST )
2,s (sa)

] i

q2 −m2
(−i)

}
, (130)

where the overall factor of 2 arises from the reflection, and S indicates symmetrization over the choice of initial and
final state spectator particle (which in the end simply leads to a factor of 9). The superscripts indicate the third-order

ST scattering diagram contained in Fig. 7(c), and I have simplified using the result that M(3,ST )
2,s (4m2) = 0. The

difference between off- and on-shell amplitudes is proportional to q2−m2 and thus leads to a finite result in the limit.
To determine this result requires calculating the off-shell two-loop amplitude near threshold. This is closely related

to the calculation of the two-loop contribution to the scattering length presented in Appendix C, and thus I present
the details of the off-shell calculation in App. C 2 a. The result is that

M(4,STf)
3,thr = 9

1

m2(4π)4
ISTM , ISTM = 0.214978 . (131)

Combining this with the result (129) leads to the total contribution from this diagram

∂τC
(4)
3,thr,conn ⊃

M(4,STf)
3,thr

48m3L6
+

3(ISTf − ISTM)

212π4m5L6
. (132)



24

12. TT fish diagram: Fig. 7(f)

This diagram combines with the A2t parts of Figs. 7(i) and (j), and the A3tt +A3uu part of Fig. 7(k), together with
reflections.

The contribution to ∂τC
(4)
3,thr(0) is simple enough to reproduce in full:

∂τC
(4)
3,thr,conn ⊃

3

29m5L6

1

L6

∑
~p,~q

m3

4ω3
p(ωp +m)ω3

q (ωq +m)(ωp + ωq)
=

3

29m5L6

ITT

32π4
+O(L−7) . (133)

The value of ITT is given in Eq. (38).

There is also a potential contribution to M(4)
3,thr that, before symmetrization, has the form

2i
[
M(3,TT)

2,off (sa, ta, ua)−M(3,TT)
2,s (sa)

] i

q2 −m2
(−i) . (134)

Since the two t-channel loops factorize, however, I can use the result from Ref. [9] that a single such loop gives a
contribution proportional to q2 −m2. This implies that the contribution of two loops is proportional to (q2 −m2)2,
so that the overall result vanishes at threshold when q2 → m2.

13. SU fish diagram: Fig. 7(d)

This diagram combines with the A2s + A2u part of Fig. 7(i), and the A3tu/2 part of Fig. 7(k), as well as the
reflections of all diagrams.

The contribution to ∂τC
(4)
3,thr(0) is again a finite integral

∂τC
(4)
3,thr,conn ⊃

3

28m5L6

ISU

16π4
, (135)

where ISU is given in Eq. (39).

The contribution to M(4)
3,thr is worked out in App. C 2 b, yielding

M(4,SUf)
3,thr = 9

1

m2(4π)4
(−ISUr) , ISUr = −0.274156 . (136)

Thus in total the SU fish diagram gives

∂τC
(4)
3,thr,conn ⊃

M(4,SUf)
3,thr

48m3L6
+

3(ISU + ISUr)

212π4m5L6
. (137)

14. US fish diagram: Fig. 7(e)

This is the final diagram of this class, and combines with the A2s + A2u part of Fig. 7(j) and the A3tu/2 part of
Fig. 7(k), as well as reflections.

The contribution to ∂τC
(4)
3,thr(0) is

∂τC
(4)
3,thr,conn ⊃

3

28m5L6

IUSf

16π4
, IUSf = −0.13788 . (138)

The contribution to M(4)
3,thr is worked out in App. C 2 c, and leads to

∂τC
(4)
3,thr,conn ⊃

M(4,USf)
3,thr

48m3L6
+

3(IUS − IUSM)

212π4m5L6
, IUSM = 0.096623 . (139)
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(a) (b) (c)

(d) (e) (f)

FIG. 8. Examples of Feynman diagrams contributing to ∂τC
(4)
3,thr,conn that do not lead to nonstandard finite-volume dependence.

See text for further discussion.

C. Remaining diagrams

Finally, I discuss diagrams of various classes that turn out either not to contribute, or to contribute only results of
the standard form, Eq. (75).

The first class are those with mass and wavefunction renormalization parts. Examples of their contributions to

∂τC
(4)
3,thr,conn are shown in Figs. 8 (a), (b) and (c). The arguments of Sec. III C can be used to show that, when

combined with the corresponding counterterms these either cancel completely, which is the case for Fig. 8(a), or
lead to contact terms, as is true for Figs. 8(b) and (c). These contact terms then either lead to contributions to
the amplitudes Aj,k of Eq. (6) alone, and not to ∆E3,thr, as is the case for Fig. 8(b), or lead to contributions to

∂τC
(4)
3,thr,conn of the standard form, Eq. (75), an example being Fig. 8(c).

There is one diagram, that of Fig. 8(d), requiring special treatment, because it has a physical cut through the
renormalization part. This implies that there is a nonzero remainder when the momentum sums in this part are
replaced by integrals. However, by explicit calculation I find that this remainder is subleading in 1/L because the IR
divergence is rather weak. Thus this diagram also gives only the standard contribution of Eq. (75).

There are also many other diagrams that are one-particle reducible, e.g. Fig. 8(e). Although some of these diagrams,
such as this example, have three-particle cuts, the resulting summands only have 1/p2 IR divergences and so sums
can be converted to integrals at the order I work. Thus all such diagrams lead to contributions of the standard form,
Eq. (75).

Finally, there are partially disconnected diagrams such as Fig. 8(f). As explained in Ref. [9], these amount to
studying the three-particle threshold energy using, on one or both sides, an operator that creates a single particle,
and can be dropped.

D. Summary

Combining the results from Eqs. (77), (83), (84), (101), (106), (111), (112), (114), (124), (128), (132), (137),

and (139), and recalling the definitions Eqs. (27) and (28), leads to the following total contribution to a
(4)
2 from

∂τC
(4)
3,thr,conn:

a
(4)
2

∣∣∣
∂τC

(4)
3,thr,conn

= −214m2π6

9
M(4)

3,thr + [4IJ + 24K + cL log(Ncut) + C4 + C5 + CF ]

− 26π2
(
ISTS0 + ISTf − ISTM + 1

4I
TT + ISU + ISUr + IUS − IUSM

)
. (140)
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Combining this result with those in Eqs. (71) and (74) gives the final result for a
(4)
2 :

a
(4)
2 = −214m2π6

9
M(4)

3,thr +
[
2I2 − 8IJ + 18K + cL log(Ncut) + C4 + C5 + CF

]
+ 26π2R , (141)

R =
[
ISST0−ISTS0

]
+
[
ISTS0−ISTS−ISTf +ISTM

]
+
[
ISU−2ISSU−ISUr

]
+
[
2ISU−IUS−2ISSU+IUSM

]
. (142)

This result should be compared to that obtained from the general FV formalism, which, using Eq. (23), is given by
the first two terms in Eq. (141). Thus agreement requires the residue R to vanish. In fact, each of the four quan-
tities in square brackets vanishes separately to within the numerical accuracy of integration (roughly five significant
figures). This completes the desired check. The fact that cancelations occur in subsets of quantities indicates that
the cancelations can be understood at a diagrammatic level.

V. CONCLUSIONS

The calculation presented here has confirmed the threshold expansion derived from the three-particle quantization
condition of Refs. [3, 4]. It provides a further nontrivial test of the quantization condition as well as of the rather
involved determination of the threshold expansion from the quantization condition [8].

Comparing the form of the predictions for ∆E
(4)
2,thr and ∆E

(4)
3,thr, given in Eqs. (20) and (21) respectively, one sees

that the latter contains additional “geometric” constants, CF , C4, and C5, as well as the M3,thr term. The new
constants arise from the need to subtract IR divergences from diagrams in which there is alternating pairwise two-
particle scattering. The calculation presented here checks that these subtractions do the job for which they were
designed. By working at fourth order all terms contributing to the IR subtraction have been tested.

As noted in Ref. [9], the result from the present relativistic calculation cannot be compared to those obtained using
nonrelativistic QM both because relativistic effects enter at O(L−6) and because the nonrelativistic analogs ofM3,thr

differ, in general, by finite amounts. Nevertheless, I observe that the coefficients of I3, IJ and K do agree with those
of Ref. [11].

It will be interesting and useful to test other approaches to the three-particle quantization condition, such as that
using a nonrelativistic, particle-dimer approach [6, 7], by confirming that they reproduce the three-particle threshold
expansion.
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Appendix A: Sum-integral differences

The following two results from Ref. [9] are used repeatedly in the main text 1

L3

∑
~p6=0

−
∫
p

 f(p2)

p2
=
If(0)

(2π)2L
− f ′(0)

L3
(A1)

1

L3

∑
~p6=0

g(p2)

p2
=
LJ g(0)

(2π)4
+

∫
p

g(p2)− g(0)

p4
+O(L−1) . (A2)

I and J are numerical constants whose explicit values are not needed in this paper. The shorthand for integrals is
defined by ∫

p

≡
∫

d3p

(2π)3
. (A3)

I also need a third result,

1

L3

∑
~p6=0

h(p2)

p6
=
L3Kh(0)

(2π)6
+O(L) , (A4)

where K =
∑
~n=0 1/n6. This equation can be derived by writing h(p2) = h(0) + [h(p2) − h(0)] and using Eq. (A2).

These results hold if f , g and h are smooth functions that in particular are regular at p2 = 0. All three equations

have, in addition to the power-law corrections shown, exponentially suppressed corrections of the form e−
√
m̄2L. The

scale m̄2 depends on the form of f(p2), but is no larger than the position of the nearest singularity of f in the complex
p2 plane. For the functions I encouter this scale is usually given by the scalar mass, m̄ ∼ m. The equations also
assume that the sums and integrals have been regularized in the UV, if needed, although the form of the L-dependent
terms does not depend on the details of the regularization.

Appendix B: Counterterm for the coupling constant

The counterterm for the coupling constant has the expansion14

δZλ = λ2A2 + λ3A3 + λ4A4 + . . . , (B1)

A2 is identical to the quantity of the same name used in Ref. [9]:

A2 = A2s +A2t +A2u , (B2)

A2s =

∫ Λ

p

1

8ωp~p2
, A2t = A2u =

∫ Λ

p

1

8ω3
p

. (B3)

The superscript Λ indicates the necessity of UV regulation. For most of our calculations the form of the regulator
can be left implicit, since in the end the integrals to be evaluated are UV convergent. However, when calculating the
two-loop K matrix the explicit form of the counterterms are needed. Using dimensional regularization, these are

A2t = A2u =

∫
dd−1q

(2π)d−1

1

8ω3
q

=
Γ(2−d/2)

(4π)d/2
1

2
, (B4)

A2s =

∫
dd−1q

(2π)d−1

1

8q2ωq
=

Γ(2−d/2)

(4π)d/2
1

2

1

d− 3
, (B5)

where d is the number of space-time dimensions. I stress that these are the same counterterms as obtained by doing
the d-dimensional momentum integrals directly, rather than the hybid approach time/3-momentum approach used
here.

14 The definition of A3 used here differs from that of Ref. [9].
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The calculations described in the main text also require the explicit form of A3. This is obtained by calculating
the scattering amplitude at two loop order, including all counterterm contributions, and setting its value at threshold
to zero. A convenient way of obtaining the integrand of the scattering amplitude is simply to calculate the diagrams

contributing to ∂τC
(3)
2,thr, using the methods described in Sec. II, and pick out the coefficient multiplying 1/(8m2L3).

The four two-loop diagrams are those in Fig. 1 (d), (e), (f) and (g), which I label respectively as SS, TT, SU and ST

diagrams. These are combined with the counterterm diagrams in the same way as in the calculation of ∂τC
(3)
2,thr(0) in

Sec. III. The corresponding two-loop counterterms are given by:

A3 = A3ss +A3tt +A3su +A3st , (B6)

A3ss = A2
2s , (B7)

A3tt = 2A2
2t , , (B8)

A3su =

∫∫ Λ

p,q

{
4A2t(A2s +A2u)−

[
W 3
pq +W 2

pqωp −Wpqm
2 + ωpqm

2

4ω3
pωpqωq(W

2
pq −m2)2

]}
, (B9)

A3st =

∫∫ Λ

p,q

1

32ω3
pωqq

2

[
1−

2ω2
p(Wpq + ωq)

ωpq(W 2
pq −m2)

]
, (B10)

where Wpq = ωp + ωpq + ωq.
The calculations of Sec. III B also require parts of the counterterm A4, specifically those needed for Figs. 2(f)-

(k). These are given by enforcing the renormalization condition, which implies that the coefficient of 1/L3 in the

contribution to ∂τC
(4)
2,thr(0) of a given three-loop diagram, together with the counterterm diagrams, must vanish. The

contributions to A4 are thus easily determined in the course of the calculation. In general their form is long and
uninformative, and I do not quote the results here.

Appendix C: Two-loop K matrix and related quantities

In this appendix I calculate the derivative of the s-wave K matrix at threshold, K′2,s,thr, defined in Eq. (18), at

cubic order in λ. This is needed in order to check that the perturbative result obtained here, Eq. (65), agrees with the
prediction from the quantization condition, Eq. (20). In addition I determine the partially off shell K matrix needed

in order to defineM(4)
3,thr, itself needed to test the result Eq. (23). These calculations are done in infinite volume using

standard momentum-space methods for Feynman diagrams, and I only provide a sketch of the details.

1. Calculation of K′(3)2,s,thr

I focus first on the on shell K matrix, which is a real, analytic function of q2, with q the momentum of each particle
in the CM frame. It is most straightforward to use Feynman rules with the iε prescription to determine the s-wave
scattering amplitude M2,s, and then obtain K2,s using the general relation15

K2,s(q
2) =M2,s(q)−M2,s(q)

iq

16πE
M2,s(q) +M2,s(q)

iq

16πE
M2,s(q)

iq

16πE
M2,s(q) +O(λ4) . (C1)

Here E is the total CM energy. Expanding K2,s and M2,s in powers of λ, e.g. K2,s =
∑∞
n=1 λ

nK(n)
2,s , and noting that

there is no q dependence at leading order, I have M(1)
2,s = K(1)

2,s = −λ for all q. In our renormalization scheme I also

have M(n)
2,s (0) = K(n)

2,s (0) = 0 for n ≥ 2. Since K2,s has no term linear in q, it follows from Eq. (C1) that

M(2)
2,s =

iq

16πE
+O(q2) . (C2)

Substituting this back into Eq. (C1) then yields

K(3)
2,s =M(3)

2,s −
q2

(16πE)2
+O(q3) . (C3)

15 This expression holds above threshold. In order that K2,s be a real, analytic function of q2, one must replace iq with −|q| below
threshold.
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It follows that the imaginary part of M(3)
2,s begins at O(q3) and that

dK(3)
2,s

dq2

∣∣∣∣
thr

=
dM(3)

2,s

dq2

∣∣∣∣
thr

− 1

(32πm)2
. (C4)

The difference between the derivatives of K(3)
2,s andM(3)

2,s arises only from diagrams having two physical cuts. There is
in fact only one such diagram–the SS diagram to be discussed shortly. For all other diagrams the threshold derivatives

of K(3)
2,s and M(3)

2,s are the same, and so I can calculate the latter.

The diagrams that contribute to M(3)
2,s are those of Fig. 1, for which I use the same names as in the calculation

of C
(3)
2,thr(0) in Sec. III A. Each two-loop diagrams is combined with the same counterterm diagrams as described in

Sec. III A.

a. SS diagram, Fig. 1(d)

This diagram factorizes into two single s-channel loops, along with corresponding counterterms. Each of these
begins at O(q) with the imaginary term resulting from the cut, leading to

M(3,SS)
2,s = −

(
iq

16πE

)2

+O(q3) . (C5)

This contribution exactly cancels that appearing in Eq. (C3), so that

K(3,SS)
2,s = O(q3) . (C6)

Thus this diagram gives no contribution to dK2,s/dq
2 at threshold.16

b. TT diagram, Fig. 1(e)

The result again factorizes, but in this case the contribution of each loop is proportional to q2 because there is no
imaginary part (and because the loop plus counterterm vanishes at threshold). Thus the product of the two loops is
proportional to q4 and gives no contribution to desired derivative.

c. SU diagram, Fig. 1(f)

Figure 1(f) combines with the A3su contribution to Fig. 1(a), together with the A2s+A2u contribution to Fig. 1(c),
and their vertical reflections. In fact, the contribution proportional to A3su is independent of q2, and so can be ignored
here.

To evaluate the diagram I follow the method described in Ref. [12]. I use the momentum labels shown in Fig. 1(f).
Including the vertical reflection and the contraction with q3 and q4 interchanged, I find

iM(3,SU)
2,bare = 2(−i)3

∫
p,k

∆(p+ q1)∆(p+ q4)∆(p+ k)∆(k) , (C7)

where ∆(p) = i/(p2−m2 + iε), and “bare” indicates that the counterterm has not yet been included. Throughout this
appendix, and in contradistinction to the main text and the other appendices, I use p, k, . . . to refer to four-momenta,
and the shorthand

∫
p

=
∫
ddp/(2π)d for the dimensionally regulated four-momentum integral.

From Eq. (C7) it is clear that the only Lorentz invariant combinations of external momenta that can appear are
q2
1 = m2, q2

4 = m2 and (q1− q4)2 = t. Dependence on q2 enters only through t = −2q2(1− cos θ14), and the derivative

16 One can also understand this result by noting that the iq terms arise from the use of the iε pole prescription and are absent when using
the PV prescription appropriate for K2,s.
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with respect to q2 at threshold thus picks out the term linear in t. Since in this term the s-wave projection averages
cos θ14 to zero, it follows that

dK(3,SU)
2,s

dq2

∣∣∣∣
thr

= −2
dM(3,SU)

2

dt

∣∣∣∣
thr

. (C8)

This equality also holds for the counterterm diagram Fig. 1(c), since it also depends only on t.
Introducing Feynman parameters x and y for the k and p integrals, respectively, performing the k integral, and

combining denominators using Eq. (10.56) of Ref. [12], I reach17

iM(3,SU)
2,bare = −2

∫
y

∫
x

∫
w

(1− w)w1−d/2 Γ(4− d/2)

(4π)d/2

∫
p

1

D
4−d/2
SU

, (C9)

where the factor in the denominator is

DSU = w
[
m2 − x(1− x)p2

]
+ (1− w)

[
m2 − p2 − y(2p · q1 + q2

1)− (1− y)(2p · q4 + q2
4)
]
, (C10)

and the y, x and w integrals range from 0 to 1. Expanding out Dst and completing the square by shifting from p to
p′ (whose explicit form is not needed) leads to

DSU = −γp′2 +m2 + ∆st , (C11)

γ = 1− w + wx(1− x) , (C12)

∆SU (w) =
1− w
γ

{
−m2wx(1− x)− t(1− w)y(1− y)− (q2

4 −m2)wx(1− x)(1− y)
}
. (C13)

Here I have set q2
1 = m2, but shown the q2

4 dependence for later use in the discussion of M3,thr. In the rest of this
subsection I will set q2

4 = m2. Note that, although ∆su depends on w, x, y and t, it is convenient to show only its
dependence on w explicitly. Performing the p integral leads to the result

M(3,SU)
2,bare = −2

Γ(4− d)

(4π)d

∫
y

∫
x

∫
w

(1− w)w1−d/2

γd/2
1

(m2 + ∆SU (w))4−d . (C14)

The denominator m2 + ∆SU (w) does not vanish in the physical region (t ≤ 0).
The result (C14) has an explicit UV pole from the Γ(4− d), and the integral over w near 0 leads to a second pole.

Lying underneath the double-pole is a momentum-dependent single pole. This is canceled by the contribution from
the counterterm diagram Fig. 1(c), which yields

M(3,SU)
2,ct = 2

Γ(2− d/2)2

(4π)d(m2)2−d/2FSU

∫ 1

0

dy
1

(m2 + ∆SU (0))2−d/2 . (C15)

The factor of

FSU =
1 + 1/(d− 3)

2
= 1− d− 4

2
+ . . . (C16)

arises from the counterterm A2s +A2u [see Eqs. (B4) and (B5)].
Combining Eqs. (C14) and (C15) in a way that allows the double pole to be made explicit gives

M(3,SU)
2 = −2

Γ(4− d)

(4π)d

∫
y

∫
x

∫
w

w1−d/2
[

(1− w)

γd/2
1

(m2 + ∆SU (w))4−d −
1

(m2 + ∆SU (0))4−d

]
− 2

1

(4π)d

∫
y

[
Γ(4− d)

2− d/2
1

(m2 + ∆SU (0))4−d −
Γ(2− d/2)2FSU

(m2)2−d/2
1

(m2 + ∆SU (0))2−d/2

]
. (C17)

Strictly speaking this is not the full renormalized result for the amplitude: the first integral leads to a momentum-
independent single pole that will be cancelled by the A3su counterterm, while the second leads to momentum-
independent double and single poles that will similarly be canceled. However, these poles are irrelevant for the
momentum dependence of interest here.

17 For brevity, in the following I set the scale introduced by dimensional regularization, µ, equal to unity. The final answer does not depend
on µ.
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Evaluating the derivative with respect to t and setting t = 0, I find an expression in which one can set d = 4:

d

dt
M(3,SU)

2,s

∣∣∣∣
thr

= −2
1

(4π)4m2

{∫
y

∫
x

∫
w

y(1− y)

w

[
(1− w)3

γ2[γ − w(1− w)x(1− x)]
− 1

]
− 1

6

}
. (C18)

The expression in curly braces has the numerical value ISUr = −0.274156. Converting to the desired derivative using
Eq. (C8) leads to the final result:

K′(3,SU)
2,s ≡ m2

dK(3,SU)
2,s

dq2

∣∣∣∣
thr

=
ISUr

26π4
. (C19)

I have checked this result in two ways. The first is to calculate M(3,SU)
2,s using a finite-volume correlation function

in which the external momenta are nonvanishing. The second involves relating the SU result to that from the ST
diagram by crossing and then calculating the desired derivative for the ST diagram using an unsubtracted dispersion
relation. This in turn requires the imaginary part of the amplitude from the ST diagram, which can be obtained from
the results in the following subsection.

d. ST diagram, Fig. 1(g)

The calculation proceeds as for the SU diagram, except for the following changes. First, the number of Wick
contractions differs, leading to a reduction by an overall factor by two. Second, the counterterm contribution here is
proportional to A2t + A2u, so FSU is replaced by FST = 1. Finally, the crossing transformation needed to go from
the SU to the ST diagram necessitates the substitutions q4 → q3 and q1 → −q4. This implies that t = (q1 − q4)2 is

replaced by (q3 + q4)2 = s, so M(3,st)
2 is pure s-wave. Since s = 4(q2 +m2) the desired derivative is given by

dK(3,ST )
2,s

dq2

∣∣∣∣
thr

= 4
dM(3,ST )

2

ds

∣∣∣∣
thr

, (C20)

where threshold occurs at s = 4m2. Since the ST diagram has a physical cut, M(3,ST )
2,s has an imaginary part, but,

as explained above, this begins only at O(q3), and does not contribute to the derivative at threshold.

Thus I find thatM(3,ST )
2,s is given by Eq. (C17) except that the overall factor of 2 is dropped, FSU → 1, and ∆SU (w)

is replaced by

∆ST (w) =
1− w
γ

{
−m2wx(1− x)− s(1− w)y(1− y)− (q2

3 −m2)wx(1− x)(1− y)
}
, (C21)

Here I have set q2
4 = m2 but kept the dependence on q2

3 explicit for use in the calculation of M3,thr. For the rest of
this subsection, however, I set q2

3 = m2.
The calculation in this case is more challenging than for the SU diagram because individual terms lead to a diverging

derivative at threshold that becomes finite only when they are combined. Thus I proceed somewhat differently,
expanding about d = 4 and keeping only s-dependent part, which is finite and has the form

M(3,ST )
2,s ⊃ 1

(4π)4

{∫∫∫ 1

0

dy dx dw
1

w

[
(1− w)

γ2
logDST (w)− logDST (0)

]
− 1

2

∫ 1

0

dy [logDST (0)]
2

}
, (C22)

where

DST (w) = 1 + ∆ST (w)/m2 . (C23)

As long as s < 4m2 all terms are real, and the y integrals can be done analytically. Doing the remaining w and x
integrals numerically, and then determining the s derivative also numerically, I find

K′(3,ST )
2,s,thr = 4m2

dM(3,ST )
2,s

ds

∣∣∣∣
thr

=
ISTr

(4π)4
, ISTr = 1.14009 . (C24)

I have checked this result using an unsubtracted dispersion relation for dM(3,ST )
2,s /ds.
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2. Calculation of M(3)
2,off

The off-shell two-loop two-particle scattering amplitude is needed in the determination of M3,thr in Secs. IV B 11,
IV B 13 and IV B 14. The calculation of this amplitude is closely related to that of the effective range from the ST
and SU diagrams described above.

a. ST diagram

As explained in Sec. IV B 11, what is needed is the amplitude M(3,ST)
2,off , which arises from Fig. 1(g) when q3 is off

shell while the remaining external legs are on shell. The form of the result has already been described in Sec. C 1 d:
it is given by Eq. (C17) except that FSU is set to unity, and ∆SU is replaced by

∆ST,off(w) =
1− w
γ

{
−m2wx(1− x)− s(1− w)y(1− y)− δwx(1− x)(1− y)

}
. (C25)

Here I have parametrized the off-shellness of q3 by

δ = q2
3 −m2 . (C26)

There is one difference from Sec. C 1 d, which concerns the overall factor. In Eq. (C17) this is 2, while in Sec. C 1 d
it is 1. Here it changes to 1/2, because the horizontal reflection (the TS diagram) does not contribute to M3,thr, as
explained in Sec. IV B 10.

The specific quantity of interest is the difference between off- and on-shell amplitudes defined in Eq. (130), which
[noting that q in Eq. (130) is called q3 here] is given by

M(4,STf)
3,thr = 2× 9×

dM(3,ST)
2,off

dδ

∣∣∣∣
s=4m2,δ=0

. (C27)

The factor of 2 arises from the horizontal reflection, and the 9 results from symmetrization. Noting that ∆ST,off(0) is
independent of δ, I find

dM(3,ST)
2,off

dδ

∣∣∣∣
s=4m2,δ=0

=
1

2

1

(4π)4

∫
y

∫
x

∫
w

(1− w)

γ2w

{
1

m2 + ∆ST,off(w)

d∆ST,off(w)

dδ

} ∣∣∣∣
s=4m2,δ=0

, (C28)

≡ 1

2

1

(4π)4m2
ISTM , ISTM = −0.214978 . (C29)

In the first line I have set d = 4 since the result is finite, and in the second performed the numerical evaluation of the
integral. Substituting this result in Eq. (C27) leads to the result quoted in the main text, Eq. (131).

b. SU diagram

Here the calculation turns out to be identical to that of Sec. C 1 c, aside from overall factors. This is because the
off-shellness enters only through t, so ∆SU(w) retains the same form as in the on shell case. The overall factor is
reduced by two because here SU and US diagrams must be considered separately. Thus I find

M(3,SU)
2,off (t) =

1

2
M(3,SU)

2,s (t) . (C30)

The contribution to M3,thr is

M(4,SUf)
3,thr = 18

dM(3,SU)
2,off

dδ

∣∣∣∣
t=0,δ=0

(C31)

=
9

2

dM(3,SU)
2,s

dt

∣∣∣∣
t=0

. (C32)
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where in the second step I have used

t = 1
2δ −

1
2 (s− 4m2) , (C33)

as well as Eq. (C30). The required derivative is given in Eq. (C18),

dM(3,SU)
2,s

dt

∣∣∣∣
t=0

= − 2ISUr

(4π)4m2
. (C34)

Inserting this into Eq. (C32) gives the result quoted in the main text, Eq. (136).

c. US diagram

The contribution of the US diagram to M3,thr differs from that for the SU fish diagram because, when Fig. 1(g) is
vertically reflected, q4 and q3 are interchanged. Thus ∆SU is replaced by

∆US,off(w) =
1− w
γ

{
−m2wx(1− x)− t(1− w)y(1− y)− δwx(1− x)(1− y)

}
, (C35)

with t still given by Eq. (C33). The contribution to M3,thr is thus

M(4,USf)
3,thr = 18

dM(3,US)
2,off

dδ

∣∣∣∣
t=0,δ=0

(C36)

=
9

2

dM(3,SU)
2,s

dt

∣∣∣∣
t=0

− 9

(4π)4m2

{∫
y

∫
x

∫
w

(1− w2)

γ2

2x(1− x)(1− y)

γ − w(1− w)x(1− x)

}
, (C37)

≡ 9

(4π)4m2
IUSM , IUSM = 0.096623 . (C38)

To obtain the final result I have used Eq. (C34) and the fact that the triple integral in Eq. (C37) evaluates to
−0.177533. Combining this result with Eq. (138) leads to the result quoted in the main text, Eq. (139).
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