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We unify two widely different approaches to understanding the infrared behaviour of quantum
chromodynamics (QCD), one essentially phenomenological, based on data, and the other computa-
tional, realised via quantum field equations in the continuum theory. Using the latter, we explain
and calculate a process-independent running-coupling for QCD, a new type of effective charge that
is an analogue of the Gell-Mann–Low effective coupling in quantum electrodynamics. The result is
almost identical to the process-dependent effective charge defined via the Bjorken sum rule, which
provides one of the most basic constraints on our knowledge of nucleon spin structure. This re-
veals the Bjorken sum to be a near direct means by which to gain empirical insight into QCD’s
Gell-Mann–Low effective charge.

I. INTRODUCTION

In quantum gauge field theories defined in four space-
time dimensions, the Lagrangian couplings and masses
do not remain constant. Instead, owing to the need
for ultraviolet (UV) renormalisation, they come to de-
pend on a mass scale, which can often be related to the
energy or momentum at which a given process occurs.
The archetype is quantum electrodynamics (QED), for
which a sensible perturbation theory can be defined [1].
Within this framework, owing to the Ward identity [2],
there is a single running coupling, measuring the strength
of the photon–charged-fermion vertex, which can be ob-
tained by summing the collection of virtual processes that
change the bare photon into a dressed object, viz. by com-
puting the photon vacuum polarisation. QED’s running
coupling is known to great accuracy [3] and the running
has been observed directly [4, 5].
A new coupling appears when electromagnetism is

combined with weak interactions to produce the Stan-
dard Electroweak Model [6]. It may be characterised by
sin2 θW , where θW is a scale-dependent angle which spec-
ifies the particular mixing between the model’s defining
neutral gauge bosons that produces the observed photon
and Z0-boson. A perturbation theory can also be de-
fined for the electroweak theory [7] so that sin2 θW can
be computed and compared with precise experiments [3].
At first sight, the addition of quantum chromodynam-

ics (QCD) [8] to the Standard Model does not quali-
tatively change anything, despite the presence of four
possibly distinct strong-interaction vertices (gluon-ghost,
three-gluon, four-gluon and gluon-quark) in the renor-
malised theory. An array of Slavnov-Taylor identities
(STIs) [9, 10], implementing BRST symmetry [11, 12]
(a generalisation of non-Abelian gauge invariance for the
quantised theory) ensures that a single running coupling
characterises all four interactions on the domain within
which perturbation theory is valid. The difference here
is that whilst QCD is asymptotically free and extant ev-
idence suggests that perturbation theory is valid at large

momentum scales, all dynamics is nonperturbative at
those scales typical of everyday strong-interaction phe-
nomena, e.g. ζ . mp, where mp is the proton’s mass.
The questions that arise are how many distinct run-

ning couplings exist in nonperturbative QCD, and how
can they be computed? Given that there are four indi-
vidual, apparently UV-divergent interaction vertices in
the perturbative treatment of QCD, there could be as
many as four distinct couplings at infrared (IR) mo-
menta. (Of course, if nonperturbatively there are two
or more couplings, they must all become equivalent on
the perturbative domain.) We will argue herein that,
nonperturbatively, too, QCD possesses a unique run-
ning coupling. The alternative admits the possibility of
a different renormalisation-group-invariant (RGI) intrin-
sic mass-scale for each coupling and no guarantee of a
connection between them. In such circumstances, BRST
symmetry would likely be irreparably broken by nonper-
turbative dynamics and one would be pressed to conclude
that QCD was non-renormalisable owing to IR dynamics.
There is no empirical evidence to support such a conclu-
sion: QCD does seem to be a well-defined theory at all
momentum scales, owing to the dynamical generation of
gluon [13–18] and quark masses [19–21], which are large
at IR momenta.

II. PROCESS-INDEPENDENT RUNNING

COUPLING

Poincaré covariance is of enormous importance in mod-
ern physics, e.g. it places severe limitations on the nature
and number of those independent amplitudes that are re-
quired to fully specify any one of a gauge theory’s n-point
Schwinger functions (Euclidean Green functions). Anal-
yses and quantisation procedures that violate Poincaré
covariance lead to a rapid proliferation in the number of
such functions. For example, the gluon 2-point function
(propagator, Dµν) is completely specified by one scalar
function in the class of linear covariant gauges; but, in the
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class of axial gauges, two unconnected functions are re-
quired and unphysical, kinematic singularities are present
in the associated tensors [22]. Consequently, covariant
gauges are typically preferred for concrete calculations in
both continuum and lattice-regularised studies of QCD.
In fact, Landau gauge is the most common choice be-
cause, inter alia, it is a fixed point of the renormalisa-
tion group and readily implemented in lattice-QCD [23].
Herein, therefore, we use Landau gauge; and, moreover,
employ a physical momentum-subtraction renormalisa-
tion scheme, detailed elsewhere [24].
As noted in Sec. 1, there is a particular simplicity

to QED, viz. the unique running coupling, a process-
independent effective charge, can be obtained simply
by computing the photon vacuum polarisation. This is
because ghost-fields decouple in Abelian theories; and,
consequently, one has the Ward identity, which guaran-
tees that the electric-charge renormalisation constant is
equivalent to that of the photon field. Stated physically,
the impact of dressing the interaction vertices is absorbed
into the vacuum polarisation. This is not generally true
in QCD because ghost-fields do not decouple.
There is one approach to analysing QCD’s Schwinger

functions, however, that preserves some of QED’s sim-
plicity; namely, the combination of pinch technique (PT)
[25–30] and background field method (BFM) [31, 32].
This framework can be seen as a means by which QCD
can be made to “look” Abelian: one systematically re-
arranges classes of diagrams and their sums in order to
obtain modified Schwinger functions that satisfy linear
STIs. In the gauge sector, in Landau gauge, this pro-
duces a modified gluon dressing function from which one
can compute the QCD running coupling, i.e. the polarisa-
tion captures all required features of the renormalisation
group. Furthermore, the coupling is process independent:
one obtains precisely the same result, independent of the
scattering process considered, whether gluon+gluon→
gluon+gluon, quark+quark→ quark+quark, etc. This
clean connection between the coupling and the gluon vac-
uum polarisation relies on another particular feature of
QCD, viz. in Landau gauge the renormalisation constant
of the gluon-ghost vertex is not only finite but unity [9], in
consequence of which the effective charge obtained from
the PT-BFM gluon vacuum polarisation is directly con-
nected with that deduced from the gluon-ghost vertex
[24], sometimes called the “Taylor coupling,” αT [33–35].
Writing these statements explicitly, with Tµν(k) =

δµν − kµkν/k
2, one has [36, 37]

α(ζ2)DPB

µν (k; ζ) =
α(ζ2)∆F (k

2; ζ)

[1 +G(k2; ζ)]2
Tµν(k) (1a)

= d̂(k2)Tµν(k) , (1b)

I (k2) := k2d̂(k2) =
αT(k

2)

[1− L(k2; ζ2)F (k2; ζ2)]2
, (1c)

where: α(ζ2) = g2(ζ2)/[4π], ζ is the renormalisation
scale; DPB

µν is the PT-BFM gluon two-point function;

Dµν(k) = ∆F (k
2)Tµν(k) is the canonical gluon two-point

function; d̂(k2) is the RGI running-interaction discussed
in Ref. [24]; F is the dressing function for the ghost prop-
agator; G is that piece of the gluon-ghost vacuum po-
larisation that can be isolated by transverse projection,
and L is that longitudinal part which vanishes at k2 = 0.
In terms of these quantities, QCD’s matter-sector gap
equation can be written (k = p− q)

S−1(p) = Z2 (iγ · p+mbm) + Σ(p) , (2a)

Σ(p) = Z2

∫ Λ

dq

4πd̂(k2)Tµν(k)γµS(q)Γ̂
a
ν(q, p) , (2b)

where the usual Z1Γ
a
ν has become Z2Γ̂

a
ν , with the lat-

ter being a PT-BFM gluon-quark vertex that satisfies
an Abelian-like Ward-Green-Takahashi identity [30] and
Z1,2 are, respectively, the gluon-quark vertex and quark
wave function renormalisation constants.
The RGI interaction, d̂(k2), in Eqs. (1) has been

computed. The most up-to-date result is discussed in
Refs. [36, 37]. These analyses make explicit a remark-
able feature of QCD; namely, the interaction saturates
at infrared momenta:

d̂(k2 = 0) = α(ζ2)/m2

g(ζ) = α0/m
2

0 , (3)

where α0 := α(0) ≈ 0.9π, m0 := mg(0) ≈ mp/2,
i.e. the gluon sector of QCD is characterised by a
nonperturbatively-generated infrared mass-scale [13–18].
With this in mind, we define a RGI function

D(k2) = ∆F(k
2; ζ)/[m2

0∆F(0; ζ)] , (4)

employing for ∆F a parametrisation of continuum-
and/or lattice-QCD calculations of the canonical gluon
two-point function built such that

1

D(k2)
=

{
m2

0 +O(k2 ln k2) k2 ≪ m2
0

k2 +O(1) k2 ≫ m2
0

, (5)

so that the nonperturbative IR behaviour is preserved

and the UV anomalous dimension remains in d̂(k2).
(Practical details are provided in Sec. III.) Using Eq. (4),

Σ(p) = Z2

∫ Λ

dq

4πα̂PI(k
2)Dµν(k

2)γµS(q)Γ̂
a
ν(q, p) , (6)

where Dµν = DTµν and the dimensionless product

α̂PI(k
2) = d̂(k2)/D(k2) (7)

is a RGI running-coupling (effective charge): by construc-
tion, α̂PI(k

2) = I (k2) on k2 ≫ m2
0.

The product in Eq. (7) has many important qualities.
For instance, it is process independent: as noted above,
the same function appears irrespective of the initial and
final parton systems. Moreover, it unifies a diverse and
extensive array of hadron observables [36]; a property
that is evident in the fact that the dressed-quark self-
energy serves as a generating functional for the Bethe-
Salpeter kernel in all meson channels and the product
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FIG. 1. Solid (blue) curve, complete effective charge in
Eq. (7); and dot-dashed (black) curve, Taylor-scheme effec-
tive charge, i.e. computed in the absence of crucial pieces of
the gluon-ghost vacuum polarisation [LF ≡ 0 in Eq. (1c)].
The k-axis scale is linear to the left of the vertical line and
logarithmic otherwise, an artifice which enables us to show
saturation of the effective charge.

α̂PI(k
2) is untouched by the generating procedure in all

flavoured systems [38–41]. Finally, although α̂PI(k
2) is

RGI and process-independent in any gauge, it is sufficient
to know α̂PI(k

2) in Landau gauge (the choice for easiest
computation) because: α̂PI(k

2) is form-invariant under
gauge transformations, since the identity established by
Eqs. (1a), (1b) is the same in all linear covariant gauges
[42]; and, crucially, gauge covariance ensures that such
transformations are implemented by multiplying a simple
factor into the configuration space transform of the gap
equation’s solution and may consequently be absorbed
into the dressed-quark two-point function [43].

III. COMPUTING THE RUNNING COUPLING

The effective charge defined in Eq. (7) is a product of

known quantities: both d̂(k2) and the canonical gluon
two-point function have been extensively studied and
tightly constrained using continuum and lattice methods
[36, 37, 44]. Indeed, the known forms of these functions
provide a unified, quantitatively reliable explanation of
numerous hadron physics observables [36, 44]. It is there-
fore straightforward to combine existing results and com-

pute d̂(k2), a procedure [37] which yields the function
depicted in Fig. 1. For this purpose we used a [n, n+ 1],
n = 1, Padé approximant to simultaneously interpo-
late the IR behaviour of contemporary lattice results for
Dµν(k) and express the UV constraint on ∆F(k

2; ζ) spec-
ified in Eq. (5). The result is given in line 2, Eq. (10) of
Ref. [37] and yields m0 = 0.45GeV via Eqs. (4), (5). (Us-
ing n ≥ 2 yields no noticeable fit improvement, but n = 0
is incapable of representing modern lattice data.)
It is worth highlighting some important features of the

effective charge in Fig. 1. First, it is a parameter-free
prediction: the curve is completely determined by results
obtained for the gluon and ghost two-point functions us-
ing continuum and lattice-regularised QCD. Second, it
is physical, in the sense that there is no Landau pole,
and it saturates in the IR: α̂PI(k

2 = 0) = α0 ≈ 0.9π,
i.e. the coupling possesses an infrared fixed point [45].
Third, the prediction is equally concrete and sound at all
spacelike momenta, connecting the IR and UV domains,
and precisely reproducing the known behaviour of the
Taylor coupling at large k2 [33–35], with no need for an
ad hoc “matching procedure,” such as that employed in
models [46]. Finally, our result is essentially nonpertur-
bative, obtained by combining self-consistent solutions of
gauge-sector gap equations with lattice simulations, aug-
mented only by a physical procedure for setting a single
mass-scale [37]. There are indications [47–49] that the
effective charge in Fig. 1 could prove useful in developing
a modern dynamical perturbation theory [50].

It is evident in Fig. 1 that ghost-gluon interactions are
critical. The RGI product LF in Eq. (1c) expresses ef-
fects of gluon-ghost scattering that are essential to ensur-
ing α̂PI is process-independent. It is also quantitatively
important, introducing a roughly 60% enhancement of
α̂PI(k

2) for k ≃ m0. It must also, therefore, be physi-
cally significant because the strength of the running cou-
pling at IR momenta determines the magnitude of dy-
namical chiral symmetry breaking (DCSB) [36, 37, 44];
and DCSB is a crucial emergent phenomenon in QCD,
possibly inseparable from confinement in the unquenched
theory [51], i.e. when dynamical light quarks are active.

IV. COMPARISON OF EFFECTIVE CHARGES

Another approach to determining an “effective charge”
in QCD was introduced in Ref. [52]. This is a process-
dependent procedure; namely, an effective running cou-
pling is defined to be completely fixed by the leading-
order term in the perturbative expansion of a given
observable in terms of the canonical running coupling.
An obvious difficulty, or perhaps drawback, of such a
scheme is the process-dependence itself. Naturally, effec-
tive charges from different observables can in principle be
algebraically connected to each other via an expansion of
one coupling in terms of the other. However, any such ex-
pansion contains infinitely many terms [46]; and this con-
nection does not imbue a given process-dependent charge
with the ability to predict any other observable, since the
expansion is only defined a posteriori, i.e. after both ef-
fective charges are independently constructed.

One such process-dependent effective charge is αg1(k
2),

which is defined via the Bjorken sum rule [53, 54]:

∫ 1

0

dx
[
gp
1
(x, k2)− gn1 (x, k

2)
]
=

gA
6

[
1− 1

π
αg1(k

2)
]
,

(8)
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FIG. 2. Solid (blue) curve: predicted process-independent
RGI running-coupling α̂PI(k

2), Eq. (7). The shaded (blue)
band bracketing this curve combines a 95% confidence-level
window based on existing lattice-QCD results for the gluon
two-point function with an error of 10% in the continuum
extraction of the RGI product LF in Eqs. (1). World data
on αg1

[56–81]. The shaded (yellow) band on k > 1GeV
represents αg1

obtained from the Bjorken sum by using QCD
evolution [82–84] to extrapolate high-k2 data into the depicted
region, following Refs. [56, 57]; and, for additional context, the
dashed (red) curve is the light-front holographic model of αg1

canvassed in Ref. [46].

where gp,n
1

are the spin-dependent proton and neutron
structure functions, whose extraction requires measure-
ments using polarised targets, and gA is the nucleon
isovector axial-charge [55]. The merits of this definition
are outlined in Ref. [46]. They include the existence of
data for a wide range of k2 [56–81]; tight sum-rules con-
straints on the behaviour of the integral at the IR and
UV extremes of k2; and the isospin non-singlet feature of
the difference, which suppresses contributions from nu-
merous processes that are hard to compute and hence
might muddy interpretation of the integral in terms of
an effective charge.
The world’s data on the process-dependent effective

charge αg1(k
2) are depicted in Fig. 2 and therein com-

pared with our prediction for the process-independent
RGI running-coupling α̂PI(k

2). Owing to asymptotic
freedom, all reasonable definitions of a QCD effective
charge must agree on k2 & 1GeV2 and our approach
guarantees this connection. To be specific, in terms of
the widely-used MS running coupling [3]:

αg1(k
2) = α

MS
(k2)(1 + 1.14α

MS
(k2) + . . .) , (9a)

α̂PI(k
2) = α

MS
(k2)(1 + 1.09α

MS
(k2) + . . .) , (9b)

where Eq. (9a) may be built from, e.g. Refs. [85, 86].
Significantly, there is also near precise agreement with

data on the IR domain, k2 . m2
0, and complete accord

on k2 ≥ m2
0. Fig. 1 makes plain that any agreement on

k2 ∈ [0.01, 1]GeV2 is non-trivial because ghost-gluon in-
teractions produce as much as 40% of α̂PI(k

2) on this
domain: if these effects were omitted from the gluon
vacuum polarisation, then αg1 and α̂PI would differ by
roughly a factor of two on the critical domain of transi-
tion between strong and perturbative QCD.
At this point we would like to mention that other stud-

ies have considered quantities which are related, in one
way or another, to the effective charge, α̂PI(k

2), depicted
in Figs. 1 and 2. Pertinent examples are described in
Refs. [87, 88], which arrive at couplings with far-IR values
of (1.3-1.9)π and (1.1-1.6)π, respectively. Notably, the
former employed quenched lattice results for the gluon
two-point function, ∆F(k

2) in Eq. (4), and both used
a range of estimates for the gluon mass-scale based on
then-contemporary phenomenology. Those elements ex-
plain the differences between the IR saturation values in
Refs. [87, 88] and our final result: α̂PI(0) = (0.9± 0.1)π,
which is obtained using modern unquenched lattice re-
sults for the gluon.
Of equal or greater importance is the pointwise be-

haviour of those charges, i.e. their running. Ref. [88]
set L ≡ 0 in Eq. (1c) and so ignored material contri-
butions from ghost-gluon dynamics, whose importance
we have repeatedly emphasised. Furthermore, both
Refs. [87, 88] assumed that the effect of the gluon vacuum
polarisation is completely expressed by writing D(k2) =
1/[k2 + m2(k2)], with m2(k2) monotonically decreasing
from its maximum value at k2 = 0; whereas, in real-
ity, D(k2) = 1/[J(k2)k2 +m2(k2)] on k2 . 2GeV2, with
k2J(k2) initially negative at far-IR momenta before turn-
ing to approach its perturbative form, which is reached
on k2 & 2GeV2 [37]. The charges in Refs. [87, 88] there-
fore omit effects which are crucial to obtaining a sound
prediction for the running of the process-independent ef-
fective charge α̂PI(k

2): in fact, they much overestimate
the charge on k2 . 2GeV2.
It is also worth highlighting that Refs. [33, 34] focus

solely on the Taylor coupling, which, as seen readily using
Eqs. (1), (7), is only indirectly related to α̂PI(k

2):

α̂PI(k
2) =

1

k2D(k2)

αT(k
2)

[1− L(k2; ζ2)F (k2; ζ2)]2
. (10)

Hence, a comparison is not meaningful.

V. CONCLUSIONS

We have defined and calculated a process-independent
running-coupling for QCD, α̂PI(k

2) [Eq. (7), Fig. 1]. This
is a new type of effective charge, which is an analogue
of the Gell-Mann–Low effective coupling in QED, be-
ing completely determined by the gauge-boson two-point
function. Our prediction for α̂PI(k

2) is parameter-free,
being obtained by combining the self-consistent solution
of a set of Dyson-Schwinger equations with results from
lattice-QCD; and it smoothly unifies the nonperturbative
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and perturbative domains of the strong-interaction the-
ory. This process-independent running coupling is known
to unify a vast array of observables, e.g. the pion mass
and decay constant, and the light meson spectrum [89];
the parton distribution amplitudes of light- and heavy-
mesons [90–92], associated elastic and transition form
factors [93, 94], etc.
Finally, and perhaps surprisingly at first sight, α̂PI(k

2)
is almost pointwise identical at infrared momenta to the
process-dependent effective charge, αg1 , defined via the
Bjorken sum rule, one of the most basic constraints on
our knowledge of nucleon spin structure, and in com-
plete agreement on the domain of perturbative momenta
[Fig. 2]. Equivalence on the perturbative domain is guar-
anteed for any two reasonable definitions of QCD’s ef-
fective charge, but here the subleading terms differ by
just 4% [Eqs. (9)]. An excellent match at infrared mo-
menta, i.e. below the scale at which perturbation theory
would locate the Landau pole, is non-trivial; and crucial
to this agreement is the careful treatment and incorpo-
ration of a special class of gluon-ghost scattering effects.
One is naturally compelled to ask how these two appar-
ently unrelated definitions of a QCD effective charge can
be so similar? We attribute this outcome to a physi-
cally useful feature of the Bjorken sum rule, viz. it is
an isospin non-singlet relation and hence contributions
from many hard-to-compute processes are suppressed,
and these same processes are omitted in our computa-
tion of α̂PI(k

2).

The analysis herein unifies two vastly different ap-
proaches to understanding the infrared behaviour of
QCD, one essentially phenomenological and the other de-
liberately computational, embedded within QCD. There
is no Landau pole in our predicted running coupling.
In fact, there is an inflection point at

√
k2 = 0.7GeV,

marking a transition wall at which, as momenta de-
creasing from the ultraviolet promote growth in the cou-
pling, that coupling turns away from the Landau pole,
the growth slows, and finally the coupling saturates:
α̂PI(k

2 = 0) ≈ 0.9π [Fig. 2]. This unification identifies
the Bjorken sum rule as a near direct means by which to
gain empirical insight into a QCD analogue of the Gell-
Mann–Low effective charge.
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Quintero, Phys. Rev. D 80, 085018 (2009).
[25] J. M. Cornwall, Phys. Rev. D 26, 1453 (1982).
[26] J. M. Cornwall and J. Papavassiliou, Phys. Rev. D 40,

3474 (1989).
[27] A. Pilaftsis, Nucl. Phys. B 487, 467 (1997).
[28] D. Binosi and J. Papavassiliou, Phys. Rev. D 66, 111901

(2002).
[29] D. Binosi and J. Papavassiliou, J. Phys. G 30, 203 (2004).
[30] D. Binosi and J. Papavassiliou, Phys. Rept. 479, 1

(2009).
[31] L. F. Abbott, Nucl. Phys. B 185, 189 (1981).
[32] L. F. Abbott, Acta Phys. Polon. B 13, 33 (1982).
[33] B. Blossier et al., Phys. Rev. D 85, 034503 (2012).
[34] B. Blossier et al., Phys. Rev. D 89, 014507 (2014).
[35] B. Blossier et al., Phys. Rev. Lett. 108, 262002 (2012).
[36] D. Binosi, L. Chang, J. Papavassiliou and C. D. Roberts,

Phys. Lett. B 742, 183 (2015).



6

[37] D. Binosi, C. D. Roberts and J. Rodriguez-Quintero,
Phys. Rev. D 95, 114009 (2017).

[38] H. J. Munczek, Phys. Rev. D 52, 4736 (1995).
[39] A. Bender, C. D. Roberts and L. von Smekal, Phys. Lett.

B 380, 7 (1996).
[40] M. S. Bhagwat, L. Chang, Y.-X. Liu, C. D. Roberts and

P. C. Tandy, Phys. Rev. C 76, 045203 (2007).
[41] D. Binosi, L. Chang, S.-X. Qin, J. Papavassiliou and

C. D. Roberts, Phys. Rev. D 93, 096010 (2016).
[42] D. Binosi and A. Quadri, Phys. Rev. D 88, 085036

(2013).
[43] M. J. Aslam, A. Bashir and L. X. Gutierrez-Guerrero,

Phys. Rev. D 93, 076001 (2016).
[44] D. Binosi, L. Chang, J. Papavassiliou, S.-X. Qin and

C. D. Roberts, Phys. Rev. D 95, 031501(R) (2017).
[45] A. C. Aguilar, A. A. Natale and P. S. Rodrigues da Silva,

Phys. Rev. Lett. 90, 152001 (2003).
[46] A. Deur, S. J. Brodsky and G. F. de Teramond, Prog.

Part. Nucl. Phys. 90, 1 (2016).
[47] A. C. Aguilar, A. Mihara and A. A. Natale, Phys. Rev.

D 65, 054011 (2002).
[48] A. A. Natale, PoS QCD-TNT09, 031 (2009).
[49] E. G. S. Luna, A. L. dos Santos and A. A. Natale, Phys.

Lett. B 698, 52 (2011).
[50] H. Pagels and S. Stokar, Phys. Rev. D 20, 2947 (1979).
[51] T. Horn and C. D. Roberts, J. Phys. G. 43, 073001/1

(2016).
[52] G. Grunberg, Phys. Rev. D 29, 2315 (1984).
[53] J. D. Bjorken, Phys. Rev. 148, 1467 (1966).
[54] J. D. Bjorken, Phys. Rev. D 1, 1376 (1970).
[55] C. A. Aidala, S. D. Bass, D. Hasch and G. K. Mallot,

Rev. Mod. Phys. 85, 655 (2013).
[56] A. Deur, V. Burkert, J.-P. Chen and W. Korsch, Phys.

Lett. B 650, 244 (2007).
[57] A. Deur, V. Burkert, J. P. Chen and W. Korsch, Phys.

Lett. B 665, 349 (2008).
[58] A. Deur et al., Phys. Rev. D 90, 012009 (2014).
[59] K. Ackerstaff et al., Phys. Lett. B 404, 383 (1997).
[60] K. Ackerstaff et al., Phys. Lett. B 444, 531 (1998).
[61] A. Airapetian et al., Phys. Lett. B 442, 484 (1998).

[62] A. Airapetian et al., Phys. Rev. Lett. 90, 092002 (2003).
[63] A. Airapetian et al., Phys. Rev. D 75, 012007 (2007).
[64] J. H. Kim et al., Phys. Rev. Lett. 81, 3595 (1998).
[65] V. Yu. Alexakhin et al., Phys. Lett. B 647, 8 (2007).
[66] M. G. Alekseev et al., Phys. Lett. B 690, 466 (2010).
[67] C. Adolph et al., Phys. Lett. B 753, 18 (2016).
[68] P. L. Anthony et al., Phys. Rev. Lett. 71, 959 (1993).
[69] K. Abe et al., Phys. Rev. Lett. 74, 346 (1995).
[70] K. Abe et al., Phys. Rev. Lett. 75, 25 (1995).
[71] K. Abe et al., Phys. Rev. Lett. 76, 587 (1996).
[72] K. Abe et al., Phys. Lett. B 364, 61 (1995).
[73] P. L. Anthony et al., Phys. Rev. D 54, 6620 (1996).
[74] K. Abe et al., Phys. Rev. Lett. 79, 26 (1997).
[75] K. Abe et al., Phys. Lett. B 404, 377 (1997).
[76] K. Abe et al., Phys. Lett. B 405, 180 (1997).
[77] K. Abe et al., Phys. Rev. D58, 112003 (1998).
[78] P. L. Anthony et al., Phys. Lett. B458, 529 (1999).
[79] P. L. Anthony et al., Phys. Lett. B 463, 339 (1999).
[80] P. L. Anthony et al., Phys. Lett. B 493, 19 (2000).
[81] P. L. Anthony et al., Phys. Lett. B 553, 18 (2003).
[82] V. N. Gribov and L. N. Lipatov, Sov. J. Nucl. Phys. 15,

438 (1972).
[83] G. Altarelli and G. Parisi, Nucl. Phys. B 126, 298 (1977).
[84] Y. L. Dokshitzer, Sov. Phys. JETP 46, 641 (1977).
[85] A. L. Kataev, Phys. Rev. D 50, R5469 (1994).
[86] P. A. Baikov, K. G. Chetyrkin and J. H. Kuhn, Phys.

Rev. Lett. 104, 132004 (2010).
[87] A. C. Aguilar, D. Binosi and J. Papavassiliou, JHEP 07,

002 (2010).
[88] A. Ayala, A. Bashir, D. Binosi, M. Cristoforetti and
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