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ABSTRACT: We provide a formalism to calculate the cubic interaction vertices of the stable string bit
model, in which string bits have s spin degrees of freedom but no space to move. With the vertices,
we obtain a formula for one-loop self-energy, i.e., the O (1 /N 2) correction to the energy spectrum. A
rough analysis shows that, when the bit number M is large, the ground state one-loop self-energy AE¢g
scale as M5~5/4 for even s and M*~%/4 for odd s. Particularly, in s = 24, we have AE¢g ~ 1/M, which
resembles the Poincaré invariant relation of 1+1 dimension P~ ~ 1/P*. We calculate analytically the
one-loop correction for the ground energies with M = 3 and s = 1, 2. We then numerically confirm
that the large M behavior holds for s < 4 cases.
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Figure 1: The vertex Vg, is the amplitude of splitting a large string  into two small strings p and
g, while the vertex W,,, is the amplitude of joining p and ¢ into r.

1 Introduction

In the string bit model [1], a string is a chain comprised of pointlike entities called string bits. While
the chain is discretized, it behaves like a continuous string when the bit number M is large enough.

The string bit model is an implementation of t Hooft’s idea of holography [2-4]. In Lorentz
invariant theory, spacetime can be described by lightcone coordinates with transverse dimensions x =
(22,--+,2P~1) and the ‘£’ dimensions z* = (2 + 2') /v/2. In the string bit model, the z~ coordinate
of string bits is missing, and hence, the Lorentz invariance is not present a priori. String bits enjoy
the dynamic of Galilean symmetry, under which the ‘+’ component momentum P+ = (PO + Pl) /2
is identified as mM, where m is the mass of one string bit. When M is large enough and P7 is fixed,
P* can be considered as a continuous variable and its conjugate £~ can be interpreted as the missing
coordinate. The Lorentz invariance can be therefore regained and string theory emerges.

With ’t Hooft’s large N limit [5, 6], the type II-B superstring was formulated in ref. [7] as a string
bit model. In the model, a superstring bit creation operator, which was an adjoint representation of
U (N) color group, has up to s spin indices and moves in transverse space. A more drastic form of
holography was studied in recent papers [8-11], where string bits have no transverse coordinate and
hence no space to move. However, new compactified bosonic coordinates can be generated from spin
degrees of freedom of string bits. If suitable dynamics is chosen, these spin degrees of freedom are
converted to one dimensional spin waves, which then act as compactified bosonic coordinates. The
1/N perturbation of the latter model was studied in ref. [11], where the cubic interaction vertices and
their application to the calculation of one-loop self-energy were discussed.

Following the main idea of ref. [11], we continue the work in the following way.

e A more detailed study of the cubic interaction vertices is performed. We present a systematic
way to build conjugates of energy eigenfunctions, determine the sign factors of the vertices, and
(anti)symmetrize the vertices, which are denoted as Vg, and W, and shown as Figure 1, over
the indices p and q. We then show that the interaction vertices can be calculated by finding the
vacuum expectation values of ladder operators. These are necessary for the use of interaction
vertices in our calculation of observables.

e The calculation of the one-loop self-energy is improved and its large M behavior for the ground
states is analyzed. We assemble the ingredients necessary to calculate the one-loop self-energy.



The one-loop self-energies of ground states, AE¢g, are studied and their large M behavior is
analyzed. We calculate AEg analytically for M = 3, s = 1 and M = 3,s = 2 cases. A
qualitative analysis shows that AF¢ scales as M>~%/4 for even s and M*~%/* for odd s. The
scaling behavior is consistent with Lorentz invariance in 1+1 dimension when s = 24, the critical
Grassmann dimension, and the protostring model [11] emerges.

e AFE¢ is determined numerically for higher M and s. We confirm the large M behavior of AEg
for s < 4. We also verify that AEqg increases exponentially with respect to s when M is fixed.
We generalize the Hamiltonian of the model by adding O (1/N) terms s¢AH and numerically
show that, for the s = 2 case, the Hamiltonian is bounded from below with respect to M only
when £ > 1. Our analysis suggests that this is true for all the even s cases. The result shows
that the s€AH generalization is necessary for building a physical string bit model.

The rest of this paper is organized as follows. In section 2, we review some results of stable string
bit models obtained by [11]. Specifically, we introduce the Hamiltonian of the model, solve for the
energy spectrum of the model at N = oo, and summarize the three chains overlap calculation. In
section 3, we provide a systematic approach to build conjugate eigenfunctions, which will be used in
the calculation of the 1/N expansion. In section 4, the cubic interaction vertices are studied by 1/N
perturbation. In section 5, we use the cubic interaction vertices to calculate one-loop self-energies.
Numerical results for the one-loop self-energy are analyzed in section 6. The main text is closed with
a conclusion section. Finally, several appendices are included for technical details.

2 Stable String Bit Model

The purpose of this section is to review some results of stable string bit models obtained in ref. [11] and
introduce useful notations. These results are necessary for setting up the 1/N expansion of the model.
Meanwhile some modifications specific to this paper are incorporated. To be clear, the modifications
are as follows. In subsection 2.1, we add an O (1/N) term {AH to the Hamiltonian of the model. In
subsection 2.2, the diagonalization of the Hamiltonian at N = oo is done via different intermediate
variables.

2.1 Hamiltonian

The superstring bit creation operator is
((ﬁal...an)i, a=1,---,8, n=0,---,s, afB=1,---, N. (2.1)

where a; are totally antisymmetric spin indices and «, S color indices of U (N). ¢ is bosonic when n
is even and fermionic when n is odd. In Fock space, a closed string is represented by a color singlet
trace operator acting on vacuum state, that is of the form Tr¢- - - ¢ |0). The number of ¢ in the trace
operator is the eigenvalue of the bit number operator M =" %Tr ba;--a, Pay-a, -

The Hamiltonian H to be studied in this paper reads
5
H =) H;+s¢AH, (2.2)
i=1

where expressions of H; and AH are given in egs. (A.3) and (A.6). The H;s make O (1) contribution
to H while AH makes only O (1/N) contribution and hence does not affect the large N limit. We note



that H is a generalization of the s = 1 Hamiltonian in refs. [8, 10]. The H; parts have been proposed
in refs. [9, 11]; AH is the new term added by this paper and its derivation is given in Appendix A.1.

Let us now consider the action of H on trace states space, which is defined as follows. We introduce
s Grassmann coordinates 8, a = 1,--- | s and then define a super bit creation operator

s
1-
0) = Z y¢01m0k9c1 R EE
k=0 "
and a single trace operator

T (61, ,0k) = Trep (1) 9 (02) -~ (6k)

where 6; are s-component Grassmann variables. The trace states space, i.e., color singlet subspace of
Fock space, is then spanned by states like

T(01,~" 70K)T(771"" 777L)""0>7

where |0) is the vacuum state. The action of each H; and AH on trace states is given in appendix A.
To summarize the results, let us define

_ d o d e une o dd
h’kl = 2 (S — 29}6(/‘[0%];) + 20kdf0la + 29[ @ — 27’9k‘01 — ea d@a =+ 255 255k I (23)
— M —
h=>" (hrps1 —2s8). (2.4)
k=1

Then the actions of H on single and double trace states can be written as'

T (01, ,0x)]0) = T (0; - --0p7) |0) +7Z > b (0 0k) T (Opsr -+ 01-1)0)  (2.5)
k=1 l#£k+1

HT (0y---0x)T (m 1) |0) = (he +hy) T (61 0x)T (1 ---n1)

K L
ZZ WL (Os1 -+ O - -m—1) |0)

K L 1
Z Z +++Ox—1my1 o) |0) + S Fission Terms.  (2.6)

Note that in egs. (2.6) the —2s8x; term of hy; should be zero even if k = I, as they label different
variables.

While hy; acts on the trace states, to solve for energy eigenstate, it is helpful to convert hy; to an
equivalent form acting on the wave function of an energy eigenstate at N = co. The wave function 1,
is defined as follows. It follows from eq. (2.5) that, at N = oo, H evolves single trace states to single
trace states. Therefore, we can express a single trace energy state as

7, [0) :/dsel.-.dseMT(el,-.- O0) e (01, 0ar) [0) 2.7)

IThe actions of each H; on single and double trace states are shown in appendix A.



where 1), is the wave function. Since T (61,--- ,60s) is invariant under the cyclic permutation 6; —
0;1+1, we can constrain v, by

G (B, 00r) = (=) MV (0, -+, 00r,67) (2.8)

without loss of generality. The sign factor follows from that the measure d®6; ---d*0) is changed by

a factor (f)S(Mfl) under the cyclic transformation 6; — ;1. Now the action of hy; on T, |0) is
T, 10) = [ 8 BT (6) i 0)10) = [ dOT (6) by () ) (29)
where we have performed an integration by parts in the last step and
d d d d d
= 2(s—200 ") —200 " _2p0 = 2.1
hi 2 (S 203 d@g) 203 d&l“ 200 — d9a — 29020} — d@a d@a + 25 + 25041, ( 0)

Note that, in the derivation of hy;, the k = [ case needs special treatment. Likewise, the action of h
on T (0) is equivalent to the action on 4, (6) by

M
h=>" (hknrs1 — 258). (2.11)
k=1

2.2 Diagonalizing Hamiltonian at N =

Now let us solve for the energy spectrum of the model at N = co. A single trace energy eigenstate is
determined by an eigenfunction ¢, satisfying the equation

th (ela"'aaM):Eer(alv"weM)' (212)

To solve the eigenvalue problem eq. (2.12), we need to find the lowering and raising eigenoperators of
h. This has been done by ref. [11]. Here, we repeat the procedure with different sets of intermediate
variables.

From (2.10), we see that each term of h contains only variables or derivatives of the same 6. It
implies the variables can be separated and we only need to solve the equation of one variable. We
therefore drop the spin index a in the following calculation.

We introduce Fourier transforms [8, 10]

M 1 M d
Q= Z 0k€72ﬂ'ikn/M’ /Bn — Z 76727r7lk77./M7 (2133,)
VM M = dby
M—-1 M—-1
1 d 1 .
0. = an 2mikn/M _ n627rzkn/M7 2.13b
* VM n=0 dek M n=0 5 ( )
n=0,...M—-1, k=1,...M
which satisfy
{Oén, Bm} = 6m+n,M + 6171,0671,0- (214)

In ref. [11], instead of 6 and the diagonalization was done via the Grassmann variables S, =

de J
0. + E’ Sy =i (Hk + E)’ and their Fourier transforms. Such different choices should not affect the
eigenoperators and the energy spectrum.



The Hermiticity of Hamiltonian implies that o = ﬁ, ﬁT = 0, from which it follows that

aL:ﬂan) Bl:aMf’rH {anaa;tn} = {571)/811:)7,} :6777,71’7,7 0§n7m§M_1

We now express h in terms of o, and 3, as

M-1
2 2
h=2 nz::l {(anaMn + BnBr—n)sin % +2 (1 — cos ;?) (nBri—n + apr—nfn)| —2M, (2.15)

and seek for eigenoperators of h
Fy = rpag + B, [, Fi] = ex Iy, (2.16)

where 7, and €, are constants. Substituting (2.15) into (2.16) yields

k k k
ef = i8sinMﬂ, r,f = tanﬁ7r j:secﬁﬂ.

We then normalize the coefficients of F; to obtain the lowering and raising operators for k£ > 1,
Fk:skak-l-ckﬁk, Fk:ckak—skﬁm k:L ,M—l, (217&)

where ¢, = cos ( — £%) and s;, =sin (Z — £Z). It follows from (2.17a) that

Fl = Fy = cvonri + seBur, 1<k<M-—1, (2.17b)
The zero modes need special treatment:
FO = FM = eiﬂ'/4ﬂ0, Fg = Fo = FM = e_i”/‘lao. (217(3)

The phase factors are chosen so that the expression of hy; in terms of eigenoperators will have a
simple form, see eq. (4.11). A direct calculation shows that the eigenoperators satisfy the following
anticommutation relations

(Fo, i} = {F,j,FlT} —0, {Fk,FlT} — 6, 0<kl<M-—1. (2.18)

To obtain the energy spectrum, we need to find the ground energy E¢ and the ground eigenfunction
1, which is annihilated by all the lowering operators. Since the zero mode do not change energy
eigenvalue, there are degeneracies in ground state. To eliminate the ambiguity, we require the ground
eigenfunction to be annihilated by the zero mode Fy as well. The ground eigenfunction can be [10]

[(M—-1)/2]

wézl = H (Ck — SkaMszak) 5 (219)
k=1

where [(M — 1) /2| indicates integral part of (M — 1) /2. To verify F,¢! = 0, one only need to
check that

Fk (Ck — Sk‘OZM,kak) = F]y[,k‘ (Ck - SkaM,kak) = 0, 1 S k S M — ].7 (220)
[Fk,cl - slaM_lal] = O, k 7£ l, k 7& M —1. (221)



Acting h on the ground eigenfunction, we obtain the ground energy

- km 8M 2m
=1 . 3
=—4 E sin — = —4 cot —2 — + 3 +0 (M ) . (2.22)

We can now build general eigenfunctions for arbitrary s case. The ground eigenfunction and

energy are .
Ve = B By = —4scot 57 (2.23)

where each 1/)81 ) has the form of (2.19). A general energy eigenfunction v, and its corresponding
energy can be written as

1
_ (1 1 2 2 s s _ ot
w ( 71)1F7(1)2 7(2)1F7(2)2 F( ) F7(-S,)2 o ) ¢G = F{T}wGa (2243,)

(2.24b)

FE, = 4360‘5—4—82 1n

where we have defined F(,, as a string of eigenoperators and we choose 0 < 7,1 <742 <+ <M —1
as convention. To build a physical state, the modes r,; (2.24a) need to satisfy the cyclic constraint
(2.8). Under the cyclic permutation 67 — 07, F,?T transforms as F,?Jf — e’z““’r/MF,?T. It then
follows from eq. (2.8) that the modes must satisfy

nM for even s (M — 1)

: S n=0,1,2,- 2.25
ZT’“ {(n—|— WM forodds(M-1) (2:25)

Since the zero modes do not change the energy, the ground energy eigenstate has at least 2° degen-
eracies. This is the consequence of H commuting with supersymmetry operators Q%, as defined in eq.
(A.8). The constraint (2.25) has profound impact on the energy spectrum of the model. When s is
even, all the ground states are allowed by (2.25) and hence physical. But when s is odd, the ground
state is allowed only when M is odd. It then follows that the lowest single trace state for even M is
the one corresponding to F](\l/;/21,/}g.

2.3 Three Chains Overlap

We have constructed the energy eigenfunctions for N = co. To obtain the 1/N expansion results, we
also need to calculate the overlap among three chains: one large chain of M bits and two small chain
of K bits and L = M — K bits. The calculation can be done by establishing the relation among the
eigenoperators of large chain and two small chains. Here, we recap the results of ref. [11].

Let us only consider the s = 1 case. Let F&K) and Fy(LL) be lowering operators of L-bit and K-bit

f_FL)\/7+F \/7 (2.26a)

f_F 1<n<L-1, (2.26b)
fn+L:F]£K)7 1<n<K-1, (2.26¢)

) K L
fruor =e /A (FO(L) Var FO(K) \ M) ) (2.26d)

chains. Define a set of operators



which satisfy the anticommutation relationship {f,, fim} = { 1 f;l} =0 and { s f);l} = 0,m. Note
that fy equals Fy of the large chain [11]. We then express the large chain operators in terms of f and
fias

M—-1
= > (faCon + FiSmn), 0<m<M-—1. (2.27)
n=0

The anticommutation relation among F,,, and F, requires
csT+sct =0, cCct+8s8t =1 (2.28)
The matrix elements of C' and S are given by

COn = LUno = 60,7’7,7 SO,n = Sn,O = 07 0<n< M

and [11]
Omn === L s (BT <<l (220m)
Cr,Lgn—1 = \/17 1 1;267;?:;7;[;/;\/;M) cos (;}Z Z\Z) 1<n< K (2.29b)
CoM—1= F 11 ;z::/LJ;M cos (% — %) , (2.29¢)
Smn = \/171 1 eQﬂiZT/ZZLT:LJ/V[M) cos (;Lz + %) 1<n<L (2.294d)
SonLin1 = \1# - 1 ;gw;(ij:fn/fm cos (;; n %) l<n<K (2.29¢)
S, M—1 = —m 11 e;z::/LJ\QM Cos (% + %) , (2.29f)

where 1 <m < M — 1 in egs. (2.29). When M is large, the determinate of C' can be approximated as
[11]

P 09200 [ L\MESEADEERIE p g (MILSRAD/372/3
det CC" ~ — % 77 K ' (230)
(KLM) M
We then express the ground eigenfunction of large chain as
L —1/4
¢§;M) = exp (2 Z f;ZDmflT> g()T/Jé;L) [det (I + DD')] ’ (2.31)
kl

where w(GK) and wg) are ground eigenfunction for two small chains. The constraints F;,%¢ = 0 imply
CrinDni + Sy = 0. (2.32)

From the above construction, it is clear that the first rows and columns of the matrices C, S, and
D are trivial. One can therefore write them as C' = (1) @ C’, S = (0) @ ', and D = (0) & D’ where
C’, S', D' are nontrivial matrices of dimension (M — 1) x (M —1).
With (2.28) and (2.32), we can simplify (2.31):
det [C (I + DD C']  det [CCT+ SST]
det [CCT] B det (CCT)

Ve —|det0|”2exp< Zf,ID m)w““ 2 (2.33)

det (I + DD') = = |det C| 2,



3 Conjugate Eigenfunction

We have built energy eigenfunctions of the model at N = oo in subsection 2.2. To calculate 1/N
expansion results, we also need to find functions that conjugate to the energy eigenfunctions. For con-
venience, we call these functions conjugate eigenfunctions. In this section, we will construct conjugate
eigenfunctions systematically.

A conjugate eigenfunction 1, is a function of 6; that satisfies the normalization condition [11]

/d591 o d®Ong Py (01, 00r) s (01, -+, 00) = Ors, (3.1)

and the completeness relation

S (O, 000) B (1, ar) = 3 (0 1), (3.2)

where the delta function & (§ — 7) is understood to be symmetrized under cyclic constraint like (2.8).2
We stress that, once there are a complete set of 1, and 1, fulfilling the normalization condition, the
completeness relation is satisfied automatically.

To construct 1, explicitly, it is convenient to define operators Fki as conjugate to Fj under
integration by parts:

[ o B @)= [ a0 [Fro )] x @), (33)

)

where the ‘+’ superscript is chosen if ¢ (0) is Grassmann even and ‘—’ is chosen otherwise. It then

follows from eqs. (2.17) that
F&t = $6m/450, F];t == (spap —cxfr), 1<k<M-1, (3.4)

FiF =+e ™0y, FIF =+ (chanr—i — siBur), 1<k<M-1. (3.5)

In the remainder of this paper, we may suppress the superscript =+ if there is no danger of ambiguity.
In the s = 1 case, we claim that the conjugate to the ground eigenfunction & is

[M/2]

Dl = (—i) LM72] H (—s; + ciapr—sa;)  for odd M (3.6a)
i=1

B L(M—1)/2]

T S (=i + ciang—ic) aganyys - for even M. (3.65)
i=1

In appendix B, we verify that 77/32?1 satisfies the normalization condition (3.1). The function conjugate
to the general eigenfunction (2.24a) can be built by acting on 1)¢ with a string of F,ga) as

" (1) (1 (2) (2 n (s T I 7
w’” = Fr(l,)l Fr(l,)z T ng,)l F£2)2 o FT(~)1 Fr(b)z o ¢G = F{T}’(/JG’ (373')
g = (=) CTOMOED Yyt Ly, (3.7b)
2To be specific, it means that
~ 1 M-t
/dM@f(t‘)l,--- O00)0 (0 —m) = DM g, k) -
k=0



T, v ¥ | ve|ve| Fuy |
’gr‘gr*SM‘gr 0 ‘SM‘grfsM‘

Table 1: Gradings of functions and operators.

where all the F's pick F* if ¢ Grassmann even and F'~ otherwise. The normalization condition (3.1)
can be easily verified:

/ M9 §,1p, = / 4M6 FopybaF), v
_ / dMGz/ng{T.}F{TT}wG
= /dMW/_JG?ZJG =1,

where we used (3.3) in the second equality and (2.18) in the third equality. In the last equality, the
sign factor of ¥ cancels the sign introduced by the rearrangement of the measure from d*#; - - - d*6,;

to (1, a6V - (1, d6l®)).

By analogy with (2.31), for the s = 1 case, the overlap of conjugate eigenfunction among large
chain and two small chains is given by

_ 1 - I RPN
(GM) = |det 0\1/2 exp | 5 Z fiDijj (GK)wéL), (3.8)
ij

where f picks f+ if M is even and f~ if M is odd and all the notations follow the ones of subsection
2.3.

Let us conclude this section by discussing the grading of energy eigenstates and eigenfunctions.
We define

gr = g (T}) = grading of T;..
Now we can write the trace operator T (6) as linear combination of ¢,. Let T (0) = >, Xy (6),
where X; is independent of 6, then

T = / 40y - d*0, T (0) v, (6)

_ Z (_)sMg(Xt) Xt/dsel . dseM ’(Z}t (6) wr (9)

(o) ME()

- T

where the sign factor comes from the commutation of the measure and X;. It implies that X, differs
from T, only by a sign factor. So we have g (X,) = g (7)) and

T(0)=> (=)™ T, (6). (3.9)

T

Finally, from eqgs. (3.9), (3.1), and (2.23), we obtain the gradings (modulo 2) of functions and operators
as table 1. These results will be used in the next section.

~10 -



4 Cubic Interaction Vertices

Let T}, |0}, T, |0), and T;. |0) be energy eigenstates of strings with K, L, and M = K+L bits respectively,
then the interaction vertices V,,, and W,,, are defined as[11]

M—-1

1
HT,|0) = E,T,10) + SN 1,1, 10) Vipr, (4.1a)
K=1 pyq
1
HTqu |0> = (Ep + Eq) Tqu |0> + N ZTT |O> erq te (4-1b)
T

The vertex Vi, represents the amplitude of breaking one large string into two small strings and the
vertex W,.,q represents the amplitude of joining two small strings into one large string. Without loss
of generality, we can (anti)symmetrize the vertices over indices p and ¢ as

qur = (*)gpgq qurv qup = (*)gpgq erq- (4~2)

In this section, we shall find that

Vipr = Mdet 12 T <ngp},Ffj}>V, (4.3a)
a=1
s/2 - a at t
Wypq = KL|det C|"2 T <F{qp}, F{T}>W. (4.3b)
a=1
Several notations are used in (4.3) for convenience. F gqp} = Ff‘q}F fp} and the superscript a indicates

that only operators of spin index a are involved. The brackets (-, ), y; stand for vacuum expectation
values of operators

1
a at — a a at at at
<F{qp}’F{r}>V,W = <F{qp}h(v,W)F{r} exp (ka Dy fy >> ; (4.4a)
a — 1 a a a a a
hy = 5 ( K17t hM,K+1) o hyy =Rk g R (4.4b)

where the matrix D and operators fj are defined as (2.32) and (2.26), hy; given by (2.10). The
vacuum of (4.4a) is the state annihilated by all lowering operators of L-bit and K-bit systems, i.e.,
Fi(K) |0) = Fi(L) |0) = 0. In the following, we first mark remarks on the interaction vertices in the
subsection 4.1 and then give all the techenical details of the derivation of (4.3) in subsection 4.2.

4.1 Remarks on Vertices

The form of vertices in (4.3) can be interpreted as follows. The prefactor M of V,,,, shows that, when
a large chain splits into two small chains of K and L bits, there are M ways to choose the break points,
and each way contributes equally to Vg,,,. Likewise, the prefactor K'L of W,,, shows that, when two
small chains join into a large chain, there are K x L ways to choose the joint points, and each way
contributes equally to W,.,,. The operator h{, = % (h(}m + hiy i +1) reflects the fact that, to break
one M-bit string into K-bit and L-bit strings, one need to connect the bit 1 to bit K and bit (K + 1)
to bit M. Similarly, the operator hyw = hi x4 + hj,, reflects the fact that, to join back the above
two small strings into one, one need to connect bit K to the bit (K + 1) and bit M to the bit 1. The
difference of factor 2 between h{, and h{, is because that, when joining two strings, one can inverse
the labels of the first small string as 1 4+ 4 <> K — i to obtain a different large string.

— 11 -



4.2 Derivation of Vg, and W,,,

Now let us derive the formula (4.3). Acting the Hamiltonian to the zeroth order energy eigenstate
T, |0) and using (2.7) and (2.5), we have

M M+i
1 _
HT,|0) = E, T, |0>+N/d9 D> T (05+-0.)T (iga--0;1)10) Py (61, , 1)
i=1 j=i+2
1 M M-1 B
=ET10) + S>> /d9 hijiv k41T (Oiv i1 -+ 0:) T (01 -+ i i) [0) U
i=1 K=1
] M—1 ) o
=ET |00+ 5> ), / do Y (=) I B g A Ty Ty 0) i, (45)
i=1 K=1 p,q

where in the second equality we renamed the indices as j — ¢+ K + 1 and in the last equality we used
(3.9). Comparing (4.5) with (4.1a), we arrive at

M
Vypr = (_)S(KqurLgp) Z/dg Bi,i+K+1qu (e --91)1/_),; (0ir1- -0 k) . (4.6)
i=1

The vertex is decorated with tilde because we have not yet applied the constraint (4.2) to it. Note
that the sign factor is changed due to the reorder of T, and Tj,.
The action of H on double trace produces both fusion and fission terms:

HT,T, |O> = (Ep + Eq) e ‘O>

1 s —s T 7
N ZTr/df)dn Z (=) =B by Oy - - O -~ m1) U (6) by (1) [0)
T k,l
1 sLigp—sK) 7 7 ! picsi
+¥ Z:Tr/dﬁdn %l: (=) H ) By (O - O - - m) by (8) g (1) |0>+NF1551OH Terms.

Comparing above with (4.1b), we have W,,, = WT(;()Z + Wr(z,)l where

WT%()I _ (7)SL(9;078K) /dﬂdn Zﬁkﬂ/_fr Oy - Oy - ..nl_l)q/)p (6, - ..QK)% (n1---mL),
k,l

Wr(i?; _ (7)SL(9;D—SK) /d9d77 Z/}MLT Ok -+ Op—1mi1 - m) Yp (01 Ok ) g (1 -+ nL) -
k.l

Note that so far the derivation of V' and W follows the one of ref. [11] except that we changed the
notation slightly and determined the sign factors of the vertices, which are overlooked by ref. [11] in
eqs. (21) and (27).

Now let us simplify V and W. We denote the integral with index i in (4.6) as f/q(;)r It can be
shown as follows that all the M integrals 17q§§2 are the same. For the integral with index 7, we can
rename all integration variables as ; — 6,41 and then use the cyclic constraint (2.8) to bring ¢, and
the measure to their original form. The value of the integral is invariant under both changes but f/q(;%
is changed to f/q(;;f Do implies that ‘N/,I(IQ is independent of ¢ and we can choose ¢ = M for every
integral to give

Vapr = (—)S(KqurLgp)M/deizq (01 0ar) thp (01 -+ Okc) ot k1 (01, -+ O ) .
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To find the vertex satisfy the constraint (4.2), we let Vg, = 3 (V}mr + (—)9r9a f/},qr), where Vg,
can be obtained by exchanging p <> ¢, K < L:

(_)gpgq qur — (_)gpgq+s(Kgq+Lgp) M/dg @p (Op 11 - )wq( 0r) har.rs1r
_ (_)gp9q+s(Kgq+Lgp) M/d9 1/’)1) (91 L 9K) 1/’)(1 (9K+1 . 9M) hK,le

= (—)*(FoatLor) M/dﬁ Vg (041 O0r) Uy (01 0k) hic 1ty
We therefore have
Vipr = (7)3(Kgq+Lgp)M/d91/;q (9K+1...9M)1Z)p (01--0r) hypy (01, ,00), (4.7)

where hy is given by (4.4b).

We perform the similar calculation to the W vertex. All the integrals of W) and W®) are
independent of the indices k and I. So we can simply replace the sums over k and [ with the factor
K x L. We then rename 71, ...,11 to Ox11,...,0x and fix the indices as k = K, | = K + 1 for w(®)
and k=1, 1 = M for W®? to give

Wypg = (=) H0r=K) g, / A0y (01 Onr) (hic.ics1 + Para) by (01 -~ 0k) Vg (Ocg1 -~ Oar) . (4.8)

Exchanging p <+ ¢ and K < L, we have

Wyqp = (—) K (@a=55) KL/dM?T (01 0n) (hr py1 + hara) g (01 00) ¥y (Op41 - Onr) . (4.9)

Renaming the integral variables as {01, -- ,0.} = {0x+1, -+ ,0m}, {041, ,00m} — {61, , 0Kk},
under which A, 141 +har,1 becomes har 1 +hi k1, and then applying the property that Uy (01 ---0nr)
is invariant under the cyclic permutation 6, — 6j41°, we obtain that W,,, = (—)?% W,,,, which
implies that W,.,q = (erq + (=)o qup) = Wipg-

Let us now get rid of the integral in the expressmn of V. For sunplicity7 we consider the s = 1
case. We use (2.24a) and (3.7a) to write ¢, = FT }¢G Lty = F{T}wG and similarly for states p and

g. We then use (2.33) to express wéM) in terms of wG and ¢G . By a little algebra, we arrive at
_ —(L) ~ 1
Vet = (=)Mo p |det €| /d0 DG DG Frapyhv F, exp <2 3 ngklfj> $TPE) - (4.10)
Kl

The ground eigenfunctions wéL) and ¢g{) are annihilated by any lowering eigenoperators of the small
chains. Their conjugates zljg“) and zljg() can be annihilated by any raising eigenoperators of the small
chains, as eq. (B.3) shows. Therefore, RHS of (4.10) can be interpreted as a vacuum expectation value
of the operator F{q}F{p}th exp ( > okl kaklfl ) We therefore have

Vit = ()L(g”_K)M|detC’|1/2<F{qp}th eXP< kaDklfl>>

30ne can show that JJT (01 - - - 0pr) is invariant under the cyclic permutation 6, — 041 as follows. From eq. (3.6a) and
(3.6b), we see that 1/; — (= )M 1 1/}5 L as 0 — Op11. It then follows that 1 transforms as ¥g — (— )S(M D) Y.
From the cyclic constraint (2.25), we see that F{ } transforms in the same way as 1)g. Therefore, ¢, = F{ }wg is
invariant.

~ 13—



where the vacuum is understood to be the state annihilated by all Fi(K) and Fi(L). We perform similar
calculation for W,,, and find

_ - 1 1
Wit = ()" KL |det 0| <exp (2 fiDl, fl> F{r}hWF{Tp}F{Tq}>
:
_ 1 1
:(_y@pK)KL(Eﬂﬂ2<FﬁthFL“mp<2ﬂDmﬁ>>.

Note that V7! and Wit have the same sign factor (f)L(g‘“_K). We shall see that physical
observables, like one-loop self-energies, only depend on products like W,.pqVypr. It implies that the
sign factors are unphysical and can be dropped in the calculation of physical observables. So for
arbitrary s, up to a common unphysical sign factor, we can express V and W as products of vacuum
expectation values over spin index a. We therefore obtain the formula (4.3).

To calculate the vacuum expectation values, we need to express hy and hy in terms of eigenop-

erators. From egs. (C.4), (C.3), and (C.5), we have

M-—1
2 2

n,m=0
where
1 Kn Km m—n
V) — ~ 11— ik _ ; i
A 5 [1 exp <2m Y >} [1 exp (2m Y )] sin —
1 Kn Km m+n\|] . m—n
+ 5 [exp (QWZM> + exp <27TZM>:| {1 + exp (m i ﬂ Sin — (4.12a)
1 2K —1 2K +1
uvz—cotﬁ+§ (cot Wi T — cot 2];[_ 7T> + ME, (4.12b)
AW) — [1 + exp (m’n Lm)] [1 + exp (QWiKmA—; n)] sin mz;/[nm (4.12¢)
pw = —4cot —— + 2ME. (4.12d)

2M
5 One-loop Self-energy

One application of the interaction vertices is to calculate the one-loop self-energy, i.e., the O (1 /N 2)
correction to energy spectrum. In this section, we will first express the one-loop self-energy in terms
of cubic interaction vertices [11]. We then apply the results of previous sections and obtain a formula
for analytic and numerical computation.

For a finite IV energy eigenstate, we use the ansatz

|B) = T, [0) + T,Ty 0) Cpg -+ (5.1)

where the coefficients C, = (=) Cy;, are c-numbers of order 1/N. Imposing the eigenvalue equation
(H — E) |E) = 0 and using perturbation theory, we obtain [11]

1 1 B
Cpq = Er _ Ep _ Eq N‘/qpr +0 (N ) ’ (52)
1= 1
AB, = 70 > Zerquqpm (5.3)
K=1 pgq
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where AF, is the leading order correction to F,, i.e., E=E,.+ AFE.+ O (1/N3). We stress that the
vertices in (5.3) should be the ones satisfy the constraint (4.2), otherwise it would lead to an incorrect
AFE,.

We now apply the formulas of V and W to (5.3). Let us first consider the s = 1 case. The zero
modes require special treatment. Substitute (4.3a) and (4.3b) into (5.3) and write the sum over zero
modes explicitly:

M—

- ) KLM |det C| \ P\ \ :

AES N 2 : :p : E, E Eq N 2 0: . <F{QP}F0’KF6€7L’ F{r}>W <F{QP}F07KF&L’ F{r}>v
K=1 K=

K)

. ! . . .
where we wrote Fj (K) as Fy,ic for convenience and ) ' indicates the sum over states without zero

modes. We can replace Fj (5) and Ey (£) with fo and fas—1 given the following reasoning. The sum over
A and k produce four terms. For the term with A = x = 1, we find FO(K)F(L) €™/ fo far—1 by egs.
(2.26a) and (2.26d). The phase is irrevelent. The A=1, xk =0 and A = O n = 1 terms are quadratic
forms of FO(K) and F . One can easily verify that F(K)* (K) + F(L)* = fofo+ fir—1fm—1. So

the sum over FéK) and FO( ) can be replaced by the one over f; and fM,l. We then have

M KLM |det C .
ABT =1 ZZIE EletE‘ > <F{qp}f0AO AAfIll’F{r}> <F{qp}f§° &”’117F{Tr}>
p,q

i*a

For arbitrary s, |det C| is replaced by |det C|® and each term inside the summation becomes a product
over a. So we have

M-1 s S
1 ' KLM |det C| . . a N a
AEr:ﬁZZm > TL{(Ftm o Rt Feh ), (Bl fos Rt FED ),
K=1 -:0,1a:1

Note that the sum over A; ; can be performed for each a independently. So we can move the sum over
A;,; inside the the product over a to give

' KLM |det C 1 L\ )
E, N2 Z > E, ge E| H (Z <F{qp}Za FT}> <F{qp}za F{T}> ) (5.4)

K=1 paq =1 \i=1
where 7% = (1, & Far—1s fé’fj},l).

5.1 Ground Energy Correction

In principle, we can now calculate one-loop self-energy for any single trace energy state with eq. (5.4).
But in general the calculation is tedious. Let us consider the simplest case that 1), is the ground state,
ie., Fy;y = 1. For convenience, we denote (O, 1)y, ;- as (O)yy;,. We only consider the s = 1 case here,
since s > 1 cases are simply products of the s = 1 case.

We need to calculate the vacuum expectation value < -~ hexp (% f,IDkl flT) > In terms of eigen-
operators, hy; contains quadratic terms of the form AanLFJ, A,n mF;LFn, and A, F.F,, and a

constant term u, as eq. (4.11) shows. Since F), exp <§f,1Dklfl ) wG wg’) = megM) = 0, only the

F1F' and the constant terms make nonzero contribution:

<- -~ hexp (;leDszzT>> = % < (AL FIF] 4 1) exp <;flkalflT>> :
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To calculate the result of Al FIF! term, we need to express F, in terms of linear combination of
fr and fg, as (2.27) shows, and commute f; through the exponential. This is done in the Appendix
D. Using eq. (D.1), we have

2 0 1
<F{qp}Zi>v, i (Mvw + B(VW)aDW) <F{qp}Zi exp <2f11DklflT)> , (5.5)

where .
wyw = pvw —Tr (S*CflAIf,w) . Byw =C7lAL, (C7Y)

with pyw and Ay defined in (4.12). Finally, the vacuum expectation values on RHS of (5.5) can
be calculated using

1 n ! P
<fi1 fiz +* fizn—i fizn €XP <2flkalflT) > =) Z (=) DiP(DiP(?)DiP(B)iP(‘l) e DiP(2nfl)iP(2n)7

PeSa,

where Ss,, is the set of all permutations of 2n integers, (—)P the signature of permutation P, and Z/
indicates sum over permutations satisfying

P(l)<P(2), PB)<P4), - ,P2n—-1)<P(2n),
P(1)<PB)<P(B)<---<P(2n-1).

Combining above together, we can calculate the one-loop self-energy of the ground state. As
the complete formula is very complicated, we do not bother writing it here. In appendix E, we
show examples of using formula (5.4) to calculate the one-loop self-energies of M = 3, s = 1 and
M =3, s =2 cases. For M =3, s =1, we have

AEG;2[3(3\/35)52%(127\/5)53(3\/55)},
and for M = 3, s = 2, we have

1
AEG = 5 (—66\/554 + 360£% — 230v/3¢2 + 180¢ — 33{)

In general, AEg is a polynomial of £ of degree 2s.

5.2 Large M Behavior

We conclude this section by considering the large M behavior of AEg*. The vacuum expectation
values in (5.4) only depends on the ration K/M, therefore, can be considered as O (1). So when M is
large

' KLM |det C|°
AEg ~ — 5.6
“ N2 Kzlpzq: Eqg—E,— B, (5.6)

In (5.6), the factor K LM scales as M?>, |det C| scales as M ~/* by eq. (2.30), and the sum over K
gives another factor of M. These three parts produce a factor scale as M*—5/4,

We then consider the large M behavior of 1/ (Eg — E, — E;). When s is even, both p and ¢ can
be ground states, and hence, 1/ (Eq — E, — E;) ~ O (M) by eq. (2.22). When s is odd, M has to

4The large M discussion is mainly based on comments by Charles Thorn.
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be odd in order to have the physical M-bit ground state and one of the small strings must have even
bit number. It implies that the ground state of one small chain is forbidden by the cyclic constraint
(2.25). Therefore, 1/ (Eq — E, — E,) ~ O (1) for odd s.

Combining above together, we have

AE M>=s/%*  for even s (57)
“ M4=5/4 forodd s ’

In analogy with the standard string theory, we can infer from eq. (5.7) the critical Grassmann di-
mension of the model, where Lorentz invariance in 1 + 1 dimension is regained. In the lightcone
coordinates, P is identified as mM and P~ is identified as E. So the Poincaré¢ invariant dispersion
relation P~ ~ 1/P7 implies E ~ 1/M. Therefore the Lorentz invariance requires s = 24. The model
in the special s = 24 case is called protostring model[11].

6 Numerical Results®

We have derived a formula for the one-loop correction to the ground energy. As appendix E shows,
however, the calculation is tedious even for the simplest case. We therefore turn to numerical compu-
tation. As the complexity of the calculation grows dramatically, the highest M for which we performed
numerical computation is 27 for s = 1 and 16 for s = 2, and continue decreasing as s increases. Since
only the ground energy is considered, we will simply write the ground energy as E and its correction
as AE, and also, suppress the 1/N? factor.

We first compare the perturbation results with the exact numerical results, which are obtained by
the method of ref. [10]. Figure 2 plots the change of ground energy with respect to the 1/N for M = 3
and 5 in the s = 1 case. The solid lines are exact numerical results and the dashed lines are O (1/N?)
perturbation results. We see that the two types of results match very well for N large enough. One
interesting observation is that, when N is small, the perturbation results of M = 3 are lower than the
exact results while the perturbation results of M = 5 are above the exact results. It implies that the
o (1/N4) correction is positive for M = 3 and negative for M = 5.

We then verify the large M behavior of AFE. Instead of plotting AFE with respect to M, we study
its “inner structure”, that is the contribution of each K to AFE, denoted by AF; and defined as

M—1 K
AFE = AE;, i=—.
> i=
K=1
Since the power of M in the large M behavior of AF; is one lower than that of AF, we introduce the
normalized AFE; to remove the M dependence:

. AE; M—4+s/4 for even s
AFE; = .
AE;M—3+s/4 for odd s

We expect that, for fixed s and &, AE; only depends on the ratio K/M.

The plots of AE; as a function of i = K /M are shown in figure 3, where £ = 0 for all the four
plots. When s is odd, only odd values of M are allowed and each M has two curves, one for odd K
points and the other one for even K points, for the reason will be clear shortly. For s = 2, 3, 4 cases,

5The source code for the numerical computation can be found in ref. [12].
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s=1, §:O s=1, §:1

Figure 2: Ground energy as function of 1/N for s =1, £ =0 and s = 1.£ = 1 case. The solid lines
plot the exact numerical results by the method of ref. [10]. The dashed lines plot the 1/N? order
perturbation results.

the curves of different M values are very close to each other, so the asymptotic behavior is evident.
For the s = 1 case, the gaps between consecutive curves become smaller as M increases, which is
consistent with the expected asymptotic behavior. It is therefore fair to conclude that the large M
behavior is confirmed.

The fact that there are two curves for each M in odd s cases can be understood as follows. Let
us consider the s = 1 case and take examples of K = 1 and K = 2, where the former has much
lower contribution to AE than the latter according to the plots. Assuming that M is large enough,
we have the other small chains with bit number L > K. Since M is odd, L is even for K = 1 and
odd for K = 2. The lowest energies of these two cases, which are equal to —4cot 57 — 4cos 57z + 8
according to (2.24b) and the cyclic constraint (2.25), differs only by O (1). Now we compare these two
cases in the low energy regime, in which the gap between energy levels and the lowest energies are at
most of order 1/M. Consider the numbers of states in the low energy regime. Because of the cyclic
constraint, only chains with even bit number have excited states with energy gaps of order 1/M above
the lowest energy. For K = 1, the number of states in the low energy regime roughly equals P (L/2),
the partition number of L/2; for K = 2, it equals P (2/2) = 1. It implies that the low energy regime
of K =1 is much denser than the one of K = 2. Therefore, for large enough M, the K =1 case has
much lower average energy than the K = 2 case. This reasoning holds when K is small. Hence, small
odd K cases have lower contribution to AFE than small even K.

We next consider the effect of the ¢ parameter. Figure 4 shows the plots of AE; with respect to
it = K/M for s = 2 with different values of £. From the plots, the £ = 0.5 and £ = 1.5 cases show a
smooth asymptotic behavior as the cases in figure 3. But when £ is close to 1, curves are not smooth
and intersect each other. When ¢ < 1, the curve moves downward as M increases, which implies that
AFE decrease as M increases. So AF is not bounded from below and the system is not stable. In
contrast, when £ > 1, the curve moves upward as M increase, which implies a stable system. This
is related to a special feature of the £ = 1 case. Recall that the Hamiltonian has an H; part shown
as (A.3a). This part produces a term like —sTr ¢p1o...5¢012...s019...sP12...s. When s is even, ¢1a...; is a
scalar and this term behaves like a scalar potential with negative coeflicient, which lead to a dangerous
instability. But when £ = 1, this term is canceled exactly by s AH. That being said, for even s, £ = 1
is the minimal value for the potential to be bounded from below. To build a physical string bit model
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0.010
0.008 |
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Figure 3: AE; as a function of i = K /M. For odd s cases, the curves above horizontal axis are for
odd K points and the curves below are for even K points.

for even s, we should require £ > 1.

We next study the dependence of AE = > AE; on s. Figure 5 plots the change of In ‘AE’ with
respect to s for chains of M =5 and M = 6. For M = 5 we sampled s from 1 to 10; for M = 6 only
even s points are sampled as its ground states only survive in even s cases. For each M we choose
£ =0,1,2,3. For M = 6, all the curves almost rise linearly. Of all the four curves, ¢ = 3 is the
steepest one and & = 1 is the flattest one. £ = 0 and £ = 2 almost coincide with each other. For
the M = 5 case, the overall trends of the curves are the same as M = 6 except for slight oscillations
between even and odd s points. For & = 0, 1, the oscillation is relatively noticeable, and for £ = 3,
it is negligible. Actually, if only even s points of M = 5 are sampled, the plots are almost the same
as M = 6. The exponential dependence of AFE on s stems from the fact that each ground state has
2% degeneracies. The fact that £ = 1 has lower slope than others is also related to that £ = 1 is the
boundary for AE to be bounded from below.

7 Conclusion
We have presented a formalism to calculate the cubic interaction vertices for the stable string bit

model. With the vertices, we calculated the one-loop self-energies of the model in both analytical and
numerical ways.
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Figure 4: AE; as a function of i = K/M for the cases of s = 2.
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. é= sor
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00 &= 20
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Figure 5: In ‘AE‘ as function of s for M = 6 and M = 5 cases. Note that for M = 6 the £ = 0 (blue)

and & = 2 (red) curves almost coincide.

From the large M behavior of one-loop self-energies, we found that the Lorentz invariance requires
the critical dimension of the model to be s = 24, which then leads to the protostring model. One
interesting interpretation of s = 24 is as follows[13]. Out of the 24 dimensions, 16 of them are paired
to form 8 compactified bosonic dimensions and the rest 8 remain as fermionic dimension. Thus, it has
the same degree of freedoms as the superstring model. The large M behavior of AF¢ is determined
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by the ground states contribution of the small chains. Notwithstanding that the number of excited
states grows exponentially with respect to M [10], the excited states contributions are canceled out
due to the fermionic nature of string bits. These results support the idea of formulating string theory
by string bit models.

The future research of this work can be done in several ways. One can improve the numerical
computation to study higher M or s cases. One can also apply the formalism to other calculations,
e.g., four strings interaction, or to study higher loop corrections and find the Feynman rules of the
model.
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A The Hamiltonian and its action on color singlets

The (anti)communication relations among string bit creation and annihilation operators is

(D00 (@0,)2] | = Garva)d (Bou)) = (D)™ (B100,,) " (Gr0)

+
= 6mn 0505 > " (1) arbp, *+ Oanbp, » (A1)
P

where the sum runs over all permutations of 1,2,...,n.
The Hamiltonian of the model consists of O (1) terms and O (1/N) terms. The O (1) terms are
the generalization of the Hamiltonian of s = 1 string bit model [8, 10]

H=! = %Tr [(a® — ib%) a® — (b* — ia®) b® + (ab + ba) ba + (ab — ba) ab] , (A.2)

where @ = ¢ and b = ¢1. H°=! produces the Green-Schwarz Hamiltonian [14, 15] at N = co.
H*=! is generalized to 3_°_, H;, where9, 11]

NZZ Trd)al an¢b1 bk¢b1 bk¢a1 “An 9 (Asa’)
n=0 k=0
2 s—1 s— 1 _ _
N Z n'k" Tr ¢a1--~an¢bb1---bk,¢b1--~bk(bbal-nan7 (A'3b)
n=0 k=0
2 s—1 571( 1)k
Hs = — Tr Gbay---ay, Dby - Dbbr by Pay ---a (A.3c)
N nlk!
n=0 k=0
. s—1s—1 k
2i (-1) - -
H, = N T Tr Gay - an, Dby -y Dby by Pbay--an s (A.3d)
n=0 k=0
. s—1s—1 k
21 (-1)
H5:*N;];) T TE Gbay--ap Poby by Dby by Pas - - (A.3e)
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One can check that for s = 1 eq. (A.3) is reduced to eq. (A.2) if one identify ¢ as @ and ¢, as b.
We now add O (1/N) terms to the Hamiltonian. As refs. [8, 10] shows, the N = oo behavior is

not affected by the O (1/N) terms
AH=! NTr [abba—&—baab—f—’Q 2 5% — Mszl] ,
. _ 1 _
M= =Tr (Eza—l— bb) -~ (Tr(iTra+TrbTrb) .

By analogy with H*=!, AH*=! can be generalized to arbitrary s case as

(ZZ Tr(bbl bk¢a1 can Pay - an Pyby — M>7

n=0 k=0

. 1 - 1 S 1 -
M= z% T by G — 3 z;) — T a0, Tr Gy

Combining two parts together, we have the complete form of Hamiltonian for arbitrary s:

5
H= Z H; + s€AH
i=1
where £ is a real constant.
H commutes with the supersymmetry operators

s—1 n
-1 i Iy —im/4 7
@ =3 C ot [0 b+ € sG]

{Qav Qb} = 2Map,

which will guarantee equal numbers of bosonic and fermionic eigenstates at each energy level.

(A4)

(A.5)

(A.6a)

(A.6b)

(A.8)

(A.9)

Using the commutation relations (A.1), we obtain the action of H; on single trace states [11]

T (01, ,0n |022( 20kd9a>T(91,~~,0M)0>

M
2
+NZ( - 20— ) Y T (61, ,00)T (O, 01)]0),

k=1 Ik, k+1

T (0, ,0u \0_229kd9a (01,---,01r)|0)
k+1

NZ Z ea 91» aek)T(9k+1v"'vel*1)|0>v

k=1 1k k+1

M
d
T (61, .0a)[0) :229"%1%“9%'“ 0a1)[0)

Z Z 6[ 917 70k)T(9k+17“' 70l71)|0>7

k: 11k, k+1 0%
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M

T(91,~~~ 3 )|0 72220k9k+1T(917 70M)|O>
k=1
Z > OR0T (01, 0k) T (Bryr, -+ ,61-1) |0)
k 11#k,k+1
T (61, 00 [0) = 2zZ S 6 o) [0)
b) 7 d@a d0g+1 b b

Z > deadm T(O1 00T Brsrs- - 0-1) [0)

N 11k, k+1
Similarly, the action of AH on single trace state is
AHT (6y,...,00m Z Z 0.)T (Biy1,..-0,-1)0).
i=1 j#i+1
The actions of H; on double traces are [11]

K
2 d
HlT(eng)T(nlnL)‘O Fussion — N E E <S—20gm)T(0k+1...9k7’]l...nl1)|0>
k=11=1 k

9 K L d
+NZZ (S_inadniz)T(ek"'ek—lnl-&-l"'nl)0);

K L
2 d
HyT (8- 05) T (11 -+ 02) |0 pssion = 77 ZZHZ%T(GM <O ) [0)
=1

Similarly, the action of AH on double trace states is

K L
2
AHT (01 0k) T (- 12) [O)pussion = 37 SN T (Oksr O+ mi-1) |0)

A.1 Derivation of AH

It is not obvious of how to generalize AH*=1! to arbitrary s cases. We actually obtain the generalization

from the relation
TrG? = N(AH - H'),

which has been proved in Appendix E of ref. [10] for s = 1. Here the color operator G is defined as [7]
s 1 - _ 8
Gi=>" ~ (Par-anPar-an = Par-anParoan ), »

n=0
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and both AH and H’ are supersymmetric and of O (1/N). The notation: @a, ...q, @a,...a, : indicates
the normal ordering of ¢, ...a, Pa;...a, - In s = 1 we have[10]

_ 2 _ _
H'5=! = ﬁTr (a:aa:a + b:ba:a — a:bb:a) .

One can verify that the action of G on any color singlet vanishes: G2 |any color singlet) = 0. We
therefore have (AH — H') = 0 in the color singlet space.

To find AH, we expand Tr G? and match its terms with H’*=! and AH*=!. By direct calculation,
we have

TI‘G2 ZZ 'k'Tr¢a1 an¢a1 an¢b1 bkd)bl -br + ZZWTI‘ ¢a1~~an¢?a1~~~an::¢b1~~~ak(§b1mbk:

n=0 k=0 n=0 k=0
- Z Z 'k'T ¢CL1 *An ¢a1 ‘An ¢b1 bk ¢b1 bk N Z Z Tk'Tr ¢a1---an¢a1---an :¢b1-'~bk ¢b1-'~bk'
n=0 k=0 n=0 k=0

We calculate each term on RHS of Tr G2 and obtain

S S 1 B
first term = NZZETrd)a]mangbal . ZZ 'k' Tr¢a1 Ut ¢a1 an¢b1 by - ¢b1 b

n=0k=0 n=0 k=0

s 1 B
second term = NZ ETr Day-anPayan + ZZ 'k'Tr qﬁal vy Dby bkgf)bl by (Pay-an s
n=0 "

n=0 k=0

. ~ 1, -
thlI’d term = — Z ETT ¢a1~~~anTr d)al---a Z Z TI‘ (bbl by (bal an¢a1 an¢b1~~bk7
n=0 " n=0k=0"" :

S

1 _
fourth term = — > — T by 0, T Gy, Z Z 'k'Tr By, Doy by Dbr by, Py ooa, -

n=0 n=0 k=0

Combining above together, we have

TI'G2 ZZ 'k' Trqﬁal Gyt ¢a1 an¢b1 by - ¢b1 by

n=0 k=0

+ Z Z WTr ¢al‘“an:¢b1"'bkébl“'bk :¢al'“an

n=0 k=0

_ZZ Tr¢bl bk¢a1 an¢a1 and)bl by
n=0 k= 0
S

+ NZ Tr(ﬁal an¢a1 - Z 2 TI‘ ¢a1 Trqbay'-an

n= O
Comparing the terms of Tr G? with H*=! and AH*=!, we can identify
nk Iy 7
=N Z Z 'k' (Tr By By by Py by, By, + (=) T Bay oo Dy, Py by :¢b1~~bk) ,
n=0 k=

and AH as (A.6). One can verify that both H” and AH commute with the supersymmetry operators
Q% (A.8).
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B Verifying the normalization condition for g

In this appendix we show that the conjugate eigenfunction of s = 1, defined as eq. (3.6), satisfies the
normalization condition (3.1). We first show that [ d*6 Yae = 1. For odd M,

[M/2]

/dMé) /‘ZGwG = (71) LM/2] /dMe (67 H (782' + CiaM—iai) (Ci — siaM_ial—)
i=1

[M/2]
:(,Z')LM/ZJ/dMQOLO H (sZ?Jrcf) ApNf—i O

=1

M
= (—Z) LM/ZJ /dMH HaMfi
i=1
where in the last step we used®

M
/dMG HaM_i = /dM9 AN 1O —2 " Qg = iL(Mil)/QJ. (Bl)

i=1

Similarly, we can show [ d™@ e =1 for even M.

To show [ dM@ i), = 0 for 1 # G, it suffices to show that fdMé' z/ng,Iw’ vanishes for all
0 < k < M —1 and any eigenfunction v’. If kK = 0, it clearly vanishes because both Fg and 1) contain
the Grassmann odd operator ag. If 0 < k < M/2,

[ @oserv = [0 (F0c) v (B.2)

RHS of (B.2) vanishes because of
Fl* e =0, (B.3)

which can be verified by checking that
F;Ii (=sk + cran—kor) = FJJ{;‘:—I@ (—sk + cranr—rag) = 0,
[ﬁgi7 —sitaan_a] =0, k£l k#M—L.

Similarly, we can show that F) ,jiizg =0 for M/2 < k < M —1. Therefore, the normalization condition
[ dM0prp, = Sy is proved.

C Calculation of hy

In this appendix, we will find the expression of hj, in terms of lowering and raising operators. The
h{, in the language of 0, is

d d d d d
=-2(1—-20,— ) —20,— — 20— — 2i — 20— — +2 204.1.
hi < de9k> 0, a0, 0, 0 1010, Zdek 0, + 26 4 26y,

6We do not prove the formula (B.1) here. But we have verified it by Mathematica program.
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We now temporary drop the last two constant terms and will add them back in the end of the
calculation.
Using (2.13b), we express 6 and ﬁ in terms of o, and 3,:

M-1
d 1 .om4+n
deak Mnmg :Oanﬁmexp (271'1/4; % )
M-1
d d 1 kn +1Im
Or— 0, +0—— a0, Mnmg 2 (nBm + amfBn) {exp <27”M)]
M-1
1 kn+1Im
lel = M E Ay Oy €XP <27TZM>
n,m=0

d d 1 kn +1m

Substituting above into hy; and rearranging, we obtain
hia = iy + Ay

where h,(c(;) are the terms with zero modes and hg) are the terms without,

4 N m+n
hlg):—2+ﬂ Z QB €XP (27rik i )

n,m=1
M-1
2

— s (anﬁm + amﬁn + ianam + Zﬁnﬁm) €exp (27”

M M

n,m=1

kn—|—lm>

M-1
2 . . kn n
hi(c(l)) i E (anBo + aoBn — ianan — i, 50) [GXP <Q7TZM) — exp <27”M)} :

n=1

. 1 . .. .
Let us first consider h,(d). We express nonzero modes «,,, and f3,, in terms of raising and lowering
operators. Using

ak:ckF;\r/I_k—i—ska, 5k:—SkFIJ\r/I_k+Cka, k=1,--- , M —1,
we have
QpQm = CnCmF]L_nF;V[_m + SnSanFm + CnSmFJ\-/[_nFm - CmSnFJL_an + C715n5m+n,]V17 (Cla)
onBm = _cnsmFJL—nFJJ{/[—m + cmsnFnFin + cncmFJL_nFm + SnsmFL_an + Si6m+n,]b1a (Clb)
BnBm = snsmFL_nFJL_m 4+ cnemEFnFm — cmsnFlJ\r/I_nFm + cnsmFL_an + cnSndminnr-  (C.lc)
We then apply egs. (C.1) to h;cll), collect like terms, and antisymmetrize F''F and FF terms to give

M-1

(C.2)

n,m=1
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where

.m+n\ . m—n i km+in m-—n
Apm = exp <2mk i >sm Wi 7r+2[exp <2mM> exp <m Wi >m<—>n} (C.3)

Similarly, applying

O471/80 = exp CTLF]L_HFO + sp I Fy

/N
a5
N—

i
apfn = exp (4 S'VLF]L—YLFJ + CTLFJFTL)

)
) (cubl Bl oot )
)

—sFl, Fo+ c,LFnF())

to hgl)) yields

i

5 o o s ) o (282~ (a2

y M

0
i

S
Il
_ =

3X| (FOTF; - FJFO) +he.,

n=

) n kn inm
X, =1 {exp <27TZM> — exp (QMM>} exp (_2]\4> .
Now from eq. (C.3), we see that
Ao = —exp (200 Y sin ™™ 4 fexp (2065 Yexp (=) — exp (27" ) exp [ 7
n0 = TR )P o T PP\ ) P Tanr ) T PP\ ) P o

i 5 kn inm Jri 5 n inm
= 2exp mM exp Wi 2exp mM exp Wi

= —X,.

SIS

where

Hence, to add h,(g) terms to h,(cll)7 we can simply change the m,n index of (C.2) to start from 0. Finally,
adding back the constant terms, we have

M—1
2 2
i =57 D (AL FIFL + A o Fon + 240 m B[ Fn) + 20 (C4)

n,m=0

where A, is given by (C.3) and

2(k—1 1
p= —cot T 4ot 2D+

Si7 i ME (C.5)
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D Calculation of < . flangFJl exp <%f;1DklflT>>

In this appendix we will derive the formula

) . 1 2 o ) 1
<. . Aan’r;i:F’r-l‘;L exp <2f]-€erlflT>> = —M |:TI' (S C 1A) + ana_Dmn] < - eXp (2fkTDklflT>>

(D.1)

T

where A= At and B=C"'4 (C_l) , and relations among Fl, fi., and f,I are given by

M—-1
Fro=Y (faCon + fiSmn), 0<m<M—1. (D.2)
n=0

with Cy.n Dy + S = 0.
Let X = fiDyuf), |G) = exp (X)|0), then

_ _ _ 1 _
FlAun L |G) = exp (X) (Aan,IFL = [X, A FLFL] + 5 [X, [X, A FLEL]] + - ) 0). (D.3)
Now let us calculate each term in the parenthesis of RHS of eq. (D.3). For the first term
A LS 10) = (Aum S CiCiny + A i3] Cy ) 10)
= (Aum I ] CiCry + AumSiCriy { £ £1 1) 10)
= [l (ctacr), fi+ v (Acs ] (o) (D.4a)

For the second term of RHS of eq. (D.3), we first find

%Dkl {fgf;,F,H
%Dkl (f;l {szvFJw} - {f’I’F’T’L} flT)
50 (0S5 51

= —S;LllefII,

where in the second step we used the identity [AB,C] = A{B,C} —{A,C} B and in the last step the
property that Dy, is antisymmetric. We then have

1
[2 ;IDklflT7F£1]

1 - - 1 1 _
St F:LAan,L} = Bl Aum {2 iDuff, F,L} + [2 ,IDkle,FJ} A F,
= _FJAnmS:;lllefg - S:;llef]IAan;L
= A”mS:alle (fIIFJL- - {Fﬁa f]l}) - S:Lllef];rAanytl
= AnmS:nlle (f]IFrJ{ - :Lk) - S:LllefZAan;—L
= AnmS:;lllef}IFrt - S;:llef]IAanrL - AnmS;;IlleS:;k
= f}IDk:l (ST)lm AmnFyJ{ + f]IDkl (ST)ln AanJ@ - AnmS:@lle (ST)kn
=2f] (DS'A), F} —Tr (AS*DSY).
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It then follows
[X, i A, FL] (0) = {2 ff(pstAcr),, ff - ([lS*DST)} 10) . (D.4b)

For the third term RHS of eq. (D.3),

0
X, [X, A F{FL]) = [X,20] (DSTA), | FL] - [X,Te (48" DS)]
—2ff (DS14), Z fDwfl, F,
=-2ff (DS'4s*D),, f}. (D.4c)

It follows that the higher order commutations all vanish. Substituting eqs. (D.4) into eq. (D.3), we
have

F{AunFL1G) =[5l (C1AC) g + T (A5 |6)
- |2l (DsTACY),, ff - T (AS°DSY)] [6) - ff (DSTAS™D),, £11G)
=Tr [A (C*+5*D) S']|G)
ff (ctAc* —2DSTAc* - DSTAS*D),, 1)
[A C*+ S*D) S']|G)
+ ff (CtAc* — DSTAC™ + C1AS*D — DSTAS*D),, 1 |G)
=Tr [A(C*+5*D) S| |G)
+ fl [CTA(C* + $*D) - DSTA(S*D +C™)],, £ 1G)
=Tr [A(C* +5*D) S| |G)
+ il [c+ s D) Acr+57D)] 116,

where in the third equality we antisymmetrized 2DSTAC* term to be DSTAC* — (DST/_lC*)T
then used the fact that A and D are antisymmetric matrices. Now

C*+S*D=C*—C*D*D=C"(I-D*D)=C* (I +DpDH =~ (c~'c~1)" = (¢,

where in the second to last equality I + DDT = C~1C~!T follows from eqs. (2.28) and (2.32). We
therefore have

Fl A F}, |G) = =T (s°C71A) &) + g} [c 7 A ()] ifia),
which implies (D.1).

E Examples of M =3

In this appendix, as a demo of using (5.4) to calculate one-loop self-energy, let us consider the one-loop
self-energy for the ground state of M =3, s =1 and M = 3, s = 2 cases. For M = 3, we only need
to calculate K = 1 case since the contribution of K = 2 is the same as K = 1.

—99 —



’ M ‘ P ‘ Conjugate ‘ Energy | Grading of ¢ ‘

1 WS =1 08 =0, | ES =0 even
2 [ @ = FOTD | g — FPgD T E® — 4 odd

Table 2: 1-bit and 2-bit energy eigenstates of s = 1 that do not contain zero modes.

The C, S, and D matrices are

14+ V3 [ €% —F 243
c=()o— ( Ci ) , et C) = =
\/§_ 1 [ ei% e iF 0 2
= 57 - 5 D - 2 - . )
s= e (L] 0e(2-v3)(°,)
and matrices A, B, and constant u’ are
0 Y3 V3 0 B V3
W) VB o 3 ) W3 o o
AV = - 01, A — | g0 0
3 _3 3
—¥5 3 g ~5 9 0
0 %\/ge?,m/zx 3 (1 _ @) Bim /4
BY) = 1\/3ein/4 0 3i(2-V3) :
VE(=g) et 31 (2-v5) 0
0 \/g im/4 \/g (2 — V/3) edin/4
B(W) — %e—iﬂ'/4 0 0 ,
Ji@-Vva) et o 0

WV = —3+v3+3¢, /") = —4v3+6¢

The operators f, are

—T 2 1
Jo=Fy, fi= F1(2)7 fo=e™/4 <\/;Fél) - Fé2)\/;> .

For s = 1, the eigenfunctions and their conjugates of 1-bit and 2-bit chains are shown in table 2.

The contribution of K =1 to the energy correction is

S = L (), (0, (PR, (), ) e
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So we need to calculate <F1(2)f0>v

s

W and <F1(2)f1>VA’W:
0

2 1 2 L
<F1(2)f0>v = ih WV 1 foex 57k sl ) )+ MB’%’) <f1fof1lf£exp (2 nglflT)>
4 v 1
= MB((Jn) <f1fl exp <2f;kalsz>>

4 (v 2 gin
:MBél):\/;eS /47

<F1(2)f2>v = %M/(V) <f1f2 exp (lf;IDklflT)> ]\24 ot <f1fzfT flexp (;f;kazflT>>

4 1
— VD — —BY) = 9 (1- — +2¢— .
M 12~ 37 ) \/§+£ \/§£

Likewise

4 _w 2 gin
<F1(2)f0>w = MB((n )= 2\/;63 /,

<F1(2)f2>w: Mu’(W)D *fB(W) 8( \%+§\f§>.

Substituting above results and Eg = —4+/3 into (E.1) yields AEE=! = f% (3\/§ - 5) £2+(12 — 7\/§) &—
% (3\/§ — 5). We then have

AEgzZAECL;:l:—3<3\/§—5>£2+2<12—7\/§>£—g(3\/3—5).

For s = 2, the matrices and constants are the same as the s = 1 case. But as table 3 shows, the
energy eigenstates of small chains are different. The energy correction now is given by

1 KLM |det CJ?

AEGT N2m(<l>€v<> + (fafo)iy (Fofody)”
1 KLM |det C|? . . ,
N g (F2m), (), + (F0m) (HP5), ) (e2)

Since we have calculated the <F1(2)f0>vw

and <F1(2)f2>vw in the s = 1 case, we only need to find
<1>V,W and <f2f0>v,w‘

For K =1,

0

<1>V _ %NI(V) <exp (;flkalflT)> + MBmVn)<er f]L ex ; k klflT >

2 oy 2
== = 242,
ik 73 3
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’ M ‘ P ‘ Conjugate ‘ Energy Grading of ¢ ‘

1 o5 =1 )5 =6, ES =0 even
¢g> @g) Eg) = -8 even
O R P [0 = P gl | BT =8 | v

Table 3: 1-bit and 2-bit energy eigenstates of s = 2 that do not contain zero modes.
0
2 ) 1 f 2 ) gt Loty s
(fafo)y = M’u Jafoex 57k ki Sy + MB’”" fafofh frexp ikaklfl
4 (v 2 ir
= MB(()Q) \/§<\/§1) 63 /4,
Likewise

_ 2 own__8 A o _ 2\ inja

Substituting above into eq. (E.2), we obtain

_ 1 33V/3
AEq = 2AEE=" = i (—66\/554 + 360£% — 230v/3¢2 + 180¢€ — f) .

From the results and the formula (5.4), we see that AE¢ is a polynomial of £ of degree 2s.
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