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A lattice quantum chromodynamics (LQCD) calculation of the nuclear matrix element
relevant to the nn → ppeeνeνe transition is described in detail, expanding on the results
presented in Ref. [1]. This matrix element, which involves two insertions of the weak axial
current, is an important input for phenomenological determinations of double-β decay rates
of nuclei. From this exploratory study, performed using unphysical values of the quark
masses, the long-distance deuteron-pole contribution to the matrix element is separated
from shorter-distance hadronic contributions. This polarizability, which is only accessible
in double-weak processes, cannot be constrained from single-β decay of nuclei, and is found
to be smaller than the long-distance contributions in this calculation, but non-negligible.
In this work, technical aspects of the LQCD calculations, and of the relevant formalism in
the pionless effective field theory, are described. Further calculations of the isotensor axial
polarizability, in particular near and at the physical values of the light-quark masses, are
required for precise determinations of both two-neutrino and neutrinoless double-β decay
rates in heavy nuclei.
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I. INTRODUCTION

The second-order weak double-β (ββ) decays of nuclei admit important tests of the fundamental
symmetries of nature and are probes of the Standard Model (SM) and physics beyond it. The
two-neutrino ββ-decay mode (2νββ), in which the final-state electrons are accompanied by two
anti-neutrinos, is the rarest SM process that has been measured [2], and provides crucial tests of our
understanding of weak interactions in nuclei. Measured 2νββ-decay rates are benchmark quantities
that nuclear many-body calculations must reproduce in order for the more complex calculations
of neutrinoless ββ-decay (0νββ) rates to be considered reliable [3]. The 0νββ-decay mode can
occur only if lepton number is not conserved in nature. One possible scenario is that a light virtual
Majorana neutrino mediates the ββ decay. In this case, 0νββ-decay rates would be sensitive to
the absolute mass scale of neutrinos and could shed light on the neutrino-mass hierarchy [4]. 0νββ
decay has not been observed, but it is the primary motivation for a range of current and planned
experiments, with at least two orders-of-magnitude improvement in sensitivity expected in the
near future [5–7]. Given the significant discovery potential of future ββ-decay experiments, it is
timely to improve the theoretical understanding of these processes by facilitating the connection
of phenomenological calculations of ββ-decay rates to the SM.

Current predictions of nuclear ββ-decay rates show significant variation, and their uncertainties
are not well quantified [3]. The nuclei that can undergo ββ decay remain too complex for the
current ab initio methods, and there is considerable model dependence in the predictions of the more
phenomenological many-body methods that can be applied. Moreover, 0νββ decays may receive
contributions from beyond the Standard Model (BSM) physics above the electroweak scale that
result in short-distance ∆L = 2, ∆I = 2 operators at hadronic scales (where L and I denote lepton
number and isospin, respectively) [8–11]. Additionally, in the light Majorana-neutrino scenario,
long-distance second-order weak-current processes are important. These latter contributions are
typically modeled using the “closure approximation”, and other simplifications, whose validity
remains to be tested [3]. In 2νββ decays, the dominant sources of uncertainty are from missing
many-body correlations in the nuclear wavefunctions and from omitted, or poorly constrained, few-
body contributions to the weak currents. Reducing these uncertainties is a critical and challenging
goal for the nuclear-theory community.

Future planned experiments will likely reduce the uncertainties in 2νββ decay rates and thereby
better constrain their theoretical description. However, 0νββ decay-rate calculations with fully
quantified uncertainties require inputs that are not accessible from measurements of processes
other than 0νββ decays and currently require theoretical inputs. In light of recent progress in
quantitative studies of the properties of light nuclei from the underlying strong interactions using
lattice quantum chromodynamics (LQCD) [12–18], it is timely to explore the potential impact of
similar SM calculations of nuclear ββ decay. While nuclear systems that undergo ββ decay are be-
yond the reach of foreseeable LQCD calculations, computations of the underlying ββ-decay matrix
elements for small nuclear systems are feasible, as the current work demonstrates. Consequently,
a promising approach to improving the reliability of ββ-decay predictions is to constrain the few-
nucleon inputs to ab initio many-body calculations using LQCD studies of the same systems. With
results from sufficiently precise calculations as input, the matching of few and many-body meth-
ods, including effective field theories (EFTs), onto the underlying SM interactions will reduce the
uncertainties implicit in many-body approaches, in principle enabling these approaches to provide
reliable predictions for 2νββ and 0νββ decay rates.

The symmetries of QCD provide a means to improve some of the uncertainties in SM inputs
to ββ-decay calculations. Chiral symmetry has been used to relate the ∆I = 3

2 amplitude for
K → ππ to pionic matrix elements of a class of short-distance operators inducing 0νββ decay in
Ref. [8], with a more comprehensive study presented recently in Ref. [11] that constrains a larger
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class of operators. Furthermore, a first attempt to address short-distance ∆I = 2 contributions to
the π+ → π− transition using LQCD is underway, see Ref. [19] for a preliminary report.1 The long-
distance second-order weak contributions can also be addressed using LQCD, although a number
of technical challenges related to double insertions of the operators must be overcome. Recent work
by the RBC-UKQCD collaboration [22–26] has demonstrated that long-range contributions to the
KL −KS mass difference, as well the rare kaon-decay matrix elements, can be constrained using
LQCD calculations. Encouraged by this development, the current work focuses on second-order
weak matrix elements in the two-nucleon system.

This work presents the full details of the first LQCD calculation of the forward matrix element of
the I = 2, I3 = 2 component of the time-ordered product of two axial-vector currents in the 1S0 two-
nucleon system. A synopsis of these results and a discussion of their potential impact on ββ-decay
phenomenology have been presented in Ref. [1]. Calculations are performed at the SU(3) flavor-
symmetric point with degenerate up, down and strange quark masses corresponding to a pion mass
of mπ ∼ 806 MeV. Uniform background fields have been successfully implemented in LQCD calcula-
tions [27–29] to extract magnetic moments and electromagnetic polarizabilities of hadrons [30–34]
and nuclei [14, 16, 17], the magnetic transition amplitude for the np → dγ process [15], and the
axial charge of the proton [35, 36], while generalizations to nonzero momentum transfer using
nonuniform fields [37–39] have enabled studies of the axial form factor of the nucleon [40]. Here, a
new implementation of background fields, introduced in Ref. [18], is used to extract axial matrix
elements necessary for the study of the nn → pp transition. While nn → ppeeνeνe decay is not
observed in nature because the dineutron is not bound, the nuclear matrix element is well defined
within the SM and is an important subprocess in 2νββ decay of nuclei. It is also an important
component in the 0νββ-decay mode within the light Majorana-neutrino scenario. As an example
of how LQCD results can provide input to many-body methods, the leading ∆I = 2 low-energy
constant of pionless EFT (EFT(π/)) is constrained from the calculated two-nucleon matrix element.
In addition to the expected Born contribution from a deuteron intermediate state, a new operator
is identified that contributes to the ββ decay of nuclei, but not to single-β decays, namely the
isotensor axial polarizability of the two-nucleon system. This contribution is determined at the
unphysical quark masses used in the LQCD calculation. If the calculations had been performed
at the physical quark masses, EFT could be combined with many-body methods to determine the
phenomenologically relevant ββ-decay rates, better constraining EFT-based calculations such as
those in Ref. [41]. Alternatively, with calculations over a range of light quark masses, an extrap-
olation to the physical values of the quark masses could be rigorously incorporated using pionful
EFT. This work demonstrates the potential of LQCD-based approaches to address second-order
electroweak properties of nuclear systems. With controlled systematics, future LQCD calculations
of matrix elements of both short and long-distance operators will provide refined inputs for nuclear
many-body calculations, leading to more precise predictions of both 2νββ and 0νββ-decay rates.

II. DOUBLE-β DECAY MATRIX ELEMENTS AND THE ISOTENSOR AXIAL
POLARIZABILITY

The two-nucleon matrix elements for 2νββ decay, and 0νββ decay within a light Majorana-
neutrino scenario, receive contributions from long-range second-order weak interactions. In both
cases, the relevant nuclear matrix element is

Mµν(p, q, q′, Ei, Ef ) ≡ 1

2

∫
dt1dt2 〈pp;p′, Ef |T

{
J̃ +
µ (q, t1)J̃ +

ν (q′, t2)
}
|nn;p, Ei〉, (1)

1 From an EFT perspective, the effects of induced local operators at the nuclear scale are recovered from both local
multi-nucleon operators and through interactions with pions that are exchanged between nucleons as discussed
in [9]. There, it is argued that the pionic contribution is dominant, although the (Weinberg) power-counting
scheme used therein is known to be inconsistent in the 1S0 channel [20, 21].
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where p′ = p + q + q′, and Ei,f are the energies of the initial and final states. The charged weak
current with three-momentum q is

J̃ +
α (q, t) =

∫
d3x eiq·x q(x, t)γα

1− γ5

2
τ+ q(x, t), with q =

(
u
d

)
. (2)

The interaction in Eq. (1) has isospin structure τ+⊗ τ+, where τ+ = 1√
2

(
τ1 + i τ2

)
and τ denotes

Pauli matrices that act in isospin space, turning two down quarks into two up quarks. In the 0νββ
transition amplitude, the contraction of the nuclear matrix element in Eq. (1) with the appropriate
leptonic tensor results in integration over the intermediate neutrino momentum in the nuclear
matrix element. In large nuclei, the dominant contribution to such loop integrals comes from
|q| ∼ 100 MeV, dictated by typical inter-nucleon distances. This complex process involves both
the vector and axial-vector currents and is beyond the scope of the current work. For the 2νββ
transition amplitude, the situation is simpler as the hadronic and leptonic matrix elements are
decoupled and only phase-space integrations are required. Furthermore, only the Gamow-Teller
(axial-vector) piece of the weak current makes a significant contribution to the decay rate since
the long-distance contribution from the Fermi (vector) piece is suppressed by isospin symmetry.
Neglecting lepton-mass effects, the forward limit (q = q′ = 0) of the axial-axial part of the matrix
element in Eq. (1) determines the 2νββ inverse half-life, which can be written as [3]

[T 2ν
1/2]−1 = G2ν(Q,Z)|M2ν

GT |2 with M2ν
GT = 6

∑

n

〈f |J̃+
3 |n〉〈n|J̃+

3 |i〉
En − (Ei + Ef )/2

. (3)

Here, Q = Ei − Ef , Z is the proton number and J̃a3 ≡ J̃a3 (0, t = 0) =
∫
d3xJa3 (x, t = 0), where

Ja3 (x) = q(x)γ3γ52 τaq(x) is the third spatial component of the ∆I3 = 1 zero-momentum axial
current. Furthermore, n indexes a complete set of zero-momentum states and G2ν(Q,Z) is a
known phase-space factor [42, 43]. The factor of 6 in M2ν

GT is a consequence of rotational symmetry
(as M2ν

GT is written using the third spatial component of the axial currents) as well as the convention
used herein for the currents. A determination of M2ν

GT for the nn → pp transition is the focus of
this work. Notably, although this transition is not observed in nature, the matrix element, and
hence M2ν

GT as defined above, are both well defined and can be determined using LQCD.

By isospin symmetry, the forward limit of the axial-axial matrix element, M2ν
GT in Eq. (3) with

|i〉 = |nn〉 and |f〉 = |pp〉, can be related to the isotensor axial polarizability, β
(2)
A , of the 1S0

two-nucleon system. This polarizability is defined from M2ν
GT by subtracting the “Born” term

corresponding to the deuteron intermediate state,

1

6
M2ν
GT = β

(2)
A −

|〈pp|J̃+
3 |d〉|2

∆
, (4)

where ∆ = Enn − Ed is the energy gap between the ground state of the isotriplet (dinucleon)
and isosinglet (deuteron) channels. Note that the isotensor axial polarizability introduced here is
unrelated to the isoscalar axial polarizability of the nucleon considered in the context of two-pion
exchange in nuclear forces [44, 45].

In order to extract the matrix element relevant to the ββ-decay process in the two-nucleon
system, a new implementation of the LQCD background-field technique [18] is employed. For
the isotensor quantities considered in this work, the background field that most straightforwardly
enables extraction of the desired matrix element is an isovector field proportional to τ+. For
technical reasons, the calculations performed instead employ flavor-diagonal background fields.
Nonetheless, the isotensor quantities of interest are still accessible in this case. This follows by
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noting that the particular operator in M2ν
GT is obtained from the ++ component of the symmetric

and traceless (in isospin indices a, b) I = 2 structure

Oab(x, y) = T

{
1

2

(
Ja3 (x)Jb3(y) + Jb3(x)Ja3 (y)

)
− 1

3
δab
∑

c

Jc3(x)Jc3(y)

}
, (5)

where T denotes the time ordering of the currents. Matrix elements of Oab(x, y) in the I = 1
multiplet of two-nucleon states,

∣∣1S0, a
〉
, can be expressed in terms of a single reduced matrix

element, M(x, y), given by

〈1S0, c|Oab(x, y)|1S0, d〉 =
M(x, y)

2

[
δcbδad + δacδbd − 2

3
δcdδab

]
, (6)

with the normalized states, |1S0, a〉 related to the physical states by

|nn〉 =
1√
2
|1S0, 1〉 −

i√
2
|1S0, 2〉, |np〉 = |1S0, 3〉, |pp〉 =

1√
2
|1S0, 1〉+

i√
2
|1S0, 2〉. (7)

It is clear from the isospin structure of the operator inducing the nn→ pp transition that there
are no self-contractions of the quark fields in the axial-current operators, no contractions of quark
fields between the two axial-current operators, and no double insertions of axial-current operators
on a single quark line. Since the flavor-conserving I3 = 0 component of the operator defined
in Eq. (6) is most amenable to LQCD computations, it is convenient to determine the following
equivalent combination of matrix elements

〈pp|O++(x, y)|nn〉 = 〈np|O33(x, y)|np〉 − 〈nn|O33(x, y)|nn〉, (8)

noting that the trace subtraction, −1
3

∑
c T {Jc3(x)Jc3(y)}, is isoscalar and therefore cancels in the

difference. It is also convenient to add to Eq. (8) the (vanishing) difference between the matrix
elements of two insertions of the isoscalar current, defined as S3(x) = q(x)γ3γ52 q(x), in the np and
nn states,

〈pp|O++(x, y)|nn〉 = 〈np|T
{
J3

3 (x)J3
3 (y)

}
|np〉+ 〈np|T {S3(x)S3(y)} |np〉

−〈nn|T
{
J3

3 (x)J3
3 (y)

}
|nn〉 − 〈nn|T {S3(x)S3(y)} |nn〉. (9)

Finally, rearranging the flavor components leads to

〈pp|O++(x, y)|nn〉 = 〈np|T
{
J

(u)
3 (x)J

(u)
3 (y)

}
|np〉

−1

2
〈nn|T

{
J

(u)
3 (x)J

(u)
3 (y)

}
|nn〉 − 1

2
〈nn|T

{
J

(d)
3 (x)J

(d)
3 (y)

}
|nn〉, (10)

where J
(f)
3 (x) = qf (x)γ3γ5qf (x) is the axial current coupled to a particular quark flavor, f .

III. AXIAL CURRENT MATRIX ELEMENTS FROM LQCD IN BACKGROUND
FIELDS

To determine the matrix elements relevant to ββ decay from LQCD, the fixed-order background-
field approach introduced in Ref. [18] is implemented.2 Details of this method will be presented
in the following section, along with the correlation functions and ratios thereof that are utilized
in the analysis. Additional technical details regarding operator renormalization and finite-volume
effects will be discussed at the end of the section.

2 A related method was recently presented in Ref. [46].
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A. Background-field technique

In the implementation of LQCD background fields in Ref. [18], hadronic correlation functions
are modified directly at the level of the valence quark propagators. This is in contrast to the
traditional approach where the background field modifies the action [27–29, 35, 36, 40]. In more
generality than presented in Ref. [18], such compound propagators in the background field can be
written as

S{Λ1,Λ2,...}(x, y) = S(x, y) +

∫
dz S(x, z)Λ1(z)S(z, y)

+

∫
dz

∫
dw S(x, z)Λ1(z)S(z, w)Λ2(w)S(w, y) + . . . , (11)

where both Λi(x) and the quark propagator S(x, y) are spacetime-dependent matrices in spinor
and flavor space, while S(x, y) is also a matrix in color space. Once the background fields Λi(z)
are specified, the standard sequential-source technique is used to calculate the second, third and
all subsequent terms in Eq. (11), which are then combined to form the compound propagator.
As implemented here, this approach is only exact for isovector fields and, even then, only for
quantities that are maximally stretched in isospin space and thus do not involve operators that
couple to the sea quarks. At the single-insertion level, this corresponds to isovector quantities such
as the isovector axial charges of the proton and triton, and the axial matrix element relevant for the
pp → de+νe fusion cross section. With two insertions of the background field, either through the
third term in Eq. (11) or from single insertions on two different propagators, isotensor quantities
can be computed exactly. To compute more general quantities, the coupling of background fields
to the sea quarks must be included, either in the generation of dynamical gauge configurations [36]
or through reweighting methods [47].

In order to extract matrix elements of currents that involve zero-momentum insertion, a uniform
background field is implemented. For the current work, a set of flavor-diagonal background axial-
vector fields is used, with operator structure

Λ(u) = λu γ3γ5(1 + τ3)/2 and Λ(d) = λd γ3γ5(1− τ3)/2, (12)

where λq are parameters specifying the strength of the background field. Zero-momentum–
projected correlation functions

C
(h)
λu;λd

(t) =
∑

x

〈0|χh(x, t)χ†h(0, 0)|0〉λu;λd (13)

are formed from the compound propagators S{Λ(u)}(x, y) and S{Λ(d)}(x, y) that have at most a single
insertion of the background field (indicated by 〈. . .〉λu;λd). Here, h denotes the quantum numbers of
the hadronic interpolating operator, χh. The interpolators used here are those previously utilized in

the spectroscopy studies of Refs. [12, 48]. The correlation functions C
(h)
λu;λd

(t) are, by construction,

polynomials of maximum degree λNuu λNdd in the field strengths, where Nu(d) is the number of up
(down) quarks in the interpolating operator.

The LQCD gauge-field configurations used in this study are the same as those used in Ref. [18].
In particular, calculations are performed on a single ensemble of gauge-field configurations gener-
ated with a Lüscher-Weisz gauge action [49] and a clover-improved fermion action [50] with Nf = 3
degenerate light-quark flavors. The quark masses are tuned to the physical strange quark mass,
producing a pion of mass mπ ≈ 806 MeV. The ensemble has a spacetime volume of L3×T = 323×48,
and a gauge coupling that corresponds to a lattice spacing of a ∼ 0.12 fm [51]. For the present
calculations, 437 configurations spaced by 10 Hybrid Monte Carlo trajectories are used, and prop-
agators are generated from smeared sources at sixteen different locations on each configuration
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with both smeared (SS) and point (SP) sinks and at six different nonzero values of the background
field-strength parameters λu,d = {±0.05,±0.1,±0.2}, as well as at λu,d = 0. These propagators are
used to produce correlation functions for all allowed spin states of single and two-nucleon states,
h ∈ {p, n, np(3S1), nn, np(1S0), pp}. Results from different source locations are blocked on each
configuration before any subsequent analysis.

B. Correlation functions and matrix elements

Both the first and second-order weak matrix elements are required for the determination ofM2ν
GT .

These are extracted from the response of two-point correlation functions, defined in Eq. (13), to
the background field. The first-order response to the field determines the isovector axial charge
of the nucleon and the nuclear matrix element relevant for pp → de+νe, while the second-order
response determines the nn → pp transition matrix element. Isolating these quantities requires a
detailed analysis of the correlation functions presented in the following subsections.

In what follows, the finite temporal extent of the lattice is ignored. In principle, there are thermal
contributions in which hadronic states propagate between the source and sink by going around the
temporal boundary. The present analysis is confined to source-sink separations t < T/3, so these
thermal effects are suppressed by at least e−2mπT/3 ∼ 10−7 relative to the dominant contributions.

1. The Proton Axial Charge

As the proton has two valence up quarks and one valence down quark, the correlation function

C
(ps)
λu;λd

(t) (where s denotes the spin) is at most quadratic in λu and linear in λd. Explicitly, for a
spin-up proton, and for nonzero u or d background axial fields, respectively,

C
(p↑)
λu;λd=0(t) =

∑

x

(
〈0|χp↑(x, t)χ†p↑(0)|0〉+ λu

∑

y

t∑

t1=0

〈0|χp↑(x, t)J (u)
3 (y, t1)χ†p↑(0)|0〉

)
+ d2λ

2
u,

C
(p↑)
λu=0;λd

(t) =
∑

x

(
〈0|χp↑(x, t)χ†p↑(0)|0〉+ λd

∑

y

t∑

t1=0

〈0|χp↑(x, t)J (d)
3 (y, t1)χ†p↑(0)|0〉

)
, (14)

where d2 is a higher-order term not needed for the present analysis. Here, and in all subsequent
correlation functions defined in this work, Euclidean spacetime is assumed, and the sum over the
time at which the current is inserted (t1 in the case above) is taken to extend only over the temporal
range between the source and the sink because of the isoscalar nature of the vacuum (exponentially
small contributions that are suppressed by the mass of the lightest state with the quantum number
of the axial-vector current are ignored). Given the summation over t1, this procedure resembles
the “summation method” of Ref. [52]. The above expressions hold configuration-by-configuration
as well as on the ensemble average. As a result, their polynomial structure is exact and the linear
terms can be determined, given calculations of the correlation functions at at least two (three)
value(s) of the field strengths λd(u).

The coefficient of λu in the first line of Eq. (14) is

C
(p↑)
λu;λd=0(t)

∣∣∣
O(λu)

=
∑

x,y

t∑

t1=0

〈0|χp↑(x, t)J (u)
3 (y, t1)χ†p↑(0)|0〉

=
∑

n,m

∑

x,y

t∑

t1=0

〈0|χp↑(x, t)|n〉〈n|J (u)
3 (y, t1)|m〉〈m|χ†p↑(0)|0〉, (15)
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where “
∣∣
O(λjq)

” denotes the piece proportional to λjq and n and m are summed over complete sets of

energy eigenstates, with eigenenergies En and Em, respectively.3 Using the Hamiltonian to express
the Euclidean time evolution, and performing the sum over the insertion time as an integral, which
is valid up to discretization corrections, the correlation function in Eq. (15) becomes

C
(p↑)
λu;λd=0(t)

∣∣∣
O(λu)

=

t∑

t1=0

∑

n,m

znz
†
me
−En(t−t1)e−Emt1〈n|J̃ (u)

3 |m〉

=
∑

n,m

znz
†
m

e−Ent − e−Emt

aEm − aEn
〈n|J̃ (u)

3 |m〉

t→∞−→ |z0|2e−E0t
[
c+ t 〈p ↑|J̃ (u)

3 |p ↑〉+O(e−δ̂t)
]
, (16)

where only states with zero spatial momentum and total spin equal to that of the spin-up proton
contribute to the sum in the first two lines, zn is proportional to the overlap of the interpolating
operator onto a given state, i.e., zn =

√
V 〈n|χp↑(0)|0〉, and quantities with subscript 0 correspond

to the ground state. Terms involving the time-independent constant c and the leading exponential
contamination are complicated functions of the energy gaps (denoted as δ̂), excited-state overlap
factors and transition matrix elements. These terms will not produce linear time dependence in
the bracket in Eq. (16) at late times. Similar expressions can be obtained for the spin-down state
and for the response to the background field with λu = 0 and λd 6= 0. Finally, the bare isovector
axial matrix element can be obtained from the late-time behavior of the difference4

Rp(t) ≡ Rp(t+ a)−Rp(t) t→∞−→ 〈p|J̃3
3 |p〉 =

gA
2ZA

, (17)

where the ratios Rp(t) are spin-weighted averages,

Rp(t) =
∑

s={↓,↑}

ηs
2

C
(ps)
λu;λd=0(t)

∣∣∣
O(λu)

− C
(ps)
λu=0;λd

(t)
∣∣∣
O(λd)

C
(ps)
λu=0;λd=0(t)

, (18)

with η↑ = −η↓ = −1. The factor ZA in Eq. (17) is the axial-current renormalization factor discussed
in Sec. III D.

2. ∆I = 1 two-nucleon axial transitions: pp→ de+νe

The transition correlation functions of the I3 = J3 = 0 two-nucleon system,5 used to access the
pp-fusion matrix element in Ref. [18], are at most cubic in the applied u and d fields. The forms
of these correlation functions are

C
(3S1,1S0)
λu;λd=0(t) = λu

t∑

t1=0

∑

x,y

〈0|χ3S1
(x, t)J

(u)
3 (y, t1)χ†1S0

(0)|0〉+ c2λ
2
u + c3λ

3
u, (19)

C
(3S1,1S0)
λu=0;λd

(t) = λd

t∑

t1=0

∑

x,y

〈0|χ3S1
(x, t)J

(d)
3 (y, t1)χ†1S0

(0)|0〉+ b2λ
2
d + b3λ

3
d, (20)

3 A nonrelativistic normalization of states is used throughout such that the complete set of states is
∑

n |n〉〈n| = 1,
and 〈n|m〉 = δm,n, where n is a collective label in the case of multi-particle states.

4 Note that the convention used for the axial current differs from that of Ref. [18] by a factor of 1
2
, following the

definitions after Eq. (1).
5 J used here to represent the total angular momentum is not to be confused with the J used to denote the current.
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where χ3S1
and χ1S0

are interpolating operators for the I3 = J3 = 0 components of the J = 1
(isosinglet) and J = 0 (isotriplet) two-nucleon systems, respectively. The higher-order terms in field
strength, bi and ci, are not relevant to the present calculations. The linear terms are isolated using
polynomial fits in the applied field strengths. Labeling the 3S1 (1S0) eigenstates with (without) a
prime, it is straightforward to show that the linear term of Eq. (19) can be expressed as

C
(3S1,1S0)
λu;λd=0(t)

∣∣∣
O(λu)

=

t∑

t1=0

∑

n′,m

Zn′Z
†
me
−En′ (t−t1)e−Emt1〈n′|J̃ (u)

3 |m〉

=
∑

n′,m

Zn′Z
†
m

e−En′ t − e−Emt

aEm − aEn′
〈n′|J̃ (u)

3 |m〉, (21)

having performed the sum over the insertion time as an integral, which is valid up to discretization
corrections. Separating ground-state contributions in the initial and/or final states leads to

C
(3S1,1S0)
λu;λd=0(t)

∣∣∣
O(λu)

= ZdZ
†
np(1S0)

e−Et
[

sinh

(
∆t

2

){〈d|J̃ (u)
3 |np(1S0)〉
a∆/2

+ c−

}

+ cosh

(
∆t

2

)
c+ +O(e−δ̃ t)

]
, (22)

where |np(1S0)〉 and |d〉 refer to the ground state of the isotriplet channel and to the J3 = 0
component of the deuteron, respectively. Here and in what follows, Zn′ and Zm are the overlap
factors of the source and sink interpolators onto the n′ and m eigenstates of the 3S1 and 1S0 channels,
respectively, and Zd = Z0′ , Znp(1S0) = Z0. The energy of the l′th excitation in the deuteron channel

is El′ = Enn + δl′ , and En = Enn + δn is the energy of the nth excited state of the channel with the
quantum numbers of the dinucleon (note that the energy gaps in both channels are defined relative
to Enn). Finally E = (Enn + Ed)/2, and δ̃ ∼ δm, δn′ denotes a generic gap between eigenenergies
of two-nucleon systems. Additionally, ∆ = Enn − Ed as defined previously. The terms

c± =
∑

m6=np(1S0)

Z†m
Z†
np(1S0)

〈d|J̃ (u)
3 |m〉

a∆ + aδm
±
∑

n′ 6=d

Zn′

Zd

〈n′|J̃ (u)
3 |np(1S0)〉
aδn′

(23)

are t-independent factors involving energy gaps, ratios of overlap factors, and transition matrix
elements between the ground and excited states.

For arbitrary values of ∆, the extraction of the desired transition matrix element from Eq. (22)
will be challenging. In the present calculation, however, the splitting is small, a∆ < 0.01, which
affords valuable simplifications. In the limit of exact SU(4) Wigner symmetry, ∆ → 0 (the 1S0

and 3S1 eigenstates belong to a single SU(4) multiplet in this limit) and the contribution from c−
to the correlation function vanishes. Thus, after removing the leading exponential dependence by
forming a ratio (see below), the ground-state transition matrix element can be extracted as the
coefficient of the term linear in t. Away from this limit, the extraction of the ground-state transi-
tion matrix element from the linear term is contaminated by excited states through the c− term.
Although this contamination is not exponentially suppressed in time compared with the ground-
state contribution, it is still expected to be small. The energy splitting ∆ is small as suggested by
the large-Nc limit of QCD (∆ ∼ 1/N2

c ), while the Ademollo-Gatto theorem [53] guarantees that
the excited-state to ground-state matrix element is suppressed by a further power of Nc relative
to the ground-state to ground-state matrix element. To further reduce SU(4) symmetry-breaking
contamination and to assess its magnitude, one may note that in the time-reversed correlation
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function, i.e., C
(1S0,3S1)
λu;λd=0(t)

∣∣∣
O(λu)

, the splitting ∆ is replaced with −∆, changing the sign of the

contamination from the c− term. It is therefore useful to form the sum and difference

C±λu;λd=0(t)
∣∣∣
O(λu)

=
1

2

[
C

(1S0,3S1)
λu;λd=0(t)

∣∣∣
O(λu)

± C
(3S1,1S0)
λu;λd=0(t)

∣∣∣
O(λu)

]
, (24)

in which the residual contamination in the time-reversal (T) even combination of correlation func-
tions scales as O(1/N4

c ) ∼ 1%, given the Nc scalings discussed above. Additionally, the T-odd

combination, C−λu;λd=0(t)
∣∣∣
O(λu)

, provides a numerical estimate of the magnitude of the O(1/N4
c )

contamination (see Sec. IV). The T-even and T-odd correlation functions for λu = 0, λd 6= 0 can
be formed similarly.

Assuming isospin symmetry, the bare pp→ d matrix element can be extracted from the late-time
behavior of the ratio

R±3S1,1S0
(t) =

1

2

C±λu;λd=0(t)
∣∣∣
O(λu)

− C±λu=0;λd
(t)
∣∣∣
O(λd)√

C
(3S1)
0;0 (t)C

(1S0)
0;0 (t)

. (25)

Explicitly, R+ can be used to isolate the term that is linear in t in Eq. (22),

R
+
3S1,1S0

(t) ≡
[
R+

3S1,1S0
(t+ a)−R+

3S1,1S0
(t)
]
t→∞−→ 1

ZA
〈d, 3|J̃+

3 |pp〉+O
(

1

N4
c

)
, (26)

while R
−
3S1,1S0

(t), defined analogously using R−3S1,1S0
(t), is used to assess the size of excited-state

contamination from broken Wigner symmetry. Note that the term proportional to c+ does not
introduce any linear dependence in time with a∆� 1.

3. Second-order matrix elements in the dinucleon system

The second-order axial matrix elements of the dinucleon system are the primary focus of this
work. Only the I = 2 second-order matrix elements can be correctly recovered from compound
propagators that are computed at linear order in the axial fields, as discussed in Section II. The
relevant background-field correlation functions are

C
(np(1S0))
λu;λd=0 (t) =

∑

x

〈0|χnp(x, t)χ†np(0)|0〉+ λu
∑

x,y

t∑

t1=0

〈0|χnp(x, t)J (u)
3 (y, t1)χ†np(0)|0〉

+
λ2
u

2

∑

x,y,z

t∑

t1=0

t∑

t2=0

〈0|χnp(x, t)J (u)
3 (y, t1)J

(u)
3 (z, t2)χ†np(0)|0〉+ g3λ

3
u, (27)

C
(nn)
λu;λd=0(t) =

∑

x

〈0|χnn(x, t)χ†nn(0)|0〉+ λu
∑

x,y

t∑

t1=0

〈0|χnn(x, t)J
(u)
3 (y, t1)χ†nn(0)|0〉

+
λ2
u

2

∑

x,y,z

t∑

t1=0

t∑

t2=0

〈0|χnn(x, t)J
(u)
3 (y, t1)J

(u)
3 (z, t2)χ†nn(0)|0〉, (28)
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C
(nn)
λu=0;λd

(t) =
∑

x

〈0|χnn(x, t)χ†nn(0)|0〉+ λd
∑

x,y

t∑

t1=0

〈0|χnn(x, t)J
(d)
3 (y, t1)χ†nn(0)|0〉

+
λ2
d

2

∑

x,y,z

t∑

t1=0

t∑

t2=0

〈0|χnn(x, t)J
(d)
3 (y, t1)J

(d)
3 (z, t2)χ†nn(0)|0〉+ h3λ

3
d + h4λ

4
d. (29)

The matrix elements of the two identical quark-bilinear currents involve the contractions of the
currents with anti-quark (quark) pairs at the source (sink), giving rise to four possibilities, while
the compound-propagator method already enforces the contractions of each quark and anti-quark
pair in the source and sink through only one of the currents, reducing the possibilities to two. Thus,
a factor of 1

2 is required to relate the second-order terms in Eqs. (27)-(29) to the current matrix
elements. The pieces of these correlation functions that are quadratic in the field strength can be
determined exactly, given calculations at a sufficiently large number of values of the background
axial-field strength.6 The correlation function for the nn → pp transition can be formed utilizing
Eq. (10),

Cnn→pp(t) = 2 C
(np(1S0))
λu;λd=0 (t)

∣∣∣
O(λ2u)

− C
(nn)
λu;λd=0(t)

∣∣∣
O(λ2u)

− C
(nn)
λu=0;λd

(t)
∣∣∣
O(λ2d)

, (30)

where the objects on the right-hand side are extracted from the compound-propagator method and
the correlation function on the left-hand-side encodes the desired matrix element for the nn→ pp
transition. After inserting complete sets of states and using Euclidean time evolution, Cnn→pp(t)
becomes

Cnn→pp(t) =
∑

x,y,z

t∑

t1=0

t∑

t2=0

〈0|χpp(x, t)T
{
J+

3 (y, t1)J+
3 (z, t2)

}
χ†nn(0)|0〉

=
2

a2

∑

n,m,l′

ZnZ
†
me
−Ent 〈n|J̃

+
3 |l′〉〈l′|J̃+

3 |m〉
El′ − Em

(
e−(El′−En)t − 1

El′ − En
+
e(En−Em)t − 1

En − Em

)
, (31)

where the summations over time have been performed as integrals (the analysis is not altered
significantly if the discrete summation is used). Here, |n〉, |m〉 and |l′〉 are zero-momentum energy
eigenstates with the quantum numbers of the pp, nn and deuteron systems, respectively. With
the assumption of isospin symmetry and in the absence of electromagnetism, which is the case for
the calculations presented in this work, the nn and pp states are degenerate. Eq. (31) resembles a
second-order weak correlation function calculated in the kaon system in Ref. [22].

In order to make the matrix element between ground-state dinucleons explicit, the sums over

6 Isospin symmetry equates C
(np(1S0))
λu;λd=0 (t) and C

(np(1S0))
λu=0;λd

(t) in the case when λu = λd.
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states in this correlation function are partially expanded, giving

a2Cnn→pp(t) = 2ZppZ
†
nne
−Ennt

{ [
e∆t − 1

∆2
− t

∆

]
〈pp|J̃+

3 |d〉〈d|J̃+
3 |nn〉

+
∑

l′ 6=d

[
t

δl′
− 1

δ2
l′

]
〈pp|J̃+

3 |l′〉〈l′|J̃+
3 |nn〉

+
∑

n6=nn,pp

[
e∆t

∆(∆ + δn)
− 1

∆δn

](
Zn

Zpp
〈n|J̃+

3 |d〉〈d|J̃+
3 |nn〉+

Z†n
Z†nn
〈pp|J̃+

3 |d〉〈d|J̃+
3 |n〉

)

+
∑

n6=nn,pp

∑

l′ 6=d

1

δl′δn

(
Zn

Zpp
〈n|J̃+

3 |l′〉〈l′|J̃+
3 |nn〉+

Z†n
Z†nn
〈pp|J̃+

3 |l′〉〈l′|J̃+
3 |n〉

)

+
∑

n,m6=nn,pp

e∆t

(∆ + δn)(∆ + δm)

Zn

Zpp

Z†m
Z†nn
〈n|J̃+

3 |d〉〈d|J̃+
3 |m〉+O(e−δt, e−δ

′t)

}
. (32)

The energies and overlap factors are defined as in the previous section, see the discussion after
Eq. (22). To arrive at Eq. (32), the deuteron-dineutron energy splitting is assumed to be modest
compared with the inverse of the time separation between the source and the sink used to ex-
tract the matrix elements, while the energy splittings between ground and exited states in both
channels are assumed to be large, so that e−δl′ t → 0 and e−δnt → 0. If this is not the situation,
the correlation functions with background-field insertions on all timeslices cannot be used to un-
ambiguously extract the terms relevant for this analysis.7 In the numerical calculations discussed
below, the requisite hierarchy is found to be satisfied. As the deuteron is lower in energy than
the dinucleon external states, and hence gives rise to a growing exponential contribution (after the
overall exponential e−Ennt is factored out of Eq. (32)), this contribution has been singled out in the
summation over states in Eq. (32). The deuteron contribution is close to quadratic in t (it would
be exactly quadratic if ∆ = 0), and the coefficient of this term is known from the first-order axial
response in Eq. (26). Ground-state overlap factors and the overall exponential time dependence
can be removed by forming the ratio

Rnn→pp(t) =
Cnn→pp(t)

2C
(nn)
0;0 (t)

, (33)

which will be investigated in Sec. IV. Using Eq. (32), it is easy to show that this ratio has the form

a2Rnn→pp(t) =

[
−t+

e∆t − 1

∆

] 〈pp|J̃+
3 |d〉〈d|J̃+

3 |nn〉
∆

+ t
∑

l′ 6=d

〈pp|J̃+
3 |l′〉〈l′|J̃+

3 |nn〉
δl′

+ c + d e∆t +O(e−δt, e−δ
′t), (34)

where the first term is the long-distance contribution to the matrix element from the deuteron
intermediate state and the second term is the short-distance contribution arising from all excited
intermediate states coupling to the axial current, i.e., the isotensor axial polarizability as defined
in Eq. (4). The coefficients c and d are complicated terms involving ground-state and excited-state
overlap factors and matrix elements, as can be read from Eq. (32), but have no time dependence.
The critical aspect of Eq. (34) is that both the short-distance and the long-distance contributions
can be isolated from the excited external-state contributions through their distinct dependence on
time. This form will be used to analyze the numerical correlation functions in Section IV.

7 Inserting the background field on a range of timeslices separated from the source and sink can address this issue
[22], provided the separation is sufficiently large.
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C. Finite-volume effects

The initial and final states in the nn→ pp transition are deeply bound degenerate states at the
SU(3) flavor-symmetric set of quark masses used in this work, which considerably simplifies the
analysis. In addition, the dominant intermediate state that propagates between the two currents
is the deuteron, which is close in energy to the nn and pp states, with no other intermediate states
able to go on shell at the kinematic threshold. As the deuteron is also a compact bound state in
this calculation, there is no complication with regard to finite-volume two-particle states and only
exponentially small volume effects are anticipated. A similar problem has been studied in detail
in the case of long-distance contributions to the KL–KS mass difference [23]. There, however,
a tower of intermediate two-pion states with energies lower than the initial-state kaon must be
dealt with explicitly, introducing power-law corrections to the relation between the infinite-volume
and finite-volume matrix elements (see also the related discussions of the rare weak processes
K → πνν [24, 26] and K → π`+`− [25, 54]). Such calculations will become increasingly difficult as
the large volume limit is approached. As the present calculations of two-nucleon matrix elements are
extended to lighter quark masses approaching their physical values, the initial and final states will
become unbound, further complicating the extraction of infinite-volume Minkowski-space matrix
elements from the Euclidean-space correlation functions. Such an extraction will require the use of
generalized Lellouch-Lüscher relations [23, 55–58]. Eventually, the inclusion of electromagnetism
will shift the single and two-nucleon spectra and will introduce Coulomb repulsion between the
final-state protons, requiring extensions of the formalism developed in Refs. [59–61] to extract the
physical matrix elements.

D. Operator renormalization

The axial-current renormalization factor ZA = 0.867(43) was determined in Ref. [18] from
computations of the vector-current renormalization factor in the proton by noting that ZA =
ZV + O(a) and assigning a 5% systematic uncertainty associated with lattice-spacing artifacts
(statistical uncertainties are negligible). This determination is used in the current work when
needed. A more sophisticated determination that removes the leading lattice-spacing artifacts
leads to ZA = 0.8623(01)(71) [62, 63] on an ensemble with the same form of action and gauge
coupling as used in this work but at a pion mass of mπ ∼ 317 MeV.

While double insertions of the axial current generally renormalize straightforwardly as products
of two axial-current insertions, additional care is required for contributions where both insertions
become localized around the same spacetime point, which necessarily occurs in this background-
field approach (for zero-momentum background fields, these contributions are naively suppressed
by the spacetime volume). Because of interactions, such contributions are no longer proportional
to the product of two axial currents. In particular, four-quark operators are radiatively generated
in the context of Symanzik’s effective action [64]. Such short-distance contributions are shown in
Fig. 1, and arise from the ultraviolet behavior of diagrams involving the exchange of at least two
gluons between the axial-current insertions. In the case of the isotensor operator, there are thus
lattice-spacing artifacts arising from four-quark operators such as Qab = (q τ

a

2 γ3γ5q)(q
τb

2 γ3γ5q),
where the isospin indices a and b require symmetrization and trace subtraction. The mixing
coefficients governing the renormalization of the full set of four-quark operators scale with α2

sa
2,

and are hence expected to yield sub-percent contributions that can be neglected in this analysis.
In particular, the use of the Wilson term in our calculation does not lead to mixing with lower-
dimensional operators, as there are no such operators with the isotensor quantum numbers. As a
result, the isotensor axial polarizability can be renormalized by Z2

A. These renormalization factors
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(a) (b) (c)

FIG. 1. The double axial-current insertion is renormalized by contributions from four-quark operators
through the ultraviolet behavior of gauge interactions. Diagrams (a) and (b) show the possible two-gluon
exchanges between axial-current insertions (gray crossed circles) on the quark propagators. The ultraviolet
behavior of these diagrams generates four-quark operators in the Szymanzik action [64, 65], depicted as a
gray crossed square in diagram (c), with coefficients that scale as O(α2

sa
2) near the continuum limit.

cancel, moreover, in the ratio of the polarizability to the square of the single-nucleon axial coupling.

IV. ANALYSIS OF THE LATTICE CALCULATIONS

In this section, details of the analysis of the numerical lattice calculations are presented, along
with results for the matrix elements discussed in Sec. III B. For each of the correlation functions
discussed in Sec. III B, the computed values from all 16 source locations on a given configuration
are first averaged to produce one value for each of the 437 configurations. These averaged values are
then resampled using a bootstrap procedure, with the variation over the bootstrap ensembles prop-
agated to define the statistical uncertainty of all derived quantities. Systematic uncertainties are
addressed by considering the choice of temporal fit ranges, higher-order terms (where appropriate),
and additionally from the comparison of multiple independent analyses in which specific details of
the fit procedures are different. In what follows, figures from a single analysis are presented, but
the final numerical values include this additional uncertainty.

To determine the matrix elements of interest from the hadronic correlation functions, these
functions must be separated into linear, quadratic and higher powers of insertions of the up-quark
and down-quark axial-current operators, as described in Sec. III B. In Fig. 2, the field-strength
dependence of representative correlation functions is shown at a given timeslice and on a particular
gauge-field configuration, along with the polynomial forms that enable the extraction of the linear
and quadratic responses. As discussed previously, with the number of field strengths being greater
than or equal to the number of terms in the polynomial, the fit is a direct solution. With the
required linear and quadratic field-strength dependences of the correlation functions determined,
the remaining task is to isolate the matrix elements of interest through the time dependence of
the combinations of correlation functions derived in Sec. III B. As the first-order responses have
been presented in Ref. [18], the primary focus of this work is the second-order axial matrix element
describing the nn → pp transition, as discussed in Sec. III B 3. For this matrix element, the
challenge is to isolate both its long-distance and short-distance components. Since the long-distance
contribution can be determined from numerical calculations of the matrix element associated with
a single insertion of the axial current, it can be removed from Rnn→pp(t) in Eq. (34) to leave

R̂nn→pp(t) = Rnn→pp(t)−
|〈pp|J̃+

3 |d〉|2
a∆

[
− t
a

+
e∆t − 1

a∆

]

=
t

a

∑

l′ 6=d

〈pp|J̃+
3 |l′〉〈l′|J̃+

3 |nn〉
aδl′

+
c

a2
+

d

a2
e∆t. (35)

This subtraction is most effectively done in a correlated manner, requiring determinations of the
energy splitting and the pp→ d matrix element.
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FIG. 2. The field-strength dependency of sample correlation functions constructed from compound prop-
agators on a given configuration at a given time. The quantities shown are correlation functions with the

zero-field limit subtracted: Ĉ
(h)
�u;�d

(t) = C
(h)
�u;�d

(t) � C
(h)
�u=0;�d=0(t). The polynomial fits (solid curves) are

used to extract the requisite linear and quadratic responses. The points denote the results of numerical
calculations at six values of the field strength.
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quark and down-quark axial-current operators, as described in Sec. III B. In Fig. 2, the field-
strength dependence of representative correlations functions is shown at a given timeslice and
on a particular gauge-field configuration, along with the fitted functional forms that enable the
extraction of the linear and quadratic responses. As discussed previously, with the number of field
strengths being equal to the number of terms in the polynomial, the fit is a direct solution. Fits
can be performed with additional field strengths, but they will only depart from the expected
polynomial behavior through numerical truncations. With the required linear and quadratic
field-strength dependencies of the correlation functions determined, the remaining task is to isolate
the matrix elements of interest through the time dependences of the combinations of correlation
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using a bootstrap procedure, with the variation over the bootstrap ensembles propagated to define
the statistical uncertainty of all derived quantities. Systematic uncertainties are addressed by
consideration of the choice of temporal fit ranges, higher-order terms (where appropriate), and
from the comparison of multiple independent analyses in which specific details of the fit procedures
were di↵erent. In what follows, figures from a single analysis are presented, but the final numerical
values include this additional uncertainty.

To determine the matrix elements of interest from the hadronic correlation functions, these
functions must be separated into linear, quadratic and higher powers of insertions of the up-
quark and down-quark axial-current operators, as described in Sec. III B. In Fig. 2, the field-
strength dependence of representative correlations functions is shown at a given timeslice and
on a particular gauge-field configuration, along with the fitted functional forms that enable the
extraction of the linear and quadratic responses. As discussed previously, with the number of field
strengths being equal to the number of terms in the polynomial, the fit is a direct solution. Fits
can be performed with additional field strengths, but they will only depart from the expected
polynomial behavior through numerical truncations. With the required linear and quadratic
field-strength dependencies of the correlation functions determined, the remaining task is to isolate
the matrix elements of interest through the time dependences of the combinations of correlation
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FIG. 2. The field-strength dependence of sample correlation functions constructed from compound prop-
agators on a given configuration at a given time (each configuration and timeslice shows similar poly-
nomial behavior). The quantities shown are correlation functions with the zero-field limit subtracted:

Ĉ
(h)
λu;λd

(t) = C
(h)
λu;λd

(t) − C
(h)
λu=0;λd=0(t). The solid curves show the polynomials used to extract the req-

uisite linear and quadratic responses. The points denote the results of numerical calculations at six values
of the field strength.

Plots of the effective-mass functions of the nucleon, deuteron, dineutron, and of the difference
∆ = Enn−Ed are shown in Fig. IV, along with fits to the late-time behavior of the appropriate ratios
of the correlation functions. This figure shows that the deuteron and dinucleon zero-field correlation
functions are saturated by their ground-state contributions by timeslice 6. Consequently, in the
ratio Rnn→pp(t) and derived quantities, fits can only be performed over timeslices equal to or larger
than this threshold, even though the ratios may appear to plateau earlier.

The quantity R
+
3S1,1S0

(t), defined in Eq. (26), is shown in the left panel of Fig. 4, along with a fit
to this quantity at late times which is used to determine the value of the pp → d axial transition
matrix element. In addition, the quantity R

−
3S1,1S0

(t), used to estimate the effects of excited states
contaminating the extraction of the pp→ d transition matrix element, is shown in the right panel
of Fig. 4. The late-time behavior of this quantity saturates to a very small value indicating that the
Nc scaling is borne out (recall from Sec. III B 2 that this quantity vanishes as 1/N4

c based on a large-
Nc analysis). With this supporting evidence, it is reasonable to conclude that the contaminating
term c− in Eq. (22) is O(1/N4

c ) ∼ O(1%) of the dominant term. To account for this systematic
effect, an additional Wigner symmetry-breaking uncertainty of this size is added to the value of
the bare 〈d|J̃+

3 |pp〉 matrix element extracted from the late-time asymptote of R
+
3S1,1S0

(t).

Fits to both the mass difference, ∆, and to the bare pp→ d matrix element on each bootstrap
ensemble allow for the deuteron-pole term to be determined and subtracted in a correlated manner
(in all cases, the statistically cleaner SP results are used for this subtraction in the results shown
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(t) used to extract the bare pp → d transition matrix
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−
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(t), used to estimate the magnitude of excited-state contamination
in the extraction of the pp → d bare matrix element (see Sec. III B 2). Blue circles and orange diamonds
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constant fits to the late-time behavior of the SP quantities. The SS points are slightly offset in t for clarity.

below). The results obtained for Rnn→pp(t) and R̂nn→pp(t) are shown in Fig. 5 for both the SS and
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SP source-sink combinations, demonstrating that the subtracted long-distance contribution is the
dominant piece of the correlation function and provides the largest contribution to its curvature
(note the different scales on the plots). If the deuteron-pole term is not directly subtracted, fits to
the full time dependence of Eq. (34) can be performed. Such fits result in a value for the pp → d
matrix element that is consistent with that obtained from the linear response of the corresponding
pp → d correlation function, albeit with larger uncertainties. The SP subtracted ratio is almost
completely linear, indicating that, for this source–sink combination, the c term in Eq. (34) is
very small. In contrast, the SS subtracted ratio exhibits significant nonlinearity, indicating that
the c term is larger in this case. This behavior is in accordance with expectations; the SP sink
has a highly suppressed overlap onto the nn scattering states that dominate the excitations that
contribute to the c term.

In order to separate the desired short-distance contribution to R̂nn→pp(t) from the effects of
excited external states that couple to the source and sink, the linear t dependence of R̂nn→pp(t)
must be distinguished from exponential contributions of the form e∆t. This separation can be ac-
complished straightforwardly by forming the following combination of R̂nn→pp at three neighboring
timeslices:

R(lin)
nn→pp(t) =

(ea∆ + 1)R̂nn→pp(t+ a)− R̂nn→pp(t+ 2a)− ea∆R̂nn→pp(t)
ea∆ − 1

t→∞−→ 1

aZ2
A

β
(2)
A

6
.(36)

As denoted, at large time separations, R(lin)
nn→pp(t) asymptotes to the bare isotensor axial polariz-

ability, as defined in Eq. (4). This term can now be combined with the deuteron-pole contribution
in a correlated manner to form

R(full)
nn→pp(t) = R(lin)

nn→pp(t)−
|〈pp|J̃+

3 |d〉|2
a∆

t→∞−→ 1

aZ2
A

M2ν
GT

6
, (37)

which asymptotes to the bare Gamow-Teller matrix element. The results for both R(lin)
nn→pp(t) and

R(full)
nn→pp(t) are shown in Fig. 6, along with fits to the asymptotic behavior of the SP correlation

functions. Constant behavior is observed at late times, with consistent results from the SS and
(significantly more precise) SP combinations, an indication that the assumptions made in deriving
Eq. (32) are valid. An estimate of the finite-volume excited-state spectra of the isosinglet and
isotriplet two-nucleon systems based on the phase shifts extracted in Ref. [48] further validates the
assumed hierarchy of the ground and excited-states gaps, and numerically shows that δ ∼ 8∆.

The fits to the SP effective matrix elements shown in Fig. 6 yield the following values of the
long-distance, short-distance and total matrix elements for nn→ pp transition resulting from two
insertions of the axial current:

∆

g2
A

|〈pp|J̃+
3 |d〉|2

∆
= 1.00(3)(1), (38)

∆

g2
A

∑

l′ 6=d

〈pp|J̃+
3 |l′〉〈l′|J̃+

3 |nn〉
δl′

= −0.04(4)(2), (39)

∆

g2
A

M2ν
GT

6
= −1.04(4)(4), (40)

where in order to suppress the O(a) lattice-spacing artifacts from the axial currents, the quantities
are normalized by g2

A/∆ in a correlated manner to produce combinations that are independent of
the axial-current renormalization constant, ZA. In each of these expressions, the first uncertainties
arise from statistical sampling, systematic effects from fitting choices, and deviations from Wigner
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element from the constant fit to its late-time region [16]. The right panel is a plot of quantity R
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(t) used
to estimate the magnitude of excited-state contamination to the extraction of pp ! d bare matrix element,
see Sec. III B 2. Blue circles and orange diamonds denote results determined using SP and SS correlation
functions, respectively. The horizontal bands show constant correlated SP-SS fits to the late-time behavior
of the quantities.

transition matrix element and is shown in the right panel of Fig. 4. The late-time behavior of
this quantity returns a very small value indicating that the Nc scaling is borne out, recalling from
Sec. III B 2 that this quantity vanishes as 1/N4

c in the SU(4) Wigner-symmetry limit. With this
supporting evidence, it is reasonable to conclude that the contaminating term c� in Eq. (20) is
O(1/N4

c ) ⇠ O(1%) of the dominant term.
Fits to both the mass di↵erence, �, and to the bare pp ! d matrix element on each boot-

strap ensemble allow for the deuteron pole term to be determined and subtracted (in all cases,
the statistically-cleaner SP results are used for the fits shown below). The results obtained for
Rnn!pp(t) and R̂nn!pp(t) are shown in Fig. 5 for both the SS and SP source–sink combinations.
Comparing Fig. 5(b) with Fig. 5(a) (note the di↵erent scales), it is clear that the subtracted long-
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FIG. 6. (a) The combination R
(lin)
nn!pp(t) corresponding at late times to the unrenormalized short-distance

contribution to the matrix element as shown in Eq. (32) and Eq. (33). (b) R
(full)
nn!pp(t), the sum of the

long-distance and short-distance contributions to the matrix element. In both panels, the orange diamonds
and blue circles correspond to the SS and SP results, respectively. The horizontal bands denote fits to the
SP results at late times, used to extract the final values of the matrix elements. NORMALISE by g2

A/� ??

alter the results herein. In the future it will be important to investigate these limitations of the
current work. DISCUSS FURTHER

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(⇡/), and explicitly
used to determine the coe�cient of a short-distance two-nucleon, second-order weak field operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(⇡/) can be used to
calculate ��-decay rates of light nuclei at this pion mass. EFT(⇡/) [19, 49–53] is a natural approach
to use at this heavy pion mass as the momenta involved in a 2⌫�� decay are small compared
with the start of the nucleon-nucleon t-channel cut when isospin breaking and electromagnetic are
included (in the current, isospin-symmetric numerical work, the transition is below threshold for
massive leptons). At lighter pion masses, including the physical point, and for 0⌫�� decay, pionfull
EFTs will be required [54].

A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| ⌧ m⇡, the strong interactions of two-nucleon systems,
as well as their interactions with external currents, can be systematically studied in the framework
of EFT(⇡/) [19, 50, 52, 53]. As s-wave interactions in the two-nucleon sector drive the system
towards an infrared fixed point, they require summation to all orders and generate anomalously
large two-nucleon scattering lengths. However, interactions in higher partial waves can be included
perturbatively. In the dibaryon formulation of the EFT [53, 55], this resummation fully dresses the
s-wave dibaryon propagators. In terms of the nucleon field, N , and the isosinglet, ti, and isotriplet,
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of EFT(⇡/) [19, 50, 52, 53]. As s-wave interactions in the two-nucleon sector drive the system
towards an infrared fixed point, they require summation to all orders and generate anomalously
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FIG. 6. The left panel shows R(lin)
nn→pp(t) (normalized by g2A/∆), corresponding to the bare short-distance

contribution to the nn → pp matrix element at late times, Eq. (36). The right panel shows R
(full)
nn→pp(t)

(normalized by g2A/∆), which sums the long-distance and short-distance contributions to the matrix element,
Eq. (37). In both panels, the orange diamonds and blue circles correspond to the SS and SP results,
respectively. The horizontal bands denote constant fits to the SP results at late times, which are used to
extract the final values of the matrix elements. The SS points are slightly offset in t for clarity.

symmetry as described in Sec. III B 2. The second uncertainties encompass differences between
analysis methods. Clearly, the short-distance contribution is suppressed relative to the deuteron-
pole contribution but it may be non-negligible, and higher precision calculations are required. There
are additional systematic uncertainties that are not included in the above uncertainty estimations,
including finite-volume effects, lattice-spacing artifacts, and electromagnetic and quark-mass ef-
fects. At present, it is difficult to quantify such uncertainties, although they are not expected to
qualitatively alter the results of this exploratory calculation. In the future, it will be important to
investigate such effects by improving upon the calculations presented here, as discussed further in
Sec. VI.

To conclude this section, it is worth summarizing the strategies employed to control the sys-
tematic uncertainties from the excited states in the present calculations. Before going over these
strategies, it must be emphasized that the excited-state contamination in the extraction of ma-
trix elements with the use of the new method of this work (similar to the well-known summa-
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tion method [52]) is of different (potentially simpler) form than that occurred in the conventional
three(four)-point function method. As a summation is performed over the time insertion of the cur-
rent, the only time separation controlling the size of excited-state contamination is the source-sink
time separation, making the exponential suppression of the excited states similar to that occurring
in the two-point function calculations. However, the time dependence of the correlation functions
in this new method is more complicated than a sum of exponentials, requiring new strategies to
extract the quantities of interest. Additionally, the excited-state contamination can have the same
functional dependence on the source-sink time separation as that of the ground-state contribution.
As shown above, such cases occur in the present calculation. Nonetheless, the analysis of this work
enabled the isolation of the desired ground-state matrix elements through the following steps:

• Forming the appropriate effective ratios/differences and identifying the unique time depen-
dence of the desired ground-state matrix element, see Eq. (16), enabled the extraction of
the axial charge of the proton (and that of the triton in a previous work [18]) at late times.
The agreement between the two sink operators used demonstrates that the ground-state
saturation holds within uncertainties. Additionally, a constant plus single-exponential fit
to the effective-gA function including slightly earlier times in the fit obtains values for the
ground-state matrix elements that are in agreement with the values from a constant fit at
late times.

• In the case of the first-order 3S1 → 1S0 transition, where the leading contaminating term
from excited states exhibits the same linear time dependence as that of the ground-state
contribution, the related quantity R

−
and a large-Nc argument are used to quantify the

excited-state systematic uncertainty, as discussed near Eq. (24). The results of fits to the
SS and SP effective ratios, using either a constant fit or a constant plus one-exponential fit
agree, indicating that it is the ground-state contribution that is obtained.

• In the case of the second-order nn → pp transition, appropriate effective ratio/difference
quantities again allowed the ground-state contribution to be isolated. In this case, given
the smallness of the energy gap, ∆, between the lowest-energy initial (final) and interme-
diate states, the excited-state contribution can mimic the time dependence of the desired
short-distance contribution. Nonetheless, by fitting R̂nn→pp to the exact form in Eq. (35),
an extraction of the desired linear contribution was possible. Again, the agreement between
the SS and SP correlation functions provides evidence for the ground-state saturation. In-
deed, as discussed above, the effective-ratio plots R̂nn→pp corresponding to the SP and SS
correlators show entirely different excited-state contaminations, but once the linear piece of
this quantity (contributing to the ground-state matrix element) is isolated, both cases agree
within uncertainties at late times.

V. SECOND-ORDER WEAK PROCESSES IN PIONLESS EFT

In this section, the results of the LQCD calculations are matched to EFT(π/) and explicitly used
to determine the coefficient of a short-distance, two-nucleon, second-order axial-current operator
in the dibaryon formalism. In principle, with this contribution constrained, EFT(π/) can be used to
calculate ββ-decay rates of light nuclei at this pion mass. EFT(π/) [20, 66–70] is a natural approach
to use at this heavy quark mass as the momenta involved in 2νββ decays are small compared with
the start of the two-nucleon t-channel cut when isospin breaking and electromagnetism are included
(in this isospin-symmetric numerical work, the transition is below threshold for massive leptons).
At lighter quark masses, including the physical point, pionful EFTs will likely be required [71].
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A. Review of pionless EFT in the dibaryon approach

At momenta well below the pion mass, |p| � mπ, the strong interactions of two-nucleon systems,
as well as their interactions with background fields, can be systematically studied in the framework
of EFT(π/) [20, 67, 69, 70]. As s-wave interactions in the two-nucleon sector are strong, generating
anomalously large two-nucleon scattering lengths, they must be included to all orders. However,
interactions in higher partial waves can be included perturbatively. In the dibaryon formulation of
EFT(π/) [70, 72], this resummation is accomplished by dressing the s-wave dibaryon propagators,
by including s-channel rescattering to all orders. In terms of the nucleon field, N , and the isosinglet
(3S1) and isotriplet (1S0) dibaryon fields, ti and sa, the Lagrangian in the absence of background
fields can be written as

L(0) = N †
[
i∂0 +

∇2

2M

]
N − t†i

[
i∂0 +

∇2

4M
−∆t +

∞∑

n=2

c
(n)
t

(
i∂0 +

∇2

4M

)n]
ti

−s†a

[
i∂0 +

∇2

4M
−∆s +

∞∑

n=2

c(n)
s

(
i∂0 +

∇2

4M

)n]
sa

−yt
[
t†iN

TP itN + h.c.
]
− ys

[
s†aN

TP asN + h.c.
]
, (41)

where the isotriplet and isosinglet projectors are defined as

P as =
1√
8
τ2τa ⊗ σ2, P it =

1√
8
τ2 ⊗ σ2σi, (42)

respectively. The fully-dressed dibaryon propagators are closely related to the 1S0 (3S1) scattering
amplitudes through

iMs(t) =
4π

M

i

k∗ cot δs(t) − ik∗
=

y2
s(t)

−D−1
s(t) + I

ss(tt)
0

, (43)

providing the conditions to match the low-energy constants (LECs) of the Lagrangian of Eq. (41) at
a given renormalization scale, µ, to the low-energy scattering parameters. Here k∗ =

√
ME − P 2/4

is the magnitude of the momentum of each nucleon in the center-of-mass frame, M is the nucleon
mass, and E and P are the total energy and momentum of the system, respectively. δs(t) is the
s-wave phase shift in the isotriplet (isosinglet) channel, and the bare dibaryon propagators are

Ds(t) =
−i

E − P 2

4M −∆s(t) +
∞∑
n=2

c
(n)
s(t)

(
E − P 2

4M

)n
+ iε

. (44)

The quantity I
ss(tt)
0 in Eq. (43) is the s-channel two-nucleon loop diagram that evaluates to

I
ss(tt)
0 =

iM

4π
y2
s(t)(µ+ ik∗) (45)

in the power-divergence subtraction scheme [20, 73]. At momenta below the t-channel cut, where an
effective-range expansion of the scattering amplitude is valid, the s-wave scattering phase shift can
be written in terms of the scattering length as(t), the effective range rs(t), and the shape parameters

ρ
(n)
s(t),

k∗ cot δs(t) = − 1

as(t)
+

1

2
rs(t)k

∗2 +
∞∑

n=2

ρ
(n)
s(t)

n!
(k∗2)n. (46)
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This leads to matching relations between the LECs of the dibaryon formalism and the low-energy
scattering parameters:

y2
s(t) =

8π

M2rs(t)
, ∆s(t) =

2

Mrs(t)

(
1

as(t)
− µ

)
, c

(n)
s(t) =

2

Mrs(t)

ρ
(n)
s(t)M

n

n!
. (47)

B. The pionless EFT in background axial fields

An interaction Lagrangian encoding axial transitions between two-nucleon channels can be
constructed out of nucleon and dibaryon fields, as well as the background axial field W a

i , where a
(i) denotes the isovector (vector) indices of the field as before. At leading order (LO) in the EFT,
such interactions are momentum independent, and at first order in the background field [74–76],8

L(1) ⊇ −gA
2
N †σ3

[
W−3 τ

+ +W 3
3 τ

3 +W+
3 τ
−]N

− l1,A
2M
√
rsrt

[
W−3 t

†
3s

+ +W 3
3 t
†
3s

3 +W+
3 t
†
3s
− + h.c.

]
, (48)

where, for simplicity, the background axial field is defined to be nonvanishing only for the i = 3
component, and W±µ ≡ (W 1

µ± iW 2
µ)/
√

2. As will become apparent in Sec. V C, it is useful to define

a new coupling, l̃1,A, that encapsulates solely two-body contributions to the amplitudes,

l̃1,A = l1,A + 2M
√
rsrtgA. (49)

At second order in the background axial field, multiple terms arise at LO in the expansion,
including both the single-nucleon and dibaryon interactions with the fields. For the nn to pp
isotensor transition, the only contribution arises from coupling to an I = 2, I3 = 2 background
field,

L(2) ⊇ − h2,S

2Mrs
Wabsa†sb ⊃ − h2,S

2Mrs
(W+

3 )2s+†s−, (50)

whereWab = W
{a
3 W

b}
3 is the symmetric traceless combination of two background fields at the same

location. Similar to the l̃1,A coupling, a new coupling h̃2,S can be defined to exclude the one-body
contributions to the transition amplitudes from the interaction in Eq. (50),

h̃2,S = h2,S −
M2rs
2γ2

s

g2
A. (51)

The three types of interactions with the axial field are shown graphically in Fig. 7. For non-maximal
isospin transitions, additional operators are needed in Eq. (50), but these are not required for the
ββ-decay process.

An important aspect of ββ decay is highlighted by Eq. (50). Precise measurements or calcula-
tions of single-β decay rates in nuclei, including a detailed understanding of the phenomenological
quenching of gA in nuclei, are insufficient for high-precision calculations of ββ-decay rates. There
are contributions to the matrix element of two axial currents from short-distance physics above the
cutoff scale of EFT(π/). These are encapsulated by local operators that do not contribute to single
β-decay matrix elements, but do contribute to ββ-decay matrix elements. These are analogues
of the two-nucleon electromagnetic polarizability operators, see e.g., Ref. [70]. In pionful EFT,

8 Since the background field is of arbitrary strength, it is not assigned an order in the EFT(π/) power counting. The
order of the EFT therefore refers to the low-momentum (derivative) expansion of the interaction terms.
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A+

µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective
two-body operator corresponding to two insertions of the axial current (right), A+

µ A+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧+�3), it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,

CNN,NN ⌘

0
@

Cnn,nn Cnn,np(3S1) Cnn,pp

Cnp(3S1),nn Cnp(3S1),np(3S1) Cnp(3S1),pp

Cpp,nn Cpp,np(3S1) Cpp,pp

1
A . (46)

The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as

Z ⌘

0
@

Zs 0 0
0 Zt 0
0 0 Zs

1
A , (48)

where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,

D ⌘

0
B@

Ds �il̃1,ADsDt� (�ih̃2,S � l̃21,ADt)Ds
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1
CA ,

(49)

to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1

2M
p

r1r3
l1,A and h̃2,S = 1

2Mr1
h2,S , and � denotes the
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µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective
two-body operator corresponding to two insertions of the axial current (right), A+

µ A+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧+�3), it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,

CNN,NN ⌘

0
@

Cnn,nn Cnn,np(3S1) Cnn,pp
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as
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1
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where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A+

µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective
two-body operator corresponding to two insertions of the axial current (right), A+

µ A+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧+�3), it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,
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Cnp(3S1),nn Cnp(3S1),np(3S1) Cnp(3S1),pp

Cpp,nn Cpp,np(3S1) Cpp,pp

1
A . (46)

The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as

Z ⌘

0
@

Zs 0 0
0 Zt 0
0 0 Zs

1
A , (48)

where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,

D ⌘

0
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Ds �il̃1,ADsDt� (�ih̃2,S � l̃21,ADt)Ds
2�2

�il̃1,ADsDt� Dt �il̃1,ADsDt�
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(49)

to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1

2M
p

r1r3
l1,A and h̃2,S = 1

2Mr1
h2,S , and � denotes the

1S0

FIG. 7. The one-body (left) and two-body (center) operators corresponding to a single insertion of the
axial current, W a

µ , described by Eq. (48), with coefficients gA and l1,A, respectively. The two-body operator
corresponding to two insertions of the background axial field (right) described by Eq. (50), with coefficient
h2,S . The solid, wavy, light-gray and dark-gray thick lines correspond to nucleon fields, axial background
fields, and isotriplet and isosinglet dibaryon fields, respectively.

the isotensor axial polarizability of a pion exchanged between two nucleons has been argued to
provide a dominant contribution to the nn→ pp matrix element [9] through chiral power-counting
of the nucleon-nucleon potential. However, as mentioned previously, this counting is known to
be inconsistent in this channel. This contribution is integrated out in EFT(π/), and is therefore
encapsulated in the short-distance two-nucleon operator in Eq. (50). In addition to SM effects,
such contributions may also be induced in a variety of BSM scenarios [9, 19]. A careful analysis of
both contributions and their mixing will be required in future studies.

C. Correlation functions for the nn→ pp process within pionless EFT

The LECs of the effective Lagrangian, including couplings to the background fields, can be
determined by matching correlation functions constructed in the EFT to those computed in LQCD.
To study the nn → pp matrix element induced by the background axial field, it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel space:

CNN→NN ≡




Cnn→nn Cnn→np(3S1) Cnn→pp
Cnp(3S1)→nn Cnp(3S1)→np(3S1) Cnp(3S1)→pp
Cpp→nn Cpp→np(3S1) Cpp→pp


 . (52)

Note that since the axial background field changes both the spin and isospin, the np(1S0) two-
nucleon state does not couple to the channels considered in Eq. (52). The elements of this corre-
lation matrix can be expressed in terms of the LECs, including couplings to the background axial
field. This can be accomplished with the aid of a diagrammatic representation of the correlation
function matrix, depicted in Fig. 8. In momentum space, the expansion can be cast in the following
form:

iCNN→NN (E) = Z · D(E) · 1

1− I(E) · D(E)
· Z†, (53)

where E denotes the total energy of the two-nucleon state and the total three-momentum is pro-
jected to zero. The overlap matrix Z is defined as

Z ≡



Zs 0 0
0 Zt 0
0 0 Zs


 , (54)

where Zs and Zt denote the overlaps of interpolating fields onto the isotriplet and isosinglet
dibaryon states, respectively. The generalized propagator matrix, D, is defined at second order
in the weak field;

D ≡




Ds −il′1,ADsDtλ (−ih′2,S − l′
2
1,ADt)Ds2λ2

−il′1,ADsDtλ Dt −il′1,ADsDtλ
(−ih′2,S − l′

2
1,ADt)Ds2λ2 −il′1,ADsDtλ Ds


 , (55)
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FIG. 8. Diagrammatic representation of the EFT correlation function matrix in the {nn, np(3S1), pp}
coupled-channel space in the presence of a background axial field coupled to the nucleon and dibaryon fields
through the interactions displayed in Fig. 7. The geometric sum should be expanded to second order in the
weak field, and the second-order responses of the diagonal elements of the generalized propagator matrix D
have not been included as they do not affect the nn→ pp transition amplitude to this order. The large light
(dark) gray circles denote the overlap function to the isotriplet (isosinglet) dibaryon field. The small light
(dark) gray circles denote the isotriplet (isosinglet) dibaryon strong coupling to two nucleons, ys (yt), while
the thick light (dark) gray lines denote the bare isotriplet (isosinglet) dibaryon propagator, Ds (Dt). The
thin black lines are nucleon propagators. The crossed circle denotes the singly weak single-nucleon coupling
to the background field when inserted on the nucleon line (proportional to gA), and the singly weak dibaryon
coupling when inserted on the dibaryon line (proportional to l1,A). Finally, the crossed square represents
the doubly weak dibaryon coupling to the background field (proportional to h2,S).

to incorporate the effect of channel-changing background field contact interactions on the bare
dibaryon propagators. The LECs have been redefined as l′1,A = 1

2M
√
rsrt

l1,A and h′2,S = 1
2Mrs

h2,S ,

and λ (= W+
3 ) denotes the strength of the background axial field. The matrix of loop functions I

is defined as

I ≡




Iss0 Ist1 λ Iss2 λ
2

Ist1 λ Itt0 Ist1 λ
Iss2 λ

2 Ist1 λ Iss0


 , (56)

where I
ss(tt)
0 , Ist1 and Iss2 are the s-channel two-nucleon loops with zero, one and two insertions

of the axial field on the nucleon lines, respectively, and with appropriate insertions of the strong
couplings ys(t) on either side, as shown in Figs. 8 and 9. Note that Iss2 involves single couplings to
the axial background field on each of the nucleon propagators but no double couplings on a single
propagator as the matrix element of an isotensor current between single-nucleon states vanishes.

The value of I
ss(tt)
0 is given in Eq. (45), and Ist1 and Iss2 are

Ist1 = gAysyt
M2

8πk∗
, Iss2 = g2

Ay
2
s

M3

32πk∗3
, (57)

for k∗2 < 0. These terms arise from finite loop integrations and do not introduce any further scale
dependence. The CNN→NN matrix elements, Eq. (52), therefore evaluate to

iCnn→nn =
Z2
s

D−1
s − Iss0

+ O
(
λ2
)
, (58)

iCnp(3S1)→np(3S1) =
Z2
t

D−1
t − Itt0

+ O
(
λ2
)
, (59)
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A+

µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective
two-body operator corresponding to two insertions of the axial current (right), A+

µ A+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧+�3), it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,
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1
A . (46)

The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as

Z ⌘

0
@

Zs 0 0
0 Zt 0
0 0 Zs

1
A , (48)

where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,
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to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) ·
1

13⇥3 � I(E) · D(E) · Z†, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as
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0 Zt 0
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where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,
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with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧+�3), it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
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2�2�ĩl1,ADsDt�Ds

1
CA,

(49)

toincorporatethee↵ectofchannel-changingcontactinteractionsonthebaredibaryonpropagators.
TheLECshavebeenredefinedasl̃1,A=1

2M
p

r1r3
l1,Aandh̃2,S=1

2Mr1
h2,S,and�denotesthe

17

FIG.5.Thee↵ectiveone-body(left)andtwo-body(center)operatorscontributingtoasingleinsertion
oftheaxialcurrent,A+

µ,describedbyEq.(44),withcoe�cientsgAandl1,Arespectively,andthee↵ective
two-bodyoperatorcorrespondingtotwoinsertionsoftheaxialcurrent(right),A+

µA+
⌫,describedbyEq.(45),

withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.

C.Thecorrelationfunctionfornn!ppprocesswithinpionlessEFT

TheLECsofthee↵ectiveLagrangian,includingcouplingstotheexternalfields,canbede-
terminedbymatchingtheEFTandLQCDcorrelationfunctions.Tostudythenn!ppmatrix
elementinducedbythebackgroundaxialfieldusedinthiswork(A+

3⇠⌧+�3),itisconvenientto
constructthecorrelationfunctionmatrixinthe{nn,np(3S1),pp}channelchannels.Explicitly,

CNN,NN⌘

0
@

Cnn,nnCnn,np(3S1)Cnn,pp

Cnp(3S1),nnCnp(3S1),np(3S1)Cnp(3S1),pp

Cpp,nnCpp,np(3S1)Cpp,pp

1
A.(46)

ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
expansioncanbecastinthefollowingform

iCNN,NN(E)=Z·D(E)·1

13⇥3�I(E)·D(E)
·Z†,(47)

whereEdenotesthetotalenergyofthetwo-nucleonstate,andthetotalmomentumisprojected
tozero.TheoverlapmatrixZisdefinedas

Z⌘

0
@

Zs00
0Zt0
00Zs

1
A,(48)

whereZsandZtaretheoverlapsontotheisotripletandisosinglettwo-nucleonstates,respectively.
Ageneralizedbarepropagatormatrix,D,atsecondorderintheweakfieldisintroduced,

D⌘

0
B@
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2�2�ĩl1,ADsDt�Ds

1
CA,

(49)

toincorporatethee↵ectofchannel-changingcontactinteractionsonthebaredibaryonpropagators.
TheLECshavebeenredefinedasl̃1,A=1

2M
p

r1r3
l1,Aandh̃2,S=1

2Mr1
h2,S,and�denotesthe

17

FIG.5.Thee↵ectiveone-body(left)andtwo-body(center)operatorscontributingtoasingleinsertion
oftheaxialcurrent,A+

µ,describedbyEq.(44),withcoe�cientsgAandl1,Arespectively,andthee↵ective
two-bodyoperatorcorrespondingtotwoinsertionsoftheaxialcurrent(right),A+

µA+
⌫,describedbyEq.(45),

withcoe�cienth2,S.Thefirsttwointeractionsgivesrisetoane↵ectivelyquenchedvalueofgAinmedium,
whilethethirddoesnotcontributethe�-decay.

C.Thecorrelationfunctionfornn!ppprocesswithinpionlessEFT

TheLECsofthee↵ectiveLagrangian,includingcouplingstotheexternalfields,canbede-
terminedbymatchingtheEFTandLQCDcorrelationfunctions.Tostudythenn!ppmatrix
elementinducedbythebackgroundaxialfieldusedinthiswork(A+

3⇠⌧+�3),itisconvenientto
constructthecorrelationfunctionmatrixinthe{nn,np(3S1),pp}channelchannels.Explicitly,

CNN,NN⌘

0
@

Cnn,nnCnn,np(3S1)Cnn,pp

Cnp(3S1),nnCnp(3S1),np(3S1)Cnp(3S1),pp

Cpp,nnCpp,np(3S1)Cpp,pp

1
A.(46)

ThegoalistoexpresstheelementsofthismatrixintermsoftheLECs,includingcouplings
tothebackgroundaxialfield,whileincludingthes-wavestronginteractionsinthetwo-nucleon
sectortoallordersusingthedibaryonapproach.Thiscanbeaccomplishedwiththediagrammatic
representationofthecorrelationfunctionmatrix,asdepictedinFig.6.Inmomentumspace,the
expansioncanbecastinthefollowingform

iCNN,NN(E)=Z·D(E)·1

13⇥3�I(E)·D(E)
·Z†,(47)

whereEdenotesthetotalenergyofthetwo-nucleonstate,andthetotalmomentumisprojected
tozero.TheoverlapmatrixZisdefinedas

Z⌘

0
@

Zs00
0Zt0
00Zs

1
A,(48)

whereZsandZtaretheoverlapsontotheisotripletandisosinglettwo-nucleonstates,respectively.
Ageneralizedbarepropagatormatrix,D,atsecondorderintheweakfieldisintroduced,

D⌘

0
B@
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(�ĩh2,S�l̃21,ADt)Ds
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FIG. 5. The e↵ective one-body (left) and two-body (center) operators contributing to a single insertion
of the axial current, A+

µ , described by Eq. (44), with coe�cients gA and l1,A respectively, and the e↵ective
two-body operator corresponding to two insertions of the axial current (right), A+

µ A+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧+�3), it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,
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The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as

Z ⌘

0
@

Zs 0 0
0 Zt 0
0 0 Zs

1
A , (48)

where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,

D ⌘

0
B@

Ds �il̃1,ADsDt� (�ih̃2,S � l̃21,ADt)Ds
2�2

�il̃1,ADsDt� Dt �il̃1,ADsDt�

(�ih̃2,S � l̃21,ADt)Ds
2�2 �il̃1,ADsDt� Ds

1
CA ,

(49)

to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1
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µ A+
⌫ , described by Eq. (45),

with coe�cient h2,S . The first two interactions gives rise to an e↵ectively quenched value of gA in medium,
while the third does not contribute the �-decay.

C. The correlation function for nn ! pp process within pionless EFT

The LECs of the e↵ective Lagrangian, including couplings to the external fields, can be de-
termined by matching the EFT and LQCD correlation functions. To study the nn ! pp matrix
element induced by the background axial field used in this work (A+

3 ⇠ ⌧+�3), it is convenient to
construct the correlation function matrix in the {nn, np(3S1), pp} channel channels. Explicitly,

CNN,NN ⌘

0
@

Cnn,nn Cnn,np(3S1) Cnn,pp

Cnp(3S1),nn Cnp(3S1),np(3S1) Cnp(3S1),pp

Cpp,nn Cpp,np(3S1) Cpp,pp

1
A . (46)

The goal is to express the elements of this matrix in terms of the LECs, including couplings
to the background axial field, while including the s-wave strong interactions in the two-nucleon
sector to all orders using the dibaryon approach. This can be accomplished with the diagrammatic
representation of the correlation function matrix, as depicted in Fig. 6. In momentum space, the
expansion can be cast in the following form

iCNN,NN (E) = Z · D(E) · 1

13⇥3 � I(E) · D(E)
· Z†, (47)

where E denotes the total energy of the two-nucleon state, and the total momentum is projected
to zero. The overlap matrix Z is defined as

Z ⌘

0
@

Zs 0 0
0 Zt 0
0 0 Zs

1
A , (48)

where Zs and Zt are the overlaps onto the isotriplet and isosinglet two-nucleon states, respectively.
A generalized bare propagator matrix, D, at second order in the weak field is introduced,

D ⌘

0
B@

Ds �il̃1,ADsDt� (�ih̃2,S � l̃21,ADt)Ds
2�2

�il̃1,ADsDt� Dt �il̃1,ADsDt�

(�ih̃2,S � l̃21,ADt)Ds
2�2 �il̃1,ADsDt� Ds

1
CA ,

(49)

to incorporate the e↵ect of channel-changing contact interactions on the bare dibaryon propagators.
The LECs have been redefined as l̃1,A = 1

2M
p

r1r3
l1,A and h̃2,S = 1

2Mr1
h2,S , and � denotes the

FIG. 9. Diagrammatic representation of the (unamputated) correlation function for the nn→ pp transition
at second order in the axial field, Eq. (61). The small light (dark) gray circles denote the isotriplet (isosinglet)
strong dibaryon coupling to two nucleons, ys (yt), while the thick dashed light (dark) gray lines denote the
fully-dressed (by s-wave strong interactions) isotriplet (isosinglet) dibaryon propagator. The thin black
lines are nucleon propagators. The crossed circle denotes the singly weak single-nucleon coupling to the
background field when inserted on the nucleon line (proportional to gA), and the singly weak dibaryon
coupling when inserted on the dibaryon line (proportional to l1,A). Finally, the crossed square represents
the doubly weak dibaryon coupling to the background field (proportional to h2,S). The overlap factors in
Eq. (61) are set to unity for simplicity.

iCnn→np(3S1) =
ZsZt

(D−1
s − Iss0 )(D−1

t − Itt0 )
(Ist1 − il′1,A)λ+ O

(
λ3
)
, (60)

iCnn→pp =
Z2
s

D−1
s − Iss0

[
Iss2 − ih′2,S
D−1
s − Iss0

+
(Ist1 − il′1,A)2

(D−1
s − Iss0 )(D−1

t − Itt0 )

]
λ2 + O

(
λ4
)
, (61)

where the energy dependence of the functions has been suppressed. Diagrams representing the
various contributions to Cnn→pp are shown in Fig. 9.

D. Matching to LQCD correlation functions

To match to the analogous LQCD correlation functions, the finite-volume counterpart of Eq. (61)
must be used with periodic boundary conditions in a cubic spatial volume. Furthermore, the energy-
dependent correlation function must be Fourier transformed in time and then rotated to Euclidean
space, i.e. x0 → it. The only finite-volume effects that are not exponentially suppressed below the
two-particle inelastic thresholds arise when intermediate two-nucleon states can be on their mass
shell. This can only happen within the s-channel loops. In these loops, the integration is replaced
by a summation over quantized momenta, and the singularities of the summand, corresponding
to the on-shell condition, give rise to either power-law volume corrections for scattering states
or exponential corrections for bound states. All other quantities in Eq. (61), including the bare
dibaryon propagators and the overlap functions, are equivalent to their infinite-volume counterparts
up to exponential corrections that are suppressed with the range of nuclear forces (set by the pion
Compton wavelength). The s-channel loops in a finite volume, denoted as I below, can be evaluated
straightforwardly, but their forms are not needed in this work as will be discussed below. The main
finite-volume characteristic of the correlation functions that must be accounted for is the discrete
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nature of the two-particle finite-volume spectra, arising from the quantization conditions [77–80]:

(Ds(t)(E)−1 − Iss(tt)0 (E))
∣∣∣
E=E

(n)
s(t)

= 0, (62)

where E
(n)
s(t) are the discrete finite-volume energy eigenvalues of the two-nucleon isotriplet (isos-

inglet) channels in the absence of the background axial field. Here, the effects of the nonzero
lattice spacing and finite temporal extent are ignored. As a result, the Fourier transform of the
correlation functions can be obtained by performing an integration over a continuous energy vari-
able. This integration is straightforward, given the known energy dependence of the correlation
functions, shown in Eq. (62). One subtlety is an apparent singular behavior of the loop functions
Ist1 and Iss2 at E = 0, which naively introduces further contributions to the energy integral. These
singularities are an artifact of the finite-order expansion of the correlation function in the weak
fields. A straightforward exercise shows that the all-order correlation function in Eq. (61) does not
contain such singularities. Therefore, this correlation function must be first Fourier transformed
in time and then expanded in the weak field. The result of this procedure is identical to Fourier
transforming the second-order correlation function in Eq. (61) as long as such spurious singularities
are neglected.

To obtain the matrix elements, it is necessary to take the ratio of the nn → pp three-point
function in the background field,

Cnn→pp(t) = λ2
∑

n

e−E
(n)
s tZ(n)

s

2Rs(E(n)
s )


 t Rs(E(n)

s )
(
Iss2 (E(n)

s )− ih′2,S
)

+
∑

l

Rs(E(n)
s )Rt(E(l)

t )
(
Ist1 (E

(n)
s )− il′1,A

)2

E
(n)
s − E(l)

t

(
t− e(E

(n)
s −E(l)

t )t − 1

E
(n)
s − E(l)

t

)
+ . . .


 , (63)

to the zero-field two-point function,

Cnn→nn(t) = −
∑

n

e−E
(n)
s t Z(n)

s

2 Rs(E(n)
s ), (64)

where Rs(t) is related to the residue of the fully-dressed dibaryon propagator evaluated at the

finite-volume energies E
(n)
s(t),

Rs(t)(E(n)
s(t)) =


 d

dE
(Ds(t)(E)−1 − Iss(tt)0 (E))

∣∣∣∣
E=E

(n)
s(t)



−1

. (65)

In Eq. (63) and (64), Z(n)
s is the overlap of the interpolating fields onto the states of quantized

energy. The ellipsis in Eq. (63) denotes additional terms that are time independent, or have a time
dependence that is exponentially suppressed by the energy gaps to the excited states, which are
assumed to be large in this analysis. Not all terms with time dependence e∆t are made explicit in
Eq. (63). Among such terms are those that involve transition matrix elements to excited states.
These are analogous to the D terms in the LQCD correlation functions analyzed in Eq. (34) and
are irrelevant to the discussion of the ground-state to ground-state matrix elements. Note that
the summations over intermediate states in the EFT context are over finite-volume scattering
states that are explicit degrees of freedom in the EFT, that is, those states with momenta below
the cutoff Λ ∼ mπ. This should be contrasted with the sums over intermediate states in Sec. III,
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where the states are the eigenstates of (L)QCD. Part of the latter summation is incorporated in the
short-distance EFT couplings through the matching, with the cutoff scale defining the separation.

Taking the ratio of Eq. (63) to two times Eq. (64), as done for the ratio of LQCD correlation
functions in Eq. (33), and taking the second derivate of the correlation function with respect to
the background-field strength, the second-order finite-volume matrix element can be obtained from
the terms linear in time, giving

M (V )
nn→pp = −Rs(E(0)

s )


Rt(E(0)

t )
(Ist1 (E

(0)
s )− il′1,A)2

∆
+ Iss2 (E(0)

s )− ih′2,S

−
(
Ist1 (E(0)

s )− il′1,A
)2∑

l 6=d

Rt(E(l)
t )

δ(l)


 + . . . , (66)

where the first term is the contribution from the deuteron intermediate state, and where the
ellipsis denotes terms that are higher order in the EFT(π/) expansion. The remaining short-distance
contributions are constrained by matching to LQCD correlation functions. This can be most cleanly
demonstrated by defining a new quantity that encapsulates all of the short-distance contributions,
including those arising from intermediate states other than the deuteron,

h
(V )
2,S = h2,S − 2iMrs

(
Ist1 (E(0)

s )− il̃1,A
)2∑

l 6=d

Rt(E(l)
t )

δ(l)
, (67)

where the superscript denotes that this quantity is volume dependent, with a well-defined infinite-

volume limit, h
(V )
2,S = h

(∞)
2,S ≡ h2,S . As already discussed in Sec. III C, the initial and final states, as

well as the propagating intermediate state, are deeply bound two-nucleon states in the calculations
performed in this work, resulting in exponentially suppressed volume corrections. The infinite-

volume limit of all of the contributions to M
(V )
nn→pp in Eq. (66) can then be taken and, up to a

sub-percent uncertainty from volume effects, the infinite-volume matrix element is obtained,

Mnn→pp = −|Mpp→d|2
∆

+
Mg2

A

4γ2
s

−H2,S , (68)

where H2,S = γsZ2
s

2M (h2,S − M2rs
2γ2s

g2
A) encapsulates the correlated two-nucleon two-axial coupling

contribution to the amplitude, and

Mpp→d = gA(1 + S) + L1,A (69)

is the EFT matrix element for the pp→ d process. Here L1,A =
ZsZt

√
γtγs

2M l̃1,A denotes the correlated
two-nucleon axial contribution to Mpp→d. In the two/few-body sector, this is equivalent to the
phenomenological quenching of gA. In Eq. (69), S = −1 + ZsZt(

√
γt/γs − √γsrs√γtrt) is an

SU(4) Wigner symmetry-breaking factor. In these equations, Rs(t)(E(0)
s(t)) = iγs(t)rs(t)Z

2
s(t), with

γs(t) =
√
MBs(t) (where Bs(t) = 2M − E(0)

s(t) is the binding energy) and Z2
s(t) = 1/(1 − γs(t)rs(t)),

and the tower of shape parameters has been ignored. The first term in Eq. (68) corresponds to the
deuteron pole, while the second and third terms are short-distance contributions.

The quantities L1,A and H2,S can, in principle, be constrained from the values of the proton axial
charge and the matrix elements for the pp→ d and nn→ pp processes extracted in Sec. (IV). Ad-
ditionally, the SU(3) flavor-symmetric values of binding momenta and effective ranges are needed,
which have been determined in Refs. [12, 48]. Unfortunately, given the modest O (10%) uncer-
tainties on these parameters, the dinucleon and deuteron wavefunction renormalization factors, Zs
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and Zt, do not have well-behaved statistical distributions, leading to a broad distribution of the
SU(4)-breaking function S in Eq. (69). As a result, no significant bound can be put on the value
of L1,A.9 However, H2,S , which is the main focus of this section, is independent of the values of Zs
and Zt, as is evident from Eq. (68). This quantity can thus be cleanly extracted:

H2,S = 4.7(1.3)(1.8) fm, (70)

where the first uncertainty is the combined statistical and systematic uncertainty of a chosen anal-
ysis and the second uncertainty covers the differences between the values obtained from different
analyses. Although being significantly smaller than the dominant deuteron-pole term, this term
is of the same order of magnitude as the second term in the right-hand side of Eq. (68) (the term
proportional to g2

A), and is non-negligible. The difference between the full matrix element for
nn → pp and the Born term is roughly 5% of the total. Interestingly, this is comparable to the
contribution of l1,A to the matrix element.

Once the LECs of EFT(π/) for both the first-order ∆I = 1 and the second-order ∆I = 2 inter-
actions with an axial background field are determined, they can be used in few-body calculations
to make predictions for the ββ-decay matrix elements in light nuclei at the quark masses used in
this LQCD study. An example of such an approach for spectroscopy is given in Ref. [81, 82], and
the extension to electroweak interactions is in progress [83]. Eq. (70) is only valid at the heavy
quark masses that are used in the LQCD calculations, and to connect directly to phenomenology
the physical quark masses must be used. Alternatively, using unphysical quark masses that are
sufficiently close to the physical values, pionful EFT could be used to make phenomenological
predictions via extrapolations. In either situation, the relation between the finite-volume bi-local
matrix elements and the infinite-volume transition amplitudes is more complicated due to the
scattering nature of states involved, and a generalization of the formalism presented in Ref. [23] to
address this situation is in progress [71].

VI. SUMMARY AND OUTLOOK

An observation of nuclear 0νββ decay would provide unambiguous evidence for the violation
of lepton number and the Majorana nature of neutrinos. Lepton-number violation can manifest
in 0νββ decay in distinct ways; for example, in the form of the exchange of a light Majorana
neutrino, or through local operators arising from new physics above the electroweak scale, with the
most relevant of these being four-quark-two-electron operators. Both the lepton-number conserving
2νββ-decay modes and the lepton-number violating 0νββ-decay modes induced by a light Majorana
neutrino depend upon nuclear matrix elements with two insertions of the weak currents.10 At the
scale of the strong interactions, these receive both long-distance and short-distance contributions.
The long-distance contributions are largely dictated by the single-nucleon axial matrix element,
gA, and by correlated two-nucleon interactions (meson-exchange currents). The short-distance
contributions, from physics above the chiral symmetry breaking scale, are encapsulated in the
isotensor axial polarizability which does not contribute to single β-decay rates. Such contributions
are, furthermore, in addition those induced by a finite nuclear model space.

In this paper, a detailed investigation of the second-order weak nn → pp transition matrix
element is presented using LQCD and EFT, expanding upon the results presented in Ref. [1]. In

9 A variant of this coupling with S = 0 is defined in Ref. [18] as −L2b,sd
1,A . Since the values of the relevant binding

momenta and effective ranges are known much more precisely at the physical point, these values were used in that
work to definitively constrain the physical pp-fusion matrix element, assuming a mild quark-mass dependence for
the correlated two-nucleon axial coupling.

10 At the scale of chiral-symmetry breaking, matching lepton-number violation induced by a Majorana neutrino to
the low-energy EFT will give rise to effective operators with the same structure as some of the operators induced
by four-quark-two-lepton operators originating at high scales. The relative size of the contributions, and the ability
of future measurements to distinguish between these origins, remain to be explored.
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particular, the long-distance Born term and the short-distance contributions are explicitly sepa-
rated in LQCD calculations performed at unphysical values of the quark masses corresponding
to mπ ∼ 806 MeV, at one lattice spacing and in one lattice volume. The short-distance contribu-
tion, in the language of EFT, receives contributions from two-nucleon states involving momenta
below the cutoff and from a local operator encapsulating shorter-distance physics. The LQCD
calculations utilize the recently-developed fixed-order background-field approach [18] to cleanly
isolate matrix elements corresponding to a fixed number of insertions of the isovector axial current.
Further details of this method, along with the associated analysis techniques used to extract the
nn→ pp transition matrix element, are presented. Second-order weak processes are discussed in the
dibaryon formulation of pionless EFT whose finite-volume Euclidean-space correlation functions
are constructed and matched to the LQCD correlation functions, allowing a determination of the
leading two-nucleon second-order weak coupling. In conjunction with many-body methods, these
couplings can be used to predict ββ-decay rates of nuclei at these quark masses. The isotensor axial
polarizability is found to provide a non-negligible contribution to the nn → pp matrix element.
This contribution will need to be determined at the physical values of quark masses to impact the
experimental program. As the isotensor axial polarizability operators do not contribute to single-β
decay, using a quenched value of gA does not account for this physics. This is a previously ignored
contribution to nuclear ββ decays that can only be constrained experimentally by ββ-decay rates,
and requires further exploration, in particular using LQCD.

The methods developed in this work have applications beyond the determination of second-
order axial responses at threshold. The extension of the present study to the case of 0νββ decay
in the light Majorana scenario involves additional challenges arising from the loop integration over
intermediate states. It is likely that a new approach will be required to address this, for which
preliminary work is underway [71]. Nevertheless, with better constraints on 2νββ-decay rates, the
accuracy of predictions for 0νββ-decay rates is expected to improve. In addition, the technology
developed in this work can be utilized to study second-order responses that are relevant in assessing
the effects of two-photon contributions to electromagnetic form factors, and for calculating the γZ
box diagram relevant for parity-violating electron-proton scattering.

In the future, the calculations presented in this work will be extended to lighter quark masses,
larger lattice volumes and multiple lattice spacings, accounting for the dominant systematics that
remain unexplored. Significant difficulties are anticipated in taking these steps, in particular given
the bi-local nature of the quantities that are considered. As the quark masses reach their physical
values, and the volumes become larger, the hierarchy between the dinucleon-deuteron mass split-
ting, ∆, and the gap to excitations of the dinucleon system, δ, is changed (δ → 0 and ∆→ 2.22 MeV),
thereby making the current analysis strategy ineffective, as the contributions that involve the tran-
sition matrix elements of excited states will no longer be negligible. Separating the source and
sink timeslices from the region of the background field will ameliorate this problem [22], but the
extraction of the relevant long and short-distance contributions to the nn → pp matrix element
will remain complicated. Nevertheless, we anticipate that LQCD calculations with physical quark
masses will provide essential input to many-body calculations of 2νββ and 0νββ-decay rates that
cannot be obtained through any other known method.
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