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High precision data of lepton angular distributions for γ∗/Z production in pp collisions at the
LHC, covering broad ranges of dilepton transverse momenta (qT ) and rapidity (y), were recently
reported. Strong qT dependencies were observed for several angular distribution coefficients, Ai,
including A0 − A4. Significant y dependencies were also found for the coefficients A1, A3 and A4,
while A0 and A2 exhibit very weak rapidity dependence. Using an intuitive geometric picture we
show that the qT and y dependencies of the angular distributions coefficients can be well described.
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I. I. INTRODUCTION

The angular distribution of leptons produced in the
Drell-Yan process [1] remains a subject of considerable
interest. The original Drell-Yan model offered a spe-
cific prediction of a transversely polarized virtual photon
for collinear quark-antiquark annhilation, resulting in a
1+cos2 θ lepton angular distribution [1]. This prediction
was in good agreement with the earliest data, which were
dominantly from dileptons with low transverse momen-
tum (qT ) [2, 3]. As the dilepton’s transverse momentum
becomes large, due to QCD effects involving emission of
partons of large transverse momenta, the angular dis-
tributon would no longer be azimuthally symmetric. A
general expression for the lepton angular distribution in
the Drell-Yan process becomes [4]

dσ

dΩ
∝ 1 + λ cos2 θ + µ sin 2θ cosφ+

ν

2
sin2 θ cos 2φ, (1)

where θ and φ refer to the polar and azimuthal an-
gles of l− (e− or µ−) in the rest frame of γ∗. The
azimuthal dependencies of the lepton angular distribu-
tions are described by the parameters µ and ν. While
λ = 1, µ = 0, and ν = 0 in the original Drell-Yan
model [1], the presence of the intrinsic transverse momen-
tum and QCD effects would allow λ 6= 1 and µ, ν 6= 0.
However, it was predicted [4] that the deviation of λ
from unity is precisely correlated with the coefficient of
the cos 2φ term, namely, 1 − λ = 2ν. This so-called
Lam-Tung relation, expected to be insensitive to QCD
corrections [5–8], was found to be significantly violated
in pion-induced Drell-Yan experiments [9, 10]. The un-
expectedly large violation of the Lam-Tung relation in-
spired many theoretical work [11–14], including the sug-
gestion [14] that a non-perturbative effect originating
from the novel transverse-momentum-dependent (TMD)
Boer-Mulders function [15] can account for this violation.
This suggestion was found to be consistent with the ex-
isting pion and proton induced Drell-Yan data [16]. It

also led to first extractions of the Boer-Mulders functions
from the cos 2φ dependence of the unpolarized Drell-Yan
data [17, 18]. The azimuthal angular distributions of
leptons in unpolarized or polarized Drell-Yan process are
now regarded as an important tool for accessing the novel
TMDs [14, 19–21].

At collider energies, measurement of lepton angular
distributions in W and Z boson productions has long
been advocated as a sensitive tool for understanding the
production mechanism of these gauge bosons [22, 23].
The first measurement of the lepton angular distribution
in γ∗/Z production was reported by the CDF Collabo-
ration for p̄p collision at 1.8 TeV [24]. Very recently, the
CMS [25] and ATLAS [26] Collaborations at the LHC
reported high-statistics measurements of the lepton an-
gular distribution of γ∗/Z production in pp collision at√
s = 8 TeV. Strong qT dependencies were observed for

the λ, µ, and ν parameters. Moreover, violation of the
Lam-Tung relation was found for these data at large qT .
Since the effects of TMD are expected to be negligible
at large qT , the presence of the Boer-Mulders function
cannot explain the striking violation of the Lam-Tung
relation at LHC energies.

In a recent paper [27], we showed that the observed
qT dependence of λ and ν, as well as the violation of the
Lam-Tung relation, can be well described by a geometric
picture. While it is important to compare perturbative
QCD calculations with these data, it is also instructive to
understand the essential features of these data in terms
of an intuitive geometric picture. In this paper, we ex-
tend the previous work, which focuses on the λ and ν
parameters and the Lam-Tung relation, to other angular
distribution parameters. We also compare the striking
qT and rapidity (y) dependencies of the angular distribu-
tion coefficients measured at the LHC with our intuitive
geometric picture. We find that many salient features of
the data can be well understood within the framework of
this simple and intuitive approach.

This paper is organized as follows. In Section II we
present our model and derive some expressions relevant
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for understanding the lepton angular distributions for
γ∗/Z production. We then compare calculations using
this model with data on the qT and rapidity dependen-
cies in Sections III and IV, respectively. We conclude in
Section V.

II. II. LEPTON ANGULAR DISTRIBUTION

COEFFICIENTS

The lepton angular distribution in the γ∗/Z rest frame
is expressed by both the CMS and ATLAS Collaborations
as

dσ

dΩ
∝ (1 + cos2 θ) +

A0

2
(1− 3 cos2 θ) +A1 sin 2θ cosφ

+
A2

2
sin2 θ cos 2φ+A3 sin θ cosφ+A4 cos θ

+ A5 sin
2 θ sin 2φ+A6 sin 2θ sinφ

+ A7 sin θ sinφ, (2)

where θ and φ are the polar and azimuthal angles of l−

(e− or µ−) in the rest frame of γ∗/Z like in Eq. (1).
Compared to Eq. (1), Eq. (2) contains several additional
terms (A3 −A7), due to the presence of parity-violating
coupling for the Z boson. It is clear that λ, µ, ν in Eq.
(1) are related to A0, A1, A2 via

λ =
2− 3A0

2 +A0

; µ =
2A1

2 +A0

; ν =
2A2

2 +A0

. (3)

Eq. (3) shows that the Lam-Tung relation, 1 − λ = 2ν,
becomes A0 = A2.
While Eq. (2) can be derived from the consideration

of the general form of the lepton and hadron tensors in-
volved in the γ∗/Z production, we present a derivation
based on an intuitive geometric picture. We first define
three different planes, i.e., the hadron plane, the quark
plane, and the lepton plane, shown in Fig. 1. For non-

zero qT , the beam and target hadron momenta, ~PB and
~PT , are no longer collinear in the rest frame of γ∗/Z,
and they form the “hadron plane” shown in Fig. 1. Vari-
ous coordinate systems in the γ∗/Z rest frame have been
considered in the literature, and the Collins-Soper (C-S)
frame [28] was used by both the CMS and ATLAS Col-
laborations. For the Collins-Soper frame, the x̂ and ẑ
axes both lie in the hadron plane, while the ẑ axis bi-

sects ~PB and − ~PT with an angle β. It is straightforward
to show that

tanβ = qT /Q, (4)

where Q is the mass of the dilepton. Figure 1 also shows
the “lepton plane” formed by the momentum vector of l−

and the ẑ axis. The l− and l+ are emitted back-to-back
with equal momenta in the rest frame of γ∗/Z.
In the γ∗/Z rest frame, a pair of collinear q and q̄ with

equal momenta annihilate into a γ∗/Z, as illustrated in
Fig. 1. We define the momentum unit vector of q as

FIG. 1: Definition of the Collins-Soper frame and various
angles and planes in the rest frame of γ∗/Z. The hadron

plane is formed by ~PB and ~PT , the momentum vectors of the
beam (B) and target (T) hadrons. The x̂ and ẑ axes of the
Collins-Soper frame both lie in the hadron plane with the ẑ
axis bisecting the ~PB and −~PT vectors. The quark (q) and
antiquark (q̄) annihilate collinearly with equal momenta to
form γ∗/Z, while the quark momentum vector ẑ′ and the ẑ
axis form the quark plane. The polar and azimuthal angles
of ẑ′ in the Collins-Soper frame are θ1 and φ1. The l− and
l+ are emitted back-to-back with θ and φ as the polar and
azimuthal angles for l−.

ẑ′, and the “quark plane” is formed by the ẑ′ and ẑ
axes. The polar and azimuthal angles of the ẑ′ axis in the
Collins-Soper frame are denoted as θ1 and φ1. The q− q̄
axis, called the “natural” axis, has the important prop-
erty [29] that the l− angular distribution is azimuthally
symmetric with respect to this axis, namely,

dσ

dΩ
∝ 1 + a cos θ0 + cos2 θ0, (5)

where θ0 is the angle between the l− momentum vector
and the ẑ′ axis (see Fig. 1), and a is the forward-backward
asymmetry originating from the parity-violating coupling
to the Z boson. We recently showed [27] that Eq. (2) can
be derived from Eq. (5) by noting that

cos θ0 = cos θ cos θ1 + sin θ sin θ1 cos(φ− φ1). (6)
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Substituting Eq. (6) into Eq. (5), one obtains

dσ

dΩ
∝ (1 + cos2 θ) +

sin2 θ1
2

(1 − 3 cos2 θ)

+ (
1

2
sin 2θ1 cosφ1) sin 2θ cosφ

+ (
1

2
sin2 θ1 cos 2φ1) sin

2 θ cos 2φ

+ (a sin θ1 cosφ1) sin θ cosφ+ (a cos θ1) cos θ

+ (
1

2
sin2 θ1 sin 2φ1) sin

2 θ sin 2φ

+ (
1

2
sin 2θ1 sinφ1) sin 2θ sinφ

+ (a sin θ1 sinφ1) sin θ sinφ. (7)

A comparison between Eq. (2) and Eq. (7) shows a one-
to-one correspondence for all angular distribution terms.
Moreover, the angular distribution coefficients A0 − A7

can now be expressed in terms of the quantities θ1, φ1

and a as follows:

A0 = 〈sin2 θ1〉 A1 =
1

2
〈sin 2θ1 cosφ1〉

A2 = 〈sin2 θ1 cos 2φ1〉 A3 = 〈a sin θ1 cosφ1〉

A4 = 〈a cos θ1〉 A5 =
1

2
〈sin2 θ1 sin 2φ1〉

A6 =
1

2
〈sin 2θ1 sinφ1〉 A7 = 〈a sin θ1 sinφ1〉. (8)

The 〈· · ·〉 in Eq. (8) is a reminder that the measured
values of Ai at given values of qT and y are averaged over
events having different values of θ1, φ1 and a, in general.
Eq. (8) is a generalization of an earlier work [30] which
considered the special case of φ1 = 0 and a = 0.
The values of A0−A7 are bounded by certain limits as a

result of the properties of the trigonometric functions and
|a| < 1. In particular, we obtain the following relations
from Eq. (8):

0 ≤ A0 ≤ 1 −1/2 ≤ A1 ≤ 1/2

−1 ≤ A2 ≤ 1 −1 ≤ A3 ≤ 1

−1 ≤ A4 ≤ 1 −1/2 ≤ A5 ≤ 1/2

−1/2 ≤ A6 ≤ 1/2 −1 ≤ A7 ≤ 1. (9)

The bounds on A0, A1, A2, together with Eq. (3), imply
that

−1/3 ≤ λ ≤ 1; − 1 ≤ µ ≤ 1; − 1 ≤ ν ≤ 1. (10)

Some inequality relations among the various coefficients
Ai can also be obtained from Eq. (8). In particular, A0

and A2 satisfy the relation

A0 ≥ A2. (11)

Eq. (8) shows that in the case of φ1 = 0 or π, i.e., the
quark plane and hadron plane are coplanar, the Lam-
Tung relation A0 = A2 is obtained. When Lam-Tung

γ∗/Z
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β
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FIG. 2: (a) Feynman diagram for q − q̄ annihilation where
a gluon is emitted from a quark in the beam hadron (B).
(b) Momentum direction for q and q̄ in the C-S frame before
and after gluon emission. The momentum direction of q is
now collinear with that of q̄. (c) Feynman diagram for the
case where a gluon is emitted from an antiquark in the target
hadron (T). (d) Momentum direction for q and q̄ in the C-S
frame before and after gluon emission for diagram (c).

TABLE I: Angles θ1 and φ1 for four cases of gluon emission
in the q− q̄ annihilation process at order-αs. The signs of A0

to A4 for the four cases are also listed.

case gluon emitted from θ1 φ1 A0 A1 A2 A3 A4

1 beam quark β 0 + + + + +

2 target antiquark β π + − + − +

3 beam antiquark π − β 0 + − + + −

4 target quark π − β π + + + − −

relation is violated, A0 must be greater than A2, or equiv-
alently, 1− λ > 2ν.
While the values of θ1, φ1, and Ai depend on the spe-

cific coordinate system chosen for the γ∗/Z rest frame,
it is worth noting that the relations in Eqs. (8)-(11) are
independent of this choice, as long as the x̂ and ẑ axes of
the reference frame lie within the hadron plane. Exam-
ples of such reference frames include the Collins-Soper,
Gottfried-Jackson, and the helicity frames. As a conse-
quence, if the Lam-Tung relation is satisfied (or violated)
in any of these frames, it will be satisfied (or violated) in
all other frames.
As shown in Eq. (8), the qT and y dependencies of

the angular distribution coefficients, Ai, are entirely gov-
erned by the qT and y dependencies of θ1, φ1 and a.
We first consider the quantities θ1 and φ1, ignoring the
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small intrinsic transverse momentum, kT , of the partons.
At the leading-order in αs (α0

s), the quark axis, ẑ′, is
collinear with the ẑ axis. Hence, the result θ1 = 0 (or
θ1 = π) is obtained, and Eq. (8) shows that all Ai except
A4 vanish.
At the next-to-leading order (NLO), αs, a hard gluon

or a quark (antiquark) is emitted so that γ∗/Z acquires
non-zero qT . Figure 2(a) shows a diagram for the q − q̄
annihilation process in which a gluon is emitted from the
quark in the beam hadron. In this case, the momentum
vector of the quark is modified such that it becomes op-
posite to the antiquark’s momentum vector in the rest
frame of γ∗/Z. Since the antiquark’s momentum direc-
tion is the same as the target hadron’s momentum di-
rection, the z′ axis is along the direction of −~pT (see
Fig. 2(b)). From Fig. 1, it is evident that θ1 = β and
φ1 = 0 in this case. Similarly, for the case of Fig. 2(c),
where a gluon is emitted from an antiquark in the target
hadron, one obtains θ1 = β and φ1 = π, as illustrated in
Fig. 2(d). Analogous results with θ1 = π− β and φ1 = 0
(or φ = π) can be found when the roles of beam and
target are interchanged, as illustrated in Fig. 3. Table I
lists the values of θ1 and φ1 for the four cases considered
above. Given θ1 = β (or θ1 = π−β) and tanβ = qT /Q in
the Collins-Soper frame, we obtain the following results,
relevant for the coefficients Ai in Eq. (8), for the NLO
q − q̄ annihilation processes:

sin θ1 = qT /(Q
2 + q2T )

1/2

cos θ1 = ±Q/(Q2 + q2T )
1/2

sin2 θ1 = q2T /(Q
2 + q2T )

sin 2θ1 = ±2qTQ/(Q2 + q2T ), (12)

where the + (−) sign corresponds to θ1 = β (θ1 = π−β).
Since φ1 = 0 or π, one can see from Table I and Eq. (8)
that the Lam-Tung relation, A0 = A2, is satisfied. More-
over, A5 − A7 must vanish, since they are proportional
to sinφ1 or sin 2φ1, which are identically zero.
We next consider the Compton process at NLO. Unlike

the cases for the q − q̄ initial state shown in Figs. 2
and 3 where a hard gluon is emitted, a hard quark or
antiquark will now accompany the γ∗/Z final state. Fig.
4(a) shows the diagram in which a gluon from the target
hadron splits into a q − q̄ pair and the quark from the
beam hadron annihilates with the antiquark into a γ∗/Z.
Since the momentum vector of the quark in the beam
hadron is unchanged, θ1 = β and φ1 = π, as shown in
Fig. 4(b). This result is identical to that for the qq̄
initial state shown in Fig. 2(d). Analogous results are
obtained when gluon is emitted from the beam hadron,
or when an antiquark replaces the quark in the initial
state. However, a different situation is shown in Fig.
4(c), where the quark and gluon fuse into a quark, which
then emits a γ∗/Z. As indicated in Fig. 4(d), θ1 must
satisfy β ≤ θ1 ≤ π − β, since the momenta of the initial
quark and gluon combine vectorially, resulting in a θ1
within these limits. Therefore, the two distinct Compton
processes would lead to a mean θ1 larger than β, with
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q̄

q̄, B q, T

β

β β

(b)

γ∗/Z

g

q̄B

qT

l+

l−

(c)

ẑ

x̂
q̄, B q, T

q

β β

β

(d)

FIG. 3: (a) Feynman diagram for q − q̄ annihilation where
a gluon is emitted from an antiquark in the beam hadron
(B). (b) Momentum direction for q and q̄ in the C-S frame
before and after gluon emission. The momentum direction of
q is now collinear with that of q̄. (c) Feynman diagram for
the case where a gluon is emitted from a quark in the target
hadron (T). (d) Momentum direction for q and q̄ in the C-S
frame before and after gluon emission for diagram (c).

the exact value governed by the relative weight of these
two processes. It was shown by Thews [31] that, to a
very good approximation, A0 satisfies the relation, A0 =
5q2T /(Q

2+5q2T ). Since A0 = sin2 θ1, we obtain, for the qG
Compton processes at order αs, the following expressions

sin θ1 =
√
5qT /(Q

2 + 5q2T )
1/2

cos θ1 = ±Q/(Q2 + 5q2T )
1/2

sin2 θ1 = 5q2T /(Q
2 + 5q2T )

sin 2θ1 = ±2
√
5qTQ/(Q2 + 5q2T ). (13)

The + and − sign corresponds to θ1 ≤ π/2 and θ1 ≥ π/2,
respectively.
We now consider the parity-violating forward-

backward asymmetry, a, in Eqs. (5) and (8). The elec-
troweak theory for Z boson production gives a = 2AfAf ′

for the f + f̄ → Z → f ′ + f̄ ′ process, where Af is given
as

Af =
2Cf

V C
f
A

(Cf
V )

2 + (Cf
A)

2
. (14)

The vector Cf
V and axial vector Cf

A couplings for Z boson

to fermion f are, respectively, I3W − 2Q sin2 θW and I3W ,
where I3W and θW denote the weak-isospin third compo-
nent and the Weinberg angle. Using sin2 θW = 0.2315,
then Eq. (14) gives a = 0.211 for uū → Z → l−l+, and
a = 0.299 for dd̄ → Z → l−l+, where l refers to e or
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FIG. 4: (a) Feynman diagram for qG Compton process where
a quark from the beam hadron annihilates with an antiquark
from the splitting of a gluon in the target hadron. (b) Mo-
mentum direction of q, q̄ and gluon in the C-S frame before
and after gluon splitting. (c) Feynman diagram for qG fus-
ing into a quark which then emits a γ∗/Z. (d) Momentum
direction of q, q̄ and gluon before and after the qG fusion.

µ. We note that a has a positive value. Moreover, de-
pending on the relative weight between the uū and the
dd̄ contributions, one expects the mean value of a to vary
between these two limits.

III. III. TRANSVERSE MOMENTUM

DEPENDENCIES OF ANGULAR

DISTRIBUTION COEFFICIENTS

We now compare the γ∗/Z production data at the LHC
with calculations based on the results obtained in Sec. II.
The LHC data cover a broad range in the dilepton’s qT
and rapidity y (0 < qT < 600 GeV and 0 < |y| < 3.5).
For simplicity, we only consider the CMS data in this
work. The ATLAS data contain both the µ−µ+ and e−e+

dilepton events, doubling the statistics compared to the
µ−µ+ data sample in CMS. However, the procedure of
“regularization” adopted by the ATLAS Collaboration
introduces model dependencies associated with the theo-
retical calculations used in the procedure. Although the
tabulated uncertainties of the ATLAS data [26] are sig-
nificantly smaller than that of the CMS data [25], it is
difficult to assess the systematic uncertainties associated
with the procedure of “regularization”. We therefore pre-
fer to compare our calculations with the results of CMS,
where a conventional analysis procedure without “regu-
larization” is adopted.
Figure 5 shows the angular distribution coefficients Ai

at the mid-rapidity region |y| < 1.0 measured by the
CMS Collaboration. Some salient features in the qT de-
pendencies of Ai are observed. Figure 5 shows that the
coefficents A0 −A3 are consistent with zero at the small-
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FIG. 5: The CMS data [25] on angular distribution coeffi-
cients Ai versus qT for |y| < 1.0.

est value of qT . On the other hand, the coefficient A4 is
non-zero at qT → 0. The values of A5 −A7 are found by
the CMS Collaboration to be consistent with zero [25].
In order to understand these general features of the an-
gular distribution coefficients, Eq. (8) suggests that one
could examine the properties of the quantities θ1 and φ1.

From Eqs. (8), (12), (13), noting that φ1 = 0 or π and
the γ∗/Z cross sections are dominated by the NLO qq̄ and
qG processes depicted in Figs. 4 and 5, one can readily
predict the following patterns for the qT dependencies of
A0 up to A4:

1) As qT → 0, Eqs. (8), (12), (13) show that
A0, A1, A2, A3 all approach zero, since θ1 → 0. On the
other hand, A4 is at its maximal value, since it is pro-
portional to cos θ1. As qT → ∞, θ1 approaches the value
of π/2, and A0, A2, A3 reach their maximal values, while
A1 and A4 approach zero. As shown in Fig. 5, the data
are consistent with these expectations.

2) According to Eqs. (8), (12), (13) the values of A0

would go from zero at qT = 0 to unity as qT → ∞.
At all values of qT , one expects A2 ≤ A0. In the case
of cos 2φ1 = 1, which occurs for the NLO processes as
discussed above, the Lam-Tung relation, A0 = A2 is sat-
isfied. When the Lam-Tung relation is violated, A0 6= A2

(or 1− λ 6= 2ν), it is expected that only A0 −A2 > 0 (or
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FIG. 6: Comparison between the CMS data [25] on A0, A2

and A0 − A2 with calculations. Curves correspond to calcu-
lations described in the text.

1−λ−2ν > 0), not the alternative inequality A0−A2 < 0,
can occur. These expectations are consistent with the
data shown in Fig. 5.
3) As A1 is proportional to sin 2θ1, it would first in-

crease with qT , reaching a maximum, and then decrease.
This is in contrast to A0, A2, and A4, which are expected
to increase with qT monotonically. Similarly, A4 would
decrease monotonically with qT , as it is proportional
to cos θ1. The data are consistent with these expected
trends.
4) The upper and lower bounds on Ai, listed in Eq. (9).

are well satisfied by the data.
We next compare the CMS data on the angular distribu-
tion coefficients A0 to A4 with calculations based on the
intuitive geometric picture discussed above.
Figure 6(a) shows the values of A0 versus qT for |y| <

1.0. The dotted and dashed curves correspond to calcula-
tions using Eq. (8) and Eqs. (12), (13) for the qq̄ and qG
processes, A0 = q2T /(Q

2+ q2T ) and A0 = 5q2T/(Q
2+5q2T ),

respectively. Note that the qq̄ process alone underesti-
mates A0, while the qG process overestimates it. Since
these two processes contribute incoherently to the γ∗/Z
production due to their distinct initial and final states
(see Figs. 2-4), the observed A0 is the result of an in-
coherent sum of these two processes. A best fit to the
data, shown as the solid curve in Fig. 6(a), is obtained

with a mixture of 58.5 ± 1.6% qG and 41.5 ± 1.6% qq̄
processes. The excellent agreement between the data and
the calculation lends support to the adequacy of this intu-
itive geometric picture. It also suggests that higher-order
QCD processes do not affect the values of θ1 (and A0)
significantly.
Figure 6(b) displays A2 versus qT for the |y| < 1.0 data

from CMS. Eq. (8) shows that the value of A2 should be
identical to that of A0 if φ1 = 0 or π. The dashed curve
in Fig. 6(b) is identical to the solid curve in Fig. 6(a),
obtained with a mixture of 58.5% qG and 41.5% qq̄ pro-
cesses. The deviation of the dashed curve from the data
shows that the Lam-Tung relation, A0 = A2, is violated.
From Eq. (8), it is evident that this violation is due to
φ1 6= 0 or π, namely, the quark and hadron planes are
not coplanar. This non-coplanarity is caused by higher-
order processes, in which multiple partons accompany
the γ∗/Z in the final state. The hadron plane then con-
tains the vector sum of multiple partons, and is in gen-
eral not coplanar with respect to the quark plane. The
effect of the non-coplanarity is to reduce the value of
A2 with respect to that of A0. The solid curve in Fig.
6(b), obtained with an overall reduction factor of 0.77,
describes the CMS A2 data well. This reduction factor,
originating from the cos 2φ1 factor, indicates that the ef-
fective value of the non-coplanarity angle, φ1, is around
20◦. Figure 6(c) shows the qT dependence of A0 − A2

for |y| < 1.0. The violation of the Lam-Tung relation,
reflected by the non-zero values of A0 − A2, is well de-
scribed by the solid curve taking into account the overall
reduction factor of 0.77 for A2.
We next consider the coefficient A1. From Eq. (3),

the coefficient A1 is related to the parameter µ measured
in fixed-target Drell-Yan experiments. In pp collision,
A1 is odd under y ↔ −y exchange. Figure 7(a) shows
the qT dependence of A1 measured at CMS. The sign of
A1 measured at negative y is flipped before combining it
with A1 measured at positive y. Eq. (8) shows that A1

is given as 1/2〈sin 2θ1 cosφ1〉. The values of sin 2θ1 are
given in Eqs. (12) and (13) for the qq̄ and qG processes,
and φ1 = 0 (or π). For various cases as listed in Table
I, one can calculate the values of A1 for the four cases.
Depending on the value of φ1, the sign of A1 can be posi-
tive or negative, as shown in Table I. Hence, one expects
a significant cancellation among contributions from pro-
cesses with φ1 = 0 or φ1 = π. The solid curve in Fig.
7(a) is obtained with the following expression

A1 = r1[f
qTQ

Q2 + q2T
+ (1− f)

√
5qTQ

Q2 + 5q2T
], (15)

where f is the fraction of qq̄ process, f = 0.415, deduced
from the A0 data discussed earlier. The sin 2θ1 values
for the qq̄ and qG processes given in Eqs. (12) and (13)
are weighted by f and 1− f , respectively. The reduction
factor r1 represents the combined effect of the partial
cancellation discussed above and the deviation of φ1 from
0 or π due to higher-order QCD. The best-fit value of r1
using Eq. (15) is r1 = 0.0215. The small value of r1
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FIG. 7: Comparison between the CMS data [25] on A1, A3

and A4 at |y| < 1.0 with calculations. Curves correspond to
calculations described in the text.

indicates the presence of a strong cancellation at small
values of y.
Similar considerations also apply to the coefficient A3,

which is also an odd function of y in pp collision. Both
A1 and A3 are sensitive to cosφ1. Table I shows the signs
of A3 for four different cases in qq̄ process. As a parity-
violating observable, A3 is also sensitive to the forward-
backward asymmetry parameter a. The solid curve in
Fig. 7(b) corresponds to the following expression

A3 = r3[f
qT

(Q2 + q2T )
1/2

+ (1 − f)

√
5qT

(Q2 + 5q2T )
1/2

]. (16)

Eq. (16) is analogous to Eq. (15), except that the reduc-
tion factor r3 now includes an additional contribution
from a. The best-fit value, r3 = 0.0163, is obtained. As
shown in Fig. 7(b), the agreement between the data and
this simple calculation is reasonable.
Figure 7(c) shows A4 versus qT for |y| < 1.0. Unlike

all other coefficients, A4 has a non-zero value as qT ap-
proaches zero. As discussed earlier, this is well explained
by its dependence on cos θ1, which has a maximal value
at qT = 0. The solid curve in Fig. 7(c) is obtained with
the following expression

A4 = r4[f
Q

(Q2 + q2T )
1/2

+ (1 − f)
Q

(Q2 + 5q2T )
1/2

], (17)
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FIG. 8: Comparison between the CMS data [25] on A0 and A2

at two rapidity regions with calculations. Curves correspond
to calculations described in the text.

where the best-fit value for the reduction factor r4 is
0.0183. Both r3 and r4 contain the parity violating
parameter a. However, unlike r3, r4 does not contain
the cosφ1 term. This qualitatively explains the slightly
larger value for r4 than r3. The calculation based on Eq.
(17) is in very good agreement with the data shown in
Fig. 7(c).

IV. IV. RAPIDITY DEPENDENCIES OF

ANGULAR DISTRIBUTION COEFFICIENTS

The CMS Collaboration has reported the rapidity de-
pendencies of Ai for two bins, |y| < 1.0 and 1.0 < |y| <
2.1. In this Section, we compare the measured y depen-
dencies with expectations based on our intuitive geomet-
ric picture. Figure 8 shows that for A0 and A2, there
are very weak, if any, rapidity dependencies. The solid
curves in Fig. 8 are taken from the calculations shown
in Fig. 6. It is evident that data at both rapidity bins
are well described by a single curve. The weak rapidity
dependence of A0 reflects the fact that A0 only depends
on θ1, which, according to Eqs. (12) and (13), is inde-
pendent of the rapidity y. However, higher-order QCD
effects can introduce weak rapidity dependence for A0.
The weak rapidity dependence for A2 shows that φ1 is
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FIG. 9: Comparison between the CMS data [25] on A1, A3

and A4 at two rapidity regions with calculations. Curves cor-
respond to calculations described in the text.

TABLE II: Reduction factors ri for A1, A3, A4 for two rapidity
bins.

|y| < 1.0 1.0 < |y| < 2.1

r1 0.0215 0.11

r3 0.0113 0.0524

r4 0.0181 0.0732

weakly y-dependent. Indeed, at order αs, Table I shows
that cos 2φ1 is equal to unity for all four cases, indepen-
dent of the value of y. Again, higher-order QCD will
allow cos 2φ1 to deviate from unity, but the deviation
has a very weak y dependence.

In striking contrast to A0 and A2, the coefficients
A1, A3 and A4 exhibit pronounced rapidity dependen-
cies, as shown in Fig. 9. A common feature for A1, A3

and A4 is that they all rise significantly as y increases.
An intuitive explanation for this strong y dependence
is as follows. Table I shows that the various contribu-
tions to A1, A3 and A4 can be positive or negative, and
each contribution is weighted by the corresponding den-
sity distributions for the interacting partons. At small
values of y, the momentum fraction carried by the beam

parton, (xB), is comparable to that of the target parton,
(xT ). Hence the weighting factors for various cases are of
similar magnitude and the net contribution is small due
to partial cancellations among them. On the other hand,
as y becomes large, xB becomes significantly larger than
xT . Hence, the weighting factors are now dominated by
fewer terms, resulting in less cancellation and a larger net
result. The various curves shown in Fig. 9 correspond to
calculations using Eqs. (15), (16), (17), respectively, for
A1, A3 and A4. The CMS data are quite well described
by the best-fit values of r1, r3, and r4 listed in Table II.

V. V. SUMMARY AND CONCLUSIONS

We have presented an intuitive interpretation for the
lepton angular distribution coefficients for γ∗/Z produc-
tion measured at the LHC. We first derive the general
expression (Eq. (7)) for the lepton polar and azimuthal
angular distributions in the dilepton rest frame, starting
from the azimuthally symmetric lepton angular distribu-
tion (Eq. (5)) with respect to the quark-antiquark axis.
We show that the various angular distribution coefficients
are governed by three quantities, θ1, φ1 and a (Eq. 8).
The upper and lower bounds (Eq. (9)) for the angular
distribution coefficients are obtained as a result of the
expressions in Eq. (8). Similarly, the inequality rela-
tion between A0 and A2, relevant for the violation of the
Lam-Tung relation, is obtained (Eq. (11)).
We then consider the characteristics of the quantities

θ1, φ1 and a. The expressions for θ1 and φ1 are obtained
for both the qq̄ and qG processes at order αs. The qT
dependence of A0 is found to be very well described using
the results for θ1. It also allows a determination of the
relative fractions of these two processes. This result is
noteworthy, since it shows that a measurement of the
angular distribution coefficient A0 alone could lead to
important information on the dynamics of the production
mechanism, namely, the relative contribution of the qq̄
annihilation and the qG Compton processes.
The CMS data clearly show that the Lam-Tung re-

lation, A0 = A2, is violated. The origin of this viola-
tion is attributed in our approach to the deviation of
cos 2φ1 from unity, indicating the non-coplanarity be-
tween the hadron and quark planes. This non-coplanarity
is caused by higher-order QCD processes. We show that
the amount of non-coplanarity can be deduced from the
A0 − A2 data directly. We have also compared our ap-
proach with the CMS data for other angular distribution
coefficients, A1, A3, A4, and found that their qT depen-
dencies, governed by the qT dependence of θ1, can be well
described.
We also show that the rapidity dependencies of the Ai

can be well understood in this intuitive approach. In
particular, the weak rapidity dependencies of the A0 and
A2, and the pronounced rapidity dependencies for A1, A3

and A4 can be explained by the absence or presence of
cancellation effects, which depend strongly on the rapid-
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ity.
We note that the intuitive approach presented in this

paper is by no means a substitute for the perturbative
QCD calculations. The goal of this work is to pro-
vide some intuitive explanation of some salient features
present in the lepton angular distribution data. This
could offer some useful insights on the origins of many
interesting characteristics of the lepton angular distribu-
tions which are being measured at the LHC with high
precision.
The present approach could also be extended to fixed-

target Drell-Yan experiments. Some recent work [32]
shows the importance of the perturbative QCD effects

even at fixed-target energies. A comparison between this
intuitive approach and the perturbative QCD calcula-
tions is also of interest. It is also promising to extend this
intuitive approach to some other processes with hadron
or lepton beams.
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