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Matthew F. Lapa∗ and Taylor L. Hughes
Department of Physics and Institute for Condensed Matter Theory,

University of Illinois at Urbana-Champaign, 61801-3080

We canonically quantize O(D+2) nonlinear sigma models (NLSMs) with theta term on arbitrary
smooth, closed, connected, oriented D-dimensional spatial manifoldsM, with the goal of proving the
suitability of these models for describing symmetry-protected topological (SPT) phases of bosons in
D spatial dimensions. We show that in the disordered phase of the NLSM, and when the coefficient
θ of the theta term is an integer multiple of 2π, the theory on M has a unique ground state and
a finite energy gap to all excitations. We also construct the ground state wave functional of the
NLSM in this parameter regime, and we show that it is independent of the metric on M and
given by the exponential of a Wess-Zumino term for the NLSM field, in agreement with previous
results on flat space. Our results show that the NLSM in the disordered phase and at θ = 2πk,
k ∈ Z, has a symmetry-preserving ground state but no topological order (i.e., no topology-dependent
ground state degeneracy), making it an ideal model for describing SPT phases of bosons. Thus,
our work places previous results on SPT phases derived using NLSMs on solid theoretical ground.
To canonically quantize the NLSM on M we use Dirac’s method for the quantization of systems
with second class constraints, suitably modified to account for the curvature of space. In a series
of four appendices we provide the technical background needed to follow the discussion in the main
sections of the paper.

I. INTRODUCTION

Nonlinear sigma models (NLSMs), quantum field theo-
ries in which the field is a map from spacetime to a target
manifold T , have a long history of study in both high-
energy and condensed matter physics [1–13]. The earli-
est example of such a model was introduced in Ref. [1]
by Gell-Mann and Lévy and applied to the theory of β-
decay. Some time later these models were brought to the
attention of condensed matter physicists when, for ex-
ample, Haldane showed that the O(3) NLSM with theta
term and coefficient (“theta angle”) θ = 2πS described
the continuum limit of a spin-S Heisenberg chain in one
spatial dimension [8]. The theta term is a particular
topological term that can be added to the NLSM action
when the dimension of the target manifold T is the same
as the dimension of spacetime. Very recently, interest in
NLSMs with theta term has experienced a revival due
to the proposal, formalized in Ref. [14], that the disor-
dered phase of an O(D + 2) NLSM with theta term and
θ = 2πk, k ∈ Z, can describe (a subset of) symmetry-
protected topological (SPT) phases of bosons in D spa-
tial dimensions (for general references on SPT phases we
refer the reader to Refs. [15–20]). The work of many
authors has provided a trove of evidence supporting this
proposal [21–31]. However, despite the many successes of
the NLSM description, several outstanding issues still re-
quire clarification. In particular, the ground state of the
O(D + 2) NLSM, in the parameter regime relevant for
the description of SPT phases, has only been studied on
flat space [26]. A thorough study of the ground state (or
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states) of this theory, as well as the energy gap to the first
excited states, should be carried out on arbitrary curved
spatial manifolds (with various topologies) in order to es-
tablish the suitability of the O(D+ 2) NLSM with theta
term (in the disordered phase and at θ = 2πk, k ∈ Z)
as a model of bosonic SPT phases. For example, it is
important to check that the model has a unique ground
state no matter the underlying spatial manifold, as befits
a system without topological order. It is the purpose of
this paper to provide such a study.

Let us begin by providing the setup for the descrip-
tion of bosonic SPT phases in D spatial dimensions us-
ing O(D + 2) NLSMs [14]. The target manifold of the
O(D + 2) NLSM is T = SD+1, the unit (D + 1)-sphere,
and the NLSM field is a (D + 2)-component unit vector
field n with components na, a = 1, . . . , D+2. If the SPT
phase is protected by a symmetry group G, then the sym-
metry transformation information is naturally encoded
in the NLSM description of that phase via a homomor-
phism σ : G → SO(D + 2), which assigns to each group
element g ∈ G an SO(D + 2) matrix σ(g) which ro-
tates the NLSM field n1. The reason for mapping G into
SO(D + 2) is that the O(D + 2) NLSM with theta term
has an SO(D+2) global symmetry, and so embedding G
inside SO(D+ 2) immediately guarantees the invariance
of the NLSM description of the SPT phase under the ac-
tion of G, at least at the classical level. At the quantum

1 For symmetries which also have a nontrivial action on spacetime,
for example time-reversal symmetry, the homomorphism instead
takes the form σ : G→ O(D+2). In other words, for symmetries
with a nontrivial action on spacetime one must allow for the
possibility of orientation-reversing transformations on the target
space of the NLSM.
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level the symmetry is expected to be unbroken only in
the disordered phase of the NLSM, which is the phase of
interest for the description of SPT phases. For a given
group G, many distinct homomorphisms σ are possible,
and the different possibilities (modulo a notion of “inde-
pendent NLSMs” explained in Ref. [14]) correspond to
different SPT phases with the symmetry of the group G.

The NLSM description has been shown to capture
many of the physical properties of bosonic SPT phases.
For example, it can predict the structure of the ground
state wave functional [26, 32] and the braiding statis-
tics of point and loop-like excitations in gauged SPT
phases [22]. In addition, in Ref. [27] an explicit con-
nection was made between the NLSM classification of
SPT phases of Refs. [14, 21], and the group cohomology
classification of bosonic SPT phases of Ref. [19]. Very re-
cently, the present authors demonstrated how the NLSM
description of bosonic SPT phases can be combined with
the theory of gauged Wess-Zumino actions to compute
the topological electromagnetic response of some bosonic
SPT phases in all dimensions [31].

All of these works strongly support the idea that the
O(D+ 2) NLSM in its disordered phase, with theta term
and θ = 2πk, k ∈ Z, and a suitable symmetry assignment
σ : G→ SO(D + 2), can describe nontrivial SPT phases
with symmetry group G. However, several of the defining
properties of an SPT phase are based on the behavior of
the SPT phase when it is placed on (closed) spatial mani-
foldsM of arbitrary topology, and the NLSM description
of SPT phases has not yet been tested in this setting. To
be precise, let M be an arbitrary smooth, closed2, con-
nected, oriented, D-dimensional manifold. We also equip
M with a Riemannian metric. In this paper we prove the
following three properties of the O(D + 2) NLSM when
formulated on spatial manifolds M of this kind.

1. The ground state of the O(D + 2) NLSM in the
disordered phase and at θ = 2πk, k ∈ Z, on M is
unique.

2. The ground state wave functional of the NLSM on
M is independent of the metric on M, and is pro-
portional to the exponential of a suitably-defined
Wess-Zumino term3 for the NLSM field n, just as
in the case on flat space [26].

3. There is a finite energy gap between the ground
state and the first excited state of the O(D + 2)
NLSM (in the disordered phase and at θ = 2πk,
k ∈ Z) on M.

These three properties together imply that the O(D+ 2)
NLSM in the disordered phase and at θ = 2πk, k ∈ Z,

2 A closed manifold is a compact manifold without boundary.
3 For the case of the O(3) NLSM on flat (1+1)-dimensional space-

time, the WZ form of the ground state wave functional was orig-
inally derived in Ref. 33.

represents a system with SPT order, but not topological
order (no topology-dependent ground state degeneracy).
In particular, the fact that the ground state wave func-
tional involves a Wess-Zumino term for n implies that the
ground state is invariant under the action of the group G
which protects the SPT phase. This is equivalent to the
statement that the ground state does not spontaneously
break the symmetry of the group G, which is a crucial
property of an SPT phase (see, for example, the discus-
sion in the introduction of Ref. [18]).

In order to prove these statements we canonically
quantize the O(D+2) NLSM with theta term on (D+1)-
dimensional spacetimes of the form M× R, where M is
a D-dimensional spatial manifold and R represents time.
As stated above, we assume that the spatial manifoldM
is smooth, closed, connected, and oriented, and we equip
M with a Riemannian metric. The canonical quantiza-
tion of the O(N) NLSM on flat space and for various
N , in various dimensions, and with various topological
terms has been considered previously in Refs. [7, 34–38].
In particular, Ref. [37] considered the O(3) NLSM with
theta term in one spatial dimension, and Refs. [36, 38]
considered the O(3) NLSM with Hopf term in two spa-
tial dimensions. To carry out the quantization these ref-
erences used Dirac’s method [39, 40] for the quantization
of systems with second class constraints, and we follow
the same route in this paper (with suitable modifications
to account for the curvature of the space M). This for-
malism is necessary to handle the constraint that the
NLSM field n be a unit vector field, which is equivalent
to the statement that the target space T of the O(D+2)
NLSM is the unit sphere SD+1. After the quantization
we study this theory in its disordered limit, and in that
limit we prove the three properties of this model which
are stated above.

This paper is organized as follows. In Sec. II we intro-
duce the NLSM with theta term and discuss the canon-
ical quantization of this model on flat space. In Sec. III
we compute the ground state wave functional and the en-
ergy gap of the NLSM in the disordered phase at θ = 2πk,
k ∈ Z on flat space. In Sec. IV we quantize the NLSM
on curved spacesM, and then compute the ground state
wave functional and the energy gap, as well as prove
the uniqueness of the ground state of the theory on M.
Sec. V presents our conclusions. The paper also includes
several appendices containing additional background ma-
terial necessary for the discussion in the main sections of
the paper. In Appendix A we review the solution of the
quantum mechanics problem of a particle constrained to
the surface of a sphere SN−1, equivalent to the O(N)
NLSM in one spacetime dimension. In Appendix B we
explain the need for regularization of the NLSM Hamil-
tonian, and we also discuss an alternative regularization
scheme from the one used in Sec. III. In Appendix C we
review the symplectic geometry approach to the Hamil-
tonian mechanics of a continuum field theory. Finally, in
Appendix D we explain a simple example of an intrin-
sic construction of a Wess-Zumino term for the NLSM
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field on M which does not require the use of a higher-
dimensional manifold B which has M as its boundary.

II. NONLINEAR SIGMA MODELS,
HAMILTONIAN FORMALISM, AND

CANONICAL QUANTIZATION

In this section we introduce the NLSM with theta term
and discuss its canonical quantization on flat space RD
using Dirac’s method for quantization in the presence of
constraints. We show in some detail that this system pos-
sesses only two second class constraints, regardless of the
value of the coefficient θ of the theta term. We then com-
pute the classical Dirac brackets for the NLSM using the
two second class constraints. Finally, following Dirac’s
prescription, we obtain the commutation relations for
the quantum theory from the Dirac brackets in the same
way that one obtains the commutation relations from the
Poisson brackets of an unconstrained classical theory. We
also discuss a functional Schroedinger representation of
these commutation relations, previously used in a field
theory context in Ref. [38], which we use throughout the
paper for concrete calculations.

A. NLSM and theta term

The O(N) NLSM in D + 1 spacetime dimensions is
a theory of an N -component vector field n with com-
ponents na, a = 1, . . . , N , subject to the constraint
n · n = nan

a = 1 (so n is a unit vector field). The
action for the NLSM takes the form

S[n] =

∫
dD+1x

1

2f
(∂µna)(∂µn

a) , (2.1)

where xµ, µ = 0, . . . , D, (x0 = t) are the spacetime co-
ordinates, dD+1x = dx0 · · · dxD, and we sum over all
indices (Latin or Greek) which appear once as a super-
script and once as a subscript. Also, we use the notation
∂µ ≡ ∂

∂xµ . Latin indices are raised and lowered using the

metric δab and its inverse δab, while Greek indices are
raised and lowered using the “mostly minus” Minkowski
metric ηµν (i.e., as a matrix η = diag(1,−1, . . . ,−1))
and its inverse ηµν . We use units in which c = ~ = 1.
In this section of the paper we work on flat, (D + 1)-
dimensional Minkowksi spacetime, denoted by RD,1. Fi-
nally, the quantity f is a positive coupling constant with
units of (length)D−1 (so that the bare NLSM field is di-
mensionless). For D > 1 the model is in an ordered
phase for small f and a disordered phase for large f4.

4 For D > 1 the coupling constant f has units so the magnitude
of the coupling constant can only be established with respect
to a reference scale f∗. Such an f∗ is naturally provided by
the location of the zero of the beta function β(f) of the coupling

For D = 1 there is no ordered phase, and the renor-
malization group flow at any scale is always towards the
disordered phase [6].

The target manifold T of the O(N) NLSM is the unit
sphere SN−1 and, in the special case that N = D + 2,
the dimension of the target manifold is the same as the
dimension of spacetime. For this particular value of N
there is an interesting topological term, called the theta
term, which can be added to the action for the NLSM.
This topological term is simply the pullback to spacetime
of the volume form on SD+1 via the map n : RD,1 →
SD+1. We now explain this in more detail.

Let ωD+1 be the volume form on SD+1 (with the radius
of the sphere set to one). If the sphere is parametrized
by the coordinates na, a = 1, . . . , D + 2, subject to the
constraint nana = 1, then the volume form in these co-
ordinates is

ωD+1 =

D+2∑
a=1

(−1)a−1nadn1 ∧ · · · ∧ dna ∧ · · · ∧ dnD+2 ,

(2.2)
where the overline means to omit that term from the
wedge product. In what follows we also use the notation

AD+1 ≡ Area[SD+1] = 2π
D+2

2

Γ(D+2
2 )

for the area of SD+1 (so

A1 = 2π, A2 = 4π, etc.). With this notation the theta
term can be written compactly as

Sθ[n] =
1

AD+1

∫
RD,1

n∗ωD+1 , (2.3)

where n∗ωD+1 denotes the pullback to spacetime of the
form ωD+1 via the map n : RD,1 → SD+1. In coordinates
the theta term can be written as

Sθ[n] =
1

AD+1

∫
dD+1x εa1···aD+2

na1∂tn
a2∂1n

a3 · · · ∂DnaD+2 .

(2.4)
The full action for the NLSM with theta term takes

the form

S[n] =

∫
dD+1x

1

2f
(∂µna)(∂µn

a)− θSθ[n] , (2.5)

where the dimensionless parameter θ is the theta angle
discussed in Sec. I. The Lagrangian which follows from
this action is

L =
1

2f
(∂µna)(∂µn

a) +
θ

AD+1
Ba(∂tn

a) , (2.6)

where we introduced

Ba = εaa1···aD+1
na1∂1n

a2 · · · ∂DnaD+1 . (2.7)

At this point we are now in a position to proceed with
the canonical quantization of this system.

constant f for D > 1 (Ref. [6] showed that there is no zero in D =
1). The value f = f∗ is the point at which the renormalization
group flow of f crosses over from a flow towards the ordered
phase to a flow towards the disordered phase at low energies.
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B. Quantization of constrained systems

Due to the constraint nana = 1 on the the NLSM field,
the canonical quantization of the NLSM requires Dirac’s
theory of constrained Hamiltonian systems, and the use
of Dirac brackets in particular [39]. Let us briefly sketch,
following Ref. [40], the steps involved in the quantization
of a constrained system. We first recall some basic defini-
tions. A constraint φ is a function on phase space which
is to be set equal to zero. Two functions f and g on phase
space are strongly equivalent if they are equal throughout
phase space. This is just ordinary equality of functions,
f = g. Two functions f and g are called weakly equiva-
lent if they become equal when all constraints φ are set
to zero. Weak equivalence of two functions f and g is
denoted by f ≈ g5.

The first step in the quantization of a constrained sys-
tem is to find all of the constraints. This step involves the
construction of a modified Hamiltonian H̃ such that the
time derivative of any constraint φ, as given by the mod-
ified Hamiltonian, weakly vanishes. In other words, we
have d

dtφ = {φ, H̃} ≈ 0, where {·, ·} denotes the ordinary

Poisson bracket. This is a consistency condition on the
time evolution of the dynamical system, as constraints
should not change with time. In general the modified
Hamiltonian H̃ is distinct from the original Hamiltonian
H obtained from the Lagrangian via a Legendre trans-
formation.

The next step in the quantization is to isolate the
second class constraints, and then use these constraints
to construct the Dirac bracket. Recall that the second
class constraints are those constraints which have non-
vanishing Poisson brackets with each other. Let ψI(x),
I = 1, . . . , Nc, denote the second class constraints in our
system6, and define the functions MIJ(x,y) by

MIJ(x,y) = {ψI(x), ψJ(y)} . (2.8)

The functions MIJ(x,y) should be viewed as the compo-
nents of a matrix M with discrete indices I, J and con-
tinuous spatial indices (x,y). In terms of this matrix the
Dirac bracket for two functions f(x) and g(y) on phase
space is given by

{f(x), g(y)}D = {f(x), g(y)} −
Nc∑

I,J=1

∫
dDz dDz′ {f(x), ψI(z)}M−1

IJ (z, z′){ψJ(z′), g(y)} , (2.9)

where the functions M−1
IJ (x,y) are the components of the

inverse matrix to M in the sense that

Nc∑
J=1

∫
dDy MIJ(x,y)M−1

JK(y, z) = δIKδ
(D)(x− z) .

(2.10)
Finally, the equal-time commutators in the quantized

theory are obtained from the classical Dirac brackets ac-
cording to the rule

{f(x), g(y)}D → −i[f̂(x), ĝ(y)] , (2.11)

where f̂(x) is the operator in the quantum theory cor-
responding to the classical function f(x). The quantum

theory is then defined by the operator Ĥ corresponding
to the original Hamiltonian H obtained from the Leg-
endre transformation of the Lagrangian (not the mod-

ified Hamiltonian H̃ discussed above), combined with
the equal-time commutators obtained from the classical
Dirac brackets7.

5 In this paper the symbol “≈” is only used to denote weak equiv-
alence.

6 In a field theory the constraints are usually functions of the po-
sition x in space.

7 By construction, in the quantum theory defined in this way one

C. Canonical quantization of the O(D + 2) NLSM
with theta term

We now carry out the program outlined in the last
section for the NLSM with theta term. To start, the
momentum conjugate to na is

πa ≡
∂L

∂(∂tna)
=

1

f
(∂tna) +

θ

AD+1
Ba , (2.12)

and the Hamiltonian obtained from the Lagrangian via
the Legendre transformation H =

∫
dDx (πa∂tn

a − L) is

H =

∫
dDx

{
f

2

(
πa −

θ

AD+1
Ba

)2

+
1

2f
(∇na)2

}
,

(2.13)
where x = (x1, . . . , xD) is the vector of spatial coordi-

nates, dDx =
∏D
j=1 dx

j , ∇ is the spatial gradient, and

(∇na)2 ≡ (∇na) · (∇na), etc. For this system the Pois-
son bracket of any two functionals F1 and F2 of the fields

has [ ˆ̃H, Ô] ≈ [Ĥ, Ô] for any operator Ô. Thus, the operator Ĥ
corresponding to the original Hamiltonian may be used in the

quantum theory instead of the operator ˆ̃H corresponding to the
modified Hamiltonian.
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na(x) and their conjugate momenta πa(x) is given by

{F1, F2} =

∫
dDx

(
δF1

δna(x)

δF2

δπa(x)
− δF1

δπa(x)

δF2

δna(x)

)
,

(2.14)
where δ

δna(x) is a functional derivative.

We now move on to the problem of finding all of the
constraints for this system. To begin with we have only
the single constraint

ψ1(x) = na(x)na(x)− 1 . (2.15)

Setting ψ1(x) = 0 enforces the condition that n is a unit
vector field. Following Dirac’s procedure we now use this
constraint to construct a modified Hamiltonian H̃ such
that {ψ1(x), H̃} ≈ 0. As a first attempt towards the

construction of H̃, we define the modified Hamiltonian
H ′ by

H ′ = H +

∫
dDy u1(y)ψ1(y) , (2.16)

where u1(x) is an as yet undetermined function. Note
that H ′ ≈ H since the constraint weakly vanishes,
ψ1(x) ≈ 0. Using the product rule for the Poisson
bracket, we find that

{ψ1(x), H ′} = {ψ1(x), H} (2.17)

+

∫
dDy

(
{ψ1(x), u1(y)}ψ1(y) + u1(y){ψ1(x), ψ1(y)}

)
.

A short computation shows that {ψ1(x), ψ1(y)} = 0.
Then, since the constraint ψ1(y) is weakly equivalent to
zero, we find that

{ψ1(x), H ′} ≈ {ψ1(x), H} . (2.18)

Finally, due to the identity na(x)Ba(x) = 0, we have
{ψ1(x), H} = 2f na(x)πa(x) for any value of θ. This
means that

{ψ1(x), H ′} ≈ 2f na(x)πa(x) , (2.19)

and so we find a second constraint

ψ2(x) = na(x)πa(x) , (2.20)

which must also be set to zero for consistent time evolu-
tion of this system.

We now make a further modification to the Hamilto-
nian and define

H ′′ = H +

2∑
I=1

∫
dDy uI(y)ψI(y) , (2.21)

where we introduced a second undetermined func-
tion u2(y), and investigate the conditions under which
{ψ2(x), H ′′} ≈ 0. After some algebra we find that

{ψ2(x), H ′′} ≈ {ψ2(x), H}+
∫
dDy u1(y){ψ2(x), ψ1(y)} .

(2.22)

At this point it is possible that, depending on the form
of {ψ2(x), ψ1(y)}, the equation

{ψ2(x), H}+

∫
dDy u1(y){ψ2(x), ψ1(y)} = 0 (2.23)

can be solved to yield a function u1(x) such that
{ψ2(x), H ′′} ≈ 0. Below we show that this is indeed
the case. This means that the constraints ψ1 and ψ2

account for all of the constraints in this problem, and
it also means that the additional function u2(x) is not
needed for the construction of the modified Hamiltonian.
Therefore we can set u2(x) = 0 at this point. However,
we note here that the fact that u2(x) can be set to zero is
specific to this particular problem. It is easy to imagine a
scenario in which the function u2(x) would not be zero,
for example if the Poisson bracket of ψ1 and ψ2 were
to vanish, then requiring {ψ2(x), H ′′} ≈ 0 would yield
a new constraint ψ3(x) = {ψ2(x), H}. If that were the
case, then it is very likely that we would need a non-zero
u2(x) to construct a final modified Hamiltonian H̃ such

that {ψ3(x), H̃} ≈ 0. However, for the problem consid-
ered here we can safely set u2(x) = 0, and so we find that
the final modified Hamiltonian is given by

H̃ = H +

∫
dDy u1(y)ψ1(y) , (2.24)

where u1(x) solves Eq. (2.23). Finally, we note that for
the purposes of the quantization we do not need to know
the exact form of H̃. This is fortunate because the Pois-
son bracket {ψ2(x), H} is fairly complicated in the case
that the parameter θ is non-zero.

Now that we know all of the constraints in the problem,
we can look at their Poisson brackets with each other. For
this system we find that the function MIJ(x,y) defined
in Eq. (2.8) has the explicit form

MIJ(x,y) = 2i(σy)IJ r
2(x)δ(D)(x− y) , (2.25)

where (σy)IJ is the (I, J) element of the second Pauli
matrix σy, and where we defined the radial coordinate

r2(x) = na(x)na(x) . (2.26)

In terms of r2(x) the first second class constraint in the
NLSM problem reads as ψ1(x) = r2(x)− 1. The inverse
of MIJ(x,y) is

M−1
IJ (x,y) = − i

2
(σy)IJ

1

r2(x)
δ(D)(x− y) . (2.27)

The fact that the inverse exists means that Eq. (2.23) can
indeed be solved for the function u1(x), as we claimed
above.

We can now use the components M−1
IJ (x,y) from

Eq. (2.27) to construct the classical Dirac brackets for
this theory (see Eq. (2.9) for the definition of the Dirac
bracket). To quantize the theory we then replace all

functions f(x) with operators f̂(x) and replace the Dirac
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brackets with commutators as shown in Eq. (2.11). After
following these steps, we find that the equal-time com-

mutation relations for the O(D + 2) NLSM with theta
term, for any value of θ, are given by

[
n̂a(x), n̂b(y)

]
= 0 (2.28a)

[n̂a(x), π̂b(y)] = i

(
δab −

n̂a(x)n̂b(y)

r̂2(x)

)
δ(D)(x− y) (2.28b)

[π̂a(x), π̂b(y)] =
i

r̂2(x)
(π̂a(x)n̂b(y)− π̂b(y)n̂a(x))δ(D)(x− y) . (2.28c)

At this point we note that by construction r̂2(x) com-
mutes with π̂a(y) (in fact it commutes with any operator
on the Hilbert space). Therefore r̂2(x) is in the center
of the algebra defined by the commutation relations in
Eqs. (2.28) and it is consistent to plug in the constraint
r̂2(x) = 1. An explicit discussion about this point can be
found in Ref. [41] in the context of the quantum mechan-

ical problem of a free particle constrained to move on the
surface of a sphere. The fact that r̂2(x) commutes with
any operator on the Hilbert space simply follows from
the fact that the Dirac bracket of any functional F on
phase space with a constraint ψI(x) is strongly equal to
zero, {F,ψI(x)}D = 0. From now on we work with the
commutation relations obtained after this substitution.
These have the form

[
n̂a(x), n̂b(y)

]
= 0 (2.29a)

[n̂a(x), π̂b(y)] = i(δab − n̂a(x)n̂b(y))δ(D)(x− y) (2.29b)

[π̂a(x), π̂b(y)] = i(π̂a(x)n̂b(y)− π̂b(y)n̂a(x))δ(D)(x− y) , (2.29c)

and they have appeared in several papers on the canon-
ical quantization of the O(N) NLSM [34–38]. However,
we emphasize that we have explicitly shown here that
these commutators are valid for the NLSM with theta
term for any value of the parameter θ. We also note
that there is an operator ordering ambiguity in the com-
mutation relation for two momenta, however, we can say
that the two terms on the right-hand side of Eq. (2.29c)
should have the same ordering, so that the commuta-
tor has the important property that [πa(x), πb(y)] =
− [πb(y), πa(x)].

To make progress in analyzing the NLSM we employ a
functional Schroedinger representation of the commuta-
tion relations of Eqs. (2.29) in which n̂a(x) acts as mul-
tiplication by the function na(x), and π̂a(x) is given in
terms of a functional derivative with respect to na(x) as

π̂a(x) = −i
(
δa
b − na(x)nb(x)

) δ

δnb(x)
. (2.30)

This choice reproduces all of the commutators shown in
Eqs. (2.29) (with the operator ordering indicated there).
This Schroedinger representation was used previously in
Ref. [38] to construct soliton operators in the O(3) NLSM
with Hopf term in three spacetime dimensions. It has
also been used in the study of the O(N) NLSM in one
spacetime dimension [41–49], which is equivalent to the
quantum mechanics problem of a free particle in RN con-

fined to the surface of the sphere SN−1. In Appendix A
we review the solution of this quantum mechanical model
using this Schroedinger representation. We use the re-
sults of Appendix A in Sec. III and Sec. IV to study the
energy gap in the O(D+2) NLSM in the limit of infinitely
large coupling f on flat and curved space, respectively.

III. GROUND STATE WAVE FUNCTIONAL
AND THE ENERGY GAP ON FLAT SPACE

In this section we study the O(D + 2) NLSM with
theta term in the disordered (f → ∞) phase with θ =
2πk, k ∈ Z, on flat space RD. We give an alternative
derivation, within the canonical formalism, of the result
of Ref. [26] for the ground state wave functional of the
NLSM at these parameter values. Finally, we use a lattice
regularization of the NLSM to prove the uniqueness of the
ground state and the existence of an energy gap in the
disordered phase of the model at θ = 2πk. This section
should be viewed as a warm up for Sec. IV in which we
discuss the ground state wave functional and the energy
gap of the NLSM on an arbitrary spatial manifold M.
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A. Ground state wave functional at large f and
θ = 2πk, k ∈ Z

We first discuss the construction of the ground state
wave functional. As discussed above, we consider the
disordered phase of the model in which f → ∞. In this
limit the Hamiltonian operator is approximately given by

Ĥ =
f

2

∫
dDx

(
π̂a −

θ

AD+1
B̂a

)2

, (3.1)

where we ignore terms proportional to 1
f . Since the

Hamiltonian in this limit is expressed as an integral over
space of the square of a local operator, the lowest possi-
ble energy of any eigenstate is zero. This means that the
ground state wave functional of the NLSM in this limit
is determined only by the property that it is annihilated
by the operators

D̂(θ)
a = π̂a −

θ

AD+1
B̂a , a = 1, . . . , D + 2 . (3.2)

On the other hand, because of the specific form of
the operator π̂a(x) in the Schroedinger representation
Eq. (2.30) used in this paper, the Hamiltonian needs to
be regularized in some way before any excited states can
be constructed. We discuss the need for regularization
of the Hamiltonian in more detail in Appendix B. For
now, however, we are only interested in the construction
of the ground state wave functional, and so we can delay
the issue of regularization of the Hamiltonian until the
next subsection.

To start, consider the case where θ = 0. Since π̂a is
proportional to a functional derivative with respect to na,
and since the energy is bounded below by zero, we can see
that the ground state wave functional is just a constant,
Ψθ=0[n] = 1. A general state |Ψ〉 in the Hilbert space of
the NLSM can be expanded in the “position basis” {|n〉},
which contains a state |n〉 for every possible configura-
tion of the NLSM field on the space RD. The field oper-
ator n̂a(x) is diagonal in this basis, n̂a(x)|n〉 = na(x)|n〉,
where na(x) is the function corresponding to the partic-
ular state |n〉. For a more precise formulation we should
restrict the set {|n〉} to include only those field config-
urations on RD with finite (classical) potential energy.
This restriction implies a choice of boundary condition
on the field configurations at spatial infinity, for example
we could choose n(x) → n0, a particular constant field
configuration, as |x| → ∞.

A general state in this basis takes the form

|Ψ〉 ∝
∫

[Dn]Ψ[n]|n〉 , (3.3)

where Ψ[n] is the wave functional (i.e., the amplitude of
the basis state |n〉 in the full state |Ψ〉), and the inte-
gration is over all possible configurations of the field n
at every point in space (possibly subject to a boundary
condition at spatial infinity ensuring finite energy). We
define the measure [Dn] to be the product over all points
x in space of the volume form ωD+1 on the sphere SD+1.
Since the ground state wave functional of the NLSM at
θ = 0 is just Ψθ=0[n] = 1, it follows that the state vector
for the ground state is just an equal weight superposition
of all basis states,

|Ψθ=0〉 ∝
∫

[Dn]|n〉 . (3.4)

This state can be thought of as a continuum analogue of
a trivial paramagnetic state.

Next, we look at the ground state for non-zero θ in the
particular case that θ is an integer multiple of 2π. In this
case it is possible to remove the term θ

AD+1
B̂a from the

operator D̂(θ)
a via a well-defined unitary transformation,

which means that the ground state in this case can be
obtained by multiplying the ground state at θ = 0 by
a unitary operator. As we discussed in Sec. I, the case
θ = 2πk, k ∈ Z, is also interesting from a physical point of
view because for these values of θ the O(D+2) NLSM has
been shown to capture many of the physical properties
of SPT phases of bosons in D spatial dimensions [14, 21–
31].

The ground state wave functional at θ = 2πk can
be constructed using a Wess-Zumino (WZ) term for the
NLSM field n. Recall now that we are working in (D+1)-
dimensional Minkowski spacetime RD,1, so that the phys-
ical space is just RD. The WZ term is written as an inte-
gral over the extended space B = [0, 1]× RD, where RD
represents the original D-dimensional space, and [0, 1] is
an auxiliary direction of space used in the construction
of the WZ term. We use the notation ña(x, s) to denote
the extension of the NLSM field na(x) into the extra di-
rection, where x ∈ RD and s ∈ [0, 1]. Typically one
chooses boundary conditions in the auxiliary direction so
that ña(x, 0) = δaD+2 (i.e., a trivial configuration) and
ña(x, 1) = na(x), so that the physical space sits at s = 1.

We now show that for θ = 2πk, k ∈ Z, the ground
state wave functional is

Ψθ=2πk[n] = e−ikSWZ [n] , (3.5)

where SWZ [n] is the WZ term,
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SWZ [n] =
2π

AD+1

∫
B
ñ∗ωD+1

=
2π

AD+1

∫ 1

0

ds

∫
dDx εa1···aD+2

ña1∂sñ
a2∂1ñ

a3 · · · ∂DñaD+2 . (3.6)

The WZ term involves the pullback of the volume form ωD+1 on SD+1 to the extended space B via the map ñ : B →
SD+1. To prove Eq. (3.5) we first recall the formula for the variation of the WZ term,

δSWZ [n] = − 2π

AD+1

∫
dDx εa1···aD+2

δna1na2∂1n
a3 · · · ∂DnaD+2 , (3.7)

which is an integral only over the physical space RD (in the case that we can neglect terms coming from the boundary
of physical space). Then we have

δ

δna(x)
Ψθ=2πk[n] = i

2πk

AD+1

(
εaa2···aD+2

na2∂1n
a3 · · · ∂DnaD+2

)
Ψθ=2πk[n]

= i
θ

AD+1
Ba(x)Ψθ=2πk[n] . (3.8)

Then, using π̂a(x) = −i(δab−na(x)nb(x)) δ
δnb(x)

and the

fact that nbBb = 0, we find that

D̂(θ=2πk)
a Ψθ=2πk[n] = 0 , (3.9)

which completes the proof. The state vector for the
ground state at θ = 2πk then takes the form

|Ψθ=2πk〉 ∝
∫

[Dn]e−ikSWZ [n]|n〉 . (3.10)

Thus, we have succeeding in re-deriving the result of
Ref. [26] for the ground state wave functional of this sys-
tem within the canonical formalism.

The relationship between the ground state wave func-
tionals at θ = 0 and θ = 2πk can be understood in terms
of a unitary transformation of the Hamiltonian by the
operator

Û (k) = e−ikSWZ [n̂] . (3.11)

In the Schroedinger representation, and using a suitable
test functional, one can show that

Û (k),†D̂(θ=2πk)
a Û (k) = D̂(θ=0)

a

= π̂a , (3.12)

which means that

Û (k),†Ĥ(θ=2πk)Û (k) = Ĥ(θ=0) , (3.13)

and that

|Ψθ=2πk〉 = Û (k)|Ψθ=0〉 . (3.14)

Note also that since Û (k) commutes with the potential en-
ergy term 1

2f (∇na)2, Eq. (3.13) holds for the full Hamil-

tonian of Eq. (2.13) (i.e., not just in the large f limit).

In fact, for any values of f and θ the full Hamiltonian
obeys the relation

Û (1),†Ĥ(θ)Û (1) = Ĥ(θ−2π) , (3.15)

which shows that the spectrum of the O(D + 2) NLSM
with theta term is 2π-periodic in the value of the pa-
rameter θ. This is a crucial result since it will let us
simultaneously study the energy spectra for any values
of θ related by a 2π shift.

We see that the theta angle of the NLSM enters into
the Hamiltonian of Eq. (2.13) as something like a gauge

field, and the derivative operator D̂(θ)
a looks like a covari-

ant derivative. In the case that θ = 2πk, k ∈ Z, we can
interpret the phase of the ground state wave functional
as being obtained from a gauge transformation which re-

moves the “gauge field” term θ
AD+1

B̂a from D̂(θ)
a at the

expense of an additional phase in the wave functional.
This gauge transformation, however, can only be per-
formed when θ is an integer multiple of 2π. This is be-
cause the exponential e−ikSWZ [n] of the WZ term, which
involves an extension of the field na into an auxiliary
direction, is only well-defined (i.e., independent of the
extension) when k is an integer [50]. To be precise, we
note here that to apply the argument of Ref. [50] on the
quantization of k we must replace flat space RD with a
D-dimensional sphere so that space is a compact man-
ifold (the radius of the sphere can be taken to be very
large so that the curvature is nearly zero). The original
infinite space RD is then obtained in the limit that the
radius of the D-sphere goes to infinity. We now move
on to a discussion of the uniqueness of the ground state
and the calculation of the energy gap in the NLSM at
θ = 2πk and f →∞.



9

B. Uniqueness of the ground state and the energy
gap at large f and θ = 2πk, k ∈ Z

In the previous subsection we showed that the NLSM
Hamiltonians at θ = 2πk and θ = 0 are related by a uni-
tary transformation, which means that the energy spec-
trum in this model at θ = 2πk is identical to the spectrum
at θ = 0. In the context of applications to SPT phases,
one of the most important properties of the NLSM at
large f that we would like to verify is the uniqueness
of the ground state and the existence of an energy gap
between the ground state and all of the excited states.
In this subsection we use a lattice regularization of the
NLSM at large f to prove the uniqueness of the ground
state and the existence of an energy gap at θ = 0. Since
the NLSM Hamiltonian at θ = 2πk is related to the
Hamiltonian at θ = 0 by a unitary transformation, the
uniqueness of the ground state and the existence of an en-
ergy gap at θ = 2πk follow immediately from this result
at θ = 0. In Appendix B we also present an alterna-
tive regularization procedure for the NLSM Hamiltonian
in the disordered limit, and we show that this alterna-
tive procedure gives a result for the energy gap which is
consistent with the result derived in this section using
a lattice regularization. Therefore we expect that our
result for the energy gap of the O(D + 2) NLSM in its
disordered limit is independent of the specific details of
the regularization scheme used in the calculation.

To start we consider a hypercubic lattice with spacing
a and coordinates which are vectors with integer entries
and denoted by boldface Latin letters j,k, etc. The con-
tinuum coordinate x is given in terms of the lattice coor-
dinate j by x = aj. In the lattice regularization the Dirac
delta function is represented by δ(D)(x − y) → 1

aD
δjk if

x = aj and y = ak. If we define lattice operators n̂aj and
π̂a,j by

n̂a(aj) = n̂aj (3.16a)

π̂a(aj) =
1

aD
π̂a,j , (3.16b)

where n̂a(aj) and π̂a(aj) are the continuum field opera-
tors at x = aj, then the NLSM commutation relations of
Eqs. (2.29) become[

n̂aj , n̂
b
k

]
= 0 (3.17a)[

n̂aj , π̂b,k
]

= i(δab − n̂aj n̂b,k)δjk (3.17b)

[π̂a,j, π̂b,k] = i(π̂a,jn̂b,k − π̂b,kn̂a,j)δjk . (3.17c)

The integration over space becomes
∫
dDx→ aD

∑
j, and

so the regularized Hamiltonian at large f and θ = 0 takes
the form

Ĥ(a) =
f

2aD

∑
j

π̂a,jπ̂
a
j . (3.18)

Here we have written Ĥ(a) to indicate the explicit de-
pendence of the Hamiltonian on the cutoff a.

The regularized Hamiltonian Eq. (3.18) is a sum of
many identical Hamiltonians for an O(N) NLSM in one
spacetime dimension, with N = D+2. In Appendix A we
review the solution of this quantum mechanics problem
using Dirac’s formalism for quantizing constrained sys-
tems. Using the results from Appendix A we can rewrite
the Hamiltonian as

Ĥ(a) =
f

2aD

∑
j

Ĉj , (3.19)

where Ĉj is the quadratic Casimir of so(D + 2) formed
from the conserved charge operators in the O(D + 2)
NLSM on site j. We immediately deduce that the unique
ground state of this system is the state with

Ĉj = 0 , ∀ j , (3.20)

i.e., the state which is the tensor product of the trivial
representation of SO(D + 2) on all sites j. The energy
gap, which is equal to the energy of the first excited state,
is (“m” stands for mass)

m(a) =
f

2aD
(D + 1) . (3.21)

This energy corresponds to the case that one site in the
lattice is excited to a state in the fundamental represen-
tation of SO(D + 2). In the theory at large f the first
excited state is highly degenerate, but this degeneracy
will be broken by the inclusion of a small kinetic energy
term (with coefficient 1

f ), which will cause the energies

of all degenerate states in the first excited state manifold
to disperse.

We see that for a fixed bare coupling constant f , the
energy gapm(a) goes to infinity as we take the continuum
limit a → 0. On the other hand, it is more physical to
make the coupling constant cutoff-dependent, f → f(a),
and demand that f(a) depend on the cutoff a in such
a way as to make the mass gap m(a) independent of
the cutoff a used to define the theory. Following the

procedure of Ref. [6], we demand that dm(a)
da = 0, which

yields the renormalization group equation for f(a) in the
regime of large f ,

a
df(a)

da
= Df(a) . (3.22)

We find that f(a) → ∞ in the infra-red (i.e., low en-
ergy) limit a → ∞, which confirms the validity of our
expansion of the Hamiltonian in powers of 1

f . Integrat-

ing Eq. (3.22) from some reference scale a0 in the ultra-
violet, at which f = f0, to the scale a, we find that f(a)

is given in terms of f0 as f(a) =
(
a
a0

)D
f0, so that the

mass gap m (which is now independent of a) is given in
terms of f0 and the reference scale a0 by

m =
f0

2aD0
(D + 1) . (3.23)
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IV. QUANTIZATION, GROUND STATE WAVE
FUNCTIONAL, AND ENERGY GAP ON

CURVED SPACE

In this section we repeat the analysis of Secs. II and
III in the case that the spacetime takes the formM×R,
where R represents the time direction andM is a curved,
D-dimensional manifold representing space (the precise
assumptions on the properties ofM were stated in Sec. I
and are repeated below). In particular, we will accom-
plish the goal of the paper, which is to prove the three
properties of the NLSM on curved space which are stated
in Sec. I. That is, we prove the uniqueness of the ground
state and the existence of an energy gap in the O(D+ 2)
NLSM in the disordered (f → ∞) phase at θ = 2πk,
k ∈ Z, on arbitrary spatial manifolds M, and we also
explicitly construct the ground state wave functional on
M. We find that the wave functional takes the form
of an exponential of a WZ term for na, just as in the
case on flat space [26]. To prove the uniqueness of the
ground state and the existence of an energy gap in the
NLSM on M, we use a triangulation of the manifold to
set up a lattice-like regularization of the NLSM Hamil-
tonian at large f . Within this regularization scheme, the
demonstration of the uniqueness of the ground state and
the computation of the energy gap can be done in a way
which is very similar to the calculation on flat space from
Sec. III.

The results of this section prove that the O(D + 2)
NLSM, in the parameter regime studied in this paper,
possesses SPT order, but not topological order, and is
therefore a suitable model for SPT phases. One interest-
ing aspect of the theory on a curved spaceM is that for
certain choices of manifoldM the standard construction
of the WZ term fails, and so alternative constructions are
needed. We discuss the standard construction of the WZ
term and one type of alternative construction in some
detail in this section. Then, in Appendix D we give an
explicit example of a third construction which can be
used when the other two constructions fail. Before we
discuss these details, however, we need to first explain
the modifications to the canonical quantization proce-
dure of Sec. II which are needed to study the NLSM in
the canonical formalism on the curved space M.

A. Canonical quantization of the NLSM on a
curved space

In this subsection we discuss the canonical quantiza-
tion of the O(D+ 2) NLSM with theta term on a space-
time of the formM×R, where R represents the time di-
rection and M is a smooth, closed, connected, oriented,
D-dimensional manifold. We take the metric on space-
time to have the form (we use a “mostly minus” signature
for the metric)

g = dt⊗ dt−Gij(x)dxi ⊗ dxj , (4.1)

where i, j = 1, . . . , D (and a sum over repeated indices is
implied). On flat Minkowski space we have Gij(x) = δij ,
but in the general case Gij(x) are the components of a
Riemannian metric on M. In addition, we have

det[g] = (−1)Ddet[G] . (4.2)

By a common abuse of notation we will also use the let-
ters g and G to denote det[g] and det[G], respectively, for
the remainder of the paper.

To start, we use the formalism of Appendix C to un-
derstand how to quantize a free scalar field on a curved
space. The key piece of information we need is the appro-
priate form of the Poisson bracket for a free scalar field
on a curved space. With this information in hand we
can then use Dirac’s procedure to quantize the NLSM
on a curved space, since the O(D + 2) NLSM consists
of D + 2 scalar fields, but subject to the additional con-
straint na(x)na(x) = 1. At this point we suggest that the
reader skim through Appendix C to understand our no-
tation for the symplectic geometry approach to studying
field theories in the Hamiltonian formalism.

First, we outline our general strategy for determining
the correct symplectic form Ω to use to describe a field
theory on a curved space. Suppose that the system we
would like to study on a curved space has a definition in
terms of an action

S =

∫
dD+1x

√
(−1)Dg L

=

∫
dD+1x

√
GL , (4.3)

where L is the Lagrangian and we assumed a metric on
spacetime of the form of Eq. (4.1). In this case our strat-
egy for determining the appropriate symplectic form is
to choose Ω such that the Hamilton equations of motion
obtained from Ω via Eq. (C10) coincide with the Euler-
Lagrange equations of motion obtained from the action
for our system on a curved space. Once we know the cor-
rect Ω, we can use it to find the correct Poisson brackets
from Eq. (C9). These Poisson brackets will then give us
the information we need to find the commutation rela-
tions for the fields in the quantum field theory on the
curved space M.

Let us see how this all plays out in the case of a free
scalar field φ. In this case the Lagrangian is

L =
1

2
(∂µφ)(∂µφ)

=
1

2

[
(∂tφ)2 −Gij∂iφ∂jφ

]
, (4.4)

where in the first line µ = 0, 1, . . . , D (and x0 = t). In
the second line we specialized to the case of curved space
only (i.e., a metric of the form shown in Eq. (4.1)), and we
used the tensor Gij which satisfies the relation GijGjk =

δik. The momentum conjugate to φ is π = ∂L
∂(∂tφ) = ∂tφ,
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and the Hamiltonian is

H =

∫
dDx

√
G (π∂tφ− L)

=
1

2

∫
dDx

√
G
(
π2 +Gij∂iφ∂jφ

)
. (4.5)

Starting from the action S =
∫
dD+1

√
GL, we can derive

the Euler-Lagrange equation of motion for φ,

∂2
t φ−

1√
G
∂i

(√
GGij∂jφ

)
= 0 . (4.6)

Now that we know the Euler-Lagrange equation of mo-
tion for φ, we can look for a choice of Ω so that the
Hamilton equations obtained from it are equivalent to
this Euler-Lagrange equation. We find that the choice of
Ω which yields the correct equations of motion is

Ω =

∫
dDx

√
G(x) δπ(x) ∧ δφ(x) . (4.7)

Indeed, using this form of Ω with Eq. (C10) we find that

∂tφ = π (4.8a)

∂tπ =
1√
G
∂i

(√
GGij∂jφ

)
, (4.8b)

which is clearly equivalent to the equation of motion
Eq. (4.6) derived from the action. Using the correct form
of Ω we can now derive the form of the Poisson bracket
for φ and π on curved space. First, using Eq. (C8) we find
that the vector fields on the phase space corresponding
to the functionals φ(x) and π(x) are

V φ(x) = − 1√
G(x)

δ

δπ(x)
(4.9a)

V π(x) =
1√
G(x)

δ

δφ(x)
. (4.9b)

From these we find that

{φ(x), π(y)} = iV φ(x)
iV π(y)

Ω

=
1√
G(x)

δ(D)(x− y) . (4.10)

This then tells us that the correct commutation relation
for the operators φ̂(x) and π̂(y) in the quantized theory
on curved space is

[φ̂(x), π̂(y)] =
i√
G(x)

δ(D)(x− y) . (4.11)

Given this form of Ω, we can also work out a general
formula for the Poisson bracket of any two functionals F1

and F2 of the phase space variables. To do this we need to
first solve Eq. (C8) for the vector field V F corresponding
to a given functional F . If we write the vector field V F
as

V F =

∫
dDx

(
V φF

δ

δφ(x)
+ V πF

δ

δπ(x)

)
, (4.12)

then the solution of Eq. (C8) for the components of V F
is

V φF =
1√
G(x)

δF

δπ(x)
(4.13a)

V πF = − 1√
G(x)

δF

δφ(x)
. (4.13b)

Plugging into Eq. (C9), we find that the Poisson bracket
of any two functionals F1 and F2 in the theory of a free
scalar field on a curved space is given by

{F1, F2} =

∫
dDx

1√
G(x)

(
δF1

δφ(x)

δF2

δπ(x)
− δF1

δπ(x)

δF2

δφ(x)

)
.

(4.14)
The only modification from the usual Poisson bracket on
flat space is the extra factor of 1√

G(x)
.

Now we combine this information with Dirac’s pro-
cedure for dealing with constraints in the Hamiltonian
formalism to derive the commutation relations for the
NLSM with theta term on the curved space M. The ac-
tion for the O(D + 2) NLSM with theta term on curved

space is S =
∫
dD+1x

√
GL with

L =
1

2f
(∂µna)(∂µn

a) +
1√
G

θ

AD+1
Ba(∂tn

a) , (4.15)

where the contraction of Greek (spacetime) indices is now
done with the metric gµν from Eq. (4.1), and Ba was
defined in Eq. (2.7). The momentum conjugate to na is
now

πa =
∂L

∂(∂tna)
=

1

f
(∂tna) +

1√
G

θ

AD+1
Ba , (4.16)

and the Hamiltonian on curved space takes the form

H =

∫
dDx

√
G

{
f

2

(
πa −

1√
G

θ

AD+1
Ba

)2

+
1

2f
Gij∂in

a∂jna

}
. (4.17)

Finally, from our discussion above on the canonical formalism for a single scalar field on curved space, we know that
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the correct Poisson bracket for two functionals F1 and F2 in the NLSM on curved space is

{F1, F2} =

∫
dDx

1√
G(x)

(
δF1

δna(x)

δF2

δπa(x)
− δF1

δπa(x)

δF2

δna(x)

)
. (4.18)

Using this Poisson bracket we may now proceed as in
Sec. II and use Dirac’s procedure for handling constraints
to quantize the NLSM on curved space. We skip the
details as they are very similar to those in Sec. II, and
just present the results. The NLSM with theta term on
curved space is again characterized by two second class
constraints,

ψ1(x) = na(x)na(x)− 1 (4.19a)

ψ2(x) = na(x)πa(x) . (4.19b)

The Poisson bracket of these constraints, computed using
the Poisson bracket of Eq. (4.18) for the NLSM on curved
space, is {ψI(x), ψJ(y)} = MIJ(x,y) with

MIJ(x,y) =
2i√
G(x)

(σy)IJ r
2(x)δ(D)(x− y) , (4.20)

where r2(x) = na(x)na(x). Its inverse, which is needed

to compute the Dirac brackets for the NLSM on curved
space, is

M−1
IJ (x,y) = − i

2

√
G(x)(σy)IJ

1

r2(x)
δ(D)(x− y) .

(4.21)
The components M−1

IJ (x,y) can now be used to construct
the classical Dirac brackets for the NLSM on curved
space. Then, to quantize the NLSM on curved space

we replace all functions f(x) with operators f̂(x) on the
Hilbert space, and we obtain the quantum commutation
relations for the NLSM on curved space by replacing the
Dirac brackets with commutators as in Sec. II for the
NLSM on flat space. In addition, as in Sec. II, we set
the operator r̂2(x) = 1, which is consistent since this op-
erator commutes with all other operators in the Hilbert
space. Therefore we find that the commutation relations
for the NLSM with theta term on curved space are

[
n̂a(x), n̂b(y)

]
= 0 (4.22a)

[n̂a(x), π̂b(y)] =
i√
G(x)

(δab − n̂a(x)n̂b(y))δ(D)(x− y) (4.22b)

[π̂a(x), π̂b(y)] =
i√
G(x)

(π̂a(x)n̂b(y)− π̂b(y)n̂a(x))δ(D)(x− y) . (4.22c)

Again, the only modification from the case of flat space
is the extra factor of 1√

G(x)
. As in the case on flat

space, these commutation relations also admit a func-
tional Schroedinger representation in which n̂a(x) acts
as multiplication by na(x) and now π̂a(x) acts as the
functional derivative operator

π̂a(x) = − i√
G(x)

(
δa
b − na(x)nb(x)

) δ

δnb(x)
. (4.23)

In the next subsection we use this Schroedinger repre-
sentation to solve for the ground state wave functional of
the O(D+ 2) NLSM in the disordered (f →∞) phase at
θ = 2πk, k ∈ Z.

B. Ground state wave functional at large f and
θ = 2πk, k ∈ Z

In the large f limit the Hamiltonian operator for the
O(D+2) NLSM with theta term on the curved spaceM

takes the form

Ĥ =

∫
dDx

√
G
f

2

(
π̂a −

1√
G

θ

AD+1
B̂a

)2

, (4.24)

where we again dropped the potential energy term with
coefficient proportional to 1

f . We now investigate the

form of the ground state wave functional of this theory
in the case where θ = 2πk, k ∈ Z, which is the case where
the NLSM is expected to describe an SPT phase on the
curved spaceM. As in the case on flat space, the ground
state wave functional is determined by the condition that
it be annihilated by the operators

D̂(θ)
a = π̂a −

1√
G

θ

AD+1
B̂a , a = 1, . . . , D + 2 . (4.25)

In the functional Schroedinger representation used in this
paper this operator takes the form
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D̂(θ)
a (x) =

1√
G(x)

{
−i
(
δa
b − na(x)nb(x)

) δ

δnb(x)
− θ

AD+1
Ba(x)

}
. (4.26)

We see that the dependence of this operator on the met-
ric of space is only through the overall factor of 1√

G(x)
.

This a consequence of the fact that the Dirac brackets for
the NLSM on curved space have an explicit dependence
on
√
G(x), while the theta term in the NLSM action is

independent of the metric. This property of D̂(θ)
a (x) is

very important. It implies that the ground state wave
functional at large f and θ = 2πk on the curved space
M is independent of the metric on M, and can be con-
structed in the exact same way as on flat space, i.e., the
ground state wave functional is the exponential of a WZ
term for the NLSM field, Ψθ=2πk[n] = e−ikSWZ [n]. As
we mentioned at the beginning of this section, for cer-
tain choices of M the standard construction of the WZ
term fails, and so alternative constructions are needed.
We now turn to a discussion of this issue.

The crucial property of the WZ term SWZ [n], which
allows for the construction of a functional annihilated by

D̂(θ=2πk)
a , is the formula Eq. (3.7) for its variation with

respect to na(x). We now review two different methods
for constructing an action whose variation is given by
Eq. (3.7), and then we discuss specific examples of man-
ifolds M where both constructions fail. In these cases a
third construction of the WZ term is available using the
methods outlined in Ref. [51]. In Appendix D we give
an explicit example of the construction of the WZ term
using the methods of Ref. [51] in the simple case where
the dimension of the space M is D = 1.

The first construction of the WZ term that we discuss
is the standard construction that appears in the litera-
ture [50]. This construction uses a higher-dimensional
manifold B which has M as its boundary. In Sec. III we
discussed this construction on flat space M = RD, and
we now discuss how it works for a general curved spa-
tial manifold M. For the standard construction of the
WZ term for the NLSM field we first look for a (D + 1)-
dimensional manifold B which has M as its boundary,
∂B = M. Then, for a given NLSM field configuration
na on M, we construct an extension ña of the NLSM
field configuration into the bulk of the manifold B such
that ña|∂B = na. Finally, using the extended manifold
B and the extension ña of the NLSM field, the standard
construction of the WZ term for n is given by

SWZ [n] =
2π

AD+1

∫
B
ñ∗ωD+1 , (4.27)

where ñ∗ωD+1 denotes the pullback of the volume form
ωD+1 of SD+1 to the extended space B via the map ñ :
B → SD+1. Since in this construction the WZ term
depends on the choice of the manifold B, and the choice of
extension of the NLSM field ñ, we need to check that the
exponential e−ikSWZ [n] is independent of these choices in

order for the wave functional to be well-defined.
The exponential of the WZ term constructed in this

way will be well-defined if it is independent of the spe-
cific choices of extended manifold B and field extension
ña. To check this, suppose we have two different choices
of extended manifold B and B′, with ∂B = ∂B′ = M,
and two different field extensions ñ and ñ′, with ñ|∂B =
ñ′|∂B′ = n. Let SWZ [n] and S′WZ [n] be the WZ terms
defined using (B, ñ) and (B′, ñ′), respectively. Then we
can write

e−ikSWZ [n] = e−ik(SWZ [n]−S′WZ [n])e−ikS
′
WZ [n] . (4.28)

If follows from this expression that the exponential of the
WZ term will be well-defined if the difference SWZ [n]−
S′WZ [n] of the two WZ terms is an integer multiple of
2π (we assume k ∈ Z), since in that case we have

e−ikSWZ [n] = e−ikS
′
WZ [n]. The difference of WZ terms

is in turn equivalent to a single integral

I[ñ′′] =
2π

AD+1

∫
X
ñ′′∗ωD+1 , (4.29)

where X is a closed (D+1)-dimensional manifold formed
by gluing B to B′ along their common boundaryM, and
where ñ′′ is the NLSM field configuration on the entire
(D + 1)-dimensional manifold X formed in this way (ñ
and ñ′ agree at the boundary where the gluing takes
place, and on the rest of X they define the configuration
ñ′′). Since we are dealing with orientable manifolds, we
must specify the orientation of the boundaries of B and
B′ when we glue them together to construct X . In the
construction of X discussed here the manifolds B and B′
are glued together in a such a way that the orientation
of ∂B′ is opposite to the orientation of ∂B. This choice
of orientations is forced on us because we are considering
the difference of WZ terms.

We see that in order to determine whether the expo-
nential of the WZ term is well-defined, it suffices to check
that the integral in Eq. (4.29) is an integer multiple of
2π for any closed (D + 1)-dimensional manifold X and
any NLSM field configuration ñ′′ on X . To see that this
is indeed the case, we note that∫

X
ñ′′∗ωD+1 = deg[ñ′′]

∫
SD+1

ωD+1 , (4.30)

where deg[ñ′′] ∈ Z is the degree of the map ñ′′ : X →
SD+1. It is an integer which counts how many times the
space X is “wrapped” around the sphere SD+1 by the
map ñ′′ (see, for example, Ch. VI of Ref. [52]). Combin-
ing this with the fact that

∫
SD+1 ωD+1 = AD+1, we find

that

I[ñ′′] = 2π deg[ñ′′] , (4.31)
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which proves that the exponential e−ikSWZ [n] of the WZ
term is well-defined for integer k.

Besides the standard construction of the WZ term us-
ing the higher-dimensional manifold B, it is also possi-
ble to define SWZ [n] as a functional integral in a theory
of fermions defined on the manifold M. This construc-
tion relies on a result of Abanov and Wiegmann, who
constructed theories of fermions coupled to an NLSM
field n which produce a WZ term for n after integrat-
ing out the fermions [11]. The coupling of the fermions
to the NLSM field involves a mass parameter M , and
the partition function Z[n] for the theory of fermions
coupled to n can be computed in a gradient expan-
sion in powers of 1

M . From this partition function one
can define an effective action for the NLSM field via
Seff [n] = − ln(Z[n]). In Ref. [11] the authors calcu-
lated the variation of Seff [n] with respect to na(x), and
they showed that the imaginary part of this variation has
exactly the form of Eq. (3.7). Therefore, the results of
Ref. [11] imply that one can define the WZ term using
the partition function Z[n] as

SWZ [n] = −Im[ln(Z[n])] , (4.32)

where Im[· · · ] denotes the imaginary part. We also note
that this definition naturally produces a WZ term with
an integer level k = sgn[M ]NF , where NF (a positive
integer) is the number of flavors of fermions that couple
to n. In particular, it does not seem possible to generate
a WZ term with fractional level in this way.

So far we have presented two different ways of con-
structing the WZ term for the NLSM field n on a curved
space M. One interesting aspect of considering the
NLSM on general spaces M is that there are certain
choices ofM where neither of these constructions works.
This can be seen as follows. First, the standard construc-
tion of the WZ term requires that there exists a B such
that ∂B = M. However, there are some manifolds M
which cannot be realized as the boundary of any higher-
dimensional manifold. The precise conditions for M to
be a boundary are given by the following theorem (see,
for example, Ch. 4 of Ref. [53]).

Theorem (Thom): If all of the Stiefel-Whitney num-
bers ofM are zero, thenM can be realized as the bound-
ary of some smooth compact manifold B.

In dimensions D = 1, 2, and 3, every orientable M
is a boundary. The situation becomes more interesting
for D ≥ 4. In the case that D ≡ 0 mod 4, it is easy
to construct simple examples of orientable manifolds M
which are not a boundary by taking products of CP2r

for positive integer r, for example CP2 in D = 4 and
CP2 × CP2 and CP4 in D = 8. Orientable manifolds
which are not a boundary also exist in dimensions D ≥
4 where D is not equivalent to zero modulo four, for
example in D = 5, 9, 10, and 11 [53]. Thus, we find that
for many values of D > 3 there are choices of M where
the standard construction of the WZ term fails.

The second construction of the WZ term, defined using
a path integral for fermions on M, can fail if the mani-

fold M does not admit a spin structure. If M does not
admit a spin structure then it is not possible to formu-
late a consistent theory of fermions on M. The techni-
cal requirement for the existence of a spin structure on
M is that w2 ∈ H2(M,Z2), the second Stiefel-Whitney
class of M, must vanish [54]. Note that we assume that
M is orientable, and so we also require that the first
Stiefel-Whitney class of M, w1 ∈ H1(M,Z2), is triv-
ial. In fact, a spin structure cannot be defined on an
unorientable manifold, so this condition is crucial for the
second construction of the WZ term using a path integral
over fermions.

In some cases the first construction can fail but the sec-
ond construction works. One example of such a case can
be found in D = 4 when M is taken to be the Kummer
surface. This four-dimensional manifold is not a bound-
ary but does admit a spin structure (see, for example,
Ch. XI of Ref. [55]). A particularly interesting example,
also in D = 4, is the choice M = CP2. In this case both
constructions fail. Therefore we find that in general a
third construction of the WZ term is needed. This third
construction should not requireM to be a boundary, and
it should also not require thatM admit a spin structure.
We refer to such a construction as an “intrinsic construc-
tion” since it does not require an extension B of M. It
turns out that such a construction does exist. In partic-
ular, in Ref. [51] Alvarez explained how to carry out this
construction in detail using the language of Čech coho-
mology. In Appendix D we give an example of this type
of construction in the simple case that D = 1.

To summarize, we find that the ground state wave
functional of the O(D + 2) NLSM at θ = 2πk, k ∈ Z,
in the disordered (f →∞) phase is

Ψθ=2πk[n] = e−ikSWZ [n] , (4.33)

where SWZ [n] is a suitably defined WZ term for the
NLSM field n. As we discussed above, the specific con-
struction of the WZ term will depend on the particular
spatial manifoldM, but the WZ term always exists. The
ground state wave functional has several important prop-
erties. First, it is independent of the metric of space,
which shows that the disordered phase of the NLSM at
θ = 2πk is a topological phase. Second, it possesses the
full SO(D+2) symmetry of the action for the NLSM with
theta term. These two properties taken together imply
that Ψθ=2πk[n] can be the ground state wave functional
of an SPT phase. As in Sec. III, we can also understand
the ground state wave functional as arising from a uni-
tary transformation by the operator Û (k) from Eq. (3.11),
which transforms the Hamiltonian at θ = 2πk into the
Hamiltonian at θ = 0 as in Eq. (3.13). The ground state
of the theory at θ = 2πk can then be obtained by apply-
ing Û (k) to the ground state at θ = 0 as in Eq. (3.14).
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C. Uniqueness of the ground state and the energy
gap at large f and θ = 2πk, k ∈ Z

In this section we study the spectrum of the NLSM
on the curved space M by using a triangulation of the
manifold to implement a lattice-like regularization of the
NLSM Hamiltonian on M. Using this regularization we
demonstrate the uniqueness of the ground state and the
existence of an energy gap in the O(D + 2) NLSM in
the disordered (f → ∞) phase at θ = 0 on M. Since
the NLSM Hamiltonian at θ = 2πk, k ∈ Z, is related to
the Hamiltonian at θ = 0 by a unitary transformation, it
will follow from the results of this section that the ground
state of the NLSM in the disordered phase at θ = 2πk,
k ∈ Z, onM is also unique for all k. Thus, this subsection
completes our proof of the absence of topological order in
the O(D+ 2) NLSM in the disordered phase at θ = 2πk,
k ∈ Z.

We start by recalling a few basic facts about triangu-
lations of smooth manifolds, following the discussion in
sections 3.2 and 5.3.2 of Ref. [56]. Intuitively, a triangu-
lation of a manifold is an approximation of the manifold
by generalized triangles called simplices. A 0-simplex is
a point, a 1-simplex is a line segment, a 2-simplex is a
triangle, a 3-simplex is a tetrahedron, and so on8. A sim-
plicial complex K is a set of simplices in Rn such that (i)
all faces of simplices from K belong to K, (ii) the inter-
section of any two simplices from K is a face for each of
them, and (iii) any point that belongs to one of the sim-
plices from K has a neighborhood which intersects only
finitely many simplices from K. For any such simplicial
complex K, the space |K| is the topological space which
is the union of all simplices of K with the topology in-
duced by Rn. Finally, a triangulation of a manifoldM is
a homeomorphism ρ :M→ |K|, where K is a simplicial
complex in Rn for some n (with n greater than or equal
to the dimension ofM). Any smooth closed manifoldM
admits a triangulation.

Now let us pick particular triangulation (ρ, |K|) ofM.
Let α = 1, . . . , ND, label the distinct D-simplices in |K|,
and define Sα ⊂ M to be the inverse image of the D-
simplex α under the map ρ (ρ is a homeomorphism so it
is invertible). We will also refer to Sα as aD-simplex. For
our purposes, the key property of the triangulation is that

it allows for a decomposition of M as M =
∑ND
α=1 Sα,

where the sum is the composition of oriented D-chains.
To set up a “lattice” onM, we can then pick an arbitrary
point pα in each Sα to be the points of the lattice. In
the lattice regularization on flat space each lattice point
was associated with a hypercubic unit cell of volume aD,
where a was the lattice spacing. In our regularization
on curved space each point pα is associated with a D-
simplex Sα, and each such D-simplex has a volume given

8 The standard n-simplex is the region ∆n ⊂ Rn+1 defined by

∆n =
{∑n+1

i=1 y
i = 1 , yi ≥ 0 ∀ i

}
.

by

Volα =

∫
Sα

VolM , (4.34)

where VolM is the volume form on M determined by
its Riemannian metric. In a system of local coordi-
nates (U, φ), U ⊂ M, φ : U → RD, one has VolM =

dDx
√
G(x), if x ∈ RD denotes the image of a point

p ∈ U under φ.
Using this regularization, integration of a function f(p)

overM, weighted by the volume form VolM, can be dis-
cretized as∫

p∈M
VolM f(p)→

ND∑
α=1

Volα f(pα) . (4.35)

In addition, we can define a Dirac delta function δ(p, p′)
on M by∫

p∈M
VolM f(p) δ(p, p′) = f(p′) . (4.36)

Again, in a system of local coordinates (U, φ) one has
δ(p, p′) = 1√

G(x)
δ(D)(x − x′), where x,x′ ∈ RD are the

images of p, p′ under the map φ. Then δ(p, p′) is dis-
cretized as

δ(p, p′)→ 1

Volα
δαβ (4.37)

if p = pα and p′ = pβ , and δαβ is the ordinary Kronecker
delta.

Throughout this subsection we considered the NLSM
in a particular coordinate patch of M with local coordi-
nates x. However, using the Dirac delta function δ(p, p′)
on M we can also write the commutation relations for
the NLSM on M as[
n̂a(p), n̂b(p′)

]
= 0 (4.38a)

[n̂a(p), π̂b(p
′)] = i(δab − n̂a(p)n̂b(p

′))δ(p, p′) (4.38b)

[π̂a(p), π̂b(p
′)] = i(π̂a(p)n̂b(p

′)− π̂b(p′)n̂a(p))δ(p, p′) .
(4.38c)

For the lattice regularization of the NLSM using the tri-
angulation discussed above, we define lattice variables by

n̂a(pα) = n̂aα (4.39a)

π̂a(pα) =
1

Volα
π̂a,α (4.39b)

for all points pα in the lattice constructed from the tri-
angulation. The lattice variables obey the commutation
relations [

n̂aα, n̂
b
β

]
= 0 (4.40a)

[n̂aα, π̂b,β ] = i(δab − n̂aαn̂b,β)δαβ (4.40b)

[π̂a,α, π̂b,β ] = i(π̂a,αn̂b,β − π̂b,βn̂a,α)δαβ , (4.40c)
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and the regularized Hamiltonian takes the form

Ĥ(ρ, |K|) =
f

2

ND∑
α=1

1

Volα
π̂a,απ̂

a
α . (4.41)

Here we have written Ĥ(ρ, |K|) to indicate the depen-
dence of the regularized Hamiltonian on the choice of a
triangulation (ρ, |K|) of M.

Just as in the case on flat space in Sec. III, the regu-
larized Hamiltonian breaks up into a sum of decoupled
Hamiltonians for an O(D+2) NLSM in one spacetime di-
mension. Therefore we can again apply the results of Ap-
pendix A to deduce that the ground state of the O(D+2)
NLSM in the disordered (f →∞) phase onM is unique,
and corresponds to the state where π̂a,απ̂

a
α = 0 ∀ α. Un-

like the case of flat space, however, there is now a differ-
ent energy cost to creating an excitation on the different
sites pα in the lattice. This is due the presence of the
factor (Volα)−1 in the summand in Eq. (4.41) (compare
to Eq. (3.18) on flat space, which just contains an overall
factor of a−D). It follows that the energy gap for the
regularized O(D + 2) NLSM on M is given by

m(ρ, |K|) =
f

2

(D + 1)

Vol(ρ, |K|)
, (4.42)

where we defined Vol(ρ, |K|) to be the volume of the
largest D-chain Sα in the triangulation (ρ, |K|) of M,

Vol(ρ, |K|) = max
{

Volα|α ∈ {1, . . . , ND}
}
. (4.43)

Thus, we have proven the uniqueness of the ground
state and the existence of an energy gap in the O(D +
2) NLSM in the disordered phase at θ = 0. From the
previous subsection we know that the Hamiltonian for
the O(D + 2) NLSM at θ = 2πk, k ∈ Z, is related to
the Hamiltonian at θ = 0 by a unitary transformation,
so the result in this section then implies uniqueness of
the ground state and the existence of an energy gap in
the O(D+ 2) NLSM in the disordered phase at θ = 2πk,
k ∈ Z, for all k. This result completes the demonstration
that the O(D+ 2) NLSM in the disordered phase at θ =
2πk is a suitable model for SPT phases of bosons.

V. CONCLUSION

In this paper we performed an explicit study of the
O(D+ 2) NLSM with theta term, in its disordered phase
and with theta angle θ = 2πk, k ∈ Z, on arbitrary
smooth, closed, connected, oriented D-dimensional spa-
tial manifolds M. We showed that in this parameter
regime the ground state of the NLSM on M is unique,
and there is a finite energy gap to the lowest lying ex-
cited states. In addition, we showed that the ground
state wave functional of the NLSM onM is independent
of the metric onM, and takes the form of an exponential
of a WZ term for the NLSM field n, just like in the case

on flat space [26]. These results taken together imply
that the O(D + 2) NLSM, in the disordered phase with
θ = 2πk, k ∈ Z, is a suitable model for an SPT phase of
bosons. In particular, our results show that this model
does not possess topological order. Thus, our work places
the NLSM approach to SPT phases of Ref. [14] on solid
ground.

We close the paper with some additional comments and
suggestions for future work. First, we mention one puzzle
associated with the NLSM description of SPT phases. In
several recent works [57–60] it was shown that important
information about the classification of SPT phases with
time-reversal symmetry ZT2 can be extracted from the
partition functions of these phases on unorientable Eu-
clidean spacetime manifolds. For example, in two space-
time dimensions there is a single nontrivial bosonic SPT
phase protected only by ZT2 , and in Ref. [57] it was shown
that this SPT phase can be detected by its partition func-
tion ZRP2 = −1 on the spacetime RP2. An NLSM de-
scription of this SPT phase is available (see Sec. IV.B of
Ref. [14]), but it seems problematic to calculate the par-
tition function of the NLSM on RP2. Mathematically,
the issue is that the theta term for the O(D + 2) NLSM
involves the pullback to spacetime of the volume form
on SD+1, and this pullback does not seem to make sense
when the spacetime is not orientable. Therefore it would
be interesting to see if there is some way to make sense
of the NLSM description of SPT phases on unorientable
spacetime manifolds.

A second possible direction for future work would be
to extend the analysis of this paper to the case of the
O(D + 2) NLSM in the disordered limit when the theta
angle θ is an odd multiple of π. In Ref. [13] the authors
used a qualitative argument to map out the phase dia-
gram of the O(4) NLSM in D = 2 spatial dimensions with
theta term and coefficient θ = π. They proposed two pos-
sible phases for this theory when the coupling constant
f is large: (i) a gapless phase realized at some finite but
large value of f , and (ii) a gapped phase which is realized
in the extreme disordered limit of f → ∞. In addition,
the authors of Ref. [13] argued that the ground state in
the gapped phase should be doubly degenerate (see also
Ref. [12] on this point). It would be interesting to in-
vestigate the f →∞ phase directly within the canonical
formalism, with the goal of proving that in this limit the
spectrum is indeed gapped and that the ground state is
doubly degenerate. It would also be interesting to in-
vestigate the dependence of the ground state degeneracy
on the topology of the spatial manifold. This problem is
quite interesting for the following reason. Typically, the
boundary theory of an SPT phase is expected to preserve
the symmetry of the SPT phase and be gapless, or to
spontaneously break the symmetry in some way (which
may lead to a gapped boundary theory). However, at the
(2 + 1)-dimensional boundary of a (3 + 1)-dimensional
SPT phase (and presumably also in higher dimensions)
there is a third possibility: the boundary theory can be
gapped and symmetric, but it must also possess intrin-
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sic topological order [61, 62]. It is likely that the O(4)
NLSM, in the disordered phase and at θ = π, can describe
such a gapped, symmetry-preserving, and topologically-
ordered surface state of the bosonic topological insula-
tor phase in 3 + 1 dimensions [61]. Therefore it would
be interesting to give a proof that the O(4) NLSM in
this parameter regime really does possess intrinsic topo-
logical order. As we discussed in Sec. III, the unitary
transformation which removes the theta angle from the
Hamiltonian can only be performed when θ is a multiple
of 2π, which means that completely new methods will be
needed to solve the problem of the NLSM in the disor-
dered phase at θ = π.
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Appendix A: Canonical quantization of the O(N)
NLSM in 0 + 1 dimensions

In this appendix we review the solution of the O(N)
NLSM in one spacetime dimension using the commuta-
tion relations of Eqs. (2.29) and the Schroedinger repre-
sentation in Eq. (2.30). We use this solution in Secs. III
and IV to compute the energy gap in regularized versions
of the O(D + 2) NLSM in the disordered (f →∞) limit
and with θ = 2πk, k ∈ Z, on flat and curved space, re-
spectively. The O(N) NLSM in one spacetime dimension
is equivalent to the quantum mechanics problem of a free
particle in N spatial dimensions but confined to the sur-
face of the unit sphere SN−1. This is a famous problem
in the quantization of constrained systems and has been
studied by many authors [41–49]. One finds that the
quantum mechanical Hamiltonian is proportional to the

Laplace-Beltrami operator ∆
(N−1)
LB on the sphere SN−1,

so that the energy spectrum is given in terms of the eigen-

values of ∆
(N−1)
LB . However, there is some controversy

in the literature about whether an additional constant
term, depending only on N , should appear in the quan-
tum Hamiltonian for this problem. This constant term is
irrelevant for the application to our discussion in the con-
text of Secs. III and IV, in which we are interested only
in the difference between the energy of the ground state
and first excited state. Therefore in this appendix we
give a straightforward analysis of the O(N) NLSM in one
spacetime dimension, without worrying about subtleties
(e.g., Weyl-ordering of operators to define the quantum
Hamiltonian [41, 44, 46]) which could lead to an extra
constant shift in the energy spectrum. Readers inter-
ested in the subtleties associated with this constant term

should consult the references cited in this paragraph.

1. Hamiltonian, commutation relations, and the
energy spectrum

We consider the O(N) NLSM in one spacetime dimen-
sion. For general N this system does not admit a theta
term (a theta term is possible at N = 2 = D + 2 since
D = 0 here). However, in this appendix we are only inter-
ested in discussing the quantization of the theory without
theta term, and so we consider the case of a general N
with no theta term. Let n = (n1, . . . , nN ) be the NLSM
field. Again, the NLSM field is subject to the constraint
n · n = nana = 1. The Lagrangian in one spacetime
dimension is

L =
1

2f
(∂tn

a)(∂tna) . (A1)

The canonical momentum conjugate to na is πa =
∂L

∂(∂tna) = 1
f (∂tna) and the Hamiltonian takes the form

H =
f

2
πaπa . (A2)

In one spacetime dimension the analysis of constrained
Hamiltonian systems from Sec. II leads to the commuta-
tion relations [

n̂a, n̂b
]

= 0 (A3a)

[n̂a, π̂b] = i

(
δab −

n̂an̂b
r̂2

)
(A3b)

[π̂a, π̂b] =
i

r̂2
(π̂an̂b − π̂bn̂a) , (A3c)

where r̂2 = n̂an̂a. The operator r̂2 commutes with all
other operators by construction and so it can be set equal
to one at this point, exactly as in Sec. II. However, we find
it more convenient for the exposition in this appendix to
leave this operator in place and only set it to one at the
end of the analysis.

The Schroedinger representation used in this paper for
the NLSM commutation relations can be adapted to the
case where the operator r̂2 is kept in the commutation
relations. In this case the operator n̂a again acts as mul-
tiplication by the coordinate na, but the momentum op-
erator π̂a now takes the form

π̂a = −i
(
δa
b − nan

b

r2

)
∂

∂nb
. (A4)

In this representation the quantity π̂aπ̂a appearing in the
Hamiltonian takes the explicit form

π̂aπ̂a = −
{(

δab − nanb

r2

)
∂2

∂na∂nb
− (N − 1)

r2
na

∂

∂na

}
,

(A5)
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so that the Hamiltonian operator is

Ĥ = −f
2

{(
δab − nanb

r2

)
∂2

∂na∂nb
− (N − 1)

r2
na

∂

∂na

}
.

(A6)
To diagonalize the Hamiltonian we now prove the follow-
ing statement.

Claim: In the Schroedinger representation the squared

sum of canonical momenta is related to ∆
(N−1)
LB , the

Laplace-Beltrami operator on the unit sphere SN−1, by
the equation

π̂aπ̂a = − 1

r2
∆

(N−1)
LB . (A7)

Proof: Before imposing the NLSM constraint, the com-
ponents na of the NLSM field are coordinates on RN .
The ordinary Laplacian on RN is given in terms of the

Laplace-Beltrami operator ∆
(N−1)
LB on SN−1 by (see, e.g.,

Sec. II.4 of Ref. [63])

∂2

∂na∂na
=

∂2

∂r2
+

(N − 1)

r

∂

∂r
+

1

r2
∆

(N−1)
LB . (A8)

Now using ∂
∂r = na

r
∂
∂na and the relation

∂2

∂r2
=
nanb

r2

∂2

∂na∂nb
, (A9)

we find that

−π̂aπ̂a =

[
∂2

∂na∂na
−
(
∂2

∂r2
+

(N − 1)

r

∂

∂r

)]
=

1

r2
∆

(N−1)
LB . (A10)

This completes the proof. �
As we discussed earlier in this section, since the op-

erator r̂2 commutes with all other operators, the NLSM
constraint r̂2 = 1 can be enforced at any time in the cor-
rectly quantized theory. At this point we can then set
r2 = 1 to obtain the final form for the Hamiltonian of
the O(N) NLSM,

Ĥ = −f
2

∆
(N−1)
LB . (A11)

We note here that in more careful approaches to the
quantization of this model the Hamiltonian operator

takes the form Ĥ = f
2

(
−∆

(N−1)
LB + E(N)

)
, where E(N)

is a constant shift of the energy depending only on N (al-
though in the literature there is still some disagreement
about the correct value of E(N)). In the straightforward
approach used in this appendix this shift is not present.

The spectrum of ∆
(N−1)
LB , as well as its eigenfunctions

and their multiplicities, can be found in standard ref-
erences on Riemannian geometry, for example Ref. [63].
Using these standard results we find that the eigenval-
ues of Ĥ are labeled by a positive integer ` and given
explicitly by

E` =
f

2
`(`+N − 2) , ` ∈ N , (A12)

in agreement with previous results on the spectrum of
this model. The ground state of this theory has energy
zero (or f

2E(N) for a non-zero shift in the energies), and
the difference between the energy of the ground state and
first excited state is given by

m ≡ E1 − E0 =
f

2
(N − 1) . (A13)

To get a complete understanding of the O(N) NLSM in
one spacetime dimension, we now give a full analysis of
the symmetries of this system.

2. Symmetry analysis

Consider the Lie algebra so(N) of the Lie group
SO(N). In the fundamental (i.e., N × N) representa-
tion, one possible basis of the Lie algebra consists of the
anti-symmetric N × N matrices Eij which contain a 1
in the (i, j) entry, a −1 in the (j, i) entry, and zero in
all other entries. Since Eij = −Eji, and since i and j
must be distinct for this to make sense, we arrive at the
correct number N(N − 1)/2 of generators of so(N). It is
also convenient to define the matrices Eii for any i to be
equal to the matrix with all entries equal to zero. The
matrix elements of Eij are

(Eij)ab = δiaδjb − δjaδib . (A14)

This definition also works when i = j and yields the zero
matrix in that case.

The Lagrangian of Eq. (A1) has an SO(N) global sym-
metry which is reflected in the fact that it is invariant
under the transformation na → Rabn

b for any O(N) ma-
trix R. The infinitesimal form of this transformation is
na → na + δna with δna = ε(Eij)abn

b, for a small con-
stant ε. By making ε time-dependent we derive the con-
served currents of this model,

Jab =
1

f
(∂tnanb − ∂tnbna) . (A15)

Since we are in 0 + 1 dimensions the conserved charge
operators are obtained from this current simply by re-
placing ∂tna with π̂a, so the conserved charge operators
are (note that we have chosen a particular operator or-
dering here)

Q̂ab = π̂an̂b − π̂bn̂a . (A16)

The commutator of two momenta from Eq. (A3) can be
rewritten (at this point we set r̂2 = 1 in the commuta-
tors) in terms of these charge operators as

[π̂a, π̂b] = iQ̂ab . (A17)

In the Schrodinger representation (with r2 = 1), the

charges Q̂ab take the simple form

Q̂ab = i(na
∂

∂nb
− nb

∂

∂na
) . (A18)



19

When acting on functions of na these derivative operators
obey the Lie algebra of so(N),

[Q̂ab, Q̂cd] = δacQ̂bd− δadQ̂bc + δbdQ̂ac− δbcQ̂ad . (A19)

We now show that the Hamiltonian Eq. (A2) of this
system is proportional to the quadratic Casimir of so(N).
It then follows that the problem of diagonalizing the
Hamiltonian of the O(N) NLSM reduces to a study of
the representation theory of so(N), which is already well-
known. The quadratic Casimir of so(N) is given by the

sum of the squares of all the generators Q̂ab. We know
that half of these are redundant since Q̂ab = −Q̂ba, but
we can exploit this fact and the fact that Q̂aa = 0 to
write the Casimir as simply

Ĉ =
1

2
Q̂abQ̂

ab , (A20)

where we have summed over all values of a and b with no
restrictions. By explicit computation one can show that
Ĉ = π̂aπ̂a (when we set r2 = 1 in Eq. (A5)), and so the
Hamiltonian can be re-written as

Ĥ =
f

2
Ĉ . (A21)

In this form one can clearly see the relationship between
the Hamiltonian and the SO(N) symmetry of this model.

Appendix B: Regularization of the NLSM
Hamiltonian

In Sec. III we studied the energy gap of the NLSM in
the disordered (f → ∞) limit and at θ = 0 using a lat-
tice regularization. We briefly indicated there that some
kind of regularization scheme was necessary to study the
excited states of the NLSM, and then we immediately
implemented the lattice regularization. In this appendix

we explain in detail why it is necessary to regularize the
NLSM Hamiltonian to study the excited states, and we
also discuss an alternative regularization for the theory
on flat space which does not use a lattice. We show
that this alternative regularization gives results for the
energy gap of the theory which are consistent with the
result coming from the lattice regularization. Based on
this evidence we expect that any sensible regularization
scheme will give a result for the energy gap of the NLSM
which agrees with our result computed using the lattice
regularization. In this appendix we focus on the NLSM
Hamiltonian at θ = 0. As we explained in Sec. III, the
NLSM Hamiltonian at θ = 2πk, k ∈ Z, is related to the
NLSM Hamiltonian at θ = 0 by a unitary transforma-
tion. Therefore any result on the spectrum of this theory
at θ = 0 will also hold for the theory at θ = 2πk for
integer k.

We start by explaining why the NLSM Hamiltonian
must be regularized before excited states can be con-
structed. Recall that in the limit of large coupling f ,
the Hamiltonian for the O(N) NLSM in D spatial di-
mensions takes the form

Ĥ =
f

2

∫
dDx π̂a(x)π̂a(x) , (B1)

where π̂a(x) takes the form shown in Eq. (2.30) in the
Schroedinger representation used in this paper. The
ground state of this Hamiltonian has zero energy and
is characterized by the property that it is annihilated by
π̂a(x) for each a. Therefore, to construct the ground state
we only have to consider the action of a single operator
π̂a(x) on functionals of the NLSM field. On the other
hand, to construct excited states we need to act with the
product π̂a(x)π̂a(x). This operator is not well-defined in
the NLSM field theory, as we now show.

To see the problem with the operator π̂a(x)π̂a(x), we
look at the action of π̂a(x)π̂a(y) on some functional F of
the NLSM field. A short calculation shows that

π̂a(x)π̂a(y)F = (N − 1)δ(D)(x− y)na(x)
δF

δna(x)
+ na(y)nb(y)

δ2F

δna(x)δnb(y)
− na(x)nb(x)na(y)nc(y)

δ2F

δnb(x)δnc(y)
.

(B2)

We see that the operator π̂a(x)π̂a(y) will diverge as y ap-
proaches x because of the presence of the delta function
in the first term of this expression. This contact diver-
gence implies that the product π̂a(x)π̂a(x) of momentum
operators at the same point x in space is ill-defined, and
this is the basic reason why some regularization scheme
is needed to construct excited states in this field theory.

Since the divergence in the operator π̂a(x)π̂a(x) is due
to the fact that both factors of π̂a(x) are evaluated at the
same point, i.e., the problem is associated with short dis-

tances, one way to regulate the operator is to discretize
space by introducing a lattice. This is exactly the ap-
proach we took in Sec. III. However, other regularization
schemes are also possible and should give expressions for
the energy gap which agree with the answers obtained
from the lattice regularization. To show this we now
discuss one alternative regularization scheme, in which
we still consider the theory on a continuous space, but
we introduce some non-locality to regulate the product
π̂a(x)π̂a(x). In this regularization scheme we first rewrite
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the Hamiltonian as

Ĥ =
f

2

∫
dDxdDy π̂a(x)π̂a(y)δ(D)(x− y) , (B3)

and then replace the delta function δ(D)(x−y) with any
known regularized expression for a delta function,

δ(D)(x− y)→ η(D)
ε (x− y) . (B4)

Here η
(D)
ε (x−y) is some function of x−y which has the

property that

lim
ε→0

∫
dDx f(x)η(D)

ε (x− y) = f(y) , (B5)

for any test function f(x). The parameter ε has units of
length, and it is this small parameter which serves as a
regulator for the theory in this regularization scheme. We

consider a concrete example of a such a function η
(D)
ε (x−

y) later in this appendix. In terms of this function the
regularized Hamiltonian takes the form

Ĥ(ε) =
f

2

∫
dDxdDy π̂a(x)π̂a(y)η(D)

ε (x− y) . (B6)

This regularization scheme clearly introduces some non-
locality into the theory, since the regularized Hamiltonian
(with non-zero ε) contains terms which involve the fields
π̂a at two different points in space.

Within this alternative regularization scheme we can
also compute the energy gap between the ground state of
the system and the first excited state. The vacuum state
of the NLSM in the large f limit (and at θ = 0) is the
constant wave functional Ψ[n] = 1, which transforms in
the trivial representation of SO(N). Experience with the
lattice regularization of this theory, and intuition about
the role of the SO(N) symmetry in this problem, sug-
gests that the lowest energy states should transform in
the vector representation of SO(N). The simplest such
states are given by functionals of the form

F a[n] =

∫
dDx na(x)F (x) , (B7)

where F (x) is some arbitrary function of space. For ex-
ample, we can construct a localized excitation by choos-
ing F (x) to be localized in some region of space. Apply-
ing the regularized Hamiltonian to this state gives

Ĥ(ε)F a[n] = m(ε)F a[n] , (B8)

where the energy m(ε) in this regularization is given by

m(ε) =
f

2
(N − 1)η(D)

ε (0) . (B9)

At this point it is instructive to make a particular choice
of regularization of the delta function. We choose the
Poisson kernel,

η(D)
ε (x− y) =

D∏
j=1

1

π

ε

ε2 + (xj − yj)2
, (B10)

but other choices are also possible (e.g., a heat kernel,
etc.). If we also set N = D + 2, which is the case of
interest in this paper for constructing NLSMs with theta
term in D + 1 spacetime dimensions, then we find that
the mass gap in this regularization is

m(ε) =
f

2

D + 1

(πε)D
. (B11)

This answer is clearly consistent with the expression
Eq. (3.21) obtained from the lattice regularization, and
the two expressions coincide if we choose the lattice spac-
ing a to be related to the parameter ε via a = πε. There-
fore we expect that any sensible regularization of the
NLSM Hamiltonian will give results consistent with those
that we derived in Sec. III using the lattice regularization.

Appendix C: Symplectic geometry approach to
Hamiltonian formalism for field theories

In this appendix we review the symplectic geometry
approach to the Hamiltonian dynamics of a classical field
theory. This is essentially a “functional” version of what
one does in the symplectic geometry approach to a classi-
cal dynamical system with finitely many degrees of free-
dom (a review of the latter for physicists is given in Ch. 11
of Ref. [64]). We apply this formalism in Sec. IV to de-
termine the correct form of the Poisson bracket in the
theory of a free scalar field on a D-dimensional curved
space M with some Riemannian metric Gij , and then
we use this information to quantize the O(D+ 2) NLSM
with theta term on the curved space M. One of the
main advantages of the symplectic geometry approach is
that it provides a formalism which one can rely on to
understand the classical dynamics, and in particular the
correct form of the Poisson bracket, in systems which can-
not be analyzed by conventional methods more familiar
to physicists. The correct form of the Poisson brackets
is essential for quantization, and so this method is use-
ful for the proper quantization of an unfamiliar system.
This material is standard in the field theory literature.
Therefore, in this section we simply give a summary of
this material in the infinite-dimensional setting in ex-
act analogy to the development on a finite-dimensional
phase space as found, for example, in Ref. [64]. In addi-
tion, we note here that a very similar infinite-dimensional
symplectic geometry approach is used in establishing the
equivariant localization formulas for phase space path in-
tegrals in quantum mechanics (see, for example, Sec. 4.3
of Ref. [65]).

To start, consider a field theory on the D-dimensional
spaceM, and let {Φa(x)}x∈M (for some range of the in-
dex a) denote the coordinates on the infinite-dimensional
phase space for the system under consideration. In
the example of a free scalar field φ(x) we could choose
Φ1(x) = φ(x), Φ2(x) = π(x), where π(x) is the momen-
tum conjugate to φ(x), but in general (as in the finite-
dimensional case) it is not necessary to have a definite de-
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composition into “coordinates” and “momenta”. In fact,
in many cases it is impossible to find a definition of coor-
dinates and momenta which is valid on the entire phase

space. We use the notation ~Φ(x) = (Φ1(x),Φ2(x), . . . )
to denote the collection of all field variables Φa(x) at the
single point x. The functional derivatives δ

δΦa(x) with re-

spect to the phase space coordinates form a basis of the
tangent space at a point in this phase space. We also in-
troduce the coordinate differentials δΦa(x), which form
a basis for the cotangent space at a point in phase space.
We have the natural pairing between the basis elements
of the tangent and cotangent spaces,

δΦa(x)

(
δ

δΦb(y)

)
= δabδ

(D)(x− y) . (C1)

On phase space we also introduce an exterior derivative
δ which acts on any functional F of the phase space co-
ordinates as

δF =

∫
dDx

δF

δΦa(x)
δΦa(x) . (C2)

The wedge product of differentials δΦa(x) is defined in
the usual way by

δΦa(x) ∧ δΦb(y) = δΦa(x)⊗ δΦb(y)− δΦb(y)⊗ δΦa(x)
(C3)

A general p-form α on phase space has the form

α =
1

p!

∫  p∏
j=1

dDxj

αa1···ap

[
~Φ(x1), . . . , ~Φ(xp);x1, . . . ,xp

]
δΦa1(x1) ∧ · · · ∧ δΦap(xp) , (C4)

where αa1···ap

[
~Φ(x1), . . . , ~Φ(xp);x1, . . . ,xp

]
are the

components of α. The notation is meant to indicate that
the components of α can depend on the fields Φa(xj)
at the coordinates xj , and they can also depend explic-
itly on the coordinates xj . The action of the exterior
derivative δ on p-forms is defined by the usual axioms:
(i) δ2F = 0 for any functional F on phase space, and (ii)
δ(α∧β) = δα∧β+(−1)pα∧δβ for any p-form α and any
q-form β (i.e., δ is an antiderivation). A general vector

field V on the phase space has the form

V =

∫
dDx V a

[
~Φ(x);x

] δ

δΦa(x)
, (C5)

where V a
[
~Φ(x);x

]
are the components of V . The inte-

rior multiplication of a form α by a vector V , denoted
iV α, is given by

iV α =
1

(p− 1)!

∫  p∏
j=1

dDxj

V aαaa2···ap δΦ
a2(x2) ∧ · · · ∧ δΦap(xp) , (C6)

where we suppressed the arguments of αaa2···ap and V a

for brevity.
After these preliminaries we are now ready to develop

the canonical formalism on this infinite-dimensional
phase space in exact analogy to the development on a
finite-dimensional phase space (see, for example, Ch. 11
of Ref. [64]). First, we introduce a symplectic form Ω on
phase space, whose components are defined by

Ω =
1

2

∫
dDx1d

Dx2 Ωab

[
~Φ(x), ~Φ(y);x,y

]
δΦa(x) ∧ δΦb(y) .

(C7)

As usual, we require that Ω is closed, δΩ = 0. Note
also that in this infinite-dimensional case, the compo-

nents Ωab

[
~Φ(x), ~Φ(y);x,y

]
of Ω only need to be anti-

symmetric under the simultaneous exchange a ↔ b and

x ↔ y. Next, for any functional F on phase space we
define a vector field V F by the relation

δF = −iV F Ω . (C8)

The reason for defining these vector fields in this way is
that they allow for a coordinate-independent definition
of the Poisson bracket of two functionals F1 and F2 on
the phase space. The Poisson bracket for F1 and F2 is
given in terms of the corresponding vector fields V F1

and

V F2
by9

{F1, F2} = iV F1
iV F2

Ω . (C9)

9 We use an opposite sign in this equation as compared with
Ref. [64].
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Finally, Hamilton’s equations are equivalent to the single
equation

δH = −iV HΩ , (C10)

where V H is the vector field whose components are the
time derivatives of phase space coordinates,

V H =

∫
dDx Φ̇a(x)

δ

δΦa(x)
, (C11)

and where the dot represents a time derivative, ˙( ) :=
d
dt ( ).

Appendix D: Intrinsic construction of the
Wess-Zumino term for D = 1

In this appendix we explain in detail a simple example
of the intrinsic construction of the Wess-Zumino (WZ)
term which we mentioned in Sec. IV. This intrinsic con-
struction is the method of choice for constructing the WZ
term when other standard constructions fail, for exam-
ple in the case where the spatial manifold M does not
admit a spin structure and also cannot be realized as the
boundary of any higher-dimensional manifold B. The
details of the intrinsic construction are, however, more
complicated than the more standard constructions. For
this reason we only present the simplest example of the
construction, which is the case where M has dimension
D = 1, but this intrinsic construction is available in all
dimensions. The ideas behind this construction date back
to work of Wu and Yang in Ref. [66] and were formalized
by Alvarez in Ref. [51] using the language of Čech coho-
mology. The basic idea is to write the WZ term as a sum
of integrals over the spaceM of forms which are defined
only locally in certain coordinate patches on the target
manifold T of the NLSM. This sum of integrals over M
is then supplemented with additional terms which ac-
count for the transition functions which are needed to go
between coordinate patches on the target manifold. We
also mention here that the methods of Ref. [51] were used
in Ref. [67] to give an intrinsic definition of the Abelian
Chern-Simons term on a three-dimensional manifold.

We now present the intrinsic construction of the WZ
term for the case where the spatial manifold M has di-
mension D = 1. Our discussion in this appendix applies
only to the specific case where the target manifold of
the NLSM is the sphere S2. Other two-dimensional tar-
get spaces may require more coordinate patches to be
covered properly. As we discussed in the main sections
of this paper, we assume thatM is closed, oriented, and
connected. For the case D = 1 this implies thatM is dif-
feomorphic to a circle. We take x1 ∈ [a, b) to be the coor-
dinate on this circle, and the NLSM field is taken to obey
periodic boundary conditions n(a) = n(b). For D = 1 we
have an O(3) NLSM, and for the purpose of construct-
ing the WZ term it will be convenient to parametrize the

field variables na, a = 1, 2, 3, using spherical coordinates
Φ and Θ as

n1 = cos(Φ) sin(Θ) (D1a)

n2 = sin(Φ) cos(Θ) (D1b)

n3 = cos(Θ) . (D1c)

In these coordinates the volume form on S2 (the target
manifold of the NLSM) takes the form

ω2 = sin(Θ)dΘ ∧ dΦ . (D2)

The sphere S2 can be covered by two coordinate patches
UN and US , defined in spherical coordinates as UN =
{(Φ,Θ)| Φ ∈ [0, 2π),Θ ∈ [0, π − Θ0)} and US =
{(Φ,Θ)| Φ ∈ [0, 2π),Θ ∈ (Θ0, π]}, for some fixed (per-
haps small) angle Θ0. The patch UN contains the north
pole but not the south pole, and the patch US contains
the south pole but not the north pole. On each patch
the volume form can be expressed as a total derivative
ω2 = dϑN or ω2 = dϑS , with

ϑN = (1− cos(Θ))dΦ (D3a)

ϑS = −(1 + cos(Θ))dΦ . (D3b)

On the intersection US∩UN of the two coordinate patches
we have ϑS − ϑN = dψSN , where (up to an arbitrary
constant)

ψSN = −2Φ . (D4)

At this point we recall that the ordinary construction
of the WZ term for the NLSM on M uses an extended
manifold B with ∂B = M, and an extension ñ of the
NLSM field into B such that ñ|∂B = n. In this case the
standard construction for the WZ term is

SWZ [n] =
2πk

A2

∫
B
ñ∗ω2 . (D5)

Using the spherical coordinates Θ and Φ we find that the
variation of the WZ term obtained from this standard
construction is

δSWZ [n] =
2πk

A2

∫ b

a

dx1 sin(Θ) (δΘ∂1Φ− δΦ∂1Θ) ,

(D6)
where ∂1 ≡ ∂

∂x1 . We now present the intrinsic con-
struction of the WZ term, which yields an expression
for SWZ [n] involving only integrations over the physical
space M, and gives the same formula for the variation
with respect to the NLSM field.

The intrinsic construction takes as its starting point
a geometric interpretation of the WZ term. The NLSM
field n is a map from M to S2, and the image of M
under this map is a closed curve ` on S2. The curve `
inherits an orientation from the orientation of M. On
S2 there exist regions C and C′ = S2\C such that ∂C = `
and ∂C′ = `, where ` is the curve ` with the opposite
orientation. Using this information we define the WZ
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term for the field configuration n using the signed area
of the regions C or C′ as

SWZ [n] =
2πk

A2
Area[C] , (D7)

or

S′WZ [n] = −2πk

A2
Area[C′] . (D8)

The minus sign in the second equation is there to keep
track of the fact that the boundary of C′ is `, which has
the opposite orientation of ` = ∂C. The reason for defin-
ing the WZ term in this way is that with this definition
we have

eiSWZ [n] = ei(SWZ [n]−S′WZ [n])eiS
′
WZ [n]

= ei2πkeiS
′
WZ [n] . (D9)

Therefore, we see that the exponential of the WZ term
will be independent of the choice of SWZ [n] or S′WZ [n]
as long as the level k of the WZ term is quantized, k ∈ Z,
which is the usual result. In what follows we work with
the first formula Eq. (D7).

The formula Eq. (D7) instructs us to integrate the vol-
ume form ω2 over the region C ⊂ S2. In the case where
the curve ` is contained only in the coordinate patch US
on S2, we have ω2 = dϑS and so the WZ term takes the
simple form

SWZ [n] =
2πk

A2

∫
`

ϑs

=
2πk

A2

∫
M

n∗ϑS

= −2πk

A2

∫ b

a

dx1(1 + cos(Θ))∂1Φ , (D10)

where we used the expression for ϑS from Eqs. (D3). If
instead the curve ` is contained only in UN , then we
have a similar expression for SWZ [n] with ϑS replaced
with ϑN . Finally, there is the possibility that the curve
` crosses through both coordinate patches on S2. In this
case the expression for SWZ [n] obtained from the formula
Eq. (D7) is more complicated.

To construct the WZ term in the case where the curve
` passes through both coordinate patches on S2, we do
the following. First, we pick two points s1 and s2 on the
interval [a, b) such that n1 ≡ n(s1) and n2 ≡ n(s2) lie
on opposite sides of the curve ` in the region US ∩ UN .
Next, we divide the curve ` into two pieces `1 and `2
such that ` = `1 + `2, where the sum is the composition
of oriented 1-chains. Finally, we add a third curve `3
which connects the points n1 and n2 by cutting through
the region US ∩UN , and we choose the orientation of this
curve such that it is directed towards n2. The curve `3
also divides the region C into two portions C1 and C2.
We choose the points s1 and s2, and also the curve `3,
so that C1 lies entirely in US and C2 lies entirely in UN .

US ∩ UN

ℓCC'

C1

C2

ℓ1

ℓ2

ℓ3
n1n2

a) b)

c)

FIG. 1. a) The shaded region shows the intersection US ∩
UN of the two coordinate patches needed to cover the entire
sphere S2. b) The curve ` and the regions C and C′ whose
union is the entire sphere S2. The curve ` does not lie in
a single coordinate patch US or UN , as can be seen from
the dotted lines indicating the boundary of the intersection
US ∩ UN . c) A partition of the region C into two parts C1
and C2 using an additional curve `3 which starts at the point
n1 and ends at the point n2. The part C1 lies entirely in US ,
while the part C2 lies entirely in UN .

This situation is illustrated in Fig. 1. In this case we can
compute Area[C] as

Area[C] = Area[C1] + Area[C2]

=

∫
`1+`3

ϑS +

∫
`2−`3

ϑN

=

∫
`1

ϑS +

∫
`2

ϑN +

∫
`3

(ϑS − ϑN )

=

∫
`1

ϑS +

∫
`2

ϑN + ψSN (n2)− ψSN (n1) ,

(D11)

where in the last step we used the equation ϑS − ϑN =
dψSN on US ∩ UN . The integrals in this expression can
be pulled back to M to give a final expression for the
WZ term in the form

SWZ [n] =
2πk

A2

(∫
n−1(`1)

n∗ϑS +

∫
n−1(`2)

n∗ϑN

+ ψSN (n(s2))− ψSN (n(s1))

)
,

(D12)

where n−1(`1) denotes the inverse image of the curve `1
under the map n :M→ S2, and likewise for n−1(`2).

This form for the WZ term has the advantage that it
only involves integrals over the physical space M, and
does not require an extended space B or an extension
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ℓ
C1C2

FIG. 2. An example of a curve ` with a self-intersection arising
from a map n : M → S2 which is not injective. In this
case the WZ term should be computed using the signed area
Area[C1]− Area[C2] of the two regions C1 and C2 enclosed by
the curve `, as shown in Eq. (D13). This is because the curve
` goes counterclockwise around the region C1 but clockwise
around the region C2.

ñ of the field configuration (it also does not require a
spin structure on M). Therefore we refer to this con-
struction of the WZ term as an intrinsic construction.
In addition, a short calculation shows that upon varying
this expression with respect to the NLSM field, and us-
ing the explicit expression for ψSN from Eq. (D4), the
contributions from the points s1 and s2 cancel out. The

end result for the variation of this form of the WZ term
then turns out to be identical to Eq. (D6). Therefore we
have succeeded in our original goal, which was to pro-
vide a construction of the WZ term for the NLSM the-
ory on the manifold M which does not require a higher-
dimensional manifold B with ∂B = M. Also, we note
here that adding an arbitrary constant to the transition
function ψSN , which still gives a solution to the equation
ϑS − ϑN = dψSN , will not change the final expression
Eq. (D12) for the WZ term since ψSN appears in the
WZ term in the combination ψSN (n(s2))− ψSN (n(s1)).

Finally, we must discuss what one must do in the case
that the curve ` on S2 has self-intersections. The map
n : M → S2 is not required to be an embedding of M
(i.e., n is not required to be injective), so in general the
curve ` can have self-intersections. In this case we again
define the WZ term using the signed area of the regions
enclosed by `. For example, for the situation shown in
Fig. 2 we define

SWZ [n] =
2πk

A2
(Area[C1]−Area[C2]) . (D13)

The reason for defining the WZ term in this way is that
we ultimately want SWZ [n] to reduce to a line integral
of ϑS or ϑN along the curve `, modulo the addition of
suitable constant terms in the intersection US ∩ UN as
discussed above. Since in the example in Fig. 2 the curve
` wraps around the regions C1 and C2 in opposite direc-
tions, we attach opposite signs to the areas of these two
regions in the definition of the WZ term so that SWZ [n]
reduces to a line integral of ϑS or ϑN along `.
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