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We initiate the study of intersecting surface operators/defects in four-dimensional quantum field
theories (QFTs). We characterize these defects by coupled 4d/2d/0d theories constructed by cou-
pling the degrees of freedom localized at a point and on intersecting surfaces in spacetime to each
other and to the four-dimensional QFT. We construct supersymmetric intersecting surface defects
preserving just two supercharges in A/ = 2 gauge theories. These defects are amenable to exact
analysis by localization of the partition function of the underlying 4d/2d/0d QFT. We identify the
4d/2d/0d QFTs that describe intersecting surface operators in AN/ = 2 gauge theories realized by
intersecting M2-branes ending on N Mb-branes wrapping a Riemann surface. We conjecture and
provide evidence for an explicit equivalence between the squashed four-sphere partition function
of these intersecting defects and correlation functions in Liouville/Toda CFT with the insertion of

arbitrary degenerate vertex operators, which are labeled by two highest weights of SU(N).
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FIG. 1: Intersecting codimension two defects
supported on planes R%, and R2,. There are localized
degrees of freedom living on the planes R%, and RZ,
and at the origin; the latter couple to the former
degrees of freedom, which in turn couple to the
four-dimensional gauge theory living in the bulk R*.

through the following coupling integrated over the defect:
/ de A, (xz,z, = 0)J"(x) + seagull terms. (L.1)
D

This construction realizes a defect operator as a lower-
dimensional QFT on the support D of the defect inter-
acting with the bulk QFT and provides a uniform de-
scription of Wilson line, vortex line and surface defects,
among others. [17] The realization of defect operators as
defect degrees of freedom coupled to the bulk QFT has
played a key role in unraveling the action of various du-
alities on defect operators, see, e.g., [15, 18].

The set of defects in a QFT can be enlarged by con-
sidering intersecting defects. These are constructed intu-
itively by letting a collection of defects of various codi-
mensions intersect in spacetime. This picture has a nat-
ural QFT realization. First, each defect comes equipped
with its own localized degrees of freedom which couple
to the bulk QFT as described above, just as if the de-
fect were inserted in isolation. In the presence of multi-
ple defects, this construction can be further enriched by
adding new intersection degrees of freedom along the in-
tersection domain of the defects and letting them couple
to the corresponding defect degrees of freedom (as well
as the bulk). This is again accomplished by gauging the
flavor symmetries acting on the intersection degrees of
freedom with gauge symmetries residing on the various
defects (and/or bulk) and/or by identifying them with
defect (and/or bulk) global symmetries. Intersecting de-
fects exhibit quite a rich dynamics as they bring together
under a single roof the intricate dynamics of QFTs in var-
ious dimensions.

In this paper we initiate the study of intersecting sur-
face defects in four-dimensional gauge theories. More pre-
cisely, we consider the case of orthogonal planar surface
defects intersecting at a point (see Figure 1 for a pictorial
representation). We focus our investigations to intersect-
ing surface defects in four-dimensional N = 2 supersym-
metric field theories that preserve the zero-dimensional
dimensional reduction of two-dimensional " = (0, 2) su-
persymmetry. These intersecting surface operators on
R* are constructed by coupling an N/ = (0,2) zero-

dimensional theory [19] at ! = 22 = 2% = 2% = 0 to
a two-dimensional N = (2,2) theory at 23 = z* = 0 and
to a two-dimensional N' = (2,2) theory at 2! = 2% = 0.
These two-dimensional theories are in turn coupled to
the bulk four-dimensional N' = 2 theory. [20] This con-
struction is very general, and defines a very large class of
intersecting surface defects.

Pleasingly, the expectation values of these intersect-
ing surface defects in the Q-background [21] and on the
squashed four-sphere [22, 23] are amenable to exact com-
putation by supersymmetric localization, yielding novel
non-perturbative results in four-dimensional QFTs. Con-
sider an intersecting defect on the squashed four-sphere
S} with the surface defects wrapping orthogonal two-
spheres S7 and S% that intersect at two points, the north
pole and south pole of S;'. We show that the expectation
value of the intersecting defect takes the form

I intersecti 2
ZS;L ZS% ZS?% Z(I)I(]i ersection |Zinstanton| ) (12)

where Zga is the one-loop determinant of the bulk four-
dimensional N = 2 theory together with the classical con-
tribution, and Zg2 and Zg2 denote the one-loop determi-
nants and classical contributions of the two-dimensional
N = (2,2) theories living on the respective surface de-
fects, which are coupled to the four-dimensional theory.
Zinwersection g the one-loop determinant of the intersec-
tion degrees of freedom pinned at the poles and coupling
to the two-dimensional (and four-dimensional) theories.
Finally, | Zinstanton|* are two copies of the instanton parti-
tion function, one for the north pole and one for the south
pole of S, encoding the contribution of instantons in
the presence of the intersecting surface defects. The two-
dimensional and zero-dimensional fields introduce new el-
ements to the instanton computation, by specifying the
allowed singular behavior of the four-dimensional gauge
fields and by contributing extra zero-modes to the inte-
gral over the appropriate instanton moduli space. In this
paper we perform the detailed computation of the expec-
tation value of intersecting defects in four-dimensional
theories without gauge fields (see section III).

We proceed to identify a family of intersecting surface
defects in four-dimensional N' = 2 theories which admit
an elegant interpretation in two-dimensional non-rational
conformal field theory (CFT) and realize the low-energy
dynamics of two intersecting sets of M2-branes ending
on ng Mb-branes wrapping a punctured Riemann surface.
The configuration of intersecting M2-branes is labeled by
a pair of irreducible representations (R',R) of SU(ny).
On the Mb-branes resides a four-dimensional A" = 2 the-
ory dictated by the choice of Riemann surface [24] and
the M2-branes insert a surface operator [25, 26], whose
field theory description we provide. Our construction
realizes intersecting M2-brane surface operators in four-
dimensional A" = 2 theories on M5-branes that admit a
choice of duality frame with an SU(ng) x SU(ng) x U(1)
symmetry, [27] which allows for the gauging of the corre-
sponding global symmetries of the defect fields. This in-



FIG. 2: Joint 4d/2d/0d quiver diagram (later denoted Trermi) describing the M2-brane intersection labeled by
representations (R', R) ending on ng M5-branes wrapping a trinion with two full and one simple puncture. The
four-dimensional degrees of freedom are denoted in A/ = 2 quiver notation, the two-dimensional ones in N = (2, 2) quiver
notation, and the zero-dimensional ones in the dimensional reduction of two-dimensional A/ = (0, 2) quiver notation,
with dashed lines representing Fermi multiplets and solid arrows chiral multiplets. The ranks of the gauge groups are
determined by the representation (R’,R) as in Figure 3 and the complexified FI parameters of the innermost gauge
group factors are opposite while the others vanish. In both halves of the quiver the adjoint chiral multiplets are coupled
through cubic superpotentials to their neighboring bifundamental chiral multiplets. The two-dimensional chiral
multiplets charged under U(n,) or U(n.,) are coupled through cubic and quintic superpotentials to the four-dimensional
degrees of freedom, and appear in E or J terms for the 0d Fermi multiplet. More generally, the 4d
SU(ng) x SU(ng) x U(1) symmetry can be partly or fully gauged to insert this 4d/2d/0d quiver in a larger 4d quiver
gauge theory; we then call this 4d/2d/0d quiver “local” to insist on the presence of other 4d degrees of freedom.

cludes, among many other theories, N' = 2 SU (nf) SQCD
with 2n; fundamental hypermultiplets and the N = 2*
theory, that is N' = 2 SU(n¢) super-Yang-Mills with a
massive adjoint hypermultiplet.

We state, for clarity, our results and conjectures for
the simplest four-dimensional A = 2 theory in this class:
the theory of n hypermultiplets, living on n¢ M5-branes
wrapping a trinion with two full and one simple puncture.

Conjecture 1. The M2-brane intersection labeled by
representations (R’,R) of SU(n¢) ending on the ng M5-
branes is described by the joint 4d/2d/0d quiver diagram
in Figure 2. [28]

The SU(ng) x SU(n¢) x U(1) global symmetries act-
ing on the innermost chiral multiplets of the right and
left N' = (2,2) quiver gauge theories are identified with
each other and with those acting on the bulk hyper-
multiplets via defect, two-dimensional N = (2,2) super-
potentials, one localized in the (x!,2?)-plane and the
other in the (23, 2*)-plane. Quintic superpotentials iden-
tify the remaining U(1) global symmetry of each two-
dimensional theory to rotations transverse to the corre-
sponding plane. The N/ = (0, 2) Fermi multiplet localized
at o1 = 22 = 2% = 2* = 0 is gauged with the innermost
gauge group factor of the left and right A" = (2, 2) quiver
gauge theory. The Fermi multiplet has an E-term or J-
term superpotential [29] quadratic in the 0d N = (0,2)
restrictions of the 2d chiral multiplets.

The representation data (R’, R) labeling the intersect-
ing M2-branes is encoded in the ranks of the gauge groups
of the two-dimensional N' = (2,2) gauge theories on the
left and right of the diagram by realizing (R’, R) by a pair
of Young diagrams, as in Figure 3. The number of boxes
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FIG. 3: Gauge group ranks corresponding to Young
diagrams of (R', R).

in each column of the Young diagram determine the rank
of the gauge group of the corresponding N' = (2, 2) gauge
theory. [30]

The complexified Fayet—Iliopoulos (FI) parameter

) 0
T =14+ 5 (1.3)
for the innermost gauge groups U(n, ) and U(n!,) are op-
posite while the FI parameters for all other gauge groups
vanish. [31] The surviving complexified FI parameter en-
codes the position on the Riemann surface where the in-
tersecting M2-branes end. For the precise brane configu-
ration see section IV.
The same quiver with v + ¢/ arbitrary FI param-
eters corresponds to the insertion of v sets of M2-
branes labeled by antisymmetric representations [32]

(I, Am=~m==10) and v/ sets labeled by (/\”f_”lﬁ‘”/v1 0,1).



Their respective positions on the Riemann surface are
encoded in the FI parameters. [33]

Conjecture 2. The instanton partition function in the
Q-background Rﬁl_ﬁ of the family of intersecting defects
captured by the 4d/2d/0d quiver diagram in Figure 2
equals the W,,, conformal block on the four-punctured
sphere with two full punctures, one simple puncture and
an arbitrary degenerate puncture. The choice of internal
momentum labeling the conformal block maps to a choice
of boundary condition for the vector multiplet scalars
of the innermost gauge group factors in the intersecting

defect theory.

A degenerate puncture of the W,, algebra is labeled
by two highest weights (2',Q) of SU(n¢) through the
momentum vector

Ly
az—bQ—gQ , (L.4)
where b parametrizes the Virasoro central charge. [34]
The data of the degenerate puncture is realized in the
quiver diagram through the irreducible representations
(R’,R) corresponding to the highest weights (2, 2). The
Rﬁhm deformation parameters are given in terms of the
Virasoro central charge by € = b and e¢2 = 1/b with
b > 0. [35] The masses of the four-dimensional and two-
dimensional matter fields are encoded in the momenta
of the two full punctures and the simple puncture (see
section V).

Conjecture 3. The expectation value on the squashed
four-sphere Sgl
96_% " :v% + :v% :v% + :v?l
r2 02 22

=1 (L5)

of the intersecting surface theory in Figure 2, with the
right AV = (2,2) quiver on the squashed two-sphere at
xg = x4 = 0, the left N' = (2,2) quiver on the squashed
two-sphere at 1 = x2 = 0, and with the bifundamen-
tal N = (0,2) Fermi multiplet localized at the North
and South poles of Sgl at o = r and xy = —r respec-
tively, is given by the A,,_; Toda CFT correlator on
the four-punctured sphere with two full punctures, one
simple puncture and an arbitrary degenerate puncture
labeled by (€,Q). The Toda CFT central charge param-

eter is given by b% = (/L.

Conjecture 4. The M2-brane intersection labeled by
representations (sym™ O, sym™0) of SU(ns) ending on
the my Mb5-branes allows for an alternative descrip-
tion in terms of the joint 4d/2d/0d quiver diagram in
Figure 4. [36] Similarly to Conjecture 2, the instanton
partition function of the 4d/2d/0d gauge theory coin-
cides with a W,,, conformal block on the four-punctured
sphere with two full puncture, one simple puncture and
a degenerate puncture labeled by the symmetric repre-
sentations (sym™ O,sym™0). Similarly to Conjecture 3,

FIG. 4: Joint 4d/2d/0d quiver diagram describing
the M2-brane intersection labeled by n- and n'-fold
symmetric representations ending on ng M5-branes
wrapping a trinion with two full and one simple
puncture. The complexified FI parameters of the gauge
group factors are equal. Cubic and quartic
superpotentials coupling the four-dimensional degrees
of freedom to the two-dimensional ones are turned on.
The 0d chiral multiplets on the intersection appear in
E and J-type superpotentials for 0d A" = (0, 2) Fermi
multiplet components of the 2d N = (2,2)
(anti)fundamental chiral multiplets. As in Figure 2, the
4d SU(ng) x SU(ng) x U(1) symmetry can be global or
gauged.

the Sgl expectation value coincides with the A,,_; Toda
CFT correlator with these four punctures.

These results enrich the fascinating connections uncov-
ered by AGT [37] between four-dimensional theories (see
also [38]) and between two-dimensional theories [26] and
two-dimensional Toda CFT. Our mapping of the inter-
secting defects in Figure 2 with the most general Toda
degenerate field insertion, which is labeled by the pair of
representations (R’, R), completes [26], where one of the
representations was taken to be trivial (see also [25, 39—
43]). Realizing the most general degenerate insertion
crucially requires considering intersecting defects, with
degrees of freedom localized along intersecting surfaces
and points on spacetime.

Extending our story to other four-dimensional N = 2
theories with the properties described above is straight-
forward. In the field theory, we gauge the SU(n¢) X
SU(ng) x U(1) global symmetry of the 2d/0d degrees of
freedom with an SU(n¢) x SU(n¢) x U(1) symmetry of
the four-dimensional theory. In the correspondence with
Toda CFT, we insert an extra degenerate puncture la-
beled by (€2,) on the punctured Riemann surface real-
izing the four-dimensional N' = 2 theory under consid-
eration. As an example, the 4d/2d/0d quiver diagram
for an M2-brane intersecting surface operator in four-
dimensional SQCD is given by Figure 5. [44] The par-
tition function of this theory is conjecturally computed
by the Toda CFT five-point function on the sphere, with
two full punctures, two simple punctures and a degen-
erate puncture that encodes the choice of intersecting
surface operator.



FIG. 5: Joint 4d/2d/0d quiver realizing an M2-brane
surface operator in A/ = 2 SQCD. This has the same
matter content as the quiver in Figure 2.

The paper is organized as follows. In section II we pro-
vide a general framework for the construction of quarter-
supersymmetric intersecting defects in NV = 2 QFTs.
In section III we perform the exact computation of the
expectation value of intersecting surface defects on the
squashed four-sphere. section IV discusses the M-theory
realization of the intersecting surface defects of interest
to this paper. Here we also show how the proposed
4d/2d/0d quiver gauge theories of Figure 2 and Figure 4
naturally arise in theories admitting a type IIA descrip-
tion. section V states the conjectured relation with Liou-
ville/Toda degenerate correlators precisely. It describes
the concrete and non-trivial verifications of our conjec-
tures done in Appendix A and Appendix B. We conclude
with some interesting open questions and future direc-
tions.

II. COUPLING INTERSECTING DEFECTS

A planar, half-supersymmetric surface defect in a four-
dimensional N/ = 2 theory can preserve either two-
dimensional N' = (2,2) or N/ = (0,4) supersymmetry.
Indeed, the supercharges [45] of the bulk supersymmetry
algebra

(QA, 05} = " PPy

preserved by a half-supersymmetric defect spanning the

(x',2?)-plane generate either a two-dimensional N =

(2,2) supersymmetry algebra, say, (Q1 Qg,@i,@l;), or
an N = (0,4) algebra, e.g., (Qﬁ,@i).

Surface defects preserving these symmetries can be con-
structed by coupling a two-dimensional N = (2,2) or
N = (0,4) QFT supported on the defect to the four-
dimensional theory. This is done by gauging global sym-
metries of the defect QFT with bulk gauge or global sym-
metries and by additional potential terms. [46] The mini-
mal coupling (I.1) and potential terms must be supersym-

(IL.1)

FIG. 6: Local 4d/2d quiver diagram describing a
class of V' = (2,2) preserving surface defects. The 4d
SU(n¢) x SU(ng) x U(1) symmetry can be global or

gauged.

metrized. A strategy to write down the action of these
surface defects which makes manifest the supersymmetry
of the defect theory is to rewrite the four-dimensional
N = 2 theory as a two-dimensional N' = (2,2) or
N = (0,4) theory. [47] Indeed, by decomposing the four-
dimensional multiplets in terms of the two-dimensional
N = (2,2) or N = (0,4) ones, the bulk Lagrangian can
be reproduced from the action constructed out of the
lower-dimensional multiplets. [48] The coordinates trans-
verse to the defect appear from the lower-dimensional
viewpoint as continuous labels of the multiplets. The
advantage of this approach is that it is now straight-
forward and manifestly two-dimensional N = (2,2) or
N = (0,4) supersymmetric to couple the bulk theory
to a two-dimensional N' = (2,2) or N' = (0,4) theory
by gauging the flavor symmetries of the defect theory
with bulk symmetries. The matter multiplets of the four-
dimensional ' = 2 theory (i.e., hypermultiplets) can also
be coupled via a localized N' = (2,2) or N' = (0,4)
superpotential to the matter multiplets on the defect,
thus identifying the defect flavor symmetries with either
bulk gauge or global symmetries. In this way, the sur-
face defect coupled to the bulk is represented as a two-
dimensional N' = (2,2) or N’ = (0,4) QFT. Schemati-
cally, the action describing the surface defect takes the
form

S = Sia + S2d + S2d/ad - (IL.2)
This leads to a large family of surface operators in four-
dimensional N = 2 theories.

The class of N = (2,2) preserving surface defects that
will be most relevant for us is encoded by the “local”
4d/2d quiver diagram of Figure 6. [49] These surface
defects were studied in detail in [26] and given a two-
dimensional CFT interpretation. Related A" = (2,2) sur-
face defects were analyzed in [50]. The n¢ fundamental
and antifundamental chiral multiplets on the inner end of
the two-dimensional quiver couple to the n? hypermulti-
plets via a localized cubic superpotential preserving two-
dimensional A = (2, 2) supersymmetry. The superpoten-



tial identifies the SU (n¢) x SU(n¢) x U(1) flavor symme-
try acting on the chiral multiplets with a subgroup of the
symmetry acting on the hypermultiplets. The hypermul-
tiplet scalars (@, @), which transform in conjugate repre-
sentations of SU (n¢) x SU (ng) x U(1), are bottom compo-
nents of 2d N = (2, 2) chiral multiplets which we denote
(Q%,Q%). [51] If we denote by ¢ and § the fundamental
and anti-fundamental two-dimensional chiral multiplets,
the relevant defect superpotential is

Ssang = / d*z 6(23)6(z*) / d%6 ¢GQ*¢ . (I1.3)
This manifestly two-dimensional N' = (2,2) supersym-
metric superpotential couples a gauge invariant meson
operator of the two-dimensional theory to the hypermul-
tiplets. Since masses in four-dimensional NV = 2 and
two-dimensional N/ = (2,2) theories are vevs for back-
ground vector multiplets for the flavor symmetries, the
superpotential fixes the masses of the hypermultiplets in
terms of the sum of the masses of the two-dimensional
fundamental and anti-fundamental chiral multiplets (see
section III). In addition to (IL.3), a quintic superpoten-
tial couples the (next-to) innermost bifundamental chiral
multiplets ¢"f and "' to ¢ and ¢ and to the chiral multi-
plet whose bottom component is a transverse derivative

of Q:

Sg(lil;rit;c _ /d4$5(1173)5( )/d29qu1f ~bif ~ ((83—284)Q2d)

(I1.4)
It identifies the remaining two-dimensional flavor symme-
try U(1) (under which adjoint and bifundamental chiral
multiplets have charges 2 and —1 respectively) to rota-
tions transverse to the defect.

In this paper we study intersecting surface defects
in four-dimensional A/ = 2 theories constructed from
N = (2,2) planar surface defects spanning the (z!,z?)-
plane and the (22, z%)-plane. The defects intersect at
the origin of R*. These intersecting surface defects can
preserve two supercharges [52] of the four-dimensional
N = 2 theory: (Q_lk, Q?). The field theory description
of these intersecting defects is invariant under the zero-
dimensional dimensional reduction of two-dimensional
N = (0,2) supersymmetry. When the intersecting defect
is superconformal it preserves the following subalgebra of
the four-dimensional A" = 2 superconformal algebra

su(1]1); @ su(1]1l)2 du(l)s C su(2,2(2) . (IL.5)

The field theory construction of these intersecting sur-
face defects allows for the insertion of a two-dimensional
N = (0,2) QFT dimensionally reduced to zero dimen-
sions at the intersection point. This defect N' = (0,2)
QFT can now be coupled to the two-dimensional N' =
(2,2) QFTs living in the (2!, 2%) and (2®, #*)-planes. The
global symmetries of the zero-dimensional intersection
QFT can be gauged with those of the two-dimensional
N = (2,2) QFTs or four-dimensional N' = 2 QFT. This

gauging can be explicitly carried out by first writing
down the two-dimensional N' = (2,2) QFTs living in
the (2!, 22) and (23, 2*)-planes as zero-dimensional N =
(0,2) theories in the spirit explained above. This requires
decomposing a two-dimensional N' = (2,2) vector multi-
plet into a zero-dimensional N' = (0, 2) vector multiplet
and chiral multiplet and a two-dimensional N' = (2,2)
chiral multiplet into a zero-dimensional N' = (0,2) chi-
ral multiplet and Fermi multiplet. In this way, the two-
dimensional N' = (2,2) QFTs can now be rewritten as
zero-dimensional N' = (0, 2) theories and gauging the fla-
vor symmetries of the zero-dimensional N' = (0, 2) theory
at the intersection with those of the A" = (2,2) theories
in the (2!, 2?) and (23, 2%)-planes becomes standard. In
general, it is possible to add zero-dimensional A" = (0, 2)
superpotentials coupling the various matter multiplets
in zero, two and four-dimensions while preserving all the
symmetries. Each N = (0,2) Fermi multiplet admits
so-called E-type and J-type superpotentials (see [53] for
more background material on N' = (0, 2) theories). This
construction furnishes the Lagrangian description of our
quarter-supersymmetric surface defects. Schematically it
looks like

S = Sua+ S5y + S5 + Soa + S35 )aa + Soiaa

S(d/Qd + SédR/Qd + SOd/2d/4d . (H.ﬁ)
The schematic action (IL.6) captures a large class of in-
tersecting surface operators. We now describe two cases
of importance for brane systems later in the paper. In
both cases the 0d theories involve ' = (0,2) Fermi or
chiral multiplets (no vector multiplets).

The first class of intersecting surface defects we will
focus on in this paper is neatly summarized by the lo-
cal 4d/2d/0d quiver diagram of Figure 2. The left and
right two-dimensional V' = (2,2) theories couple via cu-
bic and quintic superpotentials to the four-dimensional
hypermultiplets. If we denote by (q(z),q(r); q?if),q&f))

and (q(r), d(r): d(my: )

fundamental, and bifundamental chiral multiplets of the
left and right ' = (2,2) quivers with respect to their
corresponding gauge group, and by Q?g) and Q%Id%) the
two-dimensional chiral multiplets whose bottom compo-
nents are the hypermultiplet scalars @) and @, then the
superpotential couplings are

) the inner fundamental, anti-

55810 = [ @055 [ @0 (amin@i
+ ) aCr) Ay dcr) (95 — 100)QFR ))
(IL7)
S§§)4d = /d4x5(171)5($2)/d29(L) (Q(L)q(L)Qfg)

+aenya(tyanyd) (01 — i[b)@%f))) :
(IL8)



The cubic superpotentials identify the SU (ng) x SU (ng) x
U(1) flavor symmetries acting on the inner fundamen-
tal and anti-fundamental chiral multiplets of the left and
right N' = (2,2) quiver to each other and to a subgroup
of the symmetry acting on the hypermultiplets. The
quintic superpotentials identify the remaining U(1) fla-
vor symmetries acting on bifundamental and adjoint chi-
ral multiplets of each two-dimensional theory to rotations
transverse to that plane. In section III we shall explore
the consequences of this identification for the masses and
‘R-charges of the various fields.

The zero-dimensional N' = (0, 2) Fermi multiplet A has
an S[U(n.,) x U(n,)] flavor symmetry, which is gauged
with the innermost gauge group factors of the left and
right NV = (2,2) theories. [54] The couplings of A with
the two-dimensional fields can be obtained by embed-
ding a zero-dimensional S[U(n.,) x U(n,)] N = (0,2)
vector multiplet in the corresponding two-dimensional
N = (2,2) vector multiplets. As explained in section C,
gauging does not eliminate the U (1) flavor symmetry act-
ing only on A, and a background vector multiplet for this
symmetry could be added. This is prevented by a zero-
dimensional N = (0,2) E-type or J-type superpotential,
for instance E[A] = G(1)q(r) restricted to zero dimensions.
Since the S; partition function we compute is only sen-
sitive to superpotentials through the global symmetries
that they identify, our methods do not fix them.

The second class of intersecting surface defects we will
study in this paper is given by the local 4d/2d/0d quiver
diagram of Figure 4. In this case the superpotential cou-
plings are

R _
Séd/)4d = /d4$ 5(553)5@4)/(129(1%) (Q(R)Q(R)Q%%)

+amer)dr) (05 — i<94)62?%>))
(1L.9)
Sé§)4d = /d417 5($1)5(I2)/d29(L) (Q(L)Q(L)Q?f)
+ e (01 - iaz)Q?§>)) :
(11.10)

where ¢y and ¢(g) denote the adjoint chiral multiplets.
This again identifies the flavor symmetries of the left
and right two-dimensional quiver with the one of the
four-dimensional hypermultiplets and with transverse ro-
tations.

The zero-dimensional N' = (0,2) chiral multiplets x
and X each have an S[U(n,,) x U(n,)| flavor symmetry.
Both of these S[U(n!,) x U(n,)] global symmetries are
gauged with the innermost gauge group factors of the left
and right N' = (2,2) theories. As before, gauging does
not eliminate global U(1) symmetries acting only on x
and x and there should exist F or J-type superpotentials
identifying those symmetries to bulk symmetries. The
analysis is complicated by J-type superpotentials due to
two-dimensional superpotentials and E-type superpoten-
tials capturing derivatives in transverse dimensions: the

added zero-dimensional superpotentials must fulfill the
overall constraint Tr(E-J) = 0 for supersymmetry. Since
our computations are not sensitive to the precise super-
potential, we will not pursue it here.

III. LOCALIZATION ON S} OF
INTERSECTING DEFECTS

In this section we perform the exact computation of the
expectation value of quarter-supersymmetric intersecting
surface defects on the squashed four-sphere S;

2 2 2 2 2
Lo + s I T
r2 62 62

=1, (I1L.1)

where b2 = ¢/ 7 is a dimensionless squashing parameter. A
four-dimensional theory on the round four-sphere S* has
an OSp(2]4) supersymmetry algebra [22]. Upon squash-
ing the sphere to Si, the symmetry of the theory is re-
duced to SU(1|1). Any four-dimensional N’ = 2 theory
can be placed on S; while preserving this symmetry [23].
A two-dimensional N' = (2,2) theory on the round
S? preserves OSp(2[2)[43, 55-57]. When the sphere is
squashed to S7, the symmetry of the theory is SU(1|1)
[56]. A two-dimensional N' = (2,2) theory on the round
52 can be coupled to a four-dimensional N = 2 theory on
S* while preserving OSp(2[2) [58]. Upon squashing the
four-sphere to Sff, the combined 4d/2d system preserves
SU(1]1), provided the two-dimensional theory is placed
either on the Sf at x3 = x4 = 0 or at 1 = x5 = 0, which
we call S(QR) and S(2L) respectively. In fact, we can place
a two-dimensional ' = (2, 2) theory at 3 = 24 = 0 and
another one at x; = w2 = 0 while preserving SU(1]1).
This allows us to couple the four-dimensional ' = 2 the-
ory on Sj to a two-dimensional N = (2, 2) theory on S(2R)
and to a two-dimensional NV = (2,2) theory on S%,,. This
setup can be further enriched by adding localized degrees
of freedom at the intersection of the two-dimensional the-
ories, that is the North and South poles of Sgl at xg =7
and zg = —r with x1 = 29 = 23 = x4 = 0 respectively,
see Figure 7 for a cartoon. The localized degrees of free-
dom, pinned at the poles, are the dimensional reduction
of a two-dimensional N' = (0,2) theory down to zero
dimensions. Consistently coupling the N/ = (0,2) mul-
tiplets to the four-dimensional and two-dimensional de-
grees of freedom on S; requires turning on a background
field for a flavor symmetry of the zero-dimensional the-
ory that includes the U(1) x U(1) rotations of Sj. This
background field is necessary for the zero-dimensional
N = (0,2) theories at the poles of S to be invariant un-
der the SU(1|1) symmetry of the combined system (see
below). In this way, the quarter-supersymmetric inter-
secting defects we have introduced in the previous sec-
tions can be placed on S; while preserving SU(1[1).
Our primary goal is to compute the Sgl partition func-
tion of the intersecting defects in Figure 2. We accom-
plish this by supersymmetric localization with respect to
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FIG. 7: Intersecting surface defects supported on two
intersecting two-spheres S(ZL) and S(ZR). There are
localized degrees of freedom living on the two-spheres
S(zL) and S?R) and at their intersection points, i.e., the
north pole (NP) and south pole (SP); the latter couple
to the former degrees of freedom, which in turn couple
to the four-dimensional gauge theory living in the
bulk S;.

the supercharge Q in SU(1]1). It is precisely this super-
charge that was used to compute the Sl‘f partition func-
tion of a four-dimensional N' = 2 theory [23] and the
S? partition function of a two-dimensional N' = (2,2)
theory [56]. We localize the path integral by choosing
the “Coulomb branch localization” 9Q-exact deformation
terms of the four-dimensional and two-dimensional theo-
ries in [23, 56]. In the absence of four-dimensional gauge
fields, the saddle points of the four-dimensional and two-
dimensional fields are the same as if the theories were con-
sidered in isolation. Finally, the North and South pole
N = (0,2) Fermi multiplet action coupled to the sad-
dle points of the two-dimensional and four-dimensional
fields can be easily integrated out using the computation
of the index of one-dimensional A" = (0, 2) supersymmet-
ric quantum mechanics [59].

Putting all these facts together we arrive at the follow-
ing integral representation [60] of the partition function
of the intersecting defects in Figure 2,

7 = Zfree HM dU(R)
Z Z 271' rankG(L) (27T)rankG(R)

B(L) B(R)

> ZSfL)(U(L)vB( )) ZS(2R) (U(R),B(R))

% Z(i)r(lﬂtcrscction(O,(L)7 B(L)’ O'(R) , B(R)) . (1112)

Here Z5g° ™M is the S partition function [23] [61] of
b
the n? hypermultiplets with dimensionless masses M,

measured in units of 1/ Vi

ng

» 1
Ztrcc HM _ .
= U s

Jrs=1

(IT1.3)
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Furthermore, G):(®) denote the total gauge groups
of the left/right two-dimensional theories while
ng(a(L/R),B(L/R)) is the integrand of the S? par-
tition function of the two-dimensional A" = (2,2) theory
on the left/right of the quiver diagram. The integrand
is given by [43, 55, 56] [62]

zm—l—za—i—

1+w zm—i—w—

)
X%H[H)M* a2 + )H

a>0

(I11.4)
with z = e 271+ where &gy is the FI parameter and o
its corresponding topological angle. B and o take values
in the Cartan subalgebra of the gauge group and o and
w are the roots of the gauge group and weights of the
representation of the chiral multiplets respectively, while
W is the order of the gauge Weyl group. We will use
conventions adapted to quiver gauge theories, i.e., fun-
damental chiral multiplets transform anti-fundamentally
under their flavor symmetry and vice versa. The param-
eter m in (II1.4) is complex: the real part measures the
mass and the imaginary part the R-charge of the two-
dimensional chiral multiplet through [43, 55, 56|

i
m" = tm™ — ZRE )]

A B — pm® ﬁygéfdﬂ i)
? (IIL5)
5 L
mE) = fm) — §R§d)[Q(L)] 7
R = P 4 LR ),

where m are masses of fundamental chiral multiplets
while m denote masses of antifundamental chiral mul-
tiplets. The dimensionless “masses” (m(®), m?)) and
(m™), mL)) are measured in units of 1/¢ and 1/ respec-
tlvely for the right and left N” = (2,2) theories. This is
because the corresponding squashed two-spheres S7 on
which the two-dimensional theories live, which are em-
bedded in Sj, have equatorial radii £ and ¢ respectively.

Since the two-dimensional N' = (2,2) theories are cou-
pled to a four-dimensional AV = 2 theory in Sgl, the canon-
ical two-dimensional R-charges are induced by the four-
dimensional SU(1|1) supersymmetry algebra. This is a
consequence of the SU(1]1)-invariant coupling of the left
and right two-dimensional N/ = (2,2) theories on the
two S7’s with the four-dimensional A" = 2 theory on S;.
While SU(1|1) acts on four-dimensional N = 2 multi-
plets as [23]

1 1 1/1
Qla = ZM12 + ?M34 -3 (—

1 R
+ = J II1.
2 12 f) 30 ( 6)

U(1]1) acts on two-dimensional N' = (2,2) multiplets



on an S7 with equatorial radius ¢ as [56]

1

—Roq .
op v

Q= %Mm - (IIL.7)
Here M;; denotes the U(1) generator that acts on the
(w;,2) coordinates defining the squashed sphere, JJ is
the Cartan generator of the SU(2) R-symmetry of the
four-dimensional A/ = 2 theory in flat space [63] and Raq
is the vector R-symmetry of a two-dimensional N = (2, 2)
theory. Since the right N'= (2,2) theory is on the S? at
r3 = x4 = 0 and the left "= (2,2) theory is on the S?
at £1 = 22 = 0, common SU (1|1)-invariance implies that
the R-charge generators for the right and left N = (2,2)
theories are

R = (1+02) IR — 20* My

(I11.8)
R = (1+072) JR — 2072 M.

The formula (II1.8) determines the R-charges under R(R)
and R; 1 of the four-dimensional hypermultiplet scalars
(@Q, Q) restricted to each S7. Recall that chiral multiplets
of the right and left N' = (2,2) theories couple to the
corresponding N = (2,2) “bulk” chiral multiplets with
bottom components Q and Q.

The cubic defect superpotentials in (I.7) and (IL8)
coupling bulk hypermultiplets with innermost chiral mul-
tiplets identify their respective SU(n¢) x SU(ng) x U(1)
global symmetries. This implies that the masses of the
hypermultiplets and the innermost chiral multiplets obey
a relation, which follows from the common SU(ng) x
SU(ng) x U(1) symmetry acting on these fields. Another
constraint follows from the SU(1|1) symmetry of SZ. A
two-dimensional N = (2, 2) superpotential on S? is super-
symmetric if and only if the R-charge of the superpoten-
tial is two [56]. This gives two relations, one arising from

(IL.7) requiring that ’R( )[Q%d)q(R) d(r)] = 2 and the other

from (I1.8) requiring that ’R [Q2d )dy] = 2. The
hypermultiplet scalars Q,Q have jo)[ Q] = 1+ b? and
Réﬁ)[Q] = 1+b72 since J3[Q] = J3[Q] = 1 and they

are Lorentz scalars. In total, the SU (ng) x SU(ng) x U(1)
global symmetry constraints and R-symmetry superpo-
tential constraints neatly combine into the following re-
lation between the four-dimensional masses M, and the
two-dimensional complexified masses (IIL.5) m; and m
for the fundamental and anti-fundamental chiral multi-
plets

o (R) | ~(R)
. m; 7+ Mmsg
My 4 3 T Fms i (T11.9)
N l
and
(L) | ~@) .
. —mg” +m}
[_AjEJr;ﬁ“L Zé . - My :%. (I1.10)
1

The real part of these equations encode the SU(ng) x
SU(ng) x U(1) global symmetry constraints on the
masses and the imaginary part the R-charge constraints.
The first relation (IIL.9) fixes the four-dimensional
masses M, which appear in Zfr:e HM in (I11.2), in terms

of the two-dimensional masses m( ) and m(R). Adding

(II1.9) and (IIL.10) we find the follovvlng system of equa-
tions

m® 4w _m m )
J + —J1 -, (II1.11)
/ Y4
whose solution is
b_lﬁlgR) = bmgL) +c, b_lmg-R) = bffL;L) +c,
(II1.12)

for some constant ¢ which we set to zero by shifting the
vector multiplet scalars in the left theory by c¢/b. This
relation is consistent with the R-charges above. We can
use this relation to express in terms of (m; (R) i )) the
masses of the innermost (fundamental and antlfundamen-
tal) chirals of the right and left N' = (2,2) theories that
appear in Zgz (o), BU)Y and Zgz (o8, BE)Y in (IIL2).

The quintic superpotentials in (IL.7) and (IL1.8) yield
relations similar to (IIL9) and (IIL.10) which force the
(next-to) innermost bifundamental chiral multiplets to

have zero twisted mass and R-charges R;d [q](alf ] =-b?
and R;d [qéﬁ)] = —b"2. The cubic superpotentials

of each two-dimensional theory then proceed to set all
twisted masses to zero and R-charges to —b? and 2 + 2b>
for bifundamental and adjoint chiral multiplets of the the-
ory on the right and —b=2 and 2 + 2b=2 for the one on
the left.

Once the path integrals for the four-dimensional and
two-dimensional theories have been localized to zero-
mode integrals, we must still integrate out the fields of
the zero-dimensional " = (0, 2) theories at the poles of
Sy, captured by two matrix integrals, one for the theory
at the North pole and one for the theory at the South
pole. This requires first understanding how to couple the
zero-dimensional ' = (0, 2) theories to the other fields
on S} in an SU(1|1)-invariant way. A “flat space” zero-
dimensional N/ = (0,2) theory, obtained by trivial di-
mensional reduction from two-dimensions, has nilpotent
supercharges. The supersymmetry algebra can be de-
formed by turning on a supersymmetric zero-dimensional
N = (0,2) vector multiplet background for a flavor sym-
metry G of the theory. The deformed algebra acts on
the fields as

Qa = 2

QF , (I11.13)

where up is a constant background value for the di-
mensionless complex combination of scalars in the zero-

dimensional N = (0,2) vector multiplet invariant un-
der supersymmetry, [64] and Qp is the charge under



Gp. Therefore, in order to consistently couple a zero-
dimensional A/ = (0,2) theory at a pole with the rest
of the fields of the intersecting defect theory on Sj
in an SU(1|1)-invariant way, comparison with the four-
dimensional supersymmetry algebra (II1.6) requires that
we turn on a constant background

up = —1i (II1.14)
for the zero-dimensional flavor symmetry
1
Qr =b" "Mz +bMzs — 5 (b+57") JI. (1IL15)

Now that we know how to couple the zero-dimensional
N = (0,2) theories at the poles to S;p we can easily
compute their path integrals. The result is obtained
by keeping the zero-mode along the circle of the index
computation of ' = (0, 2) supersymmetric quantum me-
chanics in [59]. The formula for the path integral over
a zero-dimensional N = (0,2) Fermi multiplet coupled
to a background vector multiplet through a representa-
tion r and to a background vector multiplet for a flavor
symmetry Gr with charge Qp is

= H (w(iu) +iQrur) .

wer

zgermi (I11.16)

Here u are the (dimensionless) scalars in the dynamical
vector multiplet and up the background value for the Gg
global symmetry.

We can now determine the contribution of the zero-
dimensional N' = (0,2) Fermi multiplets at the North
and South poles of S; depicted in Figure 2 to the inter-
secting defect partition function (IIL.2). It is given by

Zintersection(U(L)a B(L)a U(R)u B(R) H H A:z’_b A_
a=1b=1
(IIL.17)

with Aaib =0b" ( oM+ (R)) b( (L):I: ) The fac-
tors with AT, originate from the A" = (0, 2) Fermi at the
North pole while the factors A_, come from the South
pole. [65] The S[U(n,) x U(nl,)] symmetry is gauged
with the innermost gauge group factor of the left and
right ' = (2,2) theories. This explains the appearance
of ¢/ and o") in (II1.17). We have also used the fact
that the ' = (0,2) Fermi multiplets are uncharged un-
der the flavor symmetry Gg: this can be enforced for
instance by the E-type superpotential E[A] = G(1)q(r)
for the Fermi multiplet A put forward above already (see
below (IL.8)). Indeed, the cubic defect superpotentials
in (IL7) and (IL8) constrain the R-charges of q(g), §(r),

qry) and ¢(r) hence their charge under Q?%/ \/8—177 and
the E-type superpotential fixes the charge of A. The

Q?/ \/é_g charges are given in Table I up to mixing with
two-dimensional U(1) gauge symmetries namely shifting
the integration contour of o(“/%) in the imaginary di-

Q,Q 4(Rr)> 4(R) qr), () A
Q? —(b+b7h) b—b? —(b—b"1)

NI 2 1 1

TABLE I: Charges of various fields under 0? / \/é_g

rection. The E-type superpotential also identifies the
U(1) flavor symmetry of A with a combination of two-
dimensional gauge symmetries.

Similarly, we can determine the integral representation
of the partition function of the intersecting defects in
Figure 4,

(R)

do
free HM
Z = Z Z Z / 271' rankG(L) (27T)rankG(R)

B(L) B(R)
> ZS(ZL)(U( ), B )) ZS2 (U(R),B( ))
o) BH)Y

« Z(i)r(]itersection( (L) B( (11118)
where again G(X)-(F) denote the total gauge groups of
the two 2d theories. The symbol [ Jk Stands for taking
a Jeffrey—Kirwan-like residue prescription (see definition
below). Similarly as above, the superpotential couplings
(IL.9)—(I1.10) impose relations among the complexified
mass parameters. In this case they read

(R) | ~(R) .
M —m; 7’ +mg
[\/_+2£+ 2 +%:—, (I11.19)
o0
and
(L) |~ .
; -
oo CCE _ =L (120
Ve 20 2 ‘ ‘

As before, the real part of these equations encode the
flavor symmetry constraints on the masses and the
imaginary part the R-charge constraints. The four-
dimensional masses M;, can be determined in terms of

(®) and ﬁzgR) in precisely the

Moreover, subtracting (II11.9) and

the dimensional masses m;

same way as above.
(II1.10) one obtains

il L D) )

)
7 - 7 =7 Z, (II1.21)
with solution
b (mt +i/2) = b(m'H +i/2
( + Z/ ) ( ] + Z/ ) + C (111'22)
b*l(m —i/2) =b(ml" —i/2) + ¢,

for some constant ¢, which can be absorbed by shifting
the vector multiplet scalars, allowing one to express the
masses of the left quiver in terms of those of the right



quiver. The quartic superpotential sets the real twisted
masses of the adjoint chiral multiplets to zero and their
R-charges to be —2b% and —2b~2 respectively.

Using that the formula for the path integral over a
zero-dimensional NV = (0, 2) chiral multiplet coupled to a
background vector multiplet through a representation r
and to a background vector multiplet for Gr with charge

Qr is

: 1
Zchlral _ )
od H w(iu) + iQrup

wer

(IT1.23)

we can easily determine the contribution of the zero-
dimensional ' = (0,2) chiral multiplets at the North
and South poles of S} depicted in Figure 4 to the inter-
secting defect partition function (IT1.18). It is given by

Zintersection (U

’

(L), B 57 p(R))

b+b! b+b1t
(A:b + 2 ) (A:b - 2 )
1b=1
_ b+bt _ b+b!
X <Aab + 2 ) (Aab - 2 )
(L)

(R)
with A% = b7 (108 & 252 ) — b(iof") + B ) as be-
fore. The factors with A% originate from the N = (0,2)
chirals at the North and South pole respectively. The

terms in (II1.17) proportional to % indicate that the
b+b~"

n

a

. (IIL.24)

N = (0,2) chiral multiplets carry charge under
the global symmetry G'r. This should be explained by a
zero-dimensional superpotential but we have not worked
it out.

Let us conclude this section with a brief discussion
of the Jeffrey-Kirwan-like residue prescription [66] used
in (IIL.18). We note that in the absence of the zero-
dimensional chiral multiplets, our prescription coincides
with the standard one in [43, 55, 56] to close the contour
according to the sign of the FI parameter. Let N = n+n’
denote the total rank of the gauge groups in the quiver
depicted in Figure 2, and let & be the notation for the
combined N integration variables (o(/*), o(F)). The pole
equations of the integrand (II1.4) corresponding to the
right and left quiver are of the form

w (g 4 . wB (icP) 4 ... =0,

(II1.25)
where wf/L) is any weight of the representations of the
chiral multiplets in the respective quiver. Denoting by to
the collection of combined weights, which take the form
(w™ 0) or (0,w)), it can be written as w0 (i&)+... = 0.
The pole equations of all four factors in the intersection
factor (ITIL.17) can be written similarly as [67]

207

Uep(i6) + ... = b liocl®) —biot + .. =0 (I11.26)
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8 9 10 11
M — — — — — —
My - - = = —

M2 — — —

TABLE II: Intersection of M2 and M5 branes defining
a half-supersymmetric surface operator.
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FIG. 8: Quiver description of the 2d N = (2, 2) surface
defects corresponding to the rank n. antisymmetric and
symmetric representations, respectively.

foralla = 1,...,n and b = 1,...,n. We collectively

denote the charges v and u,, thus defined by 20. A
collection of N linearly independent pole equations, [68]
associated to charge vectors 20! for I =1,..., N, define
a pole solution &*, whose residue we define to be

Res F(&) if ne C('="N)
JK—ReSn F(G) = S—-6*

0 otherwise
(II1.27)
where = (£, ¢(1)) is the combined FI parameter un-
derstood as an N-dimensional vector, and C(237=1-)
is the positive cone spanned by the vectors 207. Finally,
Res denotes the usual residue at the pole & = &*, with

GG
a sign determined by the contour.

In this section we have obtained the formula that com-
putes the exact partition function of the intersecting de-
fects in Figure 2 and Figure 4.

IV. M2-BRANE SURFACE DEFECTS

Despite our very incomplete understanding of M-
theory, it is known that M2-branes can end on a collection
of ny Mb-branes along a surface. When the M5-branes
wrap a punctured Riemann surface, the UV-curve, the
M2-branes define a half-supersymmetric surface defect
in a four-dimensional N/ = 2 theory. Under favorable
circumstances, this surface defect admits a Lagrangian
description in the manner described in the previous sec-
tion.

The brane configuration that realizes this half-
supersymmetric surface defect is given in Table II. The
M2-brane endings on ng M5-branes are labeled by a rep-
resentation R of SU(n¢). The M5’-branes are codimen-
sion two defects for the M5-branes that encode the flavor
symmetries of the four-dimensional N' = 2 theory and
that are realized by the punctures on the Riemann sur-
face [24]. [69]

As argued in [26], when R is the rank n. antisymmet-
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FIG. 9: The 2d N = (2,2) quiver gauge theory
corresponding to the Young diagram of a given
representation R.

My

M2/ — —

TABLE III: Intersection of M2 and M5 branes
defining quarter-supersymmetric intersecting surface
defects on the M5-branes.

ric representation, the two-dimensional N' = (2,2) the-
ory description of the surface defect is given by the first
quiver diagram in Figure 8. If R is the rank n. sym-
metric representation, the corresponding 2d N = (2,2)
theory is the second quiver diagram in Figure 8. For a
representation R described by a generic Young diagram
the two-dimensional N' = (2,2) theory has the quiver
diagram representation given in Figure 9 [70]. The com-
plexified FI parameters for all gauge group factors ex-
cept the one that couples to the ny fundamentals and
anti-fundamentals must be set to zero.

These two-dimensional N = (2,2) theories can be
coupled to a four-dimensional A/ = 2 theory by gaug-
ing the SU(ng) x SU(ng) x U(1) flavor symmetries act-
ing on the n; fundamental and anti-fundamental chiral
multiplets with gauge and/or global symmetries of the
four-dimensional theory. The simplest four-dimensional
N = 2 theory in which to consider these surface oper-
ators is the theory of n? hypermultiplets. This corre-
sponds to compactifying ng M5-branes on a trinion with
two full and one simple puncture, which makes manifest
an SU(ng) x SU(ng) x U(1) flavor symmetry acting on
the hypermultiplets, which gets identified via the cubic
superpotential (IL.3) with the corresponding defect flavor
symmetry. For other four-dimensional theories, such as
for conformal SQCD with SU(n¢) gauge group and 2ng
hypermultiplets or the N' = 2* theory, one or both of the
defect SU (ng) symmetry factors is gauged with a dynam-
ical bulk gauge field.

A richer class of surface defects on M5-branes can be
constructed by letting two sets of M2-branes end on the
Mb5-branes as in Table ITI. This configuration preserves
one-quarter of the supersymmetry and defines intersect-

NS5 | — — — — — —
NS5 | — — — - — -
NS5” e —
D4| — — — — —

D2 | — — —
D2’ — - —

TABLE IV: IIA brane realization of intersecting
surface defects arising from M-theory brane
intersections. See Figure 10 for details on which branes
intersect.

LOWEDY LOWEEY I () ny Ny—1|Nv—-2

D2’ | D2 D2’ D2 D2 D2

NS5” NS5” NS5” NS5 NS5 NS5

1 DA / 7
NS5

FIG. 10: IIA brane realization of intersecting surface
defects arising from M-theory brane intersections. See
Table IV for brane directions.
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ing surface defects on the Mb5-branes. When the M5-
branes wrap a punctured Riemann surface, the brane
configuration engineers an intersecting surface defect in
the corresponding four-dimensional N" = 2 theory of pre-
cisely the kind described in the previous section. The
configuration of intersecting M2-branes is now labeled
by a pair (R’, R) of representations of SU (n).

We propose that the field theory description of these
intersecting surface defects is precisely the one detailed
in the previous section, and encoded in the quiver dia-
gram in Figure 2. For a class of four-dimensional N = 2
theories, the intersecting defects admit a type ITA brane
realization given in Table IV. In these cases, we can de-
duce the low-energy effective field theory description of
the intersecting defect.

As an example, when the four-dimensional ' = 2 the-
ory is that of n? hypermultiplets, the intersecting defect
realized by the M-theory brane array in Table IV has
the type ITA description given in Figure 10. The NS5'-
branes and NS5”-branes on which the D2 and D2’-branes
end respectively are away from the main stack and give
rise to the two-dimensional gauge theories in the quiver
in Figure 2. The two-dimensional N' = (2,2) theories
at 3 = 2* = 0 and labeled by a representation R and
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FIG. 11: IIA brane diagram for the case of symmetric
representations, namely the quiver in Figure 4.

at 2! = 22 = 0 and labeled by a representation R’ live
on the D2-branes and D2’-branes respectively. The zero-
dimensional bifundamental ' = (0,2) Fermi multiplet
arise from quantizing the open strings stretching between
the D2 and the D2'-branes. The gaugings and superpo-
tential couplings encoded in the quiver in Figure 2 can
be inferred from the brane construction. [71] The inter-
section degrees of freedom are thus coupled to the two
N = (2,2) theories.

The FI parameter pr corresponding to the ¢-th gauge
group factor of the right two-dimensional N' = (2,2)
gauge theories is encoded in the separation between the /-
th and (¢4 1)-th NS5’-brane along the 27 coordinate. We
take the NS5’-branes to coincide in their location along
27. Thus, all the FI parameters for gauge group factors
with ¢ > 2 vanish. [72] Similarly, the separation in the 7
direction of the NS5”-branes encode the FI parameters
of the left quiver, all of which vanish for ¢ > 2 when we
take the branes to have the same 17 coordinate. [73] The
complexified FI parameter (I1.3) for the innermost gauge
group factor for the left and right quiver are non-zero
and encode the position of the respective defect on the
UV-curve. The case that has the simplest Toda CFT
interpretation is when they are opposite, i.e., when [74]

¢ = ¢ (IV.1)
We thus end up with precisely the QFT encoded in the
4d/2d/0d quiver diagram in Figure 2. The brane con-
struction can be easily generalized to other N' = 2 theo-
ries. [75]

The brane picture describing the 4d/2d/0d quiver di-
agram in Figure 4 is given in Figure 11. The right and
left two-dimensional theories live on the D2 and D2’ re-
spectively. The open strings stretching between the D2
and D2’-branes provide the 0d A/ = (0,2) chiral multi-
plets. There is a unique FI parameter measuring the dis-
tance between the NS5-branes in the z” direction. The
brane system readily generalizes to D2 and D2’-branes
stretching between any number of parallel NS5-branes,
as depicted in Figure 12.
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FIG. 12: IIA brane diagram and joint 4d/2d/0d

quiver diagram description for multiple M2-brane

intersections labeled by symmetric representations
ending on n¢ M5-branes wrapping a trinion with two

full and one simple puncture. Each (sym”/ 0O, sym™ 0)
M2-brane intersection is encoded as an NS5-brane
(parallel to that on which D4-branes end) on which

n' D2' and n D2-branes end. Gauge group ranks in the
quiver description are given by the numbers of D2’ and
D2-branes stretching in each interval. These ranks
decrease: n, > -+ >mn; and n, > --- > n} (otherwise
supersymmetry is broken) and their differences give the
orders (n’,n) of symmetric representations labeling

M2-brane intersections. The FI parameters of gauge

group factors are pairwise equal and equal to distances
between consecutive NS5-branes. In each 2d theory,
cubic superpotentials couple adjoint and bifundamental
chiral multiplets. Cubic and quartic superpotentials
couple the 4d and 2d fields. The intersection features
pairs of chiral multiplets corresponding to strings
stretching between D2 and D2’ in the same interval and
Fermi multiplets corresponding to strings stretching
between D2 and D2’ in neighboring intervals. Apart
from the D4-branes the brane setup preserves 0d

N = (0,4) supersymmetry hence the 0d and 2d fields

that are neutral under the SU(ng) x SU(n¢) x U(1)
flavor symmetry are coupled through quadratic E-term
and J-term superpotentials (see [76]).

V. LIOUVILLE/TODA DEGENERATE
CORRELATORS

It is now time to test in detail our conjectures on the
quiver description of intersecting M2-brane surface op-
erators. We give here the precise dictionary between
the partition functions computed in section IIl and Li-
ouville/Toda CFT degenerate correlators. We begin in

section V A with the simplest non-trivial case: a Liouville



correlator (ng = 2) with two generic, one semi-degenerate,
and a degenerate operator labeled by (3,0). We move on
to Toda CFT in section VB devoted to the quiver in
Figure 2, and in section V C to Figure 4. In each case we
describe the evidence worked out in the appendices.

A. Liouville Fundamental Degenerate

We focus here on the setting of A; theories (ng = 2) for

the case of a degenerate operator with Liouville momen-
tum [77] @ = —bQq— b~ '0n = -5 — L = —Q/2. The
two conjectured quiver descriptions of the intersecting
M2-brane surface operators are depicted in Figure 13, as
well as the UV-curve. We prove in Appendix A that the
two descriptions have equal Sgl expectation values and
check up to fifth order in vortex expansions that they

match a degenerate Liouville correlator. Namely,

(Vg (2, )V, (0) Vi (1) Vg (00))
1 1
- mzsg [Trermi] = mzsg [Tenirars) (V1)

where the prefactors Ay (z,z) and As(x, %) given in Ap-
pendix A can be associated to ambiguities in the defini-
tion of the gauge theory partition function, as explained
in [26]. The position z gives the FI and theta parame-
ters through e~27¢+% = 1 /7 for the left U(1) of the first
quiver and x for all other gauge groups.

We will denote the complexified twisted masses of
(anti)fundamental chiral multiplets of the right and left
theories by (m§R),m§R)) and (mgL),ﬁl§L)) for the first
quiver and (mj,ms) and (m},m{) for the second. For
each quiver the 4d/2d superpotentials relate twisted
masses of the two 2d theories as (I11.12) and (I11.22), and
twisted masses of the two quivers are related by Seiberg-
like duality as we will later see:

1, (R (L 1.
b 1zm§- )zbzm§- ) =b Yimj —1/2)
= b(im}; —1/2) for j =1,2,

b~ rim) = bim P = b (im, +1/2)
=b(im,,+1/2)  fors=1,2.

(V.2)
(V.3)

Liouville CFT momenta can then be written in terms of
twisted masses of any of the four 2d theories [78],

L . (r
al——:%(zmg)

R L .~ (L
: () (D) _ i)

. b, .
—imgy ) = §(zm1
1. ) b, . )
%(zml —img) = §(zm/1 —imy),
(V.4a)
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1, ~ . .
ag — % = %(ing) + zméR) - zng) - zng))
b ~ ~
= §(im§L) + iméL) - imgL) — iméL))
(V.4b)
= g + %(lﬁll +img — tmy — img)
b, ~
=b+ i(zm’l +imy — im} —imb),
Q_1 _—wm .~mw,_b. . w . @
az— 5 = %(zmé ) —zmg )) = §(zmé ) —zmg ))
1

. . b, .
= %(ng —imy) = §(zm’2 —im),
(V.4c)

Let us describe salient aspects of the relation, leaving
details for Appendix A. The operator product expansion
(OPE) of a generic operator V,, with the degenerate op-

erator V_ o is given by
2

VgV (0) ~ 3o (ar) o) ) a0/
SIZ:E,SQZZE

X C (Vo ()

«
a1, =5 “1e2

), (V.5)

where a5, = a1 + $1b/2 + s2/(2b), the structure con-
C'z)i_bé%cl/ (%) are known and the - -
rasoro descendant fields multiplied by powers of = or .
In the limit  — 0 the Liouville correlator (V.1) thus ad-
mits an s-channel decomposition as a sum of four terms
with leading powers of =& equal to

stants - denotes Vi-

A(Ozl + Slb/2 + 82/(2b)) - A(Ozl) - A(—Q/2)

= Q2/2 — (011 — Q/2)(Slb + Sgbil) + (1 — 5152)/2 .

(V.6)

Correspondingly, each of the two gauge theory partition

functions can be written as a sum of contributions from
four Higgs branches in this limit.

In the first quiver, x — 0 is the limit of large positive

FI parameter for the right U(1) and negative FI param-

eter for the left U(1) and Higgs branches are located at

o) = m§R) and o(F) = T?L;CL) for j, k = 1,2. The leading

power of (zZ) of the (j, k) Higgs branch contribution is

ic®) —jg(L) = img-R) — iﬁl,(f) with a sign due to the FI
parameter of the left theory being opposite to that of the
right theory. In fact, for j = k the 0d Fermi multiplet
contribution makes zero-vortex terms in the series van-
ish, so that the leading power of (2Z) is im{™ —iﬁ”L;L) +1
instead. The partition function thus takes the form

2 2
im () _im (1) ; . . . . _
Z = Z Z(xi)"”i —imT 05k (serfes in ) (series in ).

(V.7)
The identification (V.4) of momenta with twisted masses
ensures that the four gauge theory exponents match the
Liouville ones up to the prefactor A;(x,Z). In particular
the shift by d; due to the 0d Fermi multiplet reflects the
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FIG. 13: The left quiver (denoted Trermi in the text due to its 0d matter content) shows the worldvolume theory of
two intersecting surface defects, both labeled by the fundamental representation of A1, coupled to the four-dimensional
theory of four free hypermultiplets and to a Fermi multiplet on their intersection. The coupling introduces cubic
superpotentials. In the middle, the corresponding UV-curve is depicted: it features three punctures e and an additional
marked point corresponding to the defect and labeled by its defining representations. In the AGT correspondence, the
latter corresponds to the insertion of a degenerate vertex operator with the indicated momentum in Liouville theory. The
right quiver (7cnirais) depicts a dual realization of the same intersecting defect, in which the intersection features a pair of
bifundamental chiral multiplets. Note that the free U(1) adjoint chiral multiplets have been omitted in the latter quiver.

term (1 — s182)/2 in (V.6).

In the second quiver, x — 0 is the limit of large pos-
itive FI parameters and the Higgs branches are located
at 0 = m; and o’ = m},. The 0d chiral multiplet contri-
bution (II1.24) has poles that induce additional terms, in
effect decreasing the leading power of (zZ) by 1 for terms
with j = k. The partition function takes the form

7 =
J

2 2

Z(z:ﬁ)imﬁim;ﬁéﬁk (series in z)(series in ).
=1k=1

(V.8)
Again, gauge theory and Liouville exponents match. The
shift of the exponent by d;, has opposite signs in the
first and second quivers, which may seem inconsistent.
However, Liouville CFT internal momenta o; + b/2 +
1/(2b) are identified with different terms (j, k) for the
two quivers: k = 1 and k£ = 2 are interchanged. The
two quivers are in fact related by a Seiberg-like duality
of the left 2d theory and we leverage this observation in
the appendix to prove that their partition functions are
equal.

The Liouville correlator of interest to us has been
worked out in [79] by solving the fourth order differen-
tial equation associated with the degenerate puncture.
The leading coefficients in (V.8) reproduce expected Li-
ouville three-point functions and we checked up to fifth
order that vortex partition functions of the intersecting
surface defects coincide with conformal blocks. We per-
formed the same checks in the limit * — oo were the
relevant OPE is that of V_g/» with V.

Pleasingly, the dictionary has all the expected symme-
tries.

e Exchanging the flavors (ng),ﬁsz),ml, my)
(méR), ﬁzéL), ma, mb) corresponds to mapping vy —

@ — a1, which leaves the normalized vertex operator
Vo, invariant. Similarly (fﬁgR), mgL), my,my) <

(77 (R (L)

IO
My .My, Mo, Mh) is ag — Q — ag.

e The conformal map =z — 1/z which exchanges
a1 > as corresponds to charge conjugation for
all gauge group, which exchanges fundamental and
antifundamental chiral multiplets, changing their
signs as well as those of FI and theta parameters.
The conformal factor (zz)?2(~@/2) coincides with
a change in Ay (z,Z) and As(z, T).

e For each quiver, the b — 1/b symmetry of the Liou-
ville correlator exchanges the two two-dimensional
theories (up to charge conjugation for the case of
the first quiver).

For b = 1 the V,Q /2 degenerate operator coincides with

V_p, already studied in [26] and the partition functions re-
duce to that of a single two-dimensional theory coupled
to the four-dimensional free hypermultiplets. More pre-
cisely, up to a shift of theta angles by 7, the 0d Fermi
multiplet contribution in the first quiver can be written
for b = 1 as the one-loop determinant of a pair of bifun-
damental 2d chiral multiplets of R-charge 2:

(—1)B "+ Hi(ia(R) + BR) /3 gD B 9)
+
T +ioc® + BB 2 —jol) — B1)/2)
I'(—ic® + BWR) /2 +igL) — B(L)/2)
(1 —ioc® — B /2 4 o) 4 B(F) /2)
L(ictf) — B /2 — ig(L) + B(L) /2)

X

(V.9)
As depicted in Figure 14, the partition function is thus
equal to that of a single 2d U (1) x U (1) gauge theory (cou-
pled to free hypermultiplets), which is itself equivalent
under a Seiberg-like duality to the quiver corresponding
to V_p in [26]. Importantly the bifundamental 2d chiral
multiplets in the last quiver have R-charge —1 = —b%. A
U(2) gauge theory description of V_ in [26] matches the
second quiver for b = 1 (ignoring free chiral multiplets),
as depicted in Figure 14. There, the adjoint chiral multi-
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FIG. 14: First row: the partition function of the first
intersecting surface defect coincides for b = 1 with that
of a single surface defect, Seiberg-dual to the one
expected from [26]. Second row: likewise, the partition
function of the second intersecting surface defect
reduces for b = 1 to that of a single surface defect.

plet has R-charge —2 = —2b2. Indeed, its one-loop deter-
minant combines with the U(2) vector multiplet one-loop
determinant to give the 0d chiral multiplet contribution
of the intersecting defects.

As we will see in the next section in a more general set-
ting, the identification of the first quiver with a Liouville
correlator still holds if the FI and theta parameters of the
two gauge groups are taken to be arbitrary rather than
opposite. The partition function then matches a five-
point function with two degenerate operators V_j /o(x, Z)
and V_l/(gb) (2’,7") and the three generic Va The FT and
theta parameters are given by exp(—2r&() 4+ i) = ¢
and exp(—27&@E) + i9(F)) = 1/2’ and other parameters
are unchanged. The quiver with 0d chiral multiplets does
not have the same property: making FI parameters dis-
tinct does not reproduce the Liouville five-point function.
This is not surprising, both in view of the b = 1 case
where the surface defect reduces to one with a single
gauge group, and in view of the ITA realization where
D2 and D2’-branes stretch between the same pair of NS5-
branes.

We now move on to arbitrary intersecting defects for
any number of flavors ny.

B. Quiver with 0d Fermi Multiplet

This section presents the quiver description of intersect-
ing defects corresponding to an arbitrary set of Toda CFT
degenerate operators. We focus on degenerate operators
labeled by antisymmetric representations, because all de-
generate operators can be obtained as the dominant term
in the OPE of such degenerate operators (see page 16).
Besides comparing leading terms in several channels as
in the last section, we prove in Appendix B that some
braiding matrices coincide.
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The main statement is

2 [Tremmi] = (2,033, :e'><v% (00) Vi, (1) Vi (0)

<DV, o) [TV, (alial) ) (V20

The left-hand side is the expectation value of the mter—
secting surface defect of Figure 2 in the theory of n? free
4d hypermultlplets alU (nl) - x U(n,) gauge theory
on SZ, aU(ny)x---xU(n, )gauge theory on Sl »» and on
their intersection a single 0d N = (0,2) Fermi multlplet
in the bifundamental representation of U(n,) x U(n!,)
with R-charge zero. Couplings are explained in previous
sections.

The right-hand side [80] is a Toda CFT correlator
of two generic vertex operators at co and 0, one semi-
degenerate at 1, and v + v/ degenerates at z, and x!.
Vertex operators V, are labeled by their momentum a, a
linear combination of the weights hi, ..., hy, of the fun-
damental representation of SU (ng) (the h sum to 0). We
normalize the generic vertex operators V and Vao such
that they are invariant under o — 2Q — « , and under the
Weyl group, which permutes components of o« — @, where
Q = (b+b~1)p with p the half-sum of positive roots. [81]
The degenerate operators have momenta —bwg propor-
tional to the highest weight wx = hy + -+ + hx of the
K-th antisymmetric representation, and —b~'w,,,_r the
conjugate of the K’-th antisymmetric representation.

In short, the dictionary is that mass parameters of the
SU (ng) x SU(ng) x U(1) flavor symmetry are encoded in
Qp, Qs and X respectively, complexified FI parameters
give positions of degenerate punctures, and gauge group
ranks determine the antisymmetric representations.

We find K\, = n, —ng—1 and K, = nl, —n,_; (and
K; =n; and Ky = n)),

’

v v
1
_ 5 r_
Xy = HZL and x“_Hé_[' (V.11)

1=K 1=K
Here, 2, = (=1)mtmw—i—mtl, o and 3, =
(=) t-1y for 1 < ¢ < v — 1 in terms of
2, = e 2 F s and similarly for 2’ and 2’

In quiver conventions, we recall that twisted masses
m and R-charges of (anti)fundamental chiral multi-

plets combine as ing) = im R)/K + R [ §R)]/2 and
mif = zm(R)/Z de [Q{SR)]/Q for the rlght theory and
zmgL) im{" /0 + RE[7)/2 and zm(L) j L —
Rgﬁ) [Z]ﬁL ]/2 for the left one. As explained in section III,
two-dimensional masses are related by (IIL.12),
b im\® = bl and bl =m,  (V.12)

and four-dimensional hypermultiplets have masses M;; =
b_QbJI + b*1m§R) — v 'm . In the theory on the




right, bifundamental chiral multiplets have iml(f;») =1%/2

namely R-charge —b? and adjoint chiral multiplets have

(B _ _4
adj
zml()ﬁ) =b72/2 and im;flj) =—-1-b"2

The S[U(ng) x U(ng)] mass parameters correspond to
Toda CFT momenta as [82]

im — b? namely R-charge 2 + 2b%. Similarly,

ng ng
ag = Q=Y b7 im{h; =3 bim{h;

=1 =1
(V.13)
oo — O = — i b lim P h, = — ibimémhs
o=t T v
+ i b~ tim (P — i b tim'H)
s=1 Jj=1

We can immediately perform simple consistency
checks.

e Permutations of flavors 1 < j < ng permute compo-
nents of ayg— @ namely perform a Weyl reflection of
this momentum; this leaves the normalized vertex
operator V,, invariant. Similarly, permutations of
flavors 1 < s < ng leave Vaoo invariant.

e The conformal map z — 1/x exchanging 0 <
oo corresponds on the gauge theory side to con-
jugating charges of every gauge group. The
change in A; precisely cancels the conformal fac-

D N e U

o If we set ny = 0 then Ay, given explicitly in (C.1)
is independent of x1; similarly, o) factors disappear
when setting nf = 0. The matching also reproduces
results of [26] for v/ = 0 (or v = 0) namely for
a single 2d theory. In that case, conjugating all
Toda CFT momenta (w§ = wy,— ) is known to
correspond to a sequence of 2d A = (2,2) Seiberg
dualities. Unfortunately, for intersecting defects it
is not known how 0d matter behaves under Seiberg
dualities.

e Combining x — 1/, b — b~ !, Toda CFT conjuga-
tion and Weyl reflections give rise to a symmetry
of the gauge theory setup: the two 2d theories are
interchanged. To see this it is useful to note that
the conjugate of Aw; is (ng(b+b~1) — N)wy up to a
Weyl reflection.

For b = 1 there is no distinction between degenerate
operators with momenta —bwy and —b~ 'wg. As
in the Liouville case from the previous section, the
equality (V.10) reduces to (a Seiberg dual of) the
matching for a single 2d theory with v + v/ gauge
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groups corresponding to v + v/ antisymmetric de-
generate operators.

While we have found the dictionary and the prefactors
by comparing expansions of the sphere partition function
and the Toda correlator in several limits z, — 0,1,00
and 2. — 0,1,00, we only write details explicitly for
v=1"=1 (see Appendix B).

A major piece of evidence in this case is that braiding
matrices relating conformal blocks in different Toda CFT
channels (different operator product expansions) match
the analogous matrices in gauge theory. This is proven
schematically as follows. The Od Fermi contribution is
recast as a differential operator acting on the product of
(a generalization of) partition functions of the left and
right 2d theories. Braiding (analytically continuing) z
around 1 commutes with this differential operator, thus
the braiding matrix coincide with that of the right 2d
theory in isolation, itself known to coincide with the Toda
CFT braiding matrix. More precisely, the presence of
an additional degenerate vertex operator shifts momenta
slightly, and this translates in gauge theory to a different
normalization.

To conclude this section, we determine the dominant
term in the OPE of degenerate vertex operators. [83] The
OPE of two degenerate vertex operators V_b—lgé_bgi la-
beled by (R}, R1) and (R, R2) is known to be

Viry =) (1, T1)V(Ry Ry ) (72, 2)
_ Z o1 — x2|2[A(—Q//b—b§z)—A(—Q’l/b—le)—A(—Q;/b—bQZ)]
R/, R
x Oégalg)m(n;,m) (Virm) +-++)

(V.16)
where ' and ) are highest weights of R’ and R and the
sum ranges over irreducible representations R’ in R} @R
and R in R1 ® Ro. The dominant term in this OPE is
that with the most negative A(—b~1) —bQ), and we will
see that it is given by the highest weights Q = Q1 + Q5
and ' = Q) +Q of the tensor products. Highest weights
Q) that we sum over are in particular weights of Rq ® Ro
hence take the form

nffl

Q=01 +Q — Z Ei(hi — hiy1)
1=1

for integers k; > 0

(V.17)
where h; — h;y1 are the simple roots. They must also be
dominant:

(hi —hiy1,92) >0

for all 1 <i < ny. (V.18)

The highest weight €’ is parametrized similarly by inte-
gers ki > 0. We prove that A(—b~1Q" — b(2) is minimal
for k; = 0 and & = 0 by allowing real k;, &k, > 0 and



showing derivatives are positive in the region (V.18):
O, A(=b71Q — Q)
= (Ok, (071 = bQ),Q + b + Q)
=(hi —hiz1,Q+ b ' +bQ)y > b+ b7,

(V.19)
(V.20)

We conclude by noting that the space carved out
by (V.18) is convex.

From the pairwise OPE of degenerate vertex operators
we deduce that the dominant term in the OPE of any
number of degenerate vertex operators has a momentum
equal to the sum of all momenta. Given that any weight
is a sum of fundamental weights wy, any vertex operator
is the dominant term in the OPE of some set of anti-
symmetric degenerate vertex operators. Explicitly in the
case where we fuse all v 4+ v/ degenerate operators,

HV bwk, :Ew HV b— lw K/ xlvji)
= a({a:L,xL})a({:EL, fb})v—bflszubﬂ(x) +oe

as x,, 2, — x (we suppressed subleading terms), where
the prefactor a consists of powers of position differences
(the three-point functions turn out to be 1),

v v’
Q= E WK, and = E wnf,KZ.
=1 =1

The Young diagram associated to € has v columns with
K, ..., K, boxes in some order. The Young diagram as-
sociated to € has columns with ns— K boxes, or equiva-
lently the conjugate representation has a Young diagram
with K/-box columns.

(V.21)

(V.22)

Translating to gauge theory, the fusion limit corre-
sponds to 2z, = x, 2/, = 1/x and all other 2, = 2/, = 1.
Selecting the leading term in the OPE corresponds to
ignoring vacua that go to infinity along the Coulomb
branch when setting FI parameters to 0.

In the case depicted in the introduction, namely K; <

- < K, and K{ < --- < K/,, many factors in the
prefactors A; and a cancel. The limit x,, — = and 2/, —
2’ is then smooth, and in the limit 2’ — x the partition
function behaves as

Vl v - —
o — /[P Sy maxO K Kmme) 4 (0 )

< (00) Vs (WVay (V100 (@) ) (V-28)

Z(z,2') ~
(7,

While the simplicity of the factor is convenient for calcu-
lations, and in particular allows to write an explicit for-
mula for the Toda CFT four-point function, one should
remember that the prefactors depend on the renormaliza-
tion scheme.
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C. Quiver with 0d Chiral Multiplets

We give in this section a dual quiver description of
the intersecting defect labeled by a pair of symmetric
representations. The main statement is

Z [Tetivats] = Ao (@) (Ve (00) Vi, (1)

% Vg OV gy (,7) ). (V.24)

The left- hand side is the expectation value, in the the-
ory of n? free hypermultiplets on S;, of the intersecting
surface defect of Figure 4 described by a U(n) theory on
one two-sphere and a U(n’) theory on the other, coupled
through a pair of bifundamental 0d chiral multiplets on
their intersection. Both the U(n) and the U(n’) theories
have one adjoint, n¢ fundamental and ns antifundamental
chiral multiplets. Twisted masses obey

“Himy —1/2) = b(im/; — 1/2),

b

b
due to cubic superpotential couplings with the free 4d
hypermultiplets. Adjoint chiral multiplets of the U(n)
and U(n') theories have R-charges —2b% and —2/b? re-
spectively due to 0d/2d superpotential terms. The two
theories have equal FI and theta parameters.

The prefactor Ay given in (C.10) is as before an ambi-
guity of the S} partition function, and the Toda CFT cor-
relator features two generic and one semi-degenerate op-
erators. The degenerate vertex operator is labeled by the
n/-th and the n-th symmetric representations of SU(ng)
and placed at x = (—1)"e~2™+"  Momenta encode
twisted masses as follows: [84]

ne e
ag— Q=Y b limjh; =Y bim/h; (V.26)
j=1 j=1
e ne
Qoo — Q==Y b litshy == bimhs (V.27)
s=1 s=1
b+b1t
A — +2 ne (V.28)
(o AT o P
_(n 2)b+<n+2)b+b;zms b;lm]
ng
z(n—i— )b+< ) —i—sz szmg.
Jj=1

Contrarily to the previous section, the two 2d theories
must share the same FI and theta parameters for the
partition function to coincide with a Toda CFT correla-
tor. In the ITA brane construction, this is understood
by noting that all D2 and D2’-branes stretch between a
single pair of NS5-branes, whose separation gives a single
FI parameter.

We can immediately perform consistency checks simi-



lar to the previous conjecture.

e For ng = 2 and n = n’ = 1 this reduces to the
Liouville matching we discussed earlier.

e Permutations of flavors correspond to Weyl reflec-
tions of momenta.

e The conformal map x — 1/x corresponds to conju-
gating gauge theory charges.

e For n = 0 or n’ = 0 the matching reduces to previ-
ously known results of [26].

e A combination of b — b~ ! and Weyl reflections
exchanges the two 2d theories.

e For b = 1 the partition function is equal to that of
a single 2d theory with gauge group U(n +n') and
one adjoint, n¢ fundamental and n; antifundamen-
tal chiral multiplets.

e For the cases where nf = 2,3,4, n = n’ = 1 in
the quivers with 0d chiral, and nft = 1,nt = ng —1
in the quivers with 0d Fermi multiplets, we checked
up to second order in x that the partition functions
of two types of quivers agree.

In the limits * — 0 and x — oo both the partition func-
tion and the Toda CFT correlator decompose into a sum
of ("ft’:*l) ("er:,Ll) terms. For each of these terms the
leading coeflicient and leading exponent of zZ can be
compared.

A detailed discussion of constructing these intersecting

surface operators from vortices will appear elsewhere [85].

VI. DISCUSSION

In this paper we have initiated the study of intersect-
ing surface operators in four-dimensional QFTs. When
intersecting at a point, these can be constructed by cou-
pling together 4d/2d/0d degrees of freedom by gauging
the global symmetries of defect fields with symmetries
acting on higher-dimensional fields. In the context of
four-dimensional A" = 2 supersymmetry, we have shown
how to couple the 4d/2d/0d degrees of freedom so as to
preserve two supercharges. We have shown that these sur-
face operators are amenable to supersymmetric localiza-
tion on the (-background and the squashed four-sphere.

We have also identified a class of intersecting surface
operators that describe M2-brane surface operators end-
ing on a collection of M5-branes wrapping a punctured
Riemann surface. It is this class of intersecting surface
operators whose squashed four-sphere partition function
we conjecturally relate to correlation functions in Toda
CFT in the presence of a general degenerate vertex op-
erator. We have provided rather non-trivial quantitative
evidence of this connection by showing that the squashed
four-sphere partition function of an intersecting defect in
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the theory of hypermultiplets matches in detail the cor-
relation function in Toda/Liouville CFT.

The explicit computation of the expectation value of
our intersecting defects in a general four-dimensional
N = 2 gauge theory becomes more challenging, as the
four-dimensional instanton equations are modified by the
pair of two-dimensional and the zero-dimensional degrees
of freedom. The explicit 4d/2d/0d quiver diagram realiz-
ing the intersecting surface operator gives a definition of
the allowed gauge field singularities along the two R?’s
and of how these singularities merge at the origin, where
the zero-dimensional fields are inserted. The partition
function of an intersecting defect obtained by coupling
zero-dimensional theories to two-dimensional N = (2,2)
theories and in turn to a four-dimensional ' = 2 gauge
theory takes the following form, with G(*)-() denoting
the total gauge groups of the two 2d theories, [86]

do®) do(®)
/da Z Z /JK (27T)rankG(L) (27T)rankG(R)

B(L) B(R)
X ng (O'(L), B(L), a) ng (U(R)q B(R)7 a) ZS;L (a’)
« Z(i)rétcrscction(0_(11),B(L)7 O'(R), B(R))

x }Zinsmnmn(a, o0, BE) oM g (v
There are new ingredients in addition to those
appearing in the analysis in section III, where
the  formulas  for  Zg2 (o(E/B) B/ q)  and
zjntersection(5(L) B(L) (B BU)) can be found. For
a general four-dimensional N/ = 2 gauge theory we
must also localize the four-dimensional gauge dynamics,
which results in an integral over the vector multiplet
scalar zero mode a in (VL1), where a takes values
in the Cartan of the four-dimensional gauge group.
Zga (a) is the familiar classical and one-loop factor in

the computation of the S partition function [22, 23].
In this more general case, the masses of the innermost
chiral multiplets in the 4d/2d/0d quiver diagram can
be fixed in terms of the four-dimensional Coulomb
branch parameter a by the localized superpotential.
Zinstanton (@, 0P, B o(F) B(L)) is  the instanton
partition function of the 4d/2d/0d theory in the Q-
background. It can be computed by an ADHM-like
matrix integral, which computes the equivariant vol-
ume of the instanton moduli space in the presence
of the codimension two singularities induced by the
two-dimensional fields and codimension four singularities
induced by zero-dimensional fields. The ADHM matrix
model has new additional fields in the presence of
defect fields (see [87]). The extra fields in the ADHM
matrix model arise from the two-dimensional fields that
couple directly to the four-dimensional gauge group,
that is the innermost chiral multiplets. [88] It would be
interesting to explicitly compute the partition function
of our intersecting defects for gauge theories such as
SQCD. For the computation of instanton calculus in
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FIG. 15: Intersecting Levi-type defects supported on
planes R?; and R2,. The gauge group G is broken to L
in the plane R?; and to Lo in the plane R3,.

the Q-background for the theory living on stacks of
intersecting D3-branes see [89)].

We proposed that the partition function of our inter-
secting defects in gauge theories computes the correlation
function in Toda CFT in the presence of a degenerate
vertex operator. In this dictionary, the expansion of the
CF'T correlator in conformal blocks is obtained after inte-
grating over the partition function of the two-dimensional
and zero-dimensional fields. This is a rather non-trivial
prediction that stems from our analysis.

Our discussion of intersecting defects can be ap-
plied to surface operators of Levi-type, where the four-
dimensional gauge group G is broken at a surface to a
Levi subgroup L of G [2]. These are naturally associated
to surface operators engineered by M5-branes instead of
M2-branes [90]. Our 4d/2d/0d field theory construction
allows a more general possibility. We can consider a four-
dimensional theory where the gauge group G is broken
to L in the plane 23 = 2% = 0 and to Ly in the plane
2! = 22 = 0, see Figure 15. These two singularities
are then glued at the origin, in a way determined by
the zero-dimensional fields supported there. An interest-
ing example to consider using our formalism is an inter-
secting surface defect in four-dimensional N' = 2 SU(N)
super-Yang—Mills characterized by a pair of Levi groups
(L1, L2). Using that one can associate to each Levi group
a canonical two-dimensional N' = (2, 2) theory (see e.g.,
[2, 50, 91]), we can consider as an example of such an
intersecting defect the quiver diagram in Figure 16.

It is expected that for the choice of Levi groups (L1, G)
obtained by coupling just one two-dimensional N = (2, 2)
theory the partition function of the theory computes a
correlation function in W, Toda CFT, where p is the
partition of N associated to the Levi group Ly [3] (see
also, e.g., [90, 92-101]). It would be interesting to find
a two-dimensional CFT interpretation of the partition
function of intersecting surface defects with Levi groups
(L1, L) obtained by coupling, as we did in this paper,
two two-dimensional N' = (2,2) and a zero-dimensional
N = (0,2) theory to each other and to the bulk.

The discussion of intersecting surface defects in-
serted in four-dimensional quantum field theories can be
straightforwardly generalized to codimension two defects
in five-dimensional theories. Trivially uplifting all dimen-
sions by one unit, we expect our results to be relevant for
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the study of the five-dimensional AGT correspondence
[102-104] as well as for the work in [105, 106].

The vacuum expectation value of intersecting surface
defects labeled by symmetric representations on the four-
sphere (or S*x S or §°) can be obtained alternatively via
a Higgsing procedure [87, 106-108] or, equivalently, from
a Higgs branch localization computation [109-111]. [112]
This computation heavily relies on massaging the instan-
ton partition function and agrees with our proposal in
this paper. It will be presented elsewhere [85].
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Appendix A: Liouville Fundamental Degenerate

In section VA we wrote (V.1) relating the partition
functions of two 4d/2d/0d quiver gauge theories with 2d
gauge groups U(1) and U(1) and a Liouville four-point
function with three generic vertex operators and one de-

generate vertex operator of momentum o = —b{)g —
b 100 = —% — o = —Q/2. In this appendix we first

discuss the Liouville correlator then match it to a par-
tition function involving a 0d Fermi multiplet then to
one involving a 0d chiral multiplet, and conclude with
a proof that the two partition functions are equal up to
some factors (in Appendix A6).

1. The Liouville Correlator

Let us start by writing down the Liouville correlation
function we aim at reproducing from the gauge theory
point of view:

(V_g(2,2) Va, (0) Vay (1) Vg (00)) - (A1)
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FIG. 16: An example of a 4d/2d/0d quiver gauge description of intersecting Levi-type surface defects inserted in pure
N =2 SU(N) super-Yang-Mills. The Levi subgroup L; is determined by a non-decreasing partition of N, i.e.,

N =K+ Ky+...K, and K; < K;41. The ranks of the gauge groups are then N; =

2:1 K;. The ranks N; are

similarly determined in terms of the data encoded in Lz. Other choices for the 0d N' = (0,2) theory are possible.

It involves one degenerate vertex operator V_ o with Li-
2

_Q
2

vertex operators Vai,i = 1,2,3. Here the hats indicate
that we normalized the operators as follows

ouville momentum —1(b+b71) = and three generic

Ve=NPvo, V=N (A.2a)
-4 deg. -5 i @i ’
_Q -

Nt = (ruy()p>= ")~ (4.2b)
0;—Q/3

N = (o) ST [ (008 1200).

(A.2¢c)

where p is the cosmological constant, vy(z) = F(Fﬂ and

1—xz)
T/(0) is the derivative of the Upsilon function evaluated
at zero. Recall that the conformal weight of a Liouville

vertex operator V,, is given by A(«a) = a(Q — «). [113]

The three-point function of three primary fields Vj,
with generic momenta §; is given by the DOZZ formula
[114-116]

C(p1, P, 63) = [ﬂ-u,y(bQ)bQ,sz (Q—B)/b
T/(O)T@ﬂl)T(Qﬂz)’r@ﬂg)
T(B—Q)Y(B—2B1)Y(8—2B2)Y (8 —2083)°

where 8 = (1 + f2 + B3. Including our normalization
(A.2), it becomes

(A.3)

1
(B—QTl= Y(B-28)

Furthermore, the operator product expansion of a generic
operator V,, with the degenerate operator V_q is given
2

by

C(B, B, Bs) = -

Vog(2,2) Vay(0) ~ 30 (22)emeaimdlen=aCery

2

Slzﬂ:,SQZi
;e .
X Coq,l—z% (Vera, 0, (0) + .. ), (A.5)
where ag, 5, = a1 + %, and the ... denotes Vira-

soro descendant fields. The structure constants Cﬂzsls%
1,—%

are Computed by
e} Q 2
A\ ( ]) \ ( ' / )

AQsysy
c - N(O‘slsg)

Q
a1, o

c (041, _Q/27 Q - as1sz)/ :
(A.6)

Here the prime on the last factor indicates that one
should take the residue of the single pole one finds when
inserting the arguments in (A.3). [117]

Given the OPE in (A.5), we deduce that the correlator
(A.1) has an s-channel conformal block decomposition
involving four intermediate channels with intermediate
momenta ag, s, = o + (810 + s2b7 1) /2,

(V_9(2,2) Vay (0) Vay (1) Vay(00))

[e%1

A NOsqs
= Y Covasan., C00% G, L, ()P (A7)
Slzﬂ:,SQZﬂ:

A1, — 5

The conformal blocks are normalized in the standard way
(;'a3132 (Z) — ZA(aﬂsz)_A(al)_A(_Q/Q) (1+012+ . ) They
have been computed in closed form in [79] by solving the
fourth order differential equation associated with the de-
generate puncture. Before presenting them, we introduce
various notations, following [79]. We denote

plzb(a—2a1—Q/2), p3:b(3Q/2-0&),

A8
b2 = b(Oé - 20(2 - Q/2) ) p; = b_2pi ) ( )

with @ = a1 + a2 + ag, use the notation that p;; =
Di + Pj,Dijk = Pi + P;j + Pk, and finally define

fl(yluy27y3uz)
=oFi(14+ys3,2+y1 +y2 + Y3, 2+ 11 +ys, 2),
]'—2(91,2&793,2)

_ Z—l—y1—y32Fl(1 + Y2, —Y1, —Y1 — Y3, 2) ’ (Ag)

in terms of the hypergeometric function 9F;. Then the
conformal blocks G, ,, describing the exchange of mo-
mentum a, 5, in the correlator (A.7) are given by [118§]

Ga5152 (2) _ Zl+1013+0¢1Q(1 _ Z)1+;D23+Ot2an5132 (2)

(A.10)



ga,, (2) = ]:2(]917]927]9372)]:1(_17/1 - 17
(1= Phas)p
(1 = plis)p1s

_p/27_p/372)
-7:2(]?1 - 17p27p372)]:1(_p/17 _p127 _péaz)
(A.11)
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p13(1 = p13)(1 + pls) (
p3(p123 +p/123)

Falpr = 1,12, 93, 2) Fal—ph, —phy —hs ) — (pi > —71) ) -

ga7+ (2) =

(A.14)
ga++ (Z) = ga,, (Z) , (A12)
Disr—D;
1+ 1—9p 2. Gauge Theory Computation I
ga+, (Z) = ( p123)( 7 p13)‘/—_'1(p17p27p37z)
S The partition function of the 2d/0d part of the left
Fi(=pl —1,—ph, —ph, o —pl A13 e partition function of the part of the le
< Fil=n P2 3 2) + (P Pi) ( ) quiver gauge theory in Figure 13 is computed as
J
S, Y Y [ T )P e ) )
Bimez Bhez S DL+ i(o® —mi®) — B /2) 5 T(1+i(—0® +@ml™) + B(R) /2)
2 L (L) L 2 ~ (L) L
o« o—dmit(o (B _ (L)) L9 (B — B(L))AJF H ( 0( ) — ) B( )/2 H F( Z( ol )+m )—I—B( )/2)
1

o D(1+ (o™ —m™)

with A* = b= (i) + BH) /2) — b(icH) + BL) /2). Re-

call the mass relations (II1.12) (with ¢ = 0)
bm(D) = b1 bl =07 tm{™ . (A16)

In (A.15) we have used f(R) = f(L) = ¢ and similarly

for ¥. We also define z = 672”&“9 For positive FI
parameter, £ > 0, the naive poles are located at

io®) £ B /2 = im{® 4+ pF | with pF >0 for j = 1,2,

ic® + BM /2 = im(M — g | with ¢f >0 for k=1,2.

(A.17)
Using the mass relations (A.16), it is easy to see that
the contribution of the Fermi multiplet provides zeros
canceling the poles (or equivalently, setting their residue
to zero) forj:kandp;r:q;-r:Oorp;:q;:O.

Introducing the quantities for j, k =1, 2,

200 () = y(=im{? im0)) T v (imf® — i),
s=1,2
(A.18)
P (L) = (D) LD ()
1—100p() W(ka zmk/?ﬁk) H ’Y( my, T Famyg ),
s=1,2
(A.19)
and for m € Zx,
2 . R .~ (R
20 ) = Ll 1(Zm§ )_ng ))'“ (4.20)
vortex|(j) m|(1 N zm Zm (®) )m )
2 L
R?,(L) I (= ka )+Zm( ))m A
vortcx\(k)(m) — (L) s ( 21)
m'(l —imy, —i—zmk,#k)m

2) 1 T(1+( U<L>+~<L>) + B1)/2)
(A.15)

one easily finds

2
00 —drie(m —mPY) (R (L
Gilsn, = 3 T 2 248w
jk=1
< 30 (7 am o)) bl — g))
P} La >0 L)
’ Zp Zvortcx\ (p ) vort(cx|(k) (qk ):|
< [T am ) - b >—q,;>)
Pj 0k 20 R*,(R) ZR(L) -
X Zp] vortcx|(])(pj ) vortcx|(k) (qk )} :

(A.22)

Next, we match this expression to the Liouville correla-
tor after including the contribution of the four free four-
dimensional hypermultiplets,

2
: 1
Zhee HM _ : (A.23)
& j,ls_Il Tb( 2b iMjs)
with masses fixed by (111.9)-(I11.10),
{Mjs +i+i}+&_f
NI 20 l S/
L) ~(@) (A.24)
Mjs ) ) —ms ~+m 7
[— ~—l———i——~}-i-—=—~.
Ve 200 20 l ¢

3. Matching Liouville to Gauge Theory I

The detailed match between the Liouville correlator
and the gauge theory computation of the previous section



gk 1,1 1,2 2,1 2,2
5182 —+ - ++ +-—

TABLE V: Matching the four vacua in Z( D)
(R) (L)
with the four channels of the Liouville correlator.

is given by [119]

S2,US?, =A |Z|2ﬁ |1 _lev

: 04
ngc oM U0
b ()

<V_% (2, 2) Voq (0) Vaz(l) Vas (OO)> ) (A'25)
where
A = p4Q(a2—-Q/2) , (A.26)
v = (b—b"YYas — bQ, (A.27)
9 .
==Lt - ), (A29)

and with the parameters «; identified with two-

dimensional masses as

22

Q B 4 ) (R) (R)
az— o = 2b( +my "’ —my my ")
ib I L (L ~ (L
= 5 (my" +mi — i i),
T, R ~ (R b L L
a3—5=—%(m§ )—mé ))Z—E(mg )—mé ))~

(A.29)

More in detail, the sum over the four vacua j,k =
1,2 of the gauge theory result (A.22) corresponds to the
four internal channels of the Liouville correlator (A.7) as
in Table V. To present the precise identification, let us
introduce the notation

ZV®V(I;j7 k) =
> [t 4 ) - v - )
Pj»qk=0
(R R?,(L
X b Zvort(cx)|(J) (pﬂ) z Zvort(cx)\(k) (Qk):| ) (A3O)

where we note that Z,gy(x; 7, 7) has vanishing zeroth or-
der term in z:

ZV®V(I'j ])
(bZ (L)

vortex|(j)

(1) +67 250 () +0?).
(A.31)

The gauge theory result (A.22) can then be reorganized

. "
ay — Q = i(ng) — ng)) = Z—(ﬁ’LgL) — ﬁléL)) , in the following form
2 2 2
00 & Lim§™ =) 2
) R) (L) -1 (R) L) / .
Zé’ US?L) = Z Zi—loop(j)zi—loop(k) (Zb 1m‘§' me( ) -1 (R) 'bN(L) ZV®V(Za.]7k) ‘|
i ib=tm; —ibmy;
o
2 i(m{™ —mP)+1 -1 (g k) 2
L) (k)(bZ (L) (1) +b- 1R 2(R (1))2 < Zvgv (214, k) ’ (A.32)
Z: 1 loop 1 loop vortex|(j) Vortex\(]) vaort(CX‘( )( ) T+ b 1Zvort((f()‘( )(1)
_]:k
[
where |...|? just means sending z — z. Each of the  ancillary Mathematica file, [120] we use contiguous rela-

four summands of (A.32) have the structure [...] x| ...|2.
These expressions, using Table V, can be matched to the
four channels of the Liouville four-point function (A.7)
as
free HM
ZSZI X [

L]=4accC, (A.33)

and

= 2?1 - 27 |G(2)]?,

[

where we used the parameters in (A.26)-(A.28). In the

(A.34)

tions on hypergeometric functions to prove the equality
for conformal blocks. It would be interesting to obtain a
more straightforward proof.

4. Gauge Theory Computation II

Let us now compute the Sgl partition function of the
theory described by the right quiver gauge theory in

Figure 13. We denote parameters of the left theory with

primes and the right theory without primes. Omitting
the 4d hypermultiplets, the partition function is
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23

—B/2) £

—47rz£(U+<7 )+i9(B+B’) H Z(
(1

zo—m)

H (—o +ms) + B/2)
s:lr 1+z

— B/2) (=0 +ms) + B/2)

—I—z(a—mJ

B'J2) & T z(o—l—m)—l—B’/Q)

Z Z / dO' dO'
o 21
BEZ B'€Z
b+b b+bt
+ +
X [li_[ <A + 5 ) (A -

Jj=1

with A* = b~1(ioc £ B) — b(ic’ + B').
section ITI the mass relations (with ¢ = 0)

Recall from

bm!, — b~ 'my; = —%(b — b,

. (A.36)
b, — b, = %(b — Y.
In (A.35) we have used &gy = &f;; = £ and similarly for .
We also define z = e~2™¢+% _ For positive FI parameter,
& > 0, the Jeffrey—Kirwan-like residue prescription selects
poles obtained by assigning to ¢’ a pole position of the
fundamental one-loop determinants in the third line of
(A.35). Taking into account cancellations with zeros, we
thus have

B/
io’ + - = iml 4 g, with ¢ >0 for k=1,2. (A.37)
For o there are various options
. . B . .
za:zmj—i-lj—?, with [; > 0 for j = 1,2,
. . B 2 F
io =imy, + ) +b7qi -1, (A.38)

io =imy g + b2 (g +1).

Here we used the relations among the fundamental mass
parameters on the two spheres. Note that in the pole
positions on the last two lines, the index k takes the
same value as in (A.37). Also note that some of these
poles collide, and some cancel against the zeros located
at io = im,+2 -\, —1 with A, > 0 for p = 1,2. Among
these poles, four particular classes of simple poles can be
identified as follows, where j, k =1, 2:

I ia’:l:%:im}c—l—q,f, WithquO,

' ia:l:ézimj—l—pj[, WithijZO,
ZO’:l:B zmk—i-qk, Withq::(),qk_ZO,
ic+ 2 5 =imp—1, with B < 0,

I - 10’ + B zmk—i-qk , with g, :O,q,j >0,
w———zmk 1, with B > 0,

v - , with ¢, =0,¢ =0= B’ =0,
w—zmk—l with B=0.

(A.39)

)]1HFP(§+

—w2) LTt v+ B2)
(A.35)

s=1

The sum of the residues of these poles will reproduce
the Liouville correlator (A.1), while one can verify that
all other series of poles cancel among themselves. These
poles can also be characterized as those for which io +
B/2 € {imy,ima} + Z and ic’ + B'/2 € {im/,im}} + Z.

Computing the residues of the four classes of poles is
straightforward. One finds

2
~00) _ —4mi&(mj+m},) 77 ~
087, = 2 le ) Ztoop () (m, )

3:k=1 7 Ty
X Z1100p] (k) (M, M)

|

(A.40)

w2
-1 Zvortexi() (1)

. b+ bo-1)b-1

5ij +

Vortex\ () p’m m) z Zvortex|(k)(q;m/’ﬁl/)

£y 2

a0 114 ( Yim; 4+ p) — b(im), + q) = #)

where |- --|? just involves z — Z, in terms of

2
Zl—loop\(j)(mv ﬁl) =7 (—imj + imk;éj) H y (imj — Zﬁls) ,

s=1

(A1)
2 . L~
ZEfrtcxK j) (m7 m, T?L) = HS:l (.2m] 'st)m s (A42)
4 m! (1 + my — Zm;ng)m
~ —im; + Z.mk;g )
7B (1) = T J A43
vortex|(])( ) H§:1 (’LmJ — ’”,ﬁs _ 1) ( )

for j =1,2 and m € Zx.

Next, we match this expression to the Liouville cor-
relator, including the contribution of the four free four-
dimensional hypermultiplets,

2

= 1
Zfrfe HM _ , (A44)
with masses fixed by (111.19)—(II1.20)
Mjs 7 7 —my + ﬁ’LS 7
[ =+ 5+ —~} + =
\/@ 20 14 l
L = (A.45)
M;s i i —myt+ms i
[ =+ 5+ —J + = = =.
Ver 200 20 ‘ l
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TABLE VI: Matching the four vacua in 2;%’5&3(2“

with the four channels of the Liouville correlator.

5. Matching Liouville to Gauge Theory II

The precise match between the Liouville correlation
function (A.1) and the gauge theory quantities (A.40)—
(A.44) is given as follows

()

2 2
SimYUS(ey

X <V_%(Z72) ‘A/Oél (O) ‘A/OQ(l) ‘7063 (OO)>, (A46)

Zg ™ 2 = A |7 1 - 27

with the parameters «; identified with two-dimensional
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. . ib, ~

where the two expressions of each momentum are related

by (A.36), and

i é pAb—b" (@2 -Q/2) (A.48)
7)7 = Qag - Q2 5 (A49)
5:_% (Q+1—’m+’m2>, (A.50)

First of all, (A.40) contains a sum over four terms spec-
ified by the values of j, k. These choices of vacua 7 = 1,2
and k = 1,2 correspond to the four channels of (A.7) as
in Table VI. To simplify the details of the identification
(A.46), let us introduce a concise notation for the double
sum over positive integers appearing in (A.40)

masses as Zvgv(T3 4, k)
i ib TP 25 5y (P31 T10) @ 25 iy (0T
a1—%*%(m1—m2):5(m’1—m’2), = Z tex|(s) tex| (k) —
5 T pzo TLe (b=1Gm; +p) = blimf, + ) = =4
a2—5:g+%(ffl1 +ffl2_m1_m2) (A51)
b, _
=b+ zE(m'1 +my —my —mb), We then rewrite (A.40) as
2 P ~\ =y -1 2]
~O04d Z—oo j mamZ—oo m,m i(mai+m’ I . b+ = .
Zéz’ &52 _ Z 1-1 p\.(Ji(l )'11/ p\(kb)JElr1 ’ ) Hilmy+ ’C)H(zb 1mj —ibm], + )Zv®v(2;j,k)
= 4= [T (@ tmy — ibmy, & 25—) L |
i#k
2 Z]R2 ) (_1) 2 —1vi—1 27]
~ —\ ~ vortex|(j) i(m;+mi)—1 (b +b )b 7 .
27 | Zrctoopl 5 (7 7) Zictaop ) (' 7) (W> st (1 tgmm e )|
];'k::kl vortex|(j) J
(A.52)
[
where | ... |? is again taken to mean to just replace z — z.  read off from (A.52). This identification is a consequence

The identification (A.46), using (A.7), is now straightfor-
ward. Each of the four terms obtained by summing over
7, k, which as mentioned above are identified with the four
channels of the Liouville correlator as in Table VI, have
the structure [...] x |...|?. These factors are identified
concretely for each vacuum as:

Zge"™Mx[.]=ACC, (A.53)

and
[P = 12 = 2T (G 2, (A54)

where we used the parameters in (A.48)—(A.50) and the
arguments of the brackets and moduli squared can be

of the identification in Appendix A 3 and the equality of
partition functions that we prove next.

6. Seiberg Duality Between Quivers

We prove here that the two quivers studied in previous
sections have equal partition functions: we apply a 2d
N = (2,2) Seiberg-like duality to the left node of the first
quiver and show how the 0d Fermi multiplet contribution
transforms into a pair of 0d chiral multiplets.

Enrich the partition function (A.15) by allowing inde-
pendent left and right FI parameters, and write the 0d



Fermi multiplet contribution as a differential operator:

(i

2 2
S{m Y50

Z |b712(R)8Z(R) — bz(L)82<L>| Zég)EDZég)ED

(A.55)

where |, denotes taking z(), 2(5) — 2 and

Zé(LQ)ED Z / (2(B)yior D +BE /2
B ez
; L (L)
X (E(L))i"m*B(”/2 ﬁ F(_’(U(L) - m; )) - Bz )
, L
i1 L(1+i(o® — m; )) _ #)
2 (o) 4 )y 4 BY
H - )) ) (A.56)

(L B(L)
1+l o) + my )+T)

and similarly Zég)ED in terms of (m) mf), () z(7),

As shown in [26, 121], the SQED partition function is
invariant under Seiberg duality up to some factors, [122]

Zél(é)ED ClzB P 1 — 2B Zgqpp (m/, W, 2/, 2,
(A.57)
with exponents dg = —1/2 + imgL) + iméL) and §; =
1+ iﬁlgL) + iﬁsz) - imgL) - iméL), coefficient C =

H?Zl Hi:l W(imgL) — iﬁzg-L)), exponentiated FI parame-

ter 2/ = 1/2(1) and shlfted twisted masses m/; = m(L) L

2
and m/, = mgL) %. These parameters will turn out to

be those of the left theory in the second quiver, as given
in (V.2) and (V.3) in the main text (the relation can also
be seen by identifying Liouville and gauge theory data).

Parameters of the right theories are related as z = z(f)

and m; = mg-R) — £ and m, = w4 L

280 |1 _ Z(L)|251

Next we permute |z(F)| and the differen-

tial operator of (A.55):

(07120, 5y — b2, 1)) (2F))0 (1 — 2(F))0r =

The Gamma functions which appear are the same as
n (A.60). The factors linear in z9,, when acting on the

25

= (ZI)%_%—(;I (ZI _ 1)(51—1(
(b120. + b2'0. — bim®) — bim$™) (=)
— (b7'20. + b2'0. — biﬁlg ) sz(L))( )—%) )
(A.58)

When combined with its complex conjugate, this gives
four terms

o0
Z(
SryUSTL)

= O/

1|2(61—1) Z [

Sy,s_==+1

(07120, +b2'0. —bim B 5+) (b1 20, 4b7' 0z — bim (F)*-)

515 ()22 2 Zsqun (! i 2 ) 2|
(A.59)
where im(F)— = zm(L) + ngL) and imP)+ = imgL) +
zmé ). The factors (2/)*+/% and (2')*~/? can be absorbed
into the Coulomb branch expression of ZSQED by shifting
o' = o'+i(sy+s_)/4and B — B'+(s_—s4)/2. Pulling
the differential into the integral as well we get

—cp ey 5 [

B'€Z

{H P(5 — o™ +im})
S’—|—1—|—za’*

j=1

m]m)
257 o
SlmYS

O7ET Y Y

sy=*t1s_==1

2 I‘(—%—i—io"”—im) ,
s . +_. (L),s+ —92
XIIF : +1—ia’*+iﬁl’s)bs+(w imt 4b7220; )

. /)
Zm]

x bs_ (i’ —imI)s- 4 b—%az)Zgg)ED” (A.60)

z=z'

where we used the shorthand ic’* = ic’ + B’/2. Using

D(x+1/2) = (z — 1/2)T(z — 1/2) and im}, — § = im{")
and im’, + 2 zmg ), the si-dependent factors can be
massaged into

229, — im;- + %)

1

220, —iml, — 1)| . (A.61)

Coulomb branch representation of Zég)ED, become

im{™),  (A.62)
im{), (A.63)

B—zm-i- L5 b 2(io" —
3—zm———>b(+



where ict = ioc + B/2. These factors simply shift ar-

guments of Gamma functions. An analogous expression

holds for s_-dependent factors and involves Z0s.
Altogether we get

0.0y 4 (3—60—061) (61-1)
Z¢ =Cb™
StryUSTL) o1 =1
dUdU zo’ -HU 210'7-1-1'(7'7
S4S5—
B;EZ/ [ (bio"* —io*/b) ;::tl

ot 4 5t
m; w—l—)

S L(im) —io't — )
S

(1 —imj +io~ — 5 ) T(1 —im) +io'~ + %)
%)

5 F(ia —am, + =
— 0~ —I—zms—i-%)F(l—za’_—l—zm —7)

(A.64)

L~ s
— Mg — _+)

gt
I

For all four choices of (s4,s_) the shifts by +%+ and
:I:ST’ in Gamma function arguments can be canceled by
shifting io* — io* + 51/2 and ioc'* — io’* — s4/2.
The fluxes B = ioc™ —ic™ and B’ = io’T — i0’~ remain
integers. The exponents o+ +0'* of z and Z stay constant,
but bic’T — ioc™ /b are shifted by —s.(b+ b~1)/2. After
these manipulations, s only appear in

S+
521 (bio'+ —b~liot — s (b+b71)/2)

- b+b!
- TL(bio't —b=Yiot + (b+b-1)/2)

(A.65)

and a similar factor with (sy,0",0'") = (s_,07,0"7).
Lo and behold, we have obtained the contribution of a
pair of 0d chiral multiplets! [123] All in all,

(i) )2 )
Zsa )US(ZL)_ fo+b HHVWL ) —imy)
j=1s=1
2(4—60—61), 2(51 (M)
X |z] |z — 1] ZSfR)uS?L) . (A.66)

The 4d hypermultiplets to which the two 2d/0d quivers
couple have slightly shifted masses (A.23) and (A.44).
Using Y(z + 1/b)/Y (z) = y(x/b)b~1T2%/0,

Zgge ™ -l mi) (S )
Shee i~ T2 D (D) (A.67)
ZS;* Hj,s:1 y(ims ™ — m; )
These factors cancel most factors in (A.66) and give
free HM -,(0) Sfree HM ~(0)
Zgy Sy ZS(2R)U5(2L) ZSb ZS(R)US
A LimE —im (P —im{®
SR 0 S EA : (A68)

b A2y )=y i) | 20 i)

The prefactors are consistent with the matchings of Ap-
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pendix A 3 and Appendix A 5.

Throughout this section the contour integrals surround
poles such that ioc + B/2 (and its analogues for other
gauge groups) is a twisted mass (times ) plus an inte-
ger, or half-integer in (A.64). This reproduces the set of
poles (A.39) selected by the Jeffrey—Kirwan-like residue
prescription for the quiver with chiral multiplets.

Appendix B: Quiver with 0d Fermi Multiplets

In the main text we propose the equality (V.10) be-
tween a 4d/2d/0d partition function and a Toda CFT
correlator. We focus here on the case v = v/ = 1, namely
each 2d theory has a single gauge group factor and the
Toda CFT side involves a pair of antisymmetric degener-
ate operators (with coefficients b and 1/b). The relation
reads

Z[%crmi,u:l] = Al(xyx/ z J_jl)<‘7a ( )V)\wl( )‘A/ (O)

X Vfbwn(xv'f)f/fbflwnffn/ (I/af/)> . (Bl)

Complexified FI parameters of the two nodes are related
to positions of punctures by

s 1 — (R) 4 ;9(R)
_ Z(R) _ (_1)nf+n 16 2me ) i

x

21— 5L — (_1)nf+n/—le—27r£(l‘)+i19(L) '

Twisted masses obey b_1m§R) = bﬁl§L> and b1l =

bmSY) and these SU (ng) x SU (ng) x U (1) mass parameters
are encoded in momenta as (V.13)

ne
ap—Q = Zb‘ling)hj ,
j=1

ng
Qoo = Q== b lim{Dh,,

s=1

/\—nl,b—i—(nf—n,bl—i—Zb zm(R) Zb R).
s=1
(B.6)
The prefactor is

Ay = Alz|?)2 |01 — 2P 1 — 2P0 o — 2P, (BT)



with
bn(2 Eim(R)fz Eim(R)*anr(nffn)b?)
A= pr' (25 im) —2 3 im () —net (ng—n’)b-2) ’ (B.8)
Pr=—nb(b+b7" = Afne) (B.9)
b= —n’b*x/m, (B.10)
Nt
= —(Qb ww) = = 3 i B.12
/80 <Q7 w > ng ; 'Lm] s ( )
'Y/ :n/n/nf. (B13)

We normalize generic, semi-degenerate, and degenerate
vertex operators as follows:

V. = A Vo, (B.14)
¢ Hs<t ((Q —a,hs — hy)) o '
~ u(AhI)p>
Van, = T‘/}\hl , (B.15)
(T®)™ TM
V—bw—w’/b = ﬂ<7bw7w’/b,p> V—bw—w//b (B16)

7 — Z4dZ/dU

B(R)

where Zyq = [[72, [T,Z,

ZQ((I;/L) are given by

T((1+imd™ —im'™yp) ™

n ng

s = g e T o) T 7

1<a<c<n a=1j=1

- =0, £ 8o —io. 7 Be. Since 2B < 1 we
close the do® contours towards —ico and sum residues
at poles labeled by a ch01ce of n flavors J C {1,...,n¢}

and of 2n vorticities pj >0forjeJ,at

(R)
(w}fi) 4B ) = (im{™ + )
2 1<a<n ’ ! jed

up to permutations which cancel a 1/n! factor. The Toda
CFT correlator is not known so we focus on leading terms

with ik

(B.19)

27

where 1 = [mry(bQ)b%%q " is such that (fi,0) —
(fi,1/b) is a symmetry of Toda CFT. This normalization
makes vertex operators invariant under Weyl symmetries
(permutations of the (o — Q, h;)). [124]

The Toda correlator is not known explicitly. In Ap-
pendix B1 we match the leading terms as x — 0: on
the gauge theory side this limits selects a solution of the
Higgs branch equations for the U(n) gauge group while
on the Toda CFT side it selects one primary operator in
the fusion of V,,, with V_;,, . The limits 2 — oo, 2/ — 0
or 2’ — oo are similar. In Appendix B2 we show that
braiding matrices match. [125] In Appendix B 3 we match
leading exponents in the limits @ — 1 (similarly, 2’ — 1)
and 2’ — x.

1. Reduction to Four-Point Function

In this section we explain how to expand the partition
function (B.1) in powers of z and Z, assuming that |z| <
1,]2'|. Other orderings of z, 1 and a’ are related by
exchangmg 2(:L) or mapping them to their inverse by
charge conjugation.

In full, the partition function is

(R) (L)
3 / do'® 2§)Z(L>HH[ H[ (Z-ggmi%)_b(mg“i%m’ (B.17)
B(L) a=1c=1

is the 4d contribution, the last factor is the 0d contribution, and

[(im; —io, — Ba/2) ﬁ Cr T(—img +ioq — Ba/2)
(1 —imj +ioq — Ba/2) -2 12 T(1 +img —ioa — Ba/2)
(B.18)

only, namely all pj-[ = 0. The residue for a given J is then

zm R R
|5 ()

R
s H Hng "y(zm§C ) _ im; / da @)
R n’
jeJ [T (1 +4 imd™ ng )) B (2m)

(L)
Z<L>HHH$[ i) b(z’aé”i%)]

jeEJc=1 £
(B.20)
The 0d contribution combines with the one-loop deter-
minant of antifundamental chiral multiplets of the left




theory (using zm( )/b = sz(L))

(L)
p2nn’ H HH[$zm :I:w( ) — BCT

jeEJ =1 £

" (L) +ioth) — BgL)/2)
<1l H I( 1+Zm ) — gt — B j2)
c=1j=1 c
_ e’ ﬁ H zm + djes + iotH) — BéL)/2)
clJlr1+ B _ 5 —iot — B j2)
(B.21)
Namely we get the 5’2 partition  function
ZE S gy [do® Z8E j(2m)™ with shifted
masses iﬁ;L) — iﬁ;L) — Jjeg or equivalently
Z’ITLER) — zng) — jer2.

The denominator v functions combine with the 4d con-
tribution thanks to Y (x)y(bz) = Y (z+b)b~1+25% and the
numerator v functions coincide with a Toda CFT three-
point function of a degenerate operator. Altogether, the
residue (B.20) is

|2(R)|2Zj€Jim( ) (b an th)

—bwy, a0

[Z( )Z4d] ( )—)zm(R) 5jcsb? (B22)
where h; = > ,c;h;j. The factor in square brackets is
the partition function of the 4d/2d system obtained by
only keeping the left 2d theory, known to match a Toda
CFT four-point function: this is the special case n = 0
in our matching (B.1). Including the mass shifts, the
residue is

b---|x/|2(56+’7,)|1 _

2 PP (Vi (00) Van (1) Vg, (0)

XV, (7)), (B.23)
We note in particular that only the momentum g is
shifted: the momentum Aw; is unchanged because Iass
shifts cancel the change in nb. The exponent of |z/|? i
also sh1fted by an amount Wthh turns out to comc1de
with 7/, the exponent of |2/ — z|? in the full matching, as
expected in the z — 0 limit.

The structure we find is consistent with the Toda CFT
x — 0 OPE namely a sum over weights h; of the n-th
antisymmetric representation,

V—bwn(%iﬂ)f/ Zl | [A(ag—bhy)—A(ao)—A(—bwn)]
J «

x O U, (0) 4+

(B.24)

Powers of |:1c|2 = |2|2 work out, namely A(ag — bhy) —
Alao) = A(=bwn) + Bo =D je s Zm( ) and constant fac-
tors too. More precisely, we compared the contribution
of primary operators to the zero-vorticity terms in the
gauge theory expansion. The gauge theory results pro-
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vide a prediction for conformal blocks of this Toda CFT
five-point function.

2. Partition Function and Braiding Matrices

In this section we explain how to expand the partition
function (B.1) for [2(®)| < 1 and |2(F)| < 1 and how these
expansions are related by analytic continuation.

The S? partition function Zg: = Y 5 [ do Zaq/(2m)"
of U(n) SQCD can be written as a differential operator
acting on that of n copies of SQED (defined as SQCD
with n = 1). This involves additional Kdhler parameters
2, all set equal to Z eventually: [126]

Zg2 = |H [9a —19| HZSQED Z“’Z‘l’mm) Za=2

s a<c Za=2

(B.25)

where ¢, = 2,0/0z, and so on, and |¥, — 190|2 = (Vo —

9e) (94 —V.). We introduce in this way (P for1<a<n

and ngL) for 1 < ¢ < n'/. The 0d contribution can then

be written as a differential operator —|b_119¢(1R) - bﬁgL)|2

foreach 1 < a <nand 1 < ¢ <n’ acting on the product
of n +n’ SQED partition functions. All in all,

hypcr n
— 19(R) _ p9(L)|2
_nvn/v HH L e
a=1c=1
< T -1 — ot T —1oss) — o2
a<c a<c

H ZSQED (R)ugz(zR)am(R)am(R))

5(R) _5(R)
n' _ 3R _5(®)
» HZE;QED (%L),QEL)’m(L)’ﬁL(L)) (L),Z(L)'
—<L> 3@

(B.26)

The SQED partition function admits factorized expan-
sions

ZSQED 7

i[ OFO () FO )
o (B.27)
=2

[ W FMW (2) F™ (3 )}

), with (hypergeomet-
I respectively con-
Both the series and the constants

in terms of holomorphic functions Fj(s) (2)= (-

--) and F{W(2) = (=) (14 - -
ric) series in powers of Z and of 2~
verging for 2| < 1.
cg-s) and cgu) are known explicitly and coincide (up to
powers of Z and 1 — 2) with s-channel and u-channel con-
formal blocks and three-point functions of a Toda CFT
four-point function with a fundamental degenerate inser-



tion f/_bwl. We suppress the dependence on masses to
keep notations short. The choice of sign ensures that the
functions have the same branch cut, namely the positive
real axis.

In the sphere partition function (B.26) we can expand
both sets of S partition functions using (B.27). Each set
can be expanded in the s-channel or the u-channel accord-
ing to whether [£2(%)| < 1 or whether |27 < 1. We de-
note the four cases by (s,s)-channel for [2(0)] |2(1)] < 1,
(u,8)-channel for [2(F)| < 1 < |2()] (s;u)-channel for
|20 <1 < |2(1)], and (u,u)-channel for 1 < |2(8)| |2(F)].
In each case, antisymmetry in permuting the Z(R) or égL)
(and not thelr complex conjugates) reduces the sum to
a sum over choices of an n-element and an n'-element
subsets of {1,...,n¢}. For example, the (s,s)-channel
is as follows, omitting the 4d contribution and a sign
(=1)(ntn)(ntn'=1)/2 45 they are constant:

J1<- g $1< <81

(B.28)
(5,8)  (5(R) 2(L)\m(ss) (3B (L)
X P G Ay (B, 27)
59 (2(R) (0 — TT TT=19(R) _ po(L)
i B9, 2 )_]:[111(19 9 — py(F))
x [T @S —oi0) T8 —0)
a<c a<c
» H FJ.(?(R H FOW (5(0)) R
a=1 c=1 (L)f (L)
(B.29)

where FO)B) and FO@) differ in which twisted masses
they involve.

The holomorphic blocks Fj(s)(é) and FJ(u (%) of the
SQED partition function are related by analytic continu-
ation

F(s) brdld Z BgsF (B.30)

The braiding matrix is explicitly Bj, = D;BjsD in

terms of
. T
Bjs = — - =
7 sinw(imy — i)
[T, T —imy + im;)
D; = =2 (B.31)

[T:L, T(—imyg + imy)
5 T17, T (=i + i)
* T, DL — iy + i)

We deduce braiding matrices relating the various ex-
pansions of the 4d/2d/0d partition function. For defi-
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niteness we analytically continue from the (s,s) channel
|20 120)] < 1 to the (u,s) channel 2] < 1 < [2(F)].

For this, apply the SQED braiding FJ-(GS)(R) (é(R)) braid
o B(R) F(u)( )(A(R)) to (B.29) and note that anti-

a=1
symmetry in the Ja forces all ¢, to be distinct:

ng
(s5)  (5(R) z(L)y braid B
iy G, 20) 720 5 l(H Jata>
ti -ty L Na=1

x (—1)sen @ ple () 20| (B.32)

where the signature of ¢ (as a permutation of {t}) is
due to the antisymmetry of the differential operator

HZ<C(19,(1R) —19§R>) appearing in the construction of F(4).
The braiding matrix is thus an antisymmetrized product
of SQED braiding matrices. However, to compare with
the relevant Toda CFT braiding matrix we need to nor-
malize tl(le )series F®3) and F("%) by their leading coeffi-

cients Flcad and Fl(ci’j): the braiding matrix is then

@ TT g® oy
_ 51 n o ea
Biiysh ey = Z [ ¢ H Jat n(a)} Fss)
ocES, lead
(B.33)

The leading term of F®®) is simply obtained
by applying the differential operator to lead-
ing terms of each series F®) and F'®: it is

n im(-R) n! .
(—,%(R))Z“:1 Ja (—E(L))Zc:”mgi) times a leading
coefficient
£ = T TL0 o~ intt
x]‘[ im$) T (imP — im{P) . (B.34)
a<c

a<c

However, the same procedure yields zero for F(%s)
s. because =19 — p9") then an-
(R) (L)
nihilates ( zt(lR))Zm'a (—25“)””30 To get a non-
zero result one must consider higher order terms

i () _L(R) im (L) (L)
(=2 e TR (s TR wieh kP R > 0

if any t, =

not both zero. Depending on whether 1 < [2()]| <
|2(L)|_1 or 1 < |2(L)|_1 < |55 a different term dom-
inates: (k((lR),kgL)) = (1,0) or (0,1) respectively. Thus
the holomorphic blocks in these two channels have differ-
ent normalizations to ensure that their leading coefficient
is 1. We will be interested in the first of these channels;

(R){s} i ®

denoting im; = imy

of F(ws) ig then ( Z(R))E“ 1

— 0ie{sy the leading term

(R){s }( (L))Z " im®)



times
ﬂﬁ—HH — bim{")
a=1c=1
. ﬁ(z‘ﬁmﬁf“s} i) T (im® — im)
a<c a<c
_ H;lf ) (zm(R) _ Zm&R))

< 11 (B.35)

wefsiny LIt L@+ imy — i)

where the sign (—1)#{s}7{t) is due to the choice of

branch cut. We decompose B = DBD in (B.33) accord-
ing to (B.31) and massage the normalization as

‘FIE:ad (R) H D(R) a<c(zﬁl’1(ff) — ng?))
A [T img? —im{)
ead jE{j} te{t} a<c\*"", Je
% HDJ('R) Hf)gR)‘| (_D#({S}ﬂ{t}) )
je{j} te{t} im(R) —im(R){s}
(B.36)

Since B is antiperiodic under integer shifts of im () we
conclude that the braiding matrix of our 4d/2d/0d sphere
partition function is

n R .~ (R
By, — a<c(lmi(5 ) ngc ))
e e B (O
a<c Ja Je

X Z{(—

ocES,

51gn(cr) H b U(a):|‘|

im(R) —»im(R){s}

(B.37)

Strikingly, the dependence on n’ and on the choice of
n/ antifundamental flavors {s} is restricted to a shift of
mass parameters. Therefore the braiding matrix is equal
to that of a similar 4d/2d/0d setup with the left 2d the-
ory removed and twisted masses shifted. It was shown
in [26, Appendix A.3] that this gauge theory (SQCD)
braiding matrix is equal to the Toda CFT braiding ma-
trix we expect, with momenta «g, the degenerate —bw,,
the semi-degenerate Aw; including an n/b~! shift, and

+ b_l ZZ:l hsc'

To recapitulate, the differential operator introducing
0d fields only affects braiding matrices through a change
in normalization; braiding matrices thus essentially coin-
cide with those of a pure 2d theory, known to match with
Toda CFT braiding matrices; the normalization change
is reproduced by a momentum shift ase — oo + b~ A
on the Toda CFT side, itself due to the additional
—b_lwnf_n/ degenerate insertion.
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So far we have focused on expansions corresponding
to taking the OPE of degenerate and generic punctures.
We now consider the z = 29 — 1 limit, corresponding
to the fusion rule

Voo Van = Viatbyon —bwn i1 + Vawr —buon (B.38)
derived in [26]. Since three-point functions of two generic
vertex operators and Viw, —pw, O Vixtb)w, —bw,,, are un-

wieldy we only compare powers of |1 — :1:|2. On the Toda

CFT side these are

A((/\ + b)w1 - bwn+1) - A(/\wl) - A(—bwn) + ﬂl
=nb*+1)+B =0
(B.39)
AQwr — bwy) — A(Aglb)A—JrAﬂ(l—:boz_n)_Z P . (B.A40)

i > im P

where we introduced ¢ = ng+ Y ot ; ;

for convenience.

On the gauge theory side we expand each
Z§2QED( 20 3 ) in the representation (B.26) near
5(R) — 1.

Z

7520 (:(0 %) = q(1

1= s BRI (1 - B g 3

— s 1 3
(B.41)

where G and H are series in non-negative powers of
(1 — 28) and (1 — E(R)) and it turns out that H
factorizes into a holomorphic times an antiholomor-
phic series. When combining such decompositions of
n SQED partition functions one would expect 2™ terms;
however antisymmetry of the holomorphic differen-

. n n’ — R R
tial operator [],_; [[._,(b Lyl — bl )Ha<c(19,(1 ) _
19,(3R)) Ha<c(19(L) 9 L)) under permuting the 557 elimi-
nates all terms involving more than one H.

Acting with a derivative 9(%) = 2(89/92(F%) and A

on (B.41) turns the series in (1—2(%)) and (1 —E(R)) into
other such series and subtracts one from the exponent

¢—1. Since the holomorphic diﬁerentlal operator involves

) for any given z( ), we

at most n’ +n — 1 derivatives 9%
obtain a decomposition

7 — K(A(L) T(L), 1 — 3R 1 —E(R))

|1 Z |[C 1—(n'+n— 1)] (2( 2

(B.42)

for some series K and L in non-negative powers of (1 —
(M) and (1

50 and 7Y
exponents.

=(R . .
- z( )) whose coefficients are functions of

. This precisely reproduces the Toda CFT



When n = 1 we can analyze the leading term in the
series L more precisely. It must come from acting on

11— 2@ PPCDH(0,0) with n+n' — 1 = n’ derivatives
9 and n’ derivatives E(R). In particular for each factor

(b1 — b19((;L)) the derivative b9'") does not contribute
to this leading term. We obtain

0)

(—b_2(l€ i <)2)> Zg%’perzgz(n ) SQCD )

L(z®,z%";0

=N

= (H(0,0)

k

1

(B.43)
The first factor is (A times) C();Ml;)‘;;l and the
other two factors are the Toda CFT correlator

<Vaoo (oo)f/(,\_b)w1 (I)Vao (O)V,bﬂwnfﬂ“ («',7")) as ex-
pected for this term of the fusion (B.38).

Let us return to the case of general n and n’ and con-
sider the limit 225 — 1 namely z(&) — z(®). On
the Toda CFT side the OPE involves a single conformal
family

V—bflwnf,n/ (xl)v—bwn (JJ)
~ |,TI _ x|—2<wnf*n/7w7l> (V_bw7l_b71wnf,n/ (,T) + .. ) .

(B.44)

Taking the factor |2/ — :c|2'yl into account we find the
exponent
v = {wng—nr,wn) = max(0,n +n’ —ng), (B.45)
a non-negative integer. On the gauge theory side the
limit 2(52) — 1/2(3) is smooth, as can be seen for example
from the (u,s)-channel (resp. (s,u)-channel) expansion of
the partition function in non-negative (resp. non-positive)
powers of 2(1) and 1/2(%) explained above (B.28). This
is consistent with the Toda CFT result, but does not
explain the positive exponent when n + n’ > ng. For
this, recall first that the partition function is written in
the (u,s)-channel as a sum, over subsets {t} and {s} of
{1,...,n¢} with n and n’ elements, of series whose first
non-zero term is at degree d = #({t} N {s}). The holo-
morphic series are
(cao(ZN) T 4 4 coq(2F)9) (B.46)
plus terms of higher homogeneous degree in 1/ 3(R)
and (). Notice now that the Toda CFT exponent
max(0,n + n’ — ng) is the minimal possible value of d
over all subsets {t} and {s}. It is plausible that the
leading polynomial (B.46) and all higher order terms are
divisible by (2(8) — 1/2(R)ymax(0.ntn'=ne)  presumably
there exists a Seiberg dual of the U(n) x U(n') quiver,
with n — ng — n and n’ — ny — n’/, whose partition
function differs from the original quiver’s by a power of
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121 — 1/ in such a way as to make manifest the
factor (2(F) —1/2(R))yn+n'=nt when n +n' > ng.

Appendix C: Prefactors

This appendix lists prefactors A; and As appearing
in the equalities that we propose in the main text, re-
lating 4d/2d/0d partition functions and Toda CFT de-
generate correlators. These factors can be absorbed as
ambiguities of the partition function, [127] but can be
useful for extracting Toda CFT results (such as new con-
formal blocks) from the partition functions obtained by
localization. For the matching (V.10) between a quiver
with 0d Fermi multiplets and a Toda CFT correlator
with antisymmetric degenerate operators, the coeflicient
Ay (z,2";2,%) = Aa(z,2")a(Z,T') is given by (we recall
K,=n,—n,_1and K] =n, —n/_,)

A = pr@Xim P =23 i —net (0=, )b?) = 2Qb T, wike)

o o @ im ) =230 im ") —net (ne—ny, )b ) =2(Q0 7 D wiey,)

(C.1)

a(z,2') =] [(L)ﬁ“ - &L} [ )1 - Ii)ﬁﬂ
=1 =1
% H(«TL — @) H H(xi _ xﬁ)%/n H(;v - )%/L
V<K 1=1r=1 <K
(C.2)
where
B = — (@ o) + 22 (3 il (©9)
Or — ) K ng — J '
J b2
- (nn—l + KN(V - '%))_
, o KL (N5 @)
Bow = — Q.07 wky) — " Z;ij (C.4)
J= b—2
— (b + KL(V — n))T
B = —Keb(b+b"1 = A/n)
Bln = —Kb™ A ng
Yo = 0 (1 = Kinax(u,m)) Knin(u.m) /78

’YZK/ = KL/KN/nf

FYZ% = bizKI/nin(L,n) (nf - Kllnax(L,n))/nf .
For the quiver with 0d chiral multiplets, we recall that
the two FI parameters must be equal. The prefactor

is then Ay(z,z) = Alz*’|1 — :1c|2:Y given by (neglecting



powers of b in A)

T 1'(0)
A=b Y/(—nb—n'b~1)

y iz 7= k0 Ty (—K'b2)

ne
+ ; ;b‘l(zm7 —~ %)) (C.11)
F=—mb+nb N (b+b"1 =N n) (C.12)
= (nb+n'b"h) [n ;fnfb L ;fnfb*
+ — Zb zms 5 ——Zb zmj——)].
(C.13)
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