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We report on salient features of a mixed lattice QCD action using valence Möbius Domain-Wall
fermions solved on the dynamical Nf = 2 + 1 + 1 HISQ sea-quark ensembles generated by the
MILC Collaboration. The approximate chiral symmetry properties of the valence fermions are
shown to be significantly improved by utilizing the gradient-flow scheme to first smear the HISQ
configurations. The greater numerical cost of the Möbius Domain-Wall inversions is mitigated by
the highly efficient QUDA library optimized for NVIDIA GPU accelerated compute nodes. We have
created an interface to this optimized QUDA solver in Chroma. We provide tuned parameters of the
action and performance of QUDA using ensembles with the lattice spacings a ' {0.15, 0.12, 0.09} fm
and pion masses mπ ' {310, 220, 130} MeV. We have additionally generated two new ensembles
with a ∼ 0.12 fm and mπ ∼ {400, 350} MeV. With a fixed flow time of tgf = 1 in lattice units, the
residual chiral symmetry breaking of the valence fermions is kept below 10% of the light quark mass
on all ensembles, mres . 0.1×ml, with moderate values of the fifth dimension L5 and a domain-wall
height M5 ≤ 1.3. As a benchmark calculation, we perform a continuum, infinite volume, physical
pion and kaon mass extrapolation of FK±/Fπ± and demonstrate our results are independent of flow
time, and consistent with the FLAG determination of this quantity at the level of less than one
standard deviation.

I. INTRODUCTION

QCD (Quantum Chromodynamics) [1, 2] is the fun-
damental theory of the strong interaction, and one of
the three gauge theories of the SM (Standard Model)
of particle physics. QCD encodes the interactions be-
tween quarks and gluons, the constituents of strongly in-
teracting matter, which both carry color charges of QCD.
At short distances, the quarks and gluons perturbatively
interact with a coupling strength that runs to zero in
the UV (ultraviolet) limit [3, 4]. Conversely, at long-
distance/low-energy, the IR (infrared) regime, the cou-
pling becomes O(1) and QCD becomes a strongly cou-
pled theory. Consequently, the quarks and gluons are
confined into the colorless hadrons we observe in nature,
such as the proton, neutron, pions, etc. In order to com-
pute properties of nucleons, nuclei and other strongly in-
teracting matter directly from QCD, we must therefore
use a non-perturbative regularization scheme.

Asymptotic freedom, the property in which the gauge
coupling becomes perturbative in the UV, makes the the-
ory perfectly amenable to a numerical approach. QCD
can be constructed on a discrete, Euclidean spacetime
lattice, with a technique known as LQCD (lattice QCD).

As the discretization scale is made sufficiently fine and
the coupling becomes perturbative, the lattice action can
be matched onto the continuum action to a desired or-
der in perturbation theory. To aid the matching, EFT
(Effective Field Theory) [5] can be used to perform an ex-
pansion of the lattice action in powers of the discretiza-
tion scale, typically denoted a, which is referred to as
the Symanzik expansion [6, 7]. There are many differ-
ent choices for constructing the discretized action, each
of which corresponds to a different lattice action. As the
continuum limit is taken, the difference between these
lattice actions vanishes as the only dimension-4 opera-
tors allowed by the symmetries are those of QCD: the
discretization effects, which include Lorentz violating in-
teractions, are all described by irrelevant operators in
the Symanzik expansion. An important test of this uni-
versality is to perform calculations of various physical
quantities, with different lattice actions, and show con-
sistency between them in the continuum limit. This is
now routinely done for mesonic quantities and reviewed
every 2-3 years by the FLAG Working Group, with the
latest review in Ref. [8].

Lattice gauge theory began with the formulation of
gauge fields on a spacetime lattice as originally proposed
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by Wilson [9]. The inclusion of fermions presents fur-
ther challenges. The naive discretization of the fermion
action leads to the fermion doubling problem, in which
there are 2D fermions in D dimensions for each fermion
field implemented. These doublers arise from the peri-
odicity of the lattice action in momentum space and the
single derivative in the Dirac equation. Wilson proposed
the original method, now known as the Wilson fermion
action, to remove these doublers by adding an irrelevant
operator to the action which provides an additive mass
to the doublers which scales as 1/a. This irrelevant op-
erator breaks chiral symmetry and requires fine-tuning
the bare fermion mass to simulate a theory with light
fermions, such as QCD with light up and down quarks.
Despite (or because of) its simplicity, the Wilson fermion
action is still one of the most popular in use. These
days, the leading O(a) discretization corrections are
removed perturbatively or non-perturbatively through
an additional dimension 5 operator, the clover opera-
tor cSW aq̄σµνGµνq, in what is known as the Wilson-
Clover or Clover fermion action. The parameter cSW is
the Sheikholeslami-Wohlert coefficient [10] which can be
tuned to remove the O(a) discretization effects from cor-
relation functions. The idea has also been extended to
twisted mass Wilson fermions [11], in which a complex
quark mass term is used allowing for automatic O(a) im-
provement of physical observables provided the theory is
computed at maximal twist [12].

Another common lattice action is known as the Kogut-
Susskind or staggered fermion action [13, 14]. This ac-
tion reduces the number of fermion doublers by exploit-
ing a symmetry of the naive fermion action. A suit-
able spacetime-dependent phase rotation of the fermion
fields allows for the Dirac equation to be diagonalized,
thereby reducing the number of doublers from 16 to 4, in
4 spacetime dimensions. To perform numerical simula-
tions with just one or two light fermion flavors, a fourth or
square root of the fermion determinant is used [15]. This
rooting leads to non-local interactions at finite lattice
spacing [16–18], however, perturbation theory [19, 20],
the renormalization group [21–23] and numerical simula-
tions [24–26] have been used to argue that these non-local
effects vanish in the continuum limit. While this has not
been proved non-perturbatively, some of the potential
sicknesses of the theory can be shown to be the same
as those of partially quenched lattice QCD [27], which
we will discuss briefly in short order. While not uni-
versally accepted, all numerical evidence suggests that
rooted-staggered LQCD is in the same universality class
as QCD as the continuum limit is taken [8, 28–30].

Determining a non-perturbative regulator that both
preserves chiral symmetry and has the correct number of
light degrees of freedom is challenging. It has been shown
that in 4 spacetime dimensions, one can not simultane-
ously have all four of the conditions: chiral symmetry,
ultra local action, undoubled fermions and the correct
continuum limit. This is known as the Nielsen-Ninomiya
no-go theorem [31–33]. However, one can extend the def-

inition of chiral symmetry at finite lattice spacing: if the
lattice Dirac operator, D, satisfies the Ginsparg-Wilson
relation [34]

{γ5, D} = aDγ5D , (1)

it will respect chiral symmetry even at finite lattice spac-
ing [35]. One consequence is the theory will be automat-
ically O(a) improved as the only non-trivial dimension-
5 operator that can not be removed through field re-
definitions and equations of motion is the clover oper-
ator, which explicitly breaks chiral symmetry, and is
thus not allowed. There are two lattice actions which
satisfy the Ginsparg-Wilson relation: the DW (domain-
wall) fermion action [36–38] and the overlap fermion ac-
tion [39–41]. The DW fermion action is formulated with
a finite fifth dimension of extent L5, where the left and
right chiral modes are bound to opposite ends of the fifth
dimension. The gluon action is a trivial copy of the 4D
action on each fifth dimensional slice with unit link vari-
able between the slices and so the fermions have only
a simple kinetic action in the fifth dimension. At finite
L5 the left and right modes have a non-vanishing over-
lap due to fermion modes which propagate into the fifth
dimension. The massive modes decay exponentially in
the fifth dimension while the fermion zero modes have
only a power-law fall off. This small overlap leads to a
small, residual breaking of chiral symmetry at finite L5,
characterized by a quantity known as mres. The over-
lap fermion action can be shown to be equivalent to the
domain-wall action as L5 → ∞ [42, 43], and respects
chiral symmetry to a desired numerical precision.

The numerical cost of generating lattice ensembles
with domain-wall and overlap actions is one or more
orders of magnitude greater than the cost of generat-
ing ensembles with Wilson-type or staggered fermion
actions [44]. This has led to interest in, and the
development of, mixed lattice actions or MA (mixed-
actions) [45], in which the valence and sea quark lat-
tice actions are not the same at finite lattice spacing.
In the most common MALQCD calculations, the dy-
namical sea-quark action is generated with a numerically
less expensive discretization scheme, such as staggered-
or Wilson-type fermions, while the valence-quark action,
which is used to construct correlation functions, is im-
plemented with domain-wall or overlap fermions, thus
retaining the full chiral symmetry in the valence sector.
The first implementation of a MALQCD calculation was
performed by the LHP Collaboration [46] utilizing DW
fermions on the publicly available asqtad (a2 tadpole im-
proved) [47, 48] rooted staggered ensembles generated
by the MILC Collaboration [30, 49]. A number of impor-
tant results were obtained with this particular MALQCD
setup, including the first dynamical calculation of the nu-
cleon axial charge with light pion masses [50] and more
general nucleon structure [51, 52], the first dynamical cal-
culation of two-nucleon elastic scattering [53], a precise
calculation of the I = 2 ππ scattering length [54], a de-
tailed study of the quark mass dependence of the light
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baryon spectrum [55], a calculation of the kaon bag pa-
rameter with fully controlled uncertainties [56] and many
more.

The predominant reason for the success of these
MALQCD calculations is the good chiral symmetry
properties of the DW action, which significantly sup-
presses chiral symmetry breaking from the staggered sea
fermions and discretization effects. EFT can be used to
understand the salient features of such MALQCD calcu-
lations. χPT (Chiral Perturbation Theory) [57–59] can
be extended to incorporate discretization effects into the
analytic formulae describing the quark mass dependence
of various hadronic quantities. The procedure is to first
construct the local Symanzik Action for a given lattice
action, and then to use spurion analysis to construct all
operators in the low-energy EFT describing such a lat-
tice action, including contributions from higher dimen-
sion operators [60]. The MAEFT [61] for DW valence
fermions on dynamical rooted staggered fermions is well
developed [62–69]. The use of valence fermions which
respect chiral symmetry leads to a universal form of the
MAEFT extrapolation formulae at NLO (next-to-leading
order) in the dual quark-mass and lattice spacing ex-
pansions [65, 68]. This universal behavior follows from
the suppression of chiral symmetry breaking discretiza-
tion effects from the sea sector when constructing corre-
lation functions from valence fermions. Further, quan-
tities which are protected by chiral symmetry are free
of new LECs (low-energy constants) at NLO provided
on-shell renormalized quantities are used in the extrapo-
lation formulae [64, 65]. This universality allows for the
derivation of NLO MAEFT formula directly from their
PQχPT (partially quenched χPT) [70–78] counterparts,
provided they are known [79–86]. MALQCD calculations
with DW valence quarks on the asqtad rooted staggered
ensembles have been stress-tested through a comparison
of quantities which are directly sensitive to the unitarity
violations present in MALQCD calculations, in particu-
lar the a0 meson correlation function [87, 88]. There are
a few other MA constructions that have been tested, but
only a few others that are actively used. The HPQCD
Collaboration utilizes HISQ valence fermions on the asq-
tad ensembles, for example, see Refs. [89, 90]. The χQCD
Collaboration utilizes overlap valence fermions on the dy-
namical Nf = 2 + 1 domain-wall ensembles [91–93] gen-
erated by the RBC/UKQCD Collaboration [94, 95]. The
work in Refs. [96–99] use valence overlap fermions on the
Nf = 2 + 1 + 1 HISQ ensembles [100]. The PNDME Col-
laboration has utilized clover improved valence fermions
on the Nf = 2 + 1 + 1 HISQ ensembles [100, 101]. While
this MA choice is economical, it does not benefit from
the suppression of chiral symmetry breaking discretiza-
tion effects as with the DW on asqtad or overlap on DW
MALQCD calculations.

Given the successes described above, MALQCD pro-
vides an economical means of performing LQCD calcu-
lations in which chiral symmetry breaking effects are
highly suppressed by utilizing a valence fermion action

that respects chiral symmetry in combination with a set
of LQCD ensembles that do not, but are less numeri-
cally expensive to generate. In this article, we motivate
a new MALQCD action and present numerical evidence
for salient features of the action.

II. MÖBIUS DOMAIN-WALL FERMIONS ON
GRADIENT-FLOWED HISQ ENSEMBLES

Present day LQCD calculations for mesonic quantities
are performed with multiple lattice spacings, multiple
volumes and physical pion masses, allowing for complete
control over all LQCD systematics, see Ref. [8] for many
examples. The simplest single baryon properties are also
computed with multiple lattice spacings/volumes and
near-physical and sometimes physical pion masses [102–
105], including the first calculation of the nucleon ax-
ial charge with both physical pion masses and a contin-
uum limit [106] and isospin violating corrections [106–
109]. If one is interested in a set of ensembles allowing
for this much control over LQCD systematics, there are
only two such sets publicly available, both of which are
generated and provided by the MILC Collaboration: the
Nf = 2 + 1 asqtad ensembles [30] and the Nf = 2 + 1 + 1
HISQ (highly improved staggered quark) [110] ensem-
bles generated more recently [111, 112]. The HISQ en-
sembles have taste-splittings in the pseudoscalar sec-
tor that are one generation finer in discretization [112],
such that the a ∼ 0.15 fm HISQ ensemble taste vi-
olations are similar in size to the a ∼ 0.12 fm asq-
tad ensembles. There is a vast set of HISQ ensembles
with 130 . mπ . 310 MeV, strange and charm quark
masses tuned near their physical values and lattice spac-
ings of a ∼ {0.15, 0.12, 0.09, 0.06, 0.042, 0.03} fm, includ-
ing multiple spatial volumes and lighter than physical
strange quark masses. In addition to the publicly avail-
able HISQ ensembles, we have generated two additional
sets at a ∼ 0.12 fm and mπ ≈ 350, 400 MeV with fixed
volume in lattice units such that mπL ≥ 5.1. In Table I,
we list the HISQ ensembles utilized in the present work
as well as ensembles for which we have tuned the MDWF
parameters for future work.

Given the great success of the MA DW fermion on
asqtad LQCD calculations [50–56], we have chosen to
use DW fermions for the present MALQCD calculations
as well. In the present work, we have chosen to use the
MDWF (Möbius DW fermion) action [113–115] which
offers reduced residual chiral symmetry breaking at fixed
fifth dimensional extent, L5. With the introduction of
two new parameters, b5 and c5, the Möbius kernel can be
smoothly interpolated between the Shamir [37] and the
Neuberger/Boriçi [42, 43, 116, 117] kernels. Following
Ref. [115], the Möbius kernel can be expressed

DMöbius(M5) =
(b5 + c5)DWilson(M5)

2 + (b5 − c5)DWilson(M5)
. (2)

Alternatives include a polar decomposition to the sign
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short ensemble amHISQ−5
π amHISQ−5

ss volume ∼ a ∼ mπ mπL Ncfg ∆τMC

name [fm] [MeV]

a15m310 l1648f211b580m013m065m838a 0.23646(17) 0.51858(17) 163 × 48 0.15 310 3.78 196 50

a12m310 l2464f211b600m0102m0509m635a 0.18931(10) 0.41818(10) 243 × 64 0.12 310 4.54 199 25

a09m310 l3296f211b630m0074m037m440e 0.14066(13) 0.31133(12) 323 × 96 0.09 310 4.50 196 24

a15m220 l2448f211b580m0064m0640m828a 0.16612(08) 0.51237(10) 243 × 48 0.15 220 3.99 199 25

a12m220 l3264f211b600m00507m0507m628a 0.13407(06) 0.41559(07) 323 × 64 0.12 220 4.29 199 25

a09m220 l4896f211b630m00363m0363m430a 0.09849(07) 0.30667(07) 483 × 96 0.09 220 4.73 – –

a15m130 l3248f211b580m00235m0647m831a 0.10161(06) 0.51427(05) 323 × 48 0.15 130 3.25 – –

a12m130 l4864f211b600m00184m0507m628a 0.08153(04) 0.41475(05) 483 × 64 0.12 135 3.91 – –

a12m400 l2464f211b600m0170m0509m635a 0.24398(12) 0.41970 (12) 243 × 64 0.12 400 5.86 – –

a12m350 l2464f211b600m0130m0509m635a 0.21376(13) 0.41923 (13) 243 × 64 0.12 350 5.13 – –

TABLE I. The HISQ ensembles used in this work and planned for future MALQCD calculations. In addition to the pion
mass and lattice spacing, we list the number of configurations used in the present work, Ncfg as well as the Monte-Carlo time,
∆τMC , by which the configurations were separated in this work. The short name, introduced in Ref. [101], is for brevity. The
last two HISQ ensembles were generated at LLNL targeting heavier pion masses to test the radius of convergence of the chiral
extrapolation in future MALQCD calculations.

function [118–120] or other methods of approximating the
sign function [121]. In this work, we have always chosen
values of b5 and c5 with the constraint b5 − c5 = 1, such
that the Möbius kernel is a rescaled version of the Shamir
kernel

DMöbius(M5) =
αDWilson(M5)

2 +DWilson(M5)
≡ αDShamir(M5). (3)

It was demonstrated in Ref. [115] that this rescaling fac-
tor, α, exponentially enhances the suppression of residual
chiral symmetry breaking as

mres ∼ e−αL5 , (4)

provided the action is in a regime where these exponen-
tially damped terms are the dominant contribution to
mres and α is not too large, but of the order α ∼ 2− 4.
With the constraint b5 − c5 = 1, the rescaling factor is
given by α = b5 + c5.

III. GRADIENT-FLOW SMEARING

From the DW on asqtad action [122], it is known
that the asqtad gauge fields required additional levels of
smearing to reduce the residual chiral symmetry break-
ing. For that action, HYP smearing [123–126] was uti-
lized for this purpose. In this work, we choose to investi-
gate the use of the gradient flow [127–129] as a smearing
method. The gradient flow is a nonperturbative, classi-
cal evolution of the original fields in a new parameter,
the flow time, that drives those fields towards a classi-
cal minimum. In real space, this corresponds to smear-
ing out the degrees of freedom through an infinitesimal
stout-smearing procedure [130].

Gradient flow smearing introduces a new scale, of the
order lgf ∼

√
8tgf a, where tgf is the (dimensionless)

flow time. Correlation functions depend upon this new
scale, which can serve as a nonperturbative, rotationally-
invariant UV regulator that provides the possibility for
improved renormalization procedures for various LQCD
matrix elements [131–137]. Here, however, we are in-
terested in the gradient flow as a smearing algorithm
[138, 139].

To ensure that the continuum limit of LQCD matrix
elements is free of any flow time dependence, one must
use a fixed flow time in lattice units such that all flow
time dependence extrapolates to zero as the continuum
limit is taken.

In this work, we have found that moderate values of
the flow time allow for a reduction of the residual chiral
symmetry breaking such thatmres < 0.1×mdwf

l for mod-
erate values of L5. The resulting flow time dependence
of mres at fixed pion mass demonstrates that the gradi-
ent flow highly suppresses the zero-mode contributions
to mres, such that an exponential dependence of mres on
L5 is recovered. Further, we have observed that gradient
flow smearing has allowed us to use small values of the
DW height, with M5 ≤ 1.3 on all ensembles used in this
work. This is important because with the larger values
of M5 used in the DW on asqtad calculations, there was
strong contamination of the UV modes with an oscilla-
tory time behavior, modes which are known to decouple
as M5 → 1 [140]. With the values of M5 used in this
work, there is no discernible contamination from these
modes at larger flow times.

We finally settled on a gradient flow time of tgf = 1.0,
which provided significant suppression of residual chiral
symmetry breaking without introducing a large flow time
length scale. In the next section, we present detailed cal-
culations showing the flow time dependence of various
quantities. This action has been used to compute the
π− → π+ matrix element relevant for neutrinoless double



5

ensemble M5 L5 b5 c5 tgf ammdwf
l ammdwf

s

a12m400 1.2 8 1.25 0.25 1.0 0.02190 0.0693

a12m350 1.2 8 1.25 0.25 1.0 0.01660 0.0693

a15m310 1.3 12 1.50 0.50 1.0 0.01580 0.0902

a12m310 1.2 8 1.25 0.25 1.0 0.01260 0.0693

a09m310 1.1 6 1.25 0.25 1.0 0.00951 0.0491

a15m220 1.3 16 1.75 0.75 1.0 0.00712 0.0902

a12m220 1.2 12 1.50 0.50 1.0 0.00600 0.0693

a09m220 1.1 8 1.25 0.25 1.0 0.00449 0.0491

a15m130 1.3 24 2.25 1.25 1.0 0.00216 0.0902

a12m130 1.2 20 2.00 1.00 1.0 0.00195 0.0693

TABLE II. Tuned MDWF parameters for our MALQCD cal-
culations. Some of the ensembles are used for example in
Refs. [141, 143].

beta-decay [141] and also to perform an exploratory cal-
culation of an improved method of computing hadronic
matrix elements [142] and an application to gA [143].

A. Tuning the action

Before showing results, we describe how to match the
valence MDWF action and the HISQ action. With a
given flow time, our general algorithm for choosing values
of the MDWF action parameters is to:

1. For a fixed value of L5, optimize M5 to minimize
the resulting value of mres;

2. Vary the values of L5, b5 and c5 under the con-

straints b5 − c5 = 1 and mres ≤ 0.1mdwf
l while

minimizing L5;

3. Tune mdwf
l and mdwf

s such that mdwf
π ' mHISQ−5

π

and mdwf
ss ' mHISQ−5

ss within O(2%) or less where
HISQ−5 denotes the taste-5 pseudoscalar mass of
the dynamical HISQ action and mss is the mass of
the connected s̄γ5s pseudoscalar meson.

This procedure required just a few iterations to converge
to the desired results. For this work, we have used the
definition of mres from the Shamir kernel as the residual
chiral symmetry breaking between Shamir and Möbius
become the same in the continuum limit [115],

mres(t) =

∑
x〈Q̄(t,x)γ5Q(t,x) q̄(0,0)γ5q(0,0))〉∑
x〈q̄(t,x)γ5q(t,x) q̄(0,0)γ5q(0,0))〉 , (5)

where Q is a quark field in the midpoint of the 5th di-
mension and q is a quark field bound to the domain-wall.

In Table II, we list the resulting MDWF parameters at
the chosen gradient flow time of tgf = 1. These parame-
ters were used in Refs. [141, 143].
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FIG. 1. Effective mass of the pion (top) and proton (bottom)
as a function of the Euclidean time t, at different flow times
on the a15m310 ensemble. The different flow time values are
slightly shifted horizontally for visual clarity.

IV. FLOW TIME DEPENDENCE OF VARIOUS
QUANTITIES

To study the efficacy of this action, we compute the
flow time dependence of various quantities. In the next
section we will show that the continuum limits of various
ratios of physical quantities are flow time independent. In
order to test the flow time dependence, we tune the input
quark masses to hold the pion mass and the connected ss
pseudoscalar meson masses fixed within O(2%). In the
appendix (Table VII), we list the tuned values of the in-
put quark masses for various flow times on the ensembles
used in this work. We also list the resulting values of the
plaquette, mres and the values of ZA determined as de-
scribed below. In Figure 1, we show the effective masses
of the pion and nucleon, respectively, on the a15m310
ensemble for all flow times. We observe that the contam-
ination from oscillatory modes are suppressed at larger
flow times.

From the input quark masses used at fixed pseu-
doscalar masses, and the average values of the plaquettes,
one observes a substantial flow time dependence of UV
quantities. This is expected as the gradient flow smear-
ing filters out the UV modes of the gauge fields. It is
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important to check the flow time dependence of hadronic
quantities and verify the continuum limit is flow time
independent. This can easily be checked with ratios of
hadronic quantities. In Table VIII, we list values of the
meson masses, mπ, mK and mss as well as the decay
constants, Fπ, FK and the nucleon mass mN . We also
provide the ratios of FK/Fπ and mN/Fπ.

A. Fit functions

To determine the value of mres, we fit the correlation
function described by Eq. (5) to a constant.

The meson correlation functions were folded in time to
double the statistics while the nucleon correlation func-
tions were averaged between the forward propagating
positive parity interpolating operator and the backwards
propagating negative parity interpolating operator, con-
structed as in Refs. [144, 145]. The fit ansatz describing
a q̄1q2-meson correlation functions is given by

Cq1q22pt (t) =
∑
n

zq1q2n zq1q2†n

(
e−E

q1q2
n t + e−E

q1q2
n (T−t)

)
+ (−1)tzosc.zosc.†

(
e−E

osc.t + e−E
osc.(T−t)

)
,

(6)

where we define zn as the overlap factor of the n-th state
with energy En, and the superscript osc. denotes the
overlap and energy of the oscillating mode.

In order to determine the pseudoscalar decay con-
stants, we utilize the 5D Ward Identity relating the
renormalized decay constants to various correlation func-
tions including those used to determine the values of
mres [146, 147],

F q1q2 = zq1q2p

mq1 +mq1
res +mq2 +mq2

res
3
√
Eq1q20

, (7)

where zp denotes the point-sink overlap factor. This nor-
malization is such that the physical pion decay constant
is Fπ = 92.2 MeV.

In order to determine the axial renormalization con-
stants, we can also compute the bare values of F q1q2 using
the 4D axial-vector current,

Cq1q2axial =∂4〈0|A4(t)PS(0)|0〉
=−

∑
n

fq1q2n zq1q2s,n

(
e−E

q1q2
n t + e−E

q1q2
n (T−t)

)
− (−1)tfosc.zosc.s

(
e−E

osc.t + e−E
osc.(T−t)

)
(8)

where fq1q20 =
√
Eq1q20 F q1q2/ZA with renormalization co-

efficient ZA and zs is the same ground state overlap factor
determined in the two-point function.

For the nucleon two-point correlation function, we use
the fit ansatz analogous to Eq. (6) without the oscillating
state and wrap-around terms.

B. Analysis strategy

The correlator analysis is performed using the Python
package lsqfit [148]. We perform a chained fit [149]
to: the light- and strange mres correlator, the pion, kaon
and ss-meson two-point and axial correlators, and the nu-
cleon two-point correlator. In particular, as part of the
chained-fit, we perform a simultaneous fit to the pseu-
doscalar two-point (point- and smeared-sink) and axial
correlators, and to the nucleon point- and smeared-sink
correlators. The chained fit implementation in lsqfit
preserves all correlations by numerically implementing
propagation of error under the assumption that all pa-
rameters are Gaussian distributed. We use the resulting
correlated posterior distributions to propagate all subse-
quent uncertainties (e.g. ratios) without performing any
bootstrap resampling.

For the pseudoscalar correlators we truncate the fit
ansatz at 2+1 states, where the +1 denotes the oscil-
lating state. For the nucleon correlator we perform a 2
state fit. For the pseudoscalar correlators, in an indepen-
dent analysis, using similar fit regions, we observe using
3 states without oscillating modes results in a consistent
determination of the ground state masses and overlap
factors. Further, using an unconstrained, single state fit
in the late time region also results in consistent ground
state parameters.

We choose unconstraining ground state priors such
that the prior widths are at least an order of magnitude
wider than the width of the posterior distribution. The
oscillating state energy splitting is chosen to be at the
lattice cutoff scale. The first excited state energy split-
ting is chosen to be at the two-pion threshold. Details
on our prior choices are given in Table IX.

The fit region is chosen such that tmin ∼ 1 fm and
tmax ∼ 2.3 fm for all pseudoscalar correlators. For the
nucleon correlator analysis, tmin ∼ 0.6 fm and tmax ∼
1.4 fm is chosen for all ensembles. It is necessary to fit the
nucleon correlator closer to the origin due to the poorer
signal-to-noise ratio when compared to the pseudoscalar
observables. Explicit fit regions in lattice units are given
in Table X. We observe that all final correlator fits are in
the region of stability for varying tmin and tmax, including
the more aggressive nucleon analysis, indicating that the
results are free of excited state contamination.

C. Observations about flow time dependence

From our calculations, there are a few substantial ben-
efits one observes from use of the gradient flow smear-
ing. Before discussing these, we first comment on the
strong oscillations observed at small flow time in the
pseudoscalar correlators. In Figure 1, we observe a strong
signal for an oscillating excited state with (−1)t behavior
(where t is the Euclidean time) at small flow times, most
notably for tgf = 0.2. These oscillating modes become
completely damped out for tgf ≥ 0.6, with the statistics
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FIG. 2. ZA (top) and mres
l (bottom) as a function of flow

time on the mπ ' 310 MeV ensembles. The results of ZA are
slightly shifted horizontally for visual clarity.

used in this work.

The first significant benefit observed is that as the flow
time is increased, a dramatic reduction of the chiral sym-
metry breaking properties of the valence MDWF action
is achieved. This can be observed in the significant reduc-
tion in mres at fixed pion mass or similarly, the values of
ZA approaching 1 for all gauge couplings, both of which
are depicted in Figure 2. With the tuning we have cho-
sen, to hold the pion mass, as well as L5, M5, b5 and c5,
fixed as we vary the flow time, we observe an exponential
reduction in mres as the flow time is increased. Though
not depicted in these figures or tables, we also studied the
dependence of mres on L5 as the flow time was varied.
We find that for small flow time, the reduction in mres as
L5 increases is power-law, indicating the 5D zero-mode
contributions are dominating the residual chiral symme-
try breaking. As we increase the flow time, mres begins
to fall off exponentially in L5, indicating the gradient flow
smearing suppresses these zero-mode contributions.

Another significant benefit we observe is that stochas-
tic fluctuations become smaller for increasing flow time
because the gradient flow smearing procedure suppresses
the ultraviolet noise. This is observed from the sample
effective mass plots of the nucleon and pion in Figure 1.
The gradient flow is applied in all 4 spacetime directions,

so the neighboring time slices become more correlated,
rendering a direct comparison of the effective mass plots
more complicated. However, the list of fitted quanti-
ties in Table VIII demonstrates the correlated stochastic
uncertainties are reduced for increasing flow time. Com-
paring the tgf = 1 to tgf = 0.2 results, we observe ap-

proximately a factor of
√

2 reduction the stochastic un-
certainty for equal computing cost for all quantities other
than the pseudo-scalar meson masses.

V. FLOW TIME INDEPENDENCE OF
CONTINUUM LIMIT

In Figure 3, we show a continuum study of mN/Fπ
and FK/Fπ on the mπ ∼ 310 MeV ensembles, for all
flow times used. We explore four different continuum
extrapolation ansätze for a quantity f :

f(a/w0) =


f0 , constant ,

f0 + f2
a2

w2
0
, linear in a2 ,

f0 + αsf
′
2
a2

w2
0
, linear in αsa

2 ,

f0 + f4
a4

w4
0
, quadratic in a2 .

(9)

The gradient flow scale w0 was first defined in Ref. [150],
and a value of w0[150] = 0.1755(18)(04) fm was deter-
mined. The value determined in Ref. [151] is similar with
a slight discrepancy, w0[151] = 0.1714(1512) fm. We use
this value as we are using the same ensembles on which
it was determined. With only three lattice spacings, we
choose not to perform an extrapolation in both a2 and
either αsa

2 or a4 simultaneously. However, we observe
the value of f2 for both mN/Fπ and FK/Fπ to be small
and often consistent with zero. This motivates exploring
the linear in αsa

2 and a4 fits as estimates of systematic
uncertainties in the continuum extrapolation. We find all
four continuum extrapolations show consistency at the 1-
sigma level both between all four different fit ansätze and
also between the various flow time extrapolations. In Fig-
ure 3, we display the continuum extrapolation using the
ansatz linear in (a/w0)2. The quark-mass independent
values of a/w0 and αs are taken from Ref. [151].

For mN/Fπ, we observe minimal discretization correc-
tions with a very small slope in (a/w0)2. For FK/Fπ,
a quantity which is determined much more precisely for
equal stochastic sampling, we observe mild, though still
quite small, discretization corrections. While the dis-
cretization corrections are basically flow time indepen-
dent for mN/Fπ, they seem to become more pronounced
for FK/Fπ as the flow time is increased. There is an in-
dication of the presence of higher order quartic in a/w0

corrections, but we are not able to resolve these with the
numerical results in this work. Previous studies of the
heavy-light decay constants observed that large amounts
of APE smearing [152] could induce significant higher
order discretization effects [153]. It is possible that the
larger tgf smearings are having a similar effect on the
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FIG. 3. Flow time (in)dependence of mN/Fπ and FK/Fπ
on the mπ ∼ 310 MeV ensembles. The filled in symbols are
the results of our calculations and the open symbols clustered
at a/w0 = 0 are the continuum extrapolated results using the
simple ansatz of a constant plus an (a/w0)2 term. The results
are slightly shifted horizontally for visual clarity.

strange quark, and thus the value of FK , at the sub-
percent level. These potential systematic uncertainties
should be explored in more detail for a sub-percent cal-
culation of FK/Fπ using this action.

A. Mixed-Meson mass corrections

In order to use the MAEFT extrapolation formulae,
there are a few additional quantities which must be de-
termined from the MALQCD calculations. At NLO in
the MAEFT expansion, one needs to know the masses
of the mixed valence-sea mesons which propagate in vir-
tual loops, and the value of the partial quenching pa-
rameter which controls the unitarity violating contribu-
tions [65, 68]. In a general MALQCD calculation with a
chirally-symmetric valence action, one has

m2
vs =

1

2

(
m2
vv +m2

ss

)
+ a2∆̃Mix ,

∆2
PQ = m2

ss −m2
vv , (10)

where mvv is the mass of the pseudoscalar valence-
valence meson, mss is the mass of the pseudoscalar sea-

sea meson including possible additive discretization cor-
rections, and a2∆̃Mix is an additional additive discretiza-
tion correction to the mass of a meson composed of one
valence and one sea quark. For our MALQCD calcula-
tions, these two quantities are given by [65, 68, 69]

m2
vs =

1

2

(
m2
vv +m2

ss,5

)
+ a2∆̃Mix ,

a2∆̃Mix = a2∆Mix +
a2

8
∆A +

3a2

16
∆T +

a2

8
∆V +

a2

32
∆I ,

a2∆Mix =
8a2CMix

F 2
,

∆2
PQ = m2

ss,5 + a2∆I −m2
vv , (11)

where mss,5 is the mass of the taste-5 pseudoscalar me-
son, a2∆B are the taste splittings between the other
taste-meson and the taste-5 meson, a2∆B = m2

B −m2
5,

F is the leading order pion decay constant and CMix

is the LEC of a new operator present in the MAEFT
Lagrangian at O(a2). The mixed-meson mass splitting,
a2∆Mix is universal at LO in the MAEFT expansion [62],
regardless of the taste of the staggered sea-quark part-
nered with the DW quark. In Ref. [66], it was observed
that there is a noticeable quark mass dependence of the
mixed-meson splitting, as defined e.g. for the pion

∆m2
vs ≡ m2

π,vs −
1

2

(
m2
π,DW +m2

π,5

)
. (12)

There are three common methods of incorporating these
discretization corrections:

1. power-series expand the discretization corrections
about a = 0 and use a continuum EFT extrapo-
lation enhanced by general corrections of the form
a2, a2αS , etc.;

2. extrapolate these mixed-meson discretization cor-
rections to the chiral limit and use a uniform cor-
rection for all mixed-mesons with the full MAEFT
expressions;

3. use the on-shell renormalized mixed-meson masses
as they are on each ensemble with the full MAEFT
expressions.

Provided the discretization corrections are under control,
all three methods should agree in the continuum limit. It
is useful, therefore, to determine the mixed meson masses
for all combinations of valence and sea quarks used in the
MALQCD calculations.

In order to compute the mixed-meson spectrum, we
need to construct pseudoscalar mesons composed of one
MDWF and one HISQ fermion propagator. To compute
the MDWF propagators, we have used the QUDA li-
brary interfaced from Chroma with solutions generated
with gauge-covariant Gaussian smeared sources [154]. To
compute the HISQ propagators, we utilized the MILC
code. To minimize the gauge noise, we similarly used a
gauge-covariant source for the staggered fermions. This
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ensemble amuj amsj amur amsr

a15m310 0.300(6) 0.432(4) 0.444(5) 0.549(2)

a12m310 0.216(2) 0.334(2) 0.339(2) 0.430(1)

a09m310 0.150(1) 0.243(1) 0.247(1) 0.315(1)

a15m220 0.255(3) 0.416(3) 0.430(3) 0.543(1)

a12m220 0.178(2) 0.321(2) 0.335(2) 0.428(1)

TABLE III. The mixed-meson mass spectrum determined on
ensembles used in this work, with flow time tgf = 1.

ensemble w2
0∆m2

uj w2
0∆m2

sj w2
0∆m2

ur w2
0∆m2

sr

a15m310 0.0439(41) 0.0298(40) 0.0440(59) 0.0422(28)

a12m310 0.0214(17) 0.0123(29) 0.0199(30) 0.0206(22)

a09m310 0.0102(09) 0.0038(18) 0.0102(19) 0.0085(14)

a15m220 0.0488(38) 0.0341(58) 0.0488(60) 0.0410(36)

a12m220 0.0279(13) 0.0142(20) 0.0334(30) 0.0212(20)

TABLE IV. The mixed-meson mass splittings (Eq. 12) deter-
mined on ensembles used in this work, with flow time tgf = 1.
The values of w0/a are determined from Ref. [151].

source was created in Chroma, with routines added to the
devel branch to support writing a source file readable as
a vector field source by the MILC code. The MDWF
fermions were converted to the DD PAIRS format to be
read by MILC, which was used to compute the mixed-
meson and HISQ-HISQ pseudoscalar spectrum. To fur-
ther reduce the gauge noise, the mixed-meson correlation
functions were constructed with interpolating operators

Ovs = q̄valγ5qsea (13)

as well as their Hermitian conjugates. The real part
of the averaged conjugate pairs of correlation functions
were then used to determine the spectrum, which were
computed with all possible pairings of light and strange
quarks with one MDWF and one HISQ type quark prop-
agator.

In Table III, we list the masses of mixed-mesons com-
puted in this work, using only flow time tgf = 1 ensem-
bles. In Table IV, we list the values of the splittings
∆m2

vs, defined as in Eq. (12), and mvv and mss are the
pseudoscalar masses of the valence-valence and sea-sea
mesons respectively. The values are listed in w0 units
where the quark-mass independent values w0/a are taken
from Ref. [151]. We use the notation of Ref. [73] and de-
note the various mixed-mesons as

φuj = pion: val. light = u, sea light = j,

φur = kaon: val. light = u, sea strange = r,

φsj = kaon: val. strange = s, sea light = j,

φsr = s̄γ5s: val. strange = s, sea strange = r. (14)

VI. BENCHMARK CALCULATION OF FK±/Fπ±

After demonstrating the flow time independence of
mN/Fπ and FK/Fπ in the continuum limit and observ-
ing the advantages of larger smearing flow times tgf , we
provide a benchmark computation with all systematic er-
rors estimated. In particular we assess the effects of the
extrapolation to the physical pion mass as well as to the
continuum and infinite volume limit of FK/Fπ. At NLO
in the three-flavors chiral expansion, this quantity de-
pends upon only a single LEC, L5 [155]. Therefore, with
the limited number of ensembles used in this work, we can
perform a full extrapolation to the physical point. Fur-
ther, FK/Fπ is obtained with great precision from many
different LQCD calculations and it is one of the quanti-
ties reviewed in depth by the FLAG working group [8].
A comparison serves as an important benchmark calcu-
lation of our lattice action.

A. χPT extrapolation at different gradient flow
times.

We have 3 lattice spacings and 2 pion masses with
different values of mπL. Following our findings for the
continuum extrapolation at mπ ∼ 310 MeV, our chiral-
continuum extrapolation is performed with the form

FK
Fπ

= 1 +
5

8

m2
π

Λ2
χ

`π −
1

4

m2
K

Λ2
χ

`K −
3

8

m2
η

Λ2
χ

`η

+
4(m2

K −m2
π)

Λ2
χ

(4π)2
[
L5(Λχ) +

a2

w2
0

La

]
. (15)

In this expression, we have used the relation valid at NLO
in the SU(3) chiral expansion, m2

η = 4m2
K/3 − m2

π/3,

and the definitions `φ = ln(m2
φ/Λ

2
χ) (φ ∈ {π,K, η }) and

Λ2
χ = (4π)2FKFπ. We have also included the finite vol-

ume corrections from the radiative pion loops predicted
at one-loop in χPT [156, 157], but we find they have
an irrelevant effect on the fit with the precision we have.
The discretization corrections are flavor independent and
so they must vanish in the SU(3) flavor limit where
FK/Fπ = 1 exactly. Therefore, we parameterize the dis-
cretization correction through an unknown LEC that ac-
companies a term proportional to (m2

K −m2
π)(a/w0)2.

Using the expression in Eq. (15) we fit the five ensem-
bles used in this work for each flow time independently.
We then extrapolate these results to the isospin sym-
metric physical point, as determined by FLAG [8] with
mπ = 134.8(3) MeV and mK = 494.2(3) MeV. In or-
der to compare with the FLAG determination, we must
correct these results from the isospin symmetric point to
the ratio of the charged decay constants, as prescribed in
Eqs. (62) and (63) of the most recent FLAG review. In
Fig. 4, we display our resulting values of FK±/Fπ± for
each flow time. We observe good quality in all our fits, as
defined by the Q-value, which is the Bayesian analogue to
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FIG. 4. Flow time (in)dependence of FK±/Fπ± at the physi-
cal point mπ ≈ 135 MeV in the continuum limit. The colored
symbols are the results of our calculations extrapolated to
the continuum limit and to the physical point using Eq. (15).
The benchmark FLAG result is the leftmost black point and it
is consistent with our results at all flow times within 1-sigma
(horizontal grey band). The linear trend in flow time observed
is not present in the full continuum, chiral extrapolation anal-
ysis of different, but consistent analysis of pseudoscalar cor-
relation functions, so we believe this observed trend is not
statistically significant.

the p-value defined in Eq. (B4) of Ref. [158]. For compar-
ison, we plot the FLAG determination of FK±/Fπ± from
the average of results using Nf = 2+1+1 ensembles. At
the 1-sigma level, our results are self-consistent (flow time
independent) and also consistent with the FLAG average
value. There is a trend of FK/Fπ with tgf observed in
Fig. 4. However, we do not believe this is statistically
significant because the continuum, chiral analysis using
different, but consistent, correlation function analysis re-
sults as input, results in values of FK/Fπ which do not
have a trend.

B. MA EFT extrapolation at tgf = 1

While the numerical results are sufficient to constrain
the unknown LECs, we note that for larger flow times,
the quality of the fit decreases, hinting at missing depen-
dence upon the input parameters. For tgf = 1, we have
also computed the mixed-meson masses, and so we can
perform the full MA EFT extrapolation. The NLO MA
EFT expressions for fπ =

√
2Fπ and fK are provided

in Eqs. (C1) and (C2) of Ref. [65] respectively. In our
case, we have tuned the valence quark masses such that
the pion mass matches the taste-5 HISQ pion mass which
implies ∆ju = ∆rs = 0 in the reference expressions. Fur-
ther, the mixed-meson mass splitting is independent of
quark mass at LO, allowing us to simplify the extrapo-
lation formula. To simplify transcribing the expression,

we define

ε2π =
m2
π

Λ2
χ

, ε2ju =
m2
π + a2∆̃Mix

Λ2
χ

,

ε2K =
m2
K

Λ2
χ

, ε2ru = ε2sj =
m2
K + a2∆̃Mix

Λ2
χ

,

ε2ss =
m2
ss

Λ2
χ

, ε2rs =
m2
ss + a2∆̃Mix

Λ2
χ

,

δ2PQ =
a2∆I

Λ2
χ

, ε2X =
4

3
ε2K −

1

3
ε2π + δ2PQ,

and Λ2
χ = 16π2FπFK . (16)

The resulting MA EFT expression is

FK
Fπ

= 1 +
1

2
ε2ju`ju +

1

8
`π

{
ε2π −

δ2PQ(ε2X + ε2π)

ε2X − ε2π

+
δ4PQε

2
X

3(ε2X − ε2π)2
−

4δ4PQε
2
π

3(ε2X − ε2π)(ε2ss − ε2π)

}

− 1

2
ε2sj`sj +

1

4
ε2ru`ru −

1

4
ε2rs`rs +

`ss
4

{
ε2ss

+
δ2PQ(3ε4ss + 2(ε2K − ε2π)ε2X − 3ε2ssε

2
X)

3(ε2X − ε2ss)2

−
δ4PQ(2ε4ss − ε2X(ε2ss + ε2π))

3(ε2X − ε2ss)2(ε2ss − ε2π)

}
− 3

8
ε2X`X

{
1

−
2δ2PQ/3

(ε2X − ε2π)
+
δ2PQ[4(ε2K − ε2π) + 6(ε2ss − ε2X)]

9(ε2X − ε2ss)2

+
δ4PQ/9

(ε2X − ε2π)2
−

2δ4PQ(2ε2ss − ε2π − ε2X)

9(ε2X − ε2ss)2(ε2X − ε2π)

}

+
δ2PQ(ε2K − ε2π)

6(ε2X − ε2ss)
+

δ4PQ/24

(ε2X − ε2π)
−

δ4PQ/12

(ε2X − ε2ss)

−
δ2PQ

8
+ 4(ε2K − ε2π)(4π)2L5(Λχ) . (17)

In this expression, we have only included the NLO
counter term, which is the same as in SU(3) χPT, L5. We
observe that with this MA expression, the a2(m2

K −m2
π)

term is no longer needed to fit the data. When it is in-
cluded, the fit returns a value of this LEC two orders of
magnitude smaller than when using Eq. (15). For this
analysis, we have taken the values of w2

0∆m2
ju from Ta-

ble IV, combined with the values of a/w0 from Ref. [151]

to determine the values of a2∆̃Mix. We have used the val-
ues of r21a

2∆I and r1/a from Ref. [112] to convert them
to lattice units and combine them to form the necessary
quantities in Eq. (16). We observe that the MA expres-
sion is approximately 150 times more likely to reproduce
the observed data when compared to SU(3) χPT, as de-
termined by the Bayes factors given in Table V, provid-
ing very strong evidence that the MA expression provides
the more correct physical point extrapolation. We leave
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tgf function 103 × L5 FK/Fπ Q-value logGBF

0.2 Eq. (15) 5.55(1.17) 1.2102(105) 0.836 —

0.4 Eq. (15) 4.79(1.03) 1.2034(93) 0.808 —

0.6 Eq. (15) 4.05(1.02) 1.1968(92) 0.686 —

0.8 Eq. (15) 3.88(96) 1.1952(87) 0.448 —

1.0 Eq. (15) 3.27(93) 1.1898(84) 0.278 6.915

1.0 Eq. (17) 3.35(33) 1.1905(32) 0.296 11.947

TABLE V. Physical extrapolation from the FK/Fπ analysis.
The Q-value is the Bayesian analogue of the p-value defined
in Eq. (B4) of Ref. [158]. The logGBF denotes the log of the
Gaussian Bayes factor and is used to select models under the
Bayesian framework. The Bayes factors are suppressed for
tgf less than 1.0 since model comparisons are only sensible
within the same dataset.

further investigation of FK/Fπ with more statistics and
more ensembles to future work.

VII. MDWF IN QUDA: OPTIMIZATIONS AND
PERFORMANCE

In order to efficiently perform the MDWF solves, we
utilize the GPU implementation of the MDWF opera-
tor and solver [159] from the highly-optimized QUDA
library [160, 161]. We added the API for accessing this
solver to the Chroma [122] package, which is publicly
available in the most recent version.

The MDWF calculations were performed on three dif-
ferent GPU-enabled machines, Surface and RZHasGPU
at LLNL and Titan at OLCF.1 The Surface cluster is
composed of dual NVIDIA Tesla K40 cards with Intel
Xeon E5-2670 CPU nodes. The RZHasGPU cluster is
composed of dual NVIDIA Tesla K80 cards with Intel
Xeon E5-2667 v3 CPU nodes. The Titan supercom-
puter is composed of single NVIDIA Tesla K20X cards
with AMD Opteron CPU nodes. An interesting fea-
ture of the Titan nodes is the use of two 8-core NUMA
nodes per node. We have found that we can provide 2
MPI ranks per GPU, by using both NUMA nodes, and
achieve approximately 69% performance boost with oth-
erwise identical parameters. In Table VI we list the sus-
tained performance on the three machines achieved with
the present implementation of the double-half mixed-
precision MDWF solver. The single node performance
is notable and we are at present working on improv-
ing the strong scaling of the MDWF solver in QUDA
through better overlapping of communication and com-
putation. Additionally, a significant reduction of the con-
dition number for the symmetric implementation of the

1 Some of the early tuning and flow time dependence studies were
performed at the JLab High Performance Computing Center and
at the Fermilab Lattice Gauge Theory Computational Facility.

computer GPUs MPI geometry performance [GFlops]

ranks total per node % peak

Surface 2 2 1 1 1 2 1250 1250 44%

RZHasGPU 4 4 1 1 1 4 1785 1785 48%

Titan 8 16 1 1 2 8 2885 361 25%

Titan 16 32 1 2 2 8 4720 295 20%

Titan 32 64 1 2 4 8 8500 266 18%

TABLE VI. Performance of the double-half mixed precision
MDWF solver in QUDA on the various compute nodes used
with 2, 4 and 1 GPU per node on the Surface, RZHasGPU and
Titan computers. The % of peak performance is obtained by
comparing our sustained to the theoretical single-node single-
precision performance. On Titan, we oversubscribe the GPUs
by using 1 MPI rank per NUMA node, which amounts to 2
MPI ranks per GPU, resulting in a ∼ 69% performance boost.

MDWF operator has been observed [162]. QUDA sup-
ports both the symmetric and asymmetric implementa-
tions of the MDWF operator. Currently, Chroma only
supports the asymmetric operator, but we plan to inves-
tigate possible reduction in time-to-solution from switch-
ing to the symmetric implementation.

VIII. CONCLUSIONS

In this work, we have motivated a new mixed lat-
tice QCD action: Möbius Domain-Wall valence fermions
solved with the dynamical Nf = 2 + 1 + 1 HISQ sea
fermions after a gradient smearing algorithm is used to
filter out UV modes of the gluons. To retain the correct
continuum limit, the gradient flow time is held fixed in
lattice units, such that any dependence upon this new
scale also vanishes in the continuum limit. We demon-
strate the flow time independence of the continuum
limit by computing two sample quantities, FK/Fπ and
mN/Fπ. An extrapolation of FK/Fπ to the continuum,
infinite volume and physical pion and kaon mass point is
consistent with the FLAG average of the Nf = 2 + 1 + 1
LQCD results for all flow times explored in this work.

For flow time of tgf = 1, we estimate the total sys-
tematic error from different chiral and continuum fits to
be smaller than our current statistical uncertainty. Of
particular note, we also demonstrate that the gradient
flow smearing highly suppresses sources of residual chi-
ral symmetry breaking in the action for moderate values
of the flow time: the axial renormalization constant be-
comes effectively lattice spacing independent and close to
1 for all ensembles at a flow time of tgf = 1; the resid-
ual chiral symmetry breaking, measured by the quantity
mres, is exponentially damped with increasing flow time,
and less than 10% of the input light quark mass for all
ensembles, including the physical quark mass ensembles,
with tgf = 1 and moderate values of L5.

This action, coupled with the use of the highly opti-
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mized QUDA library, provides an economical method of
performing LQCD calculations with an action that re-
spects chiral symmetry to a high degree. The MILC
Collaboration has a long history of making their con-
figurations freely available to all interested parties. The
breadth of parameters used in the generation of the HISQ
ensembles allows users to fully control all LQCD system-
atics: notably the continuum, and infinite volume extrap-
olations, as well as a physical quark mass interpolation.

We have plans to use this action for computing vari-
ous quantities relevant to fundamental nuclear and high-
energy physics research, detailed for example in the
NSAC Long Range Plan for Nuclear Science and the
HEPAP P5 Strategic Plan for U.S. Particle Physics. So
far, we have used this mixed action to demonstrate the
benefits of a new method for computing hadronic ma-
trix elements [142], applied this method to a precise
determination of gA [143], and we have computed the
π− → π+ transition matrix elements relevant for scenario
that heavy lepton-number violating physics beyond the
Standard Model contributes to the hypothesized neutri-
noless double beta decay of large nuclei [141].
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Appendix A: Tables of flow time dependence

Here, we provide tables of the various quantities com-
puted in this work on the different flow times used. Tuned
quark masses and measured renormalization constants
are reported in Tab. VII, while hadron masses and me-
son decay constants are summarized in Tab. VIII.

Appendix B: Priors for correlator fits

In Tab. IX we summarize the Bayesian priors used in
the analysis of the mesonic two-point functions, together
with the ones for the nucleon correlator and mres. No-
tice that the priors are chosen to be independent of the
gradient flow time.

Appendix C: Correlator analysis fit regions

A summary of the fit regions for the two-point func-
tion analysis is shown in Tab. X for the three different
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ensemble M5 L5 b5 c5 tgf plaq. ammdwf
l amres

l ZllA ammdwf
s amres

s ZlsA

a15m310 1.3 12 1.5 0.5 0.2 0.87701(2) 0.00970 0.003882(38) 0.8668(36) 0.06810 0.003022(31) 0.8740(13)

0.4 0.95521(1) 0.01160 0.002290(29) 0.8993(34) 0.07380 0.001668(22) 0.9074(12)

0.6 0.97723(1) 0.01250 0.001656(26) 0.9274(26) 0.08000 0.001163(19) 0.9389(12)

0.8 0.98560(1) 0.01480 0.001287(24) 0.9498(24) 0.08520 0.000880(17) 0.9608(11)

1.0 0.98964(1) 0.01580 0.001022(23) 0.9645(21) 0.09020 0.000685(15) 0.9760(09)

a12m310 1.2 8 1.25 0.25 0.2 0.89320(1) 0.00680 0.004298(22) 0.9007(23) 0.05300 0.003416(18) 0.9034(10)

0.4 0.96401(1) 0.00960 0.001922(18) 0.9201(20) 0.05830 0.001352(15) 0.9243(07)

0.6 0.98251(1) 0.01086 0.001332(17) 0.9418(18) 0.06280 0.000860(13) 0.9464(07)

0.8 0.98925(0) 0.01176 0.001019(15) 0.9565(18) 0.06650 0.000615(11) 0.9608(07)

1.0 0.99242(0) 0.01260 0.000804(14) 0.9660(17) 0.06930 0.000467(09) 0.9705(06)

a09m310 1.1 6 1.25 0.25 0.2 0.91073(0) 0.00543 0.002704(07) 0.9319(18) 0.03880 0.002359(05) 0.9343(05)

0.4 0.97236(0) 0.00798 0.000616(05) 0.9444(16) 0.04330 0.000459(04) 0.9452(06)

0.6 0.98721(0) 0.00850 0.000364(04) 0.9577(15) 0.04500 0.000251(03) 0.9590(05)

0.8 0.99239(0) 0.00921 0.000280(04) 0.9659(13) 0.04780 0.000189(02) 0.9679(04)

1.0 0.99478(0) 0.00951 0.000242(04) 0.9719(13) 0.04910 0.000169(02) 0.9739(04)

a15m220 1.3 16 1.75 0.75 0.2 0.87718(1) 0.00425 0.002254(18) 0.8634(38) 0.06810 0.001699(17) 0.8713(12)

0.4 0.95535(1) 0.00532 0.001356(16) 0.8892(33) 0.07380 0.000953(14) 0.9064(12)

0.6 0.97735(1) 0.00615 0.000966(14) 0.9221(31) 0.08000 0.000658(11) 0.9398(13)

0.8 0.98570(1) 0.00668 0.000733(11) 0.9456(27) 0.08520 0.000492(10) 0.9617(11)

1.0 0.98973(1) 0.00712 0.000567(10) 0.9610(26) 0.09020 0.000374(09) 0.9765(09)

a12m220 1.2 12 1.5 0.5 0.2 0.89332(1) 0.00365 0.001562(11) 0.8923(25) 0.05480 0.001085(10) 0.9026(21)

0.4 0.96410(0) 0.00456 0.000935(09) 0.9132(22) 0.05880 0.000582(07) 0.9240(17)

0.6 0.98259(0) 0.00522 0.000673(08) 0.9409(37) 0.06280 0.000391(06) 0.9466(14)

0.8 0.98931(0) 0.00575 0.000511(07) 0.9546(28) 0.06660 0.000286(05) 0.9621(12)

1.0 0.99248(0) 0.00600 0.000390(05) 0.9615(22) 0.06930 0.000216(04) 0.9718(11)

TABLE VII. The tuned values of the MDWF light and strange quark masses on various ensembles for various flow times. We
also list the values of the average plaquette after applying the gradient flow as well as mres and the renormalization constants.

ensembles used in this work. q1q2 superscripts identify
mesonic states (π, ss and K.)

Appendix D: Topological charge evolution on HISQ
ensembles

In this appendix, we provide additional details for the
Nf = 2 + 1 + 1 HISQ ensembles at heavy pion masses
(mπ ≈ 350 MeV and 400 MeV). The ensembles have a
lattice spacing of ≈ 0.12 fm and we expect the topo-
logical charge to fluctuate along the molecular dynamics
trajectory and be gaussian distributed. This behavior is
plotted in Fig. 5 for both ensembles. Each of the new
ensembles is obtained by combining configurations from
8 independent streams (collected after each stream has
thermalized) and they are plotted together in Fig. 5. We
solve the gradient flow equations with the Symanzik ac-
tion to smooth out the HISQ gauge fields, with a step
size of ε = 0.03 and up to n = 166 iterations. We use the
symmetric Clover discretization of the bosonic topologi-
cal charge density operator GµνG̃µν .
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ensemble tgf amπ amK amss aFπ aFK amN FK/Fπ mN/Fπ

a15m310 0.2 0.2352(13) 0.4025(12) 0.51904(87) 0.07781(85) 0.08724(85) 0.845(28) 1.1212(66) 10.86(38)

0.4 0.2327(13) 0.4014(12) 0.51710(89) 0.07720(69) 0.08572(64) 0.834(15) 1.1103(61) 10.80(22)

0.6 0.2286(11) 0.4004(12) 0.51673(91) 0.07599(54) 0.08439(53) 0.823(13) 1.1107(58) 10.84(19)

0.8 0.2363(11) 0.4028(12) 0.51673(92) 0.07543(53) 0.08343(49) 0.826(11) 1.1059(53) 10.95(17)

1.0 0.2367(12) 0.4046(12) 0.51858(94) 0.07436(51) 0.08239(46) 0.821(10) 1.1080(51) 11.05(16)

a12m310 0.2 0.18876(60) 0.3233(07) 0.41835(61) 0.06385(65) 0.07137(63) 0.673(32) 1.1177(57) 10.54(51)

0.4 0.18842(62) 0.3233(07) 0.41773(60) 0.06306(53) 0.07008(47) 0.649(35) 1.1113(48) 10.29(56)

0.6 0.18837(64) 0.3232(07) 0.41754(59) 0.06243(48) 0.06911(40) 0.641(34) 1.1070(46) 10.26(54)

0.8 0.18833(65) 0.3234(07) 0.41776(58) 0.06196(44) 0.06832(36) 0.641(30) 1.1027(45) 10.35(49)

1.0 0.18911(65) 0.3232(07) 0.41721(58) 0.06142(41) 0.06755(34) 0.642(27) 1.0999(44) 10.46(44)

a09m310 0.2 0.13982(42) 0.2411(04) 0.31227(36) 0.04578(45) 0.05174(47) 0.485(20) 1.1302(52) 10.60(45)

0.4 0.14017(39) 0.2423(04) 0.31392(36) 0.04590(36) 0.05159(35) 0.489(18) 1.1239(46) 10.66(41)

0.6 0.13860(38) 0.2396(04) 0.31041(37) 0.04568(33) 0.05113(31) 0.488(16) 1.1195(46) 10.69(37)

0.8 0.14026(38) 0.2416(04) 0.31280(37) 0.04550(31) 0.05090(29) 0.488(14) 1.1186(45) 10.71(33)

1.0 0.13978(38) 0.2405(04) 0.31129(38) 0.04521(30) 0.05047(28) 0.485(13) 1.1163(44) 10.72(31)

a15m220 0.2 0.16707(94) 0.3838(09) 0.51227(74) 0.07616(82) 0.08794(70) 0.788(37) 1.1546(74) 10.35(49)

0.4 0.16668(82) 0.3848(09) 0.51195(72) 0.07521(74) 0.08638(58) 0.794(34) 1.1485(74) 10.56(47)

0.6 0.16683(79) 0.3852(08) 0.51184(70) 0.07425(67) 0.08481(51) 0.787(18) 1.1422(72) 10.60(27)

0.8 0.16647(76) 0.3853(09) 0.51195(70) 0.07343(63) 0.08338(45) 0.776(29) 1.1355(71) 10.57(41)

1.0 0.16629(85) 0.3866(09) 0.51388(70) 0.07231(61) 0.08205(42) 0.766(28) 1.1348(72) 10.59(40)

a12m220 0.2 0.13305(58) 0.3080(12) 0.41732(56) 0.05732(63) 0.06618(84) 0.629(28) 1.154(12) 10.97(50)

0.4 0.13370(54) 0.3086(11) 0.41636(72) 0.05773(53) 0.06610(76) 0.581(48) 1.145(12) 10.06(85)

0.6 0.13354(96) 0.3088(10) 0.41583(55) 0.05784(51) 0.06582(63) 0.620(27) 1.138(10) 10.73(48)

0.8 0.13491(75) 0.3103(07) 0.41690(53) 0.05778(47) 0.06572(38) 0.621(23) 1.1374(69) 10.74(41)

1.0 0.13424(66) 0.3097(07) 0.41618(52) 0.05731(45) 0.06514(35) 0.619(19) 1.1367(69) 10.80(36)

TABLE VIII. Various hadronic quantities determined at different flow times. The posterior distributions related to meson and
baryon correlation functions are extracted using a 2 + 1 state fit ansatz for mesons and 2 states for the nucleons, as described
in Secs. IV A and IV B. The meson two-point correlation functions are fit simultaneously with the 4D axial-vector current,
and then a chained fit [149] is used to propagate all remaining correlations. The entire fit strategy is implemented under the
Bayesian framework with lsqfit [148].
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Eπ0 zπ0,p zπ0,s EK0 zK0,p zK0,s Ess0 zss0,p zss0,s

a15m310 0.2360(236) 0.255(255) 0.025(25) 0.4050(405) 0.198(198) 0.0198(198) 0.520(52) 0.182(182) 0.0185(185)

a12m310 0.190(19) 0.19(19) 0.02(2) 0.3220(322) 0.148(148) 0.0159(159) 0.4180(418) 0.142(142) 0.0152(152)

a09m310 0.140(14) 0.122(122) 0.0047(47) 0.2420(242) 0.1(1) 0.0039(39) 0.3120(312) 0.1(1) 0.0037(37)

a15m220 0.1660(166) 0.325(325) 0.031(31) 0.3850(385) 0.2(2) 0.02(2) 0.5150(515) 0.18(18) 0.0184(184)

a12m220 0.1340(134) 0.224(224) 0.0115(115) 0.310(31) 0.15(15) 0.0079(79) 0.4150(415) 0.137(137) 0.0073(73)

∆π
osc. zπosc.,p zπosc.,s ∆K

osc. zKosc.,p zKosc.,s ∆ss
osc. zssosc.,p zssosc.,s

a15m310 0(1.45) 0(0.255) 0(0.0125) 0(1.45) 0(0.198) 0(0.01) 0(1.45) 0(0.182) 0(0.009)

a12m310 0(1.67) 0(0.19) 0(0.01) 0(1.67) 0(0.148) 0(0.008) 0(1.67) 0(0.142) 0(0.008)

a09m310 0(1.96) 0(0.122) 0(0.00235) 0(1.96) 0(0.1) 0(0.0018) 0(1.96) 0(0.1) 0(0.0018)

a15m220 0(1.8) 0(0.325) 0(0.015) 0(1.8) 0(0.2) 0(0.01) 0(1.8) 0(0.18) 0(0.009)

a12m220 0(2) 0(0.224) 0(0.0057) 0(2) 0(0.15) 0(0.004) 0(2) 0(0.137) 0(0.004)

∆π
1 zπ1,p zπ1,s ∆K

1 zK1,p zK1,s ∆ss
1 zss1,p zss1,s

a15m310 -0.75(70) 0(0.255) 0(0.0125) -0.75(70) 0(0.198) 0(0.01) -0.75(70) 0(0.182) 0(0.009)

a12m310 -0.97(70) 0(0.19) 0(0.01) -0.97(70) 0(0.148) 0(0.008) -0.97(70) 0(0.142) 0(0.008)

a09m310 -1.26(70) 0(0.122) 0(0.00235) -1.26(70) 0(0.1) 0(0.0018) -1.26(70) 0(0.1) 0(0.0018)

a15m220 -1.1(7) 0(0.325) 0(0.015) -1.1(7) 0(0.2) 0(0.01) -1.1(7) 0(0.18) 0(0.009)

a12m220 -1.3(7) 0(0.224) 0(0.0057) -1.3(7) 0(0.15) 0(0.004) -1.3(7) 0(0.137) 0(0.004)

fπ0 fπosc. fπ1 fK0 fKosc. fK1 fss0 fssosc. fss1

a15m310 0.0387(387) 0(0.0387) 0(0.0387) 0.054(54) 0(0.054) 0(0.054) 0.0648)(648) 0(0.0648) 0(0.0648)

a12m310 0.028(20) 0(0.028) 0(0.028) 0.04(4) 0(0.04) 0(0.04) 0.0485(485) 0(0.0485) 0(0.0485)

a09m310 0.0175(175) 0(0.0175) 0(0.0175) 0.0256(256) 0(0.0256) 0(0.0256) 0.0318(318) 0(0.0318) 0(0.0318)

a15m220 0.0309(309) 0(0.0309) 0(0.0309) 0.0522(522) 0(0.0522) 0(0.0522) 0.0636(636) 0(0.0636) 0(0.0636)

a12m220 0.0221(221) 0(0.0221) 0(0.0221) 0.0375(375) 0(0.0375) 0(0.0375) 0.047(47) 0(0.047) 0(0.047)

EN0 zN0,p zN0,s EN1 zN1,p zN1,s ml
res ms

res

a15m310 0.820(82) 0.0112(55) 4.1(4.1)E-4 -0.75(70) 0(0.112) 0(0.0021) 0(1) 0(1)

a12m310 0.670(67) 0.006(3) 2.6(2.6)E-4 -1.0(7) 0(0.06) 0(0.0013) 0(1) 0(1)

a09m310 0.50(5) 0.0024(12) 2.2(2.2)E-5 -1.27(68) 0(0.024) 0(1.1)E-4 0(1) 0(1)

a15m220 0.760(76) 0.011(5) 4.2(4.2)E-4 -1.1(7) 0(0.11) 0(0.0021) 0(1) 0(1)

a12m220 0.610(61) 0.0054(27) 7.9(7.0)E-5 -1.3(7) 0(0.054) 0(4)E-4 0(1) 0(1)

TABLE IX. Priors for correlator fits in lattice units. The priors are all Gaussian distributed and listed as mean(standard
deviation). The oscillating and first excited state energies are defined as splitting from the ground state, where ∆i ≡ eEi−E0 .
This leads to a log-normal distributed energy splitting which is positive definite, and as a result enforces a strict hierarchy of
states. The priors are chosen to be flow-time independent.
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Cq1q2 tmin Cq1q2 tmax CN tmin CN tmax

0.15 fm 7 15 4 10

0.12 fm 8 19 5 12

0.09 fm 12 25 7 16

TABLE X. Fit range in lattice units. The fit region is chosen
to be approximately the same in physical units for all pseu-
doscalar correlator fits, as well as amongst the nucleon cor-
relator fits. The nucleon correlation functions are fit closer
to the origin because of the poorer signal-to-noise ratio as
compared to pseudoscalar observables. 0 200 400 600 800 1000
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FIG. 5. Topological charge of the a12m350 and a12m400
ensembles at flow time tgf = 0.99. The topological charge
randomly fluctuates and shows no long correlation as a func-
tion of configuration number (Monte Carlo time) for both
ensembles. The histograms show that the fluctuations are
centered around zero, indicating the absence of charge-parity
(CP) violation, and are Gaussian distributed indicating that
the volumes are sufficiently large.
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