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ABSTRACT

Experimental data from hadronic τ decays allow for a precision determination
of the slope of the I = 1 vacuum polarization at zero momentum. We use this
information to provide a value for the next-to-next-to-leading order (NNLO) low-
energy constant C93 in chiral perturbation theory. The largest systematic error in
this determination results from the neglect of terms NNNLO (and higher) in the
effective chiral Lagrangian, whose presence in the data will, in general, make the
effective C93 determined in an NNLO analysis mass dependent. We estimate the
size of this effect by using strange hadronic τ -decay data to perform an alternate
C93 determination based on the slope of the strange vector polarization at zero
momentum, which differs from that of the I = 1 vector channel only through
SU(3) flavor-breaking effects. We also comment on the impact of such higher
order effects on ChPT-based estimates for the hadronic vacuum polarization
contribution to the muon anomalous magnetic moment.
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I. INTRODUCTION

The spin J = 0 + 1 polarization sums, Π0+1
V/A;ud,us, of the flavor ud and us vector (V )

and axial vector (A) current two-point functions of QCD have been calculated to two-loop
order in Chiral Perturbation Theory (ChPT) [1]. It is therefore, in principle, possible to
provide estimates for low-energy constants (LECs) appearing in these expressions at next-
to-next-to-leading order (NNLO) by comparing the relevant ChPT expressions to either

dispersive representations of the subtracted polarizations, Π0+1,sub
V/A;ud,us(Q

2) ≡ Π0+1
V ;ud,us(Q

2) −
Π0+1
V ;ud,us(0), or inverse-moment finite-energy sum-rule (IMFESR) results for their slopes at

Q2 = −q2 = −s = 0, both of which can be determined from experimental data for the
spectral functions in the V and A channels. Since LECs encode the physics of QCD at low
energies, their knowledge is indispensable in phenomenological applications of ChPT. Since
many applications now employ ChPT to NNLO, it is important to determine the numerical
values of as many NNLO LECs as possible.1

The LECs that appear in the ChPT expressions for Π0+1
V/A;ud,us(Q

2) are the next-to-leading

order (NLO) LECs L9 and L10 and the NNLO LECs C12, C13, C61, C62, C80, C81, C87 and
C93 in the SU(3)-flavor-symmetric limit, and, in addition, the NLO LEC L5 in flavor-
breaking contributions proportional to m2

K − m2
π. In previous work [2–4], we provided

determinations of L10 and the linear combinations C12−C61 +C80, C13−C62 +C80, C61 and
C87 using dispersive and IMFESR results for the flavor ud V − A polarization and flavor-
breaking ud− us V and V + A polarization combinations. For the ud V − A polarization,
both lattice results at unphysical quark mass [5] and physical-quark-mass results, obtained
using hadronic τ decay data from OPAL [6] and ALEPH [7] for the non-strange spectral
functions, were employed. The IMFESRs used to determine the Q2 = 0 values of the
flavor-breaking V and V + A polarizations required, in addition, strange hadronic τ -decay
data from ALEPH [8], Belle [9–11] and BaBar [12–14], together with 2014 HFAG strange
branching fractions [15].

In the present paper, we consider the LEC C93, which can be obtained from a determi-
nation of the slope with respect to Euclidean momentum-squared, Q2, at Q2 = 0, of the V
polarization using the ALEPH data. C93 is the only NNLO LEC appearing in the NNLO
representation of the subtracted polarizations Πsub

ud,us(Q
2).2 The ud representation also de-

pends on the NLO LEC L9 and the us representation on the NLO LECs L5 and L9. With
Πsub
ud,us(Q

2) both admitting once-subtracted dispersive representations, C93 can, in principle,
be determined from the experimental spectral data of either channel. As in our previous
work, we will take L5 and L9 from outside sources [16, 17]. In what follows, in addition to
Πsub
ud,us, we also consider the subtracted version of the V current polarization, Πη(Q

2) in the

notation of Ref. [1], associated with the neutral octet V current (ūγµu+ d̄γµd− 2s̄γµs)/
√

6.
L9 and C93 are the only NLO and NNLO LECs appearing in the NNLO representation of
Πsub
η (Q2).
Spectral functions (generically denoted ρ(s)) obtained from hadronic τ decays are, of

course, limited to s ≤ m2
τ . This limits the radius, s0, of the circular contour in the complex-

s plane used in τ -based IMFESRs to s0 ≤ m2
τ . Dispersive representations of the subtracted

1 For one application, see the discussion in Sec. V of this paper.
2 Since we will consider only the spin J = 0 + 1 V case in this paper, we will drop the superscript 0 + 1 and

the subscript V from now on.
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polarizations require the corresponding ρ(s) for all s. In the ud channel, we will use a
representation of ρ(s) above the τ mass obtained from sum-rule-based fits employing per-
turbation theory, augmented by a model for duality-violating (resonance) effects, performed
in Ref. [18]. While this introduces an assumption about the validity of this model into our
extraction of C93, the low-Q2 region from which C93 is determined is very insensitive to the
details of this assumption. Hence, we believe that the associated potential uncertainty is far
smaller than the systematic error due to the neglect of orders beyond NNLO in ChPT.

Since we will employ ChPT to NNLO, the value of C93 obtained from the ud V channel
analysis, which we denote by Cud

93 , will have a residual mass dependence, originating from the
effect of beyond-NNLO loop and LEC contributions present in the data, but absent from the
NNLO representation of Πsub

ud (Q2). NNNLO loop corrections have not been calculated, so an
expanded NNNLO analysis is not possible. We will, therefore, use flavor-breaking IMFESRs
to obtain an estimate for the slope of the difference of the us and ud V polarizations, hence
also of the slope of the us V polarization, at Q2 = 0. This latter result provides an alternate
NNLO us-V -channel-based determination, Cus

93 , of C93. The difference between Cud
93 and Cus

93

then provides an estimate of the size of residual mass-dependent effects originating from
orders beyond NNLO.

This paper is organized as follows. In Sec. II we summarize the necessary theory, and
in Sec. III we present our central ud-V -channel-based result for C93, with the experimental
error coming from the ALEPH data. In Sec. IV we analyze the us−ud difference mentioned
above, and obtain an estimate of the systematic error due to the neglect of higher orders
in ChPT. In Sec. V we comment on the use of NNLO ChPT for estimates of the hadronic
vacuum-polarization contribution to the anomalous magnetic moment of the muon. We
conclude with a discussion of our results.

II. THEORY SUMMARY

In this section we briefly summarize the necessary theory.

A. ChPT

In the isospin limit, the expression for the subtracted vacuum polarization Πsub
ud (Q2) was

calculated to NNLO in ChPT in Ref. [1]. As a function of Euclidean momentum-squared
Q2, it is given by

Πsub
ud (Q2) = −8B̂(Q2,m2

π)− 4B̂(Q2,m2
K) (2.1)

+
16

f 2
π

Lr9Q
2
(
2B(Q2,m2

π) +B(Q2,m2
K)
)

− 4

f 2
π

Q2
(
2B(Q2,m2

π) +B(Q2,m2
K)
)2

+ 8Cr
93Q

2 ,

where B̂(Q2,m2) = B(Q2,m2) − B(0,m2) is the subtracted standard, equal-mass, two-
propagator, one-loop integral, with

B(0,m2) =
1

192π2

(
1 + log

m2

µ2

)
, (2.2)
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B̂(Q2,m2) =
1

96π2

(4m2

Q2
+ 1

)3/2

coth−1

√
1 +

4m2

Q2
− 4m2

Q2
− 4

3

 ,

and the low-energy constants (LECs) Lr9 and Cr
93 are renormalized at the scale µ, in the

“MS + 1” scheme employed in Ref. [1].
From Eq. (2.1) it is clear that Cr

93 can be determined from the slope of Πsub
ud (Q2) at

Q2 = 0. Since we will only use the explicit expression for Πsub
us (Q2) for a systematic error

estimate, we do not provide it here, but refer to Ref. [1] for the full expression.3

B. Flavor-breaking sum rule

The difference ∆Π(Q2) of the ud and us spin J = 0 + 1 V unsubtracted two-point
functions Πud(Q

2) and Πus(Q
2) satisfies the flavor-breaking IMFESR [19]

d∆Π(Q2)

dq2

∣∣∣
q2=0

= −d∆Π(Q2)

dQ2

∣∣∣
Q2=0

=
∫ s0

4m2
π

dswτ (s/s0)
∆ρ(s)

s2
(2.3)

+
1

2πi

∮
|s|=s0

dswτ (s/s0)
∆Π(Q2 = −s)

s2
,

where q2 = −Q2, wτ (x) = (1−x)2(1+2x), and ∆ρ(s) = ρud(s)−ρus(s). As long as we choose
s0 ≤ m2

τ , the first integral on the right-hand side can be computed using experimentally
available spectral functions. We have used that wτ (0) = 1 and dwτ (s/s0)/ds|s=0 = 0.

As in other applications of FESRs, we will approximate ∆Π(s) in the second integral
by the operator product expansion (OPE),4 and assume that the contribution from duality
violations to this sum rule are negligibly small. In this case, this is reasonable because of
the presence of a weight function with a double pinch at s = s0, as well as a further 1/s2

suppression of the contribution from higher-s values to the integral. This assumption can be
tested for self-consistency by studying the s0 dependence of the right-hand side of Eq. (2.3).
Because the left-hand side is independent of s0, the individually s0-dependent ud- and us-
spectral integral and OPE integral contributions should combine to produce a right-hand
side independent of s0, within errors.

The sum rule (2.3) gives access to the difference of the slopes of the subtracted polar-
izations Πsub

ud (Q2) and Πsub
us (Q2) at Q2 = 0. This, together with the independent dispersive

determination of the slope of Πsub
ud (Q2), yields the value of the slope of Πsub

us (Q2) at Q2 = 0.
The NNLO expression for this slope provides the alternate determination, Cus

93 , of C93 already
introduced above.

Of course, since LECs are, by definition, mass independent, the NNLO analysis results
Cud

93 and Cus
93 should be the same, provided NNNLO and higher order contributions are

negligible. The experimental data used in their determination, however, know about the
existence of higher orders in ChPT, and if these are not, in fact, negligible, we expect the

3 In the notation of Ref. [1], Πsub
us (Q2) = Π

(1)
V K(−Q2) + Π

(0)
V K(−Q2)− (Π

(1)
V K(0) + Π

(0)
V K(0)).

4 Mass-independent, purely perturbative contributions cancel for the flavor-breaking combination considered

here. The leading, dimension-2, OPE contribution is thus perturbative in origin, and of order (ms−m)2/s,

where m is the u, d-averaged light quark mass.
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two values to be different. The numerical difference provides an indication of the size of
higher-order, residual mass-dependent effects.

In ChPT, the leading mass-dependent corrections to the slopes of the V polarizations at
Q2 = 0 result from NNNLO operators having a single insertion of the chiral mass operator
(χ+ in the notation of Ref. [20]). A two-trace NNNLO operator of this form in which
χ+ appears through the factor Tr (χ+) produces an SU(3)-flavor-symmetric contribution
proportional to 2m2

K + m2
π to the slopes of all of the ud, us and η V channel polarizations

at Q2 = 0. A single-trace NNNLO operator containing one factor of χ+, similarly, produces
contributions proportional to m2

π, m2
K and m2

η = 4
3
m2
K − 1

3
m2
π, respectively, to those same

slopes.5 To take these effects into account, we introduce two NNNLO LECs, δC
(1)
93 and δC

(2)
93 ,

where the (1), (2) superscripts indicates the number of trace factors in the accompanying
operators, normalized such that they produce mass-dependent contributions

Cud
93 = Cr

93 + δC
(2)
93 (2m2

K +m2
π) + δC

(1)
93 m

2
π , (2.4)

Cus
93 = Cr

93 + δC
(2)
93 (2m2

K +m2
π) + δC

(1)
93 m

2
K ,

Cη
93 = Cr

93 + δC
(2)
93 (2m2

K +m2
π) + δC

(1)
93

(
4

3
m2
K −

1

3
m2
π

)
.

Only the first of the new NNNLO LECs, δC
(1)
93 , contributes to the difference Cud

93 − Cus
93

at NNNLO, and thus if, guided by what is found at NNLO, we assume NNNLO LEC
contributions will dominate loop contributions also at NNNLO, the sum rule (2.3) will give

us an estimate of δC
(1)
93 . The observation that δC

(2)
93 is suppressed in large Nc then leads

to two expectations: one that Cud
93 should be much closer to the true, mass-independent

C93 than Cus
93 ; the other that the difference Cud

93 −Cus
93 should give a reasonably conservative

estimate of the systematic error associated with the neglect of contributions beyond NNLO in
ChPT. We emphasize that loop contributions at NNNLO will also produce mass-dependent
contributions to the slopes of Πsub

ud (Q2) and Πsub
us (Q2), and thus that this estimate relies on

the assumption, also made in the rest of this paper, that such mass-dependent higher-order
loop contributions are small compared to the LEC contributions, at the scale µ = 0.77 GeV
in the MS + 1 scheme we will use in this paper.

We note in closing this section that the higher-order, mass-dependent effects discussed
above are also included in the phenomenological approach of Ref. [21], where NNLO and
higher LEC contributions are modelled by replacing the NNLO LEC contributions propor-
tional to Cr

93 in the expressions for the subtracted polarizations with the corresponding full
vector-meson dominance (VMD) contributions obtained using ρ and φ masses in the VMD
expressions for the I = 1 and strange current channels, respectively. The chiral-limit part
of the vector meson mass in this approach produces quark-mass-independent contributions
which, in the chiral expansion, would be parametrized by a tower of NNLO and higher LECs,
including Cr

93 and the NNNLO LEC Cr introduced in Ref. [3] (which produces a common
SU(3)-flavor-symmetric contribution CrQ4 to the subtracted V polarizations we consider in
this paper). The quark-mass-dependent parts of the different vector meson masses used in
the different V channels, similarly, generate contributions which would be parametrized by

δC
(1)
93 , δC

(2)
93 , and yet higher-order LECs. The VMD extension of the NNLO results contains

only contributions analytic in Q2 in the low-Q2 region and hence also neglects NNNLO and
higher loop contributions.

5 Here we use the tree-level relations between quark and meson masses.
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III. C93 FROM ALEPH DATA

The once-subtracted ud V polarization Πsub
ud (Q2) can be defined in terms of the corre-

sponding spectral function ρud(s) as a function of the Euclidean momentum-squared Q2 by
the dispersion relation

Πsub
ud (Q2) = −Q2

∫ ∞
4m2

π

ds
ρud(s)

s(s+Q2)
. (3.1)

For s < m2
τ , we can use the experimental spectral function provided by Ref. [7], but for

s > m2
τ we will need a theoretical representation, with parameters fit from the data in the

region below m2
τ . We follow the procedure employed in Refs. [2, 4, 22], using the fitted

version of the theoretical representation obtained starting from the rescaled version of the
data for the ALEPH ud spectral function, and following the procedure described in detail in
Ref. [18]. The theoretical representation is the sum of the QCD perturbation theory (PT)
expression ρud,PT(s) and a “duality-violating” (DV) part ρud,DV(s) representing the effects
of resonances, with the ansatz

ρud,DV(s) = e−δV −γV s sin (αV + βV s) (3.2)

used for the DV part. The perturbative expression is known to order α4
s [24]. Fits to the

weighted integrals of the ALEPH data determining the parameters αs, αV , βV , γV and δV
have been performed in Ref. [18], with a focus on the high-precision determination of αs
from hadronic τ decays. We will use the values obtained from the fixed-order perturbation
theory (FOPT) sswitch = smin = 1.55 GeV2 fit of Table 1 of Ref. [18],

αs(m
2
τ ) = 0.295(10) , (3.3)

αV = −2.43(94) ,

βV = 4.32(48) GeV−2 ,

γV = 0.62(29) GeV−2 ,

δV = 3.50(50) .

The matches between the data and theory representations of both the weighted spectral
integrals and the spectral function in the window used in performing the fits are excellent,
and there is no discernible effect on Πsub

ud (Q2) for the values of Q2 smaller than 0.2 GeV2

of interest in the comparison to ChPT if we vary the point at which we switch from the
experimental to the theoretical version of ρud(s) within this fit window, use the results of
a contour-improved perturbation theory (CIPT)[23] fit instead of an FOPT fit, or employ
parameter values from one of the other optimal fits in Ref. [18]. Results for Πsub

ud (Q2) in the
region below Q2 = 0.2 GeV2, at intervals of 0.01 GeV2, are shown in Fig. 1. The errors shown
are fully correlated, taking into account, in particular, correlations between the parameters
of Eq. (3.3) and the data. We emphasize again that systematic effects due to the use of the
ansatz (3.2) can be assumed to be small compared to systematic effects due to the neglect
of higher orders in ChPT.

It follows from Eq. (2.1) that the slope of Πsub
ud (Q2) at Q2 = 0 is a linear combination of

the LECs Lr9 and Cr
93. We will use

mπ = 139.57 MeV , (3.4)

mK = 495.65 MeV ,

fπ = 92.21 MeV .
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FIG. 1: Πsub
ud (Q2) as a function of Q2 constructed from ALEPH data as explained in Sec. III.

The errors on these values are so small that they can be ignored in the computation of the
error on Cr

93. We also use the value [17]

Lr9(µ = 0.77 GeV) = 0.00593(43) . (3.5)

With these inputs, the NNLO representation of the slope, Eq. (2.1), becomes

dΠsub
ud (Q2)

dQ2

∣∣∣
Q2=0

= (−0.02253− 0.00291− 0.02775(201)) GeV−2 + 8Cud
93 , (3.6)

where the first term is the NLO contribution, the second the NNLO loop contribution
involving only LO vertices and the third the NNLO loop contribution proportional to Lr9.
The slope obtained from the results for Πsub

ud (Q2) shown in Fig. 1,6

dΠsub
ud (Q2)

dQ2

∣∣∣
Q2=0

= −0.17608± 0.00291 GeV−2 , (3.7)

then yields, for the (potentially mass-dependent) ud channel effective LEC Cud
93 , the result

Cud
93 (µ = 0.77 GeV) = −0.01536± 0.00036± 0.00025 GeV−2 , (3.8)

where the first error comes from the error in the slope, and the second from the error in
Lr9. As one can see, the result in (3.6) is dominated by the contribution from Cud

93 . Residual
mass-dependent effects causing Cud

93 to, in principle, differ from Cr
93 remain to be estimated.

6 The error on this value is based on propagation of the full covariance matrix.
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IV. ESTIMATE OF RESIDUAL MASS DEPENDENCE

The value for C93 obtained in Eq. (3.8) appears to have a very small error, but this is
misleading. There are, in fact, other small errors which we neglected in this result, for
instance due to the use of our ansatz (3.2) and isospin breaking. However, as mentioned
already above, there is also a theoretical systematic error due to the neglect of orders in
ChPT beyond NNLO, which is likely to be more important, and which we address in this
section. We do so by using the IMFESR (2.3) to determine the difference in the slopes at
Q2 = 0 of Πsub

ud (Q2) and Πsub
us (Q2), and, from this, using the result for dΠsub

ud (Q2)/dQ2|Q2=0

from Eq. (3.7), determine dΠsub
us (Q2)/dQ2|Q2=0, whose NNLO representation then provides

us with an alternate, us-channel determination of C93, denoted Cus
93 . Cud

93 and Cus
93 should be

equal within errors if contributions beyond NNLO are negligible. As it turns out, they are
not, and this allows us to estimate the effect of the neglect of higher order contributions.
While it is difficult to convert this estimate into a reliable systematic error, it will be clear
that this is the dominant uncertainty in our result for Cr

93.
In order to evaluate the right-hand side of Eq. (2.3), we will need the ud and us spectral

functions, as well as the dimension-2 and dimension-4 terms in the OPE.
The ud spectral function is the same as that used to construct Πsub

ud (Q2) above; we refer
again to Ref. [18] for a more detailed discussion (cf. Sec. III.A, in particular).

The us spectral function we will use is constructed as a sum over exclusive mode contribu-
tions, as in Ref. [3], to which we refer for a detailed discussion (cf. Sec. III.C, in particular).
All 2014 HFAG inputs used previously have been updated to reflect current 2016 HFAG
values [25].

One additional issue to consider is the choice ofKπ branching fractions. These provide the
overall normalization used to convert the unit-normalized Belle experimental distribution [9]
to the actual, physically normalized Kπ contribution to the us spectral function. The first
normalization is the one provided by HFAG [25],

B[K−π0] = 0.00433(15) , (4.1)

B[K̄0π−] = 0.00839(14) ,

the errors of which are essentially uncorrelated, yielding a 2-mode Kπ branching fraction
sum 0.01271(21). The dispersive study of Ref. [26], however, finds clear tension between such
branching fraction values, K`3 results and dispersive constraints on the Kπ form factors.
The analysis of Ref. [26] yields slightly higher expectations for these branching fractions,

B[K−π0] = 0.00471(18) , (4.2)

B[K̄0π−] = 0.00857(30) ,

this time with the errors essentially 100% correlated and hence a 2-mode Kπ branching
fraction sum 0.01327(48). We consider both possibilities in our analysis; the associated
ud − us slope uncertainty is found to be about half the size of the error induced by other
experimental uncertainties.

We treat the OPE in the same way as in Ref. [3], and refer to Sec. III.B of Ref. [3] for
the explicit expressions. We will use the input parameters7

αs(m
2
τ ) = 0.3155(90) (converted from Ref. [27]) , (4.3)

7 Because the OPE contribution to Eq. (2.3) is so small, it does not matter whether one uses the value for

αs(m
2
τ ) given below, or the one given in Eq. (3.3).
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FIG. 2: Contributions to the right-hand side (RHS) of the IMFESR (2.3) and the resulting ud-

us+OPE sum, as a function of s0. The us spectral integrals are those obtained using the ACLP

branching-fraction normalization of the Kπ distribution.

ms(2 GeV) = 93.9(1.1) MeV (Ref. [28]) ,

mτ = 1.77686(12) MeV (Ref. [27]) ,

〈ss〉 / 〈uu〉 = 1.08(16) (Ref. [29]) ,

Be = 0.17815(23) (Ref. [25]) ,

Vud = 0.97417(21) (Ref. [30]) ,

Vus = 0.22582(91) (3-family unitarity) ,

SEW = 1.0201(3) (Ref. [31]) ,

where 〈uu〉 is in the isospin limit, and its value is obtained from the GMOR relation. We
find that the OPE contribution to the right-hand side of Eq. (2.3) is less than 1.6% of the
total for s0 = 2.15 GeV2, and decreases for larger values of s0.

Very good s0-stability is observed for the slope obtained from this analysis. This is il-
lustrated, for the ACLP choice of the Kπ normalization, in Figure 2. The figure shows the
individual terms (OPE integral, ud spectral integral and us spectral integral) appearing on
the right-hand side of Eq. (2.3), together with the ud-us+OPE combination which deter-

mines −d∆Π(Q2)
dQ2 |Q2=0, all as a function of s0. The corresponding results for the HFAG Kπ

normalization choice are essentially identical, and hence not shown explicitly. The excellent
s0-stability provides a self-consistency check on our neglect of duality violations employing
the IMFESR (2.3), and confirms the very minor role played by the OPE.

Using the Kπ branching-fraction normalization of Eq. (4.1), and quoting the s0 = m2
τ
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result to be specific, we find a slope for the ud− us difference

d∆Π(Q2)

dQ2

∣∣∣
Q2=0

= −0.0894(35) GeV−2 , (4.4)

which yields
dΠsub

us (Q2)

dQ2

∣∣∣
Q2=0

= −0.0867(46) GeV−2 (4.5)

for the slope in the us channel. The corresponding NNLO representation, with Eq. (3.4) as
input, is

dΠsub
us (Q2)

dQ2

∣∣∣
Q2=0

= (−0.000868− 0.004740− 0.6836Lr5 − 0.5419Lr9) GeV−2 + 8Cus
93 , (4.6)

with the first term the NLO contribution, the second the NNLO loop contribution involving
only LO vertices and the third and fourth the NNLO one-loop contributions with a single
NLO vertex. Using [28]

Lr5(µ = 0.77 GeV) = 0.00119(25) , (4.7)

and Eq. (3.5) for Lr9, we have, adding the first two terms on the right-hand side of Eq. (4.6),

dΠsub
ud (Q2)

dQ2

∣∣∣
Q2=0

= (−0.005606− 0.000814(171)− 0.003214(230)) GeV−2 + 8Cus
93 , (4.8)

and hence
Cus

93 (µ = 0.77 GeV) = −0.00963(58) GeV−2 , (4.9)

where the error is dominated by the experimental error on the ud− us slope. Again, as in
the ud channel, the slope (4.8) is dominated by the contribution from the LEC Cus

93 .
Using, instead, the Kπ branching-fraction normalization of Eq. (4.2), we find a slope for

the ud− us difference
d∆Π(Q2)

dQ2

∣∣∣
Q2=0

= −0.0868(40) GeV−2 (4.10)

at s0 = m2
τ , yielding for the slope in the us channel

dΠsub
us (Q2)

dQ2

∣∣∣
Q2=0

= −0.0893(49) GeV−2 , (4.11)

and the result
Cus

93 (µ = 0.77 GeV) = −0.00996(61) GeV−2 . (4.12)

The values (4.9) and (4.12) are consistent within errors. Comparing these results with that
in Eq. (3.8) shows the existence of significant residual mass-dependent effects. Taking the
average of the values (4.9) and (4.12) yields

Cud
93 − Cus

93

Cud
93

∣∣∣
µ=0.77 GeV

= 0.36(4) . (4.13)

The size of this difference is consistent with the expectation for an SU(3) breaking effect.
Finally, from

d∆Π(Q2)

dQ2

∣∣∣
Q2=0

= (−0.019832 + 0.6836Lr5 − 4.1376Lr9) GeV−2 − 8δC
(1)
93 (m2

K −m2
π) , (4.14)
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we find

δC
(1)
93 (m2

K −m2
π) =

{
0.00573(49) GeV−2 (HFAG) ,
0.00540(55) GeV−2 (ACLP) ,

(4.15)

for the Kπ branching-fraction normalizations of Ref. [25] and Ref. [26], respectively.

V. CHPT AND THE MUON ANOMALOUS MAGNETIC MOMENT

The lowest-order hadronic contribution to the muon anomalous magnetic moment is given
by an integral over Q2 of the hadronic vacuum polarization times a weight that causes about
90% of the integral to correspond to the integral between Q2 = 0 and Q2 = 0.2 GeV2. One
may thus hope that ChPT can be used to constrain the low-momentum part of this integral
[21, 32–34]. In particular, since it is difficult to compute the quark-disconnected part of the
hadronic vacuum polarization on the lattice [35–38], ChPT has been used to estimate the
size of the disconnected contribution relative to the connected contribution [21, 33].

In Ref. [37], the disconnected part has been computed on the lattice. In this analysis,
an estimate of the systematic uncertainty associated with the inability to accurately resolve
the disconnected signal at large Euclidean times was achieved by considering the Fourier

transform Πuu−ss,dd−ss(Q
2) of 〈0|T

[
V µ
uu−ss(x)V ν

dd−ss(0)
]
|0〉, which (in the isospin limit) is

equal to 9 times the sum of the connected strange and the full disconnected contributions to
the electromagnetic vacuum polarization. A physical model for the large-time disconnected
contribution was then obtained by subtracting from a fitted two-exponential representation
of the strange-connected-plus-full-disconnected sum the well-determined strange connected
contribution. Though restricted in Ref. [37] to an investigation of the behavior of the
disconnected contribution at large Euclidean times, this strategy is, in principle, usable more
generally. Thus, were a reliable continuum representation of the strange-connected-plus-
full-disconnected sum to be available, the disconnected contribution to the electromagnetic
polarization could be obtained from this simply by subtracting lattice results for the strange
connected contribution, which, for example, has been accurately determined in Refs. [39, 40].
The hope is that ChPT might provide such a reliable continuum representation, at least in
the low-Q2 region. To see that this might indeed be possible, note that one has, in terms of

the I = 1 and SU(3)-octet vacuum polarizations Π
(1)
V π and Π

(1)
V η of Ref. [1],

Πuu−ss,dd−ss(Q
2) = −1

2
Π

(1)
V π(Q2) +

3

2
Π

(1)
V η(Q

2) . (5.1)

The results of Ref. [1] thus provide an NNLO representation of Πuu−ss,dd−ss(Q
2). From

Eq. (2.4), the “effective” C93 contribution, including NNNLO residual mass effects, to
1
9
Πuu−ss,dd−ss(Q

2) is equal to

8

9
Q2Ceff

93 ≡ =
8

9
Q2

(
Cr

93 + δC
(1)
93 (2m2

K −m2
π) + δC

(2)
93 (2m2

K +m2
π)
)

(5.2)

=
8

9
Q2

(
Cud

93 + 2 δC
(1)
93 (m2

K −m2
π)
)
.

Using Eqs. (3.8) and (4.15), we find a significant cancellation between the Cud
93 and the δC

(1)
93

contributions in (5.2) resulting in

Ceff
93 =

{
−0.0039(11) GeV−2 (HFAG) ,
−0.0046(12) GeV−2 (ACLP) .

(5.3)
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The two estimates are consistent within errors, but very different from our best estimate for
the true value of Cr

93, given in Eq. (3.8). The strong cancellation between the Cud
93 and the

δC
(1)
93 contributions produces a result for the slope of 1

9

[
−1

2
Π

(1)
V π + 3

2
Π

(1)
V η

]
much less strongly

dominated by the effective NNLO LEC combination Cud
93 + 2(m2

K − m2
π)δC

(1)
93 than is the

case for the slopes of either of the individual terms entering the difference. Explicitly, one
finds for the slope of this combination

[0.00082 + 0.00016 + 0.00189(14)] GeV−2 +
8

9
Ceff

93

= 0.00287(14) GeV−2 +
8

9
Ceff

93 , (5.4)

where the first three terms in the first line are the NLO contribution, the NNLO loop
contribution with only LO vertices, and the NNLO loop contribution proportional to Lr9,
respectively, all at µ = 0.77 GeV. The results given in Eq. (5.3) yield for the last contribution,
8Ceff

93 /9, the values −0.0035(9) and −0.0041(10) GeV−2, for the HFAG and ACLP Kπ
normalization choices, respectively.8 These are only slightly larger in magnitude than the

sum of the NLO and other NNLO contributions. In contrast, for
dΠ

(1)
V π(Q2)

dQ2

∣∣∣
Q2=0

, the results

of Eq. (3.6) show a µ = 0.77 GeV NNLO contribution proportional to Cud
93 a factor of ∼ 5.5

larger than the corresponding NLO contribution and ∼ 4.0 larger than the remaining NNLO

contributions. The slope
dΠ

(1)
V η(Q2)

dQ2

∣∣∣
Q2=0

is even more strongly dominated by the effective

NNLO LEC contribution, with

dΠ
(1)
V η(Q

2)

dQ2

∣∣∣
Q2=0

= (−0.00258− 0.00002 + 0.00210(15)) GeV−2 + 8Cη
93 , (5.6)

where Cη
93 ≡ Cud

93 + 4
3
δC

(1)
93 (m2

K − m2
π), the first three terms have the same meaning as in

Eq. (3.6) and, with the results for Cud
93 and δC

(1)
93 given above, 8Cη

93 = −0.0653(56) GeV−2

and −0.0618(53) GeV−2, for the ACLP and HFAG Kπ normalization cases, respectively.

Moreover, in contrast to the Π
(1)
V π and Π

(1)
V η cases, where the effective NNLO LEC contri-

butions have the same signs as the NLO and remaining NNLO contributions, the effective
NNLO LEC contribution to the slope in Eq. (5.4) has the opposite sign, leading to further
cancellation between the effective NNLO LEC and other contributions. The final values
for the slope of the 1

9

[
−1

2
Π

(1)
V π + 3

2
Π

(1)
V η

]
combination, −0.0006(10) GeV−2 and −0.012(11)

8 It is worth noting that, though the VMD estimates for Cud93 and Cus93 differ by ∼ 10− 30% from the corre-

sponding dispersive and IMFESR determinations (see below for details), the VMD estimate for Ceff
93 works

rather well. Explicitly, with fEM,V the vector meson decay constants, 〈0|JEM
µ |V (q)〉 = gEM,VmV εµ(q) =

fEM,Vm
2
V εµ(q), one finds the VMD expectation

8

9
Ceff

93 =
1

9

f2
EM,ρ

m2
ρ

−
f2

EM,ω

m2
ω

−
f2

EM,φ

m2
φ

. (5.5)

With PDG values for the masses and V → e+e− decay widths, gEM,ρ = 156.4 MeV, gEM,ω = 46.6 MeV

and gEM,φ = 75.9 MeV, the VMD estimate yields Ceff
93 = −0.0041 GeV−2, in good agreement with the

results of Eq. (5.3).
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GeV−2 for the HFAG and ACLP Kπ normalization choices, respectively, thus show a further
factor of 3 to 6 reduction relative to the already reduced effective NNLO LEC contributions.
This raises the question of how safe it is to neglect NNNLO and higher loop contributions
for this particular combination.9

We emphasize that the mass-dependent NNNLO terms considered here further supple-
ment the mass-independent NNNLO contribution CrQ4 added to Eq. (2.1) in Refs. [34, 41].
The latter was required to account for the deviation between the Q2 dependence of
the full vacuum polarization and the NNLO ChPT expression, visible already beyond
Q2 ≈ 0.1 GeV2. Such a mass-independent term is, of course, also present at NNNLO,
but does not contribute to the values of the slopes at Q2 = 0 considered above.

VI. DISCUSSION

We determined the value of the NNLO LEC C93 from ALEPH data for the V hadronic
ud and us spectral functions. The difference between these two determinations gives an
estimate of the systematic uncertainty due to effects beyond NNLO in ChPT, and turns out
to dominate the total uncertainty.

One would expect that the value Cud
93 is closer to the true mass-independent result than

Cus
93 since the pion mass is much smaller than the kaon mass. Assuming a mass-dependent

contamination linearly dependent on the square of the meson mass, this would lead to an
extrapolated value Cr

93 = −0.0158 GeV2. Such an extrapolation, however, does not take

into account the effect of the 1/Nc-suppressed NNNLO contribution proportional to δC
(2)
93 ,

or other higher-order effects. To be conservative in our assessment, we therefore take as our
central result for Cr

93 the value of Cud
93 given in Eq. (3.8) of Sec. III, and assign to this an

uncertainty equal to the difference Cus
93 − Cud

93 (cf. Eq. (4.13) in Sec. IV). This represents
our best estimate of the uncertainty associated with the presence of residual higher-order
mass-dependent effects. Our final result is then

Cr
93(µ = 770 GeV) = −0.015(5) GeV−2 . (6.1)

It is interesting to compare the results obtained above with estimates based on VMD.

VMD leads to the expectation Cij
93 ∼ −

f2EM,V

4m2
V

[1], with mV = mρ = 775 MeV, fEM,V =

fEM,ρ ∼ 0.2 for ij = ud and mV = mK∗ = 892 MeV, fEM,V = fEM,K∗ ∼ fEM,ρ for ij = us.
The resulting ij = ud estimate, Cud

93 ∼ −0.017 GeV−2, agrees at the ∼ 10% level with the
result found in Eq. (3.8). For ij = us, VMD correctly predicts that |Cus

93 | < |Cud
93 |, though

the magnitude in this case agrees with the determinations of Eqs. (4.9) and (4.12) only at the
approximately 30% level. As noted already, the VMD estimate for Ceff

93 , where the existence
of strong cancellations might lead one to anticipate a much larger fractional error, in fact,

9 Significant cancellation in the LEC contributions is, in fact, expected. If one neglects the ρ width and ρ−ω
mass difference, and assumes ideal mixing and negligible flavor-breaking in the vector meson couplings, ρ

and ω contributions to the slope of − 1
2ΠV π + 3

2ΠV η cancel exactly. This cancellation mechanism which,

owing to the near degeneracy of the ρ and ω masses, will also be present in the vector meson contributions

to the higher derivatives at Q2 = 0, is specific to the vector meson contributions, encoded in the NNLO

and higher LECs. There is thus no reason to expect a similar cancellation in the corresponding NNNLO

and higher loop contributions.
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works very well. The strong cancellation does, however, raise worries about the possible
impact of neglected NNNLO and higher loop contributions.

Finally, in Sec. V, we showed that the strong cancellation produced by NNNLO residual-
mass-dependent effects in the supplemented NNLO representation of the sum of strange
connected and full disconnected contributions calls into question the accuracy with which
this sum can be represented by a supplemented NNLO ChPT form neglecting currently
unknown NNNLO and higher-order contributions. The slope of this sum at Q2 = 0, in
particular, could receive sizeable corrections from such contributions, significantly impact-
ing the accuracy with which the associated low-Q2 contributions to the muon anomalous
magnetic moment can be estimated.
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