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We give an accurate determination of the vector (electromagnetic) form factor, F (Q2), for a
light pseudoscalar meson up to squared momentum transfer Q2 values of 6 GeV2 for the first time
from full lattice QCD, including u, d, s and c quarks in the sea at multiple values of the lattice
spacing. Our results show good control of lattice discretisation and sea quark mass effects. We
study a pseudoscalar meson made of valence s quarks but the qualitative picture obtained applies
also to the π meson, relevant to upcoming experiments at Jefferson Lab. We find that Q2F (Q2)
becomes flat in the region between Q2 of 2 GeV2 and 6 GeV2, with a value well above that of the
asymptotic perturbative QCD expectation, but well below that of the vector-meson dominance pole
form appropriate to low Q2 values. Our calculations show that we can reach higher Q2 values in
future to shed further light on where the perturbative QCD result emerges.

I. INTRODUCTION

Hitting one constituent of a bound state with a pho-
ton initiates a complicated process if the bound state is
not to fall apart. The momentum gained must be redis-
tributed between all the constituents so that the whole
convoy can slew round into the new direction. A price is
paid in terms of a reduced interaction strength between
the photon and the bound state and this is known as the
electromagnetic form factor - a function of the square of
the (space-like) 4-momentum, q2, transferred from ini-
tial to final state. When the bound state is a hadron,
and held together by the strong interaction, the determi-
nation of the form factor becomes a case study for our
understanding of Quantum Chromodynamics (QCD) as
a function of q2. Both experimental measurement [1] and
theoretical calculation are important. As we show here,
lattice QCD, now including a realistic QCD vacuum [2],
can provide key theoretical results.

The π meson is one of the simplest hadrons, with a
valence quark and antiquark chosen from u/d. At small
values of squared momentum transfer, Q2 = −q2 up to
0.25 GeV2, its electromagnetic form factor, Fπ(Q2), has
been measured directly by scattering from atomic elec-
trons [3]. The form factor can be fitted to a simple pole
form in this region and the pole mass (close to that of the
vector, ρ [4]) can be related to the r.m.s. electric charge
radius. Lattice QCD calculations of the π form factor at
small values of Q2 [5–12] give a theoretical determination
that agrees well with experiment.

At the other extreme of the Q2 range, very large val-
ues, a perturbative QCD treatment of the electromag-
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netic form factor becomes possible because the process
in which the hard photon scatters from the quark or an-
tiquark factorises from the distribution amplitudes which
describe the quark-antiquark configuration in the me-
son [13, 14]. The hard scattering amplitude is inversely
proportional to Q2 and can be treated perturbatively in
QCD because a high Q2 photon must be accompanied
by a high momentum gluon exchange between the meson
constituents (see Figure 1). The asymptotic perturbative
QCD prediction, as Q2 →∞, is very simple because the
distribution amplitude can be normalised using the pion
decay constant (fπ = 130.4 MeV) [13, 15, 16]. This gives

Fπ(Q2) =
8παsf

2
π

Q2
(1)

but this is not expected to be valid until Q2 values of tens
of GeV2 are reached [14]. Meanwhile, the approximately
constant value of Q2Fπ(Q2) from Eq. (1) is numerically
very different from the results and trend seen at small
Q2. This means that there is a large gap to be filled
in our understanding, extending to relatively high Q2

values [17].
For Q2 of a few GeV2 an indirect experimental method

must be used to determine Fπ with scattering of electrons
from the pion cloud around a proton [18–20]. The most
recent results from Jefferson Lab [21–25] have reached
Q2 = 2.45 GeV2 but extension to 6 GeV2 is foreseen [1],
starting in 2018, as a key experiment (E12-06-101) for
the 12 GeV upgrade.

This is also a Q2 region in which lattice QCD can be
used to calculate the meson electromagnetic form fac-
tor directly, as we demonstrate here. The method is
straightforward, and the same for all Q2 values. To reach
higher Q2 values the participating meson 3-momentum
and therefore energy must be increased. Both statistical
errors and systematic errors from discretisation effects
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will then increase, so it is important to have a high statis-
tics calculation in a quark formalism with small discreti-
sation errors. Previous lattice QCD calculations (see [26]
for a review) that include u, d and s quarks in the sea [27–
29] have concentrated on having many Q2 values for dif-
ferent heavy pion masses at one value of the lattice spac-
ing. This has enabled studies of pion mass dependence
but precluded taking a continuum limit. See also [5] for
a more extensive calculation but including only u and d
quarks in the sea.

Here we are able to reach values of Q2 of 6 GeV2 with
an accuracy of 10% by performing a high statistics calcu-
lation at a number of well-separated Q2 values. Instead
of studying π mesons we work consistently with a ‘pseu-
dopion’, a pseudoscalar meson made of valence s quarks
(denoted ηs), accurately tuned [30] on full QCD (with
u, d, s and c quarks in the sea) ensembles of gluon field
configurations at three values of the lattice spacing and
two values of the sea u/d quark masses. We work with s
quarks because it is numerically much faster to accumu-
late high statistics for a precise result, little dependence
on the sea u/d mass is expected and finite-volume effects
are negligible [31]. We use the Breit frame where the
initial and final mesons have opposite spatial momenta,
~pi = −~pf and Q2 is maximized for a given ~p. By working
at values of the lattice spacing that range over a fac-
tor of 1.7 we are able to show that discretisation errors
are small for our formalism, even at relatively large Q2,
and to extrapolate to the zero lattice spacing continuum
limit.

Our ηs mesons are qualitatively very similar to π
mesons for the purposes of this study, because the s quark
is light compared to QCD scales. Both the small-Q2 pole
form and very high Q2 perturbative QCD results for the
form factor can be readily determined and thus our lat-
tice QCD results provide a clear comparison to these two
pictures in the region of 0 < Q2 < 6 GeV2. In future we
can extend this work to even higher Q2 and also calcu-
late other form factors, inaccessible to experiment, which
can be compared to perturbative QCD to understand the
Q2 range in which it becomes valid. Most importantly,
our results show the way to accurate predictions for Fπ
from lattice QCD for the upcoming Jefferson Lab exper-
iments [1].

II. LATTICE QCD CALCULATION

The electromagnetic, or vector, form factor for a pseu-
doscalar meson, P , is determined from

〈P (pf )|Vµ|P (pi)〉 = FP (pi + pf )µ, (2)

where Vµ is a vector current coupling to the photon. Here
we use the temporal component of V and ~pi = −~pf so
that the right-hand side of eq. (2) becomes 2EFP with
Q2 = |2~pi|2.

The matrix element is determined in lattice QCD by
combining information from meson ‘2-point’ and ‘3-point’

φπ

(
x y

1− x 1− y

+ · · ·

)
φ∗
π

FIG. 1: The perturbative QCD description of the π electro-
magnetic form factor. φπ represents the distribution ampli-
tude and the blue lines indicate the route of high momentum
transfer through the hard scattering process.

functions [32]. 2-point functions tie together quark and
antiquark propagators for a correlation function that cre-
ates a hadron at time 0 and destroys it at time t′. 3-point
functions combine 3 propagators so that a meson is cre-
ated at time 0, its quark (or antiquark) carrying momen-
tum ~pi interacts with a photon at time t and is scattered
into ~pf , with the meson being destroyed at time T 1. We
fit the t′-, t- and T -dependence of the 2- and 3-point re-
sults (averaged over the gluon field configurations in an
ensemble and including all results above a tmin of 3) si-
multaneously to a multi-exponential form in Euclidean
time that includes the set of possible mesons made from
this valence quark and antiquark [12]. This enables us to
isolate the matrix element for the ground-state, lightest,
meson and relate it to the required form factor, whilst
making sure that systematic effects from the presence of
higher mass states in the correlator are taken into ac-
count. We can normalise the form factor by the electric
charge conservation requirement that FP (Q2 = 0) = 1.

We use the Highly Improved Staggered Quark (HISQ)
formalism designed [34], and shown [31, 35–37], to have
very small discretisation errors from the lattice spacing.
We work on gluon field configurations generated by the
MILC collaboration [38, 39] that include HISQ u, d, s
and c quarks in the sea and also have a highly-improved
gluon action [40]. On these configurations we study the
ηs. In lattice QCD we can prevent this particle from
mixing with other isospin zero mesons and then its prop-
erties can be well determined [31] and it behaves as a
pseudopion; its mass is 688.5(2.2) MeV and decay con-
stant 181.14(55) MeV. Here we determine its vector form
factor as a function of Q2.

Table I gives the parameters of the gluon field configu-
rations we use, with lattice spacing varying from 0.15 fm
to 0.09 fm and u/d quark mass either twice or five times
the physical value, corresponding to Mπ ≈ 216 or 304
MeV. We tune the valence s quark mass on each ensem-
ble to obtain the correct ηs mass [30]. We calculate ηs
2-point functions with a range of spatial momenta with
magnitude in lattice units up to 0.62, given in Table I.
These are implemented by using the ‘twisted boundary
condition’ method [41] and are chosen to be in the (1,1,1)
direction to minimise discretisation effects. We use ηs

1 Charge-conjugation symmetry means that quark-line discon-
nected diagrams vanish in this case [33].
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mesons made with the local γ5 (Goldstone) operator; in
staggered quark parlance this corresponds to spin-taste
γ5⊗ γ5 [34]. For our 3-point correlation functions we use
a 1-link temporal vector current with spin-taste γ0 ⊗ 1.

We fit 2- and 3-point correlators simultaneously using
Bayesian methods [42] to constrain fit parameters and
determining the covariance between results at different
Q2 values. The fit forms are [31, 37]

C2pt(~p) =
∑

i
b2i (p)f(Ei(p), t

′) + o.p.t.

C3pt(~p,−~p) =
∑

i,j

[
bi(p)f(Ei(p), t)Jij(Q

2)bj(p)×

f(Ej(p), T − t)
]

+ o.p.t.

f(E, t) = e−Et + e−E(Lt−t) (3)

The HISQ action gives opposite parity terms (o.p.t.) for
ηs mesons at non-zero momentum; they are similar to the
terms given explicitly above but with factors of (−1)t

′/a.
The fit parameters are chosen to be the log of the ground-
state energy, E0, and the log of energy differences be-
tween the (ordered) excitations, i. For our kinematic
set-up Fηs(Q2) = J00(Q2)/J00(0), with J00 the ground-
state to ground-state amplitude. The division by J00(0)
provides the normalisation of the lattice current. Results
for the renormalisation factors inferred from J00(0) are
given in Appendix A.

We use priors of 800± 400 MeV for the energy splitting
between successive excitations and prior widths on am-
plitudes bi and Jij of at least 2 times the ground-state
value. We take results from fits that include 6 expo-
nentials where ground-state values and their uncertain-
ties have stabilised and we have checked that the prior
widths have only a minor impact on these uncertainties.
Although we are only interested in ground-state proper-
ties here, our correlators are precise enough to resolve the
first excited state. We have checked that its mass (around
950 MeV above the ground-state) is in reasonable agree-
ment with that for an excited 0− ss state seen in [43].
Note that we do not expect multi-meson (for example two
kaon) energy levels to appear in our spectrum since the
overlap of such states with our single meson operators is
very small, being suppressed by the volume [44].

Results for the (ground-state) form factor are given in
Table II and Q2F (Q2) is plotted in Figure 2. Results on
different ensembles lie close to each other, showing that
effects from discretisation and different u/d masses are
very small. Tests of discretisation effects from studies of
the meson energy and decay amplitudes as a function of
spatial momentum are reported in Appendix B. We also
show in Appendix B (see Figure 3) how statistical errors
in the form factor grow as a function of Q2 and (Qa)2.
It is in fact the statistical errors that provide a practical
limit to how high in Q2 we can reach here for different
values of the lattice spacing. Note that the finer lattices
have larger reach in Q2 than the coarse.

To determine the form factor in the physical contin-
uum limit we must extrapolate in the lattice spacing
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FIG. 2: Lattice QCD results for the vector form factor of
the ηs meson, multiplied by Q2 to focus on the large Q2 be-
haviour, plotted as a function of Q2. From coarse to fine:
set 1 results are given by green pluses, set 2 by blue crosses,
set 3 by blue bursts and set 4 by red triangles. Error bars
include statistical/fit errors and uncertainties from the lattice
spacing correlated between points. The black dashed line and
grey band (for ±1σ) give the physical-point curve discussed in
the text. The green dashed line marked ‘pole’ gives the pole
form (P−1

φ ), for comparison. The orange dotted line marked
‘PQCD 1’ gives the asymptotic perturbative QCD prediction
and that marked ‘PQCD 2’ includes non-asymptotic correc-
tions to the distribution amplitude discussed in the text.

and sea u/d quark mass. We do this using a model-
independent parameterisation of the form factor now
standard in both theory and experiment for semileptonic
weak decays (see [46] for a recent review), mapping the
domain of analyticity in t = q2 onto the unit circle in z.
Since z < 1 we can then perform a power series expansion
in z. We take [47]

z(t, tcut) =

√
tcut − t−

√
tcut√

tcut − t+
√
tcut

(4)

where tcut in our case is equal to 4M2
K . We choose the

point that maps to z = 0 to be q2 = 0, for simplic-
ity; this gives zmax of 0.46 at Q2 = 6 GeV2, well below
1. Rather than F (Q2) we work with Pφ(Q2)F (Q2), us-
ing Pφ(Q2) = (1 + Q2/M2

φ). The product PφF has re-

duced z-dependence because P−1φ is a good match to the

form factor at small Q2 (the φ being the ss vector me-
son) and it has the correct Q−2 dependence at large Q2

(but the wrong value: see Figure 2). To combine a z-
expansion with lattice QCD results we simply allow the
coefficients in the expansion to have independent a- and
msea-dependence. Adapting the method from [48], we
use the fit function

PφF (z, a,msea) = 1 + (5)
imax∑
i=1

ziAi

[
1 +Bi(aΛ)2 + Ci(aΛ)4 +Di

δm

10

]
.
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TABLE I: We use MILC gluon field configurations [38, 39], with β = 10/g2 the QCD coupling and Ls and Lt the lattice
dimensions. w0/a [31] gives the lattice spacing, a, in terms of the Wilson flow parameter, w0 [45]; w0=0.1715(9) fm from fπ [31].
Set 1 is ‘very coarse’, sets 2 and 3, ‘coarse’ and set 4, ‘fine’. aml, ams and amc are the sea quark masses (ml ≡ mu = md)
in lattice units. amval

s is the valence s mass and aMηs the corresponding ηs mass in lattice units. ncfg gives the number of
configurations; 16 random-wall time sources on each give high statistics. ap gives the magnitude of the meson spatial momentum
for the form factor at non-zero Q2. We further reduce uncertainties on set 2 at pa = 0.6 by averaging over 4 directions. We
use 3 values of T/a for our 3pt-functions: 9, 12, 15 on set 1; 12, 15, 18 on sets 2 and 3 and 15,18 and 21 on set 4.

Set β w0/a aml ams amc amval
s aMηs ap Ls/a× Lt/a ncfg

1 5.8 1.1119(10) 0.0130 0.0650 0.838 0.0705 0.54028(15) 0.1243,0.3730,0.6217 16 × 48 1020
2 6.0 1.3826(11) 0.0102 0.0509 0.635 0.0541 0.43135(9) 0.1,0.3,0.5,0.6(× 4 dirns) 24 × 64 1053
3 6.0 1.4029(9) 0.00507 0.0507 0.628 0.0533 0.42636(6) 0.493,0.591 32 × 64 1000
4 6.3 1.9006(20) 0.0074 0.037 0.44 0.0376 0.31389(7) 0.0728,0.218,0.364,0.437,0.509,0.56 32 × 96 1008

TABLE II: Results for the vector form factor, with statistical error, at values of Q2 given in GeV2.

Set Q2 F (Q2) Q2 F (Q2) Q2 F (Q2) Q2 F (Q2) Q2 F (Q2) Q2 F (Q2)
1 0.1012 0.9003(9) 0.9109 0.4747(18) 2.531 0.2138(70)
2 0.1012 0.9009(5) 0.9111 0.4786(10) 2.531 0.2170(51) 3.644 0.1456(59)
3 2.533 0.2219(23) 3.640 0.1517(65)
4 0.1014 0.9014(6) 0.9091 0.4843(9) 2.535 0.2286(22) 3.653 0.1602(42) 4.956 0.1167(82) 5.999 0.094(13)

Note that the lattice ‘data’ on the left-hand-side include
correlations between results. The coefficients Bi and Ci
account for dependence on the lattice spacing; we take
Λ = 1 GeV ≈ √tcut to allow for (pa)2 and (pa)4 terms
in F . Independent coefficients at each order i allow for
Q2-dependent discretisation effects. Only even powers of
a appear in the HISQ formalism and, because we work
in the Breit frame with a fixed direction for ~p, there is
only one scale, p, that can appear coupled with a. Note
that, by definition, there are no z-independent discreti-
sation errors. In Figure 6 of Appendix B we show results
for Q2Fηs(Q2) at two values of Q2 plotted against the
square of the lattice spacing, showing more explicitly the
size of discretisation effects. We also show there how
well the fit function of eq. (5) is able to reproduce the
discretisation effects, including their Q2 dependence. Di

accounts for the heavier-than-physical quark masses in
the sea, using δm =

∑
u,d,s(mq − mtuned

q )/mtuned
s [30]

and dividing by a factor of 10 to convert this to a suit-
able chiral perturbation theory expansion parameter. We
take priors on the Bi, Ci and Di of 0.0(1.0) but on B1

of 0.0(5), because leading a2 errors are suppressed by
αs in the HISQ formalism [34]. For the Ai, the coef-
ficients of the z-expansion in the continuum and chiral
limits, we take priors of 0.0(2.0), twice as conservative as
the Bayesian probability function would suggest. We use
imax = 4; adding higher terms has no impact and neither
does adding (aΛ)6 terms.

Our fit has a χ2/dof of 0.3. The result at a = 0 and
physical quark masses (i.e. 1 +

∑
Aiz

i) is plotted (con-
verted back to Q2 space) in Figure 2 and shows little
deviation from the results on the fine lattices. The fitted
parameters Ai and their covariance matrix are given in
Appendix C.

III. DISCUSSION/CONCLUSIONS

Figure 2 shows the physical curve for Q2Fηs(Q2) de-

termined from our results for 0 < Q2 < 7 GeV2. At small
Q2 it is compared to the pole form, P−1φ (Q2). Our re-
sults show that the physical curve peels away from the
pole form at Q2 ≈ 1 GeV2 and then lies significantly be-
low it. Also plotted in Figure 2, for Q2 > 6 GeV2, is the
asymptotic perturbative QCD form (labelled PQCD 1)
of Eq. (1), using fηs instead of fπ. For αs we have used

αs(MS, nf = 3) at a scale ofQ/2, since this is the momen-
tum carried by the gluon when the quark and antiquark
share the meson momentum equally. Our physical curve
then lies significantly above this result at Q2 of 6 GeV2.
We expect this qualitative picture of the physical curve
to be true for the pion form factor to be determined in
Jefferson Lab experiment E12-06-101 (the peeling away
from the pole form is already apparent [25]).

For non-asymptotic Q2 the leading perturbative QCD
prediction is modified to [13, 14]:

FP (Q2) =
8πf2Pαs(Q/2)

Q2

∣∣∣∣∣1 +

∞∑
n=2

aPn (Q/2)

∣∣∣∣∣
2

. (6)

where the sum is over even n for a ‘symmetric’ meson
(the ηs used here or π in the isospin limit). The aPn ,
coefficients of an expansion in Gegenbauer polynomials,
evolve logarithmically to zero as Q2 →∞.

Lattice QCD calculations have been used to determine
aπ2 [49, 50] and this changes the asymptotic prediction
substantially in the region of Q2 around 10 GeV2. The
calculation of yet higher order corrections is complicated
by operator mixing [51]. It is important to understand
the limitations of the perturbative QCD approach here,
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because the pion distribution amplitude inferred from
Fπ(Q2) is used in other calculations. They appear, for
example, in light-cone sum rule calculations of the form
factor at low q2 for the exclusive weak decay B → π`ν
to determine Vub [52, 53].

Figure 2 shows a curve (labelled PQCD 2) that uses a
shape for the distribution amplitude φηs = (x(1−x))ζ at
a scale Q/2 = 2GeV where x is the light-cone momentum
fraction and ζ = 0.52(6) is chosen to agree with lattice
QCD results for a2 for the π [50] (results indicate only
weak quark mass-dependence, so this should be a good
approximation). PQCD 2 is much higher than PQCD
1 at Q2 = 6 GeV2 and shows stronger Q2-dependence.
To obtain a flatter curve in better agreement with our
results would require a broader distribution amplitude
and a higher scale for αs for less evolution. Such curves
have been obtained for the π in a recent Dyson-Schwinger
approach [54], and it would be interesting to see if it can
reproduce our results for the ηs. For this purpose we give
the parameters for our continuum curve in Appendix C.

To extend our results to higher values of Q2 is possible
on finer lattices where a given value of ap corresponds
to a higher |~p| in GeV. A Q2 of 12 GeV2 should be pos-
sible on ‘superfine’ lattices with a = 0.06 fm, and even
20 GeV2 at a = 0.045 fm (‘ultrafine’). Lower statistics
calculations have already been done on such lattices [55–
57]. See also [58] for new methods to reduce uncertain-
ties in calculations at high Q2. The scalar form factor
at high Q2 will give additional information since pertur-
bative QCD [13, 14] predicts that this should fall more
rapidly than Q−2.

Perturbative QCD (Eq. 6) predicts approximate scal-
ing of the form factor with the square of the decay con-
stant, and we can test this in lattice QCD as we reduce
the pseudoscalar meson mass towards that of the π. This
scaling may set in before the Q2-dependence becomes
clearly that of perturbative QCD. If that is the case we
can use our results here, rescaling by (fπ/fηs)2, to pre-

dict a value for Q2Fπ(Q2) in a flat region from 2−6 GeV2

of ≈ 0.3 GeV2.
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Appendix A: Renormalisation factors

Table III gives the values of the vector current renor-
malisation factor, ZV , for each ensemble inferred from
electric charge conservation at Q2 = 0. The vector
current we use is a 1-link current in the time direc-

TABLE III: Results for the renormalisation factor ZV which
multiplies the lattice temporal 1-link vector current used here
to normalise the form factor fully nonperturbatively. The
values are obtained from our fits atQ2 = 0, using ZV = 1/J00.

Set ZssV
1 1.3892(15)
2 1.3218(7)
3 1.3179(7)
4 1.2516(9)

tion, made gauge-invariant by the includion of an APE-
smeared gauge link. The values for ZV show the expected
qualitative behaviour, slowly falling towards 1 on finer
lattices.
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FIG. 3: The statistical uncertainty that we obtain in the form
factor plotted as a function of Q2(Qa)2 for sets 1, 2 and 4
(green pluses, blue crosses and red triangles respectively). For
set 2 at pa = 0.6 we have adjusted the error to be that for
one spatial momentum direction (instead of 4) to match the
statistics of the other points. Note that these results are spe-
cific to the Breit frame and teh values of T used here.

Appendix B: Tests of statistical errors and
discretisation effects

In Figure 3 we show how the statistical error in the
form factor result grows with Q2. The results from
different lattice spacing values (for approximately the
same number of configurations, spatial lattice volume
and smallest T value in physical units) appear to lie on
a universal curve as a function of Q2(aQ)2. The curve is
approximately quadratic, showing that uncertainties de-
grade rapidly at large pa values. However the same Q
can be reached with smaller pa on finer lattices, moving
down the curve. The plot helps to predict the statistical
accuracy that will be obtained from calculations on other
lattices using the same (Breit) frame.

A good test of discretisation errors is to study the
ground-state meson energy as a function of spatial mo-
mentum and compare the speed of light (in units of c)
obtained from (E2−M2)/~p 2 to the expected value of 1.0
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Fig. 4.

in the absence of systematic discretisation effects. The
ground-state energy, E, is given by E0(p) and the mass,
M , by E0(0) from the 2-point fit function of eq. (3). Fig-
ure 4 shows results from our combined fits to the 2-point
and 3-point ηs correlators used for our analysis. We see
that, at the level of our statistical uncertainties (at most
3%), the speed of light shows no significant deviation
from 1 even at the highest momenta that we use for our
coarse and fine lattices. For very coarse set 1 there is
a small (1%) but significant discrepancy at pa = 0.373.
This is consistent with discretisation effects being domi-
nated by (ma)4 terms and therefore 3 times larger on the
very coarse lattices than on the coarse. The statistical
uncertainties increase with (pa) because the variance of
the finite-momentum correlator overlaps with, and so is
controlled by, the exponential behaviour of the square of
the zero-momentum correlator. This behaviour is similar

0.35

0.4

0.45

0.5

0.55

0.6

0.65

0.7

0 0.005 0.01 0.015 0.02 0.025

Q
2
F

η s
(Q

2
)(

G
eV

2
)

a2(fm2)

Q2 = 2.53 GeV2

Q2 = 0.91 GeV2

FIG. 6: We show here two slices through Figure 2 at two
different values of Q2, 2.53 GeV2 and 0.91 GeV2, plotted
against the square of the lattice spacing. The points (symbols
as for Fig. 4) show results at appropriate nearby values of
Q2 (see Table II) and include correlated uncertainties from
the lattice spacing. The grey bands show our fit result using
eq. (5), now as a function of a2 but with δm set to zero.

to that plotted in Figure 3 for the form factor. The un-
certainties on the fine lattices at a given value of (pa) are
larger than those on the coarse lattices, but the values of
(pa) correspond to a larger value of |~p|, so the accuracy
on the finer lattices translates into a larger reach in Q2.
Comparison of the two coarser lattices shows that the
larger volume lattices have smaller statistical uncertain-
ties at a given (pa) from volume-averaging.

A further test is to study the ratio of the matrix el-
ement of the pseudoscalar density, J5, between the vac-
uum and the ηs meson at non-zero spatial momentum
to that at zero momentum. Since the matrix element
should be independent of momentum, we expect a result
of 1.0. The matrix element is determined from the fitted
amplitudes denoted by bi in eq. (3), using

〈0|J5|ηs(p)〉
〈0|J5|ηs(0)〉 =

b0(p)

b0(0)

√
E0(p)

E0(0)
(B1)

Figure 5 shows our results, with a very similar qualitative
picture to that of Figure 4 and again showing excellent
control of discretisation effects in the HISQ formalism.

Finally, in Figure 6, we illustrate the discretisation er-
rors visible in the results for Q2Fηs(Q2) plotted in Fig-
ure 2. The figure shows results at two different values of
Q2 for which we have calculations at three different val-
ues for the lattice spacing (see Table II), plotted against
the square of the lattice spacing. The grey band shows
the fit results from eq. (5) (for δm = 0) at these values
of Q2, as a function of a2. We see that discretisation
effects, although small, are clearly visible. Our fit form
has no difficulty in fitting them and capturing their Q2-
dependence. The accuracy of our results at multiple (Qa)
and a values is what allows us good control over the con-
tinuum limit for the range of Q2 values that we cover
here.
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Appendix C: Parameters of the fit function

We give below the values of the fitted parameters, Ai
and their covariance matrix obtained in the continuum
and chiral limit of our results. In this limit we have (see
eq. 5):

PφF (z) = 1 +

4∑
i=1

Aiz
i (C1)

We find :

A1 = −0.387(59)

A2 = −0.87(26)

A3 = 0.4(1.0)

A4 = −0.5(1.7) (C2)

Only A1 and A2 are obtained with significance from the
fit. The Ai have covariance matrix: 0.003472 −0.008100 0.007133 0.000999

−0.008100 0.068858 −0.168850 0.151820
0.007133 −0.168850 1.021326 −1.433623
0.000999 0.151820 −1.433623 2.81513


(C3)

From the fit function for F we can readily derive results
also for derivatives of F or Q2F . For example the mean
square electric charge radius is given by

〈r2〉ηs = 6
dF

dq2

∣∣∣∣
q2=0

(C4)

=
6

M2
φ

(
1− A1

4

M2
φ

tcut

)
(C5)

Thus, from our results, we see that the mean square elec-
tric charge radius of the ηs is a factor of 1.103(16) larger
than the naive expectation from the φ mass. Translating
this into units of fm gives

〈r2〉ηs = 0.248(4) fm2. (C6)

This is, not surprisingly, significantly smaller than the
mean square electric charge radius of the π meson,
for which the Particle Data Group give an average of
0.452(11) fm2 [59].

The slope of Q2F is given from the fit parameters as:

d(Q2Fηs)

dQ2
= Fηs −

Q2Fηs
PφM2

φ

(C7)

+
Q2

Pφ

(1− z)∑i iAiz
i−1

2
√

(tcut +Q2)(
√
tcut +Q2 +

√
tcut)

Evaluating this at Q2 = 6 GeV2 gives -0.014(8), consis-
tent with zero (i.e. a curve for Q2F that is flat at this
point).
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