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It is known that a quasi-normal mode (QNM) of a remnant black hole dominates a ringdown
gravitational wave (GW) in a binary black hole (BBH) merger. To study properties of the QNMs,
it is important to determine the time when the QNMs appear in a GW signal as well as to calculate
its frequency and amplitude. In this paper, we propose a new method of estimating the starting
time of the QNM and calculating the QNM frequency and amplitude of BBH GWs. We apply it
to simulated merger waveforms by numerical relativity and the observed data of GW150914. The
results show that the obtained QNM frequencies and time evolutions of amplitudes are consistent
with the theoretical values within 1% accuracy for pure waveforms free from detector noise. In
addition, it is revealed that there is a correlation between the starting time of the QNM and the
spin of the remnant black hole. In the analysis of GW150914, we show that the parameters of the
remnant black hole estimated through our method are consistent with those given by LIGO and a
reasonable starting time of the QNM is determined.

PACS numbers: 04.30.-w, 04.80.Nn, 07.05.Kf

I. INTRODUCTION

Advanced LIGO detected two events of gravitational
waves (GWs) in 2015, both of which are generated by bi-
nary black hole (BBH) mergers. The waveforms of GWs
from BBHs consist of three phases, namely, the inspiral,
merger and ringdown phases. The inspiral phase corre-
sponds to an orbital motion of the two black holes (BHs)
and can be described by the post-Newtonian approxi-
mation of general relativity (GR). The merger phase is
described as a full nonlinear evolution of Einstein equa-
tions, and derived by numerical relativity simulations.
The ringdown phase corresponds to quasi-normal modes
(QNMs) of the remnant BH. Since the QNMs are intrin-
sic in the BH metric and can be seen only with GWs,
analyses of the QNMs with GWs enable us to test GR at
strong and dynamical gravitational field.

A QNM is expressed as a damped sinusoid

hQNM(t) = <
[
A0e−i{ω(t−t0)+ϕ0}

]
= A0eωI(t−t0) cos

(
ωR(t− t0) + ϕ0

)
, (1)

where ω = ωR+iωI is the QNM frequency, and A0, t0, ϕ0

are the initial amplitude, time, and phase, respectively.
Nakano et al. [1] have proposed a method to test GR
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using observed QNM GWs. While the waveform in the
ringdown phase consists of the sum of an infinite number
of QNMs, they focused on the dominant, slowest-damped
mode ((l,m, n) = (2, 2, 0)), and revealed that the QNM
frequency can be estimated with accuracy at 5σ level for
a typical case of the mass and spin of the remnant black
hole if the signal-to-noise ratio (SNR) of observed GWs
is sufficiently high [2]. It means that we can conclude
GR is inconsistent with the event if the QNM frequency
estimated from it takes a value in the region forbidden
by GR. This method can determine how high SNR for
the QNM signal is required to test GR for each mass
of BHs. We need to estimate the starting time of the
QNM in the ringdown phase to precisely estimate the
QNM frequency and to calculate the SNR for the QNM
from observed GWs from BBHs. According to Nakano et
al. [1], the roughly estimated rate of detections of BBHs
with SNR > 50 by the second generation GW detectors,
such as Advanced LIGO [3, 4], Advanced Virgo [3, 5],
and KAGRA [6, 7], is 2 yr−1. To make the best of such
chances to test GR, establishing a method of estimating
the starting time is important. However, it is difficult to
phenomenologically define the starting time, because the
transition from the merger to ringdown phase still has not
been well understood. In a theoretical approach, effects
of the determination of the starting time for residuals
in the fitting of QNM signals and for extractions of pa-
rameters have been investigated by using only QNM sig-
nals [8] and by using full numerical-relativity waveforms
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of BBH [9, 10]. In this paper, we propose a method to es-
timate the starting time in a signal-processing approach
by using the Hilbert-Huang transform (HHT).

Since the Hilbert-Huang transform is not limited by
the time-frequency uncertainty relation, unlike the short-
time Fourier transform (STFT) and the wavelet trans-
form (WT), it provides high time-frequency resolution,
and therefore enables us to investigate phenomena that
have even rapid changes in frequency as well as no or
slow changes, while the STFT and the WT can detect
only the latter. Application of the HHT to GW data
analysis has been examined with various ways [11–15].

The HHT consists of two steps: a mode decomposition
step and a spectral analysis step. At the mode decom-
position step, input data will be decomposed into some
intrinsic mode functions (IMFs). Then, at the spectral
analysis step, the time evolution of the amplitude and
the phase of each IMF are calculated by means of Hilbert
transform. This spectral analysis is called Hilbert spec-
tral analysis (HSA). Hence, we can express input data
s(t) as

s(t) =

NIMF∑
i=1

ci(t) + r(t) (2)

=

NIMF∑
i=1

ai(t) cos(φi(t)) + r(t), (3)

where NIMF is the number of IMFs, and ci(t), ai(t), φi(t)
are the ith IMF, the instantaneous amplitude (IA), and
the instantaneous phase (IP) respectively, while r(t) is
the residual or trend, which is the non-oscillatory part
mode of the data. Instantaneous frequency (IF) fi(t)
can be defined as

fi(t) =
1

2π

dφi(t)

dt
. (4)

The original HHT (proposed in [16]) uses the empirical
mode decomposition (EMD) as decomposition method.
It is known, however, that the EMD has many draw-
backs, such as mode-mixing [17, 18], mode-splitting [19],
and lack of mathematical foundation [20], and there-
fore many improved methods of the EMD have been
being proposed [19–24]. We will adopt the ensem-
ble EMD (EEMD), which is proposed by Z. Wu and
N. E. Huang [25] to overcome the mode-mixing problem.
The detail of the EEMD is also written in [14].

In this paper, we propose a method of estimating the
starting time of the QNM in ringdown phase of BBH
GW, and report the results of evaluation for the ef-
ficiency of the method. Following Nakano et al. [1],
we will focus on the dominant, slowest-damped mode
((l,m, n) = (2, 2, 0)). It is realized by applying a band-
pass filter to each waveform before the HHT and choosing
appropriate parameters of the EMD, as described in sec-
tion II A below. The basic concepts and algorithm of the
method are described in section II, and the set-ups and
the results of simulation for the evaluation are shown in

Observed BBH GW strain data

with merger time tm

Applying digital filters

and the HHT

Determining QNM-dominant

section [t0, t0 + T ]

Fitting a1(t), Á1(t) in the section

with the theoretical forms

Estimated values of t0, !R, !I

FIG. 1. Overall flowchart of estimation of QNM parameters.

section III. In section IV, the result of application of the
method to the observed data of GW150914 is described.
Section V is devoted to a summary.

Throughout this paper, discrete sequences are repre-
sented with brackets, such as x[n], and continuous func-
tions are represented with parentheses, such as s(t). The
Fourier transform of a continuous function s(t) is repre-
sented as s̃(f).

We perform calculation of the HHT using KAGRA Al-
gorithmic Library (KAGALI) [26].

II. STRATEGY OF OUR METHOD

We assume it is already known that the data contains
a GW signal from a BBH merger.

If the QNM is perfectly extracted in the jth IMF, it
follows from Eqs. (1) and (3) that the IA and IP of the
IMF are give by

aj(t) = A0eωI(t−t0), (5)

φj(t) = ωR(t− t0) + ϕ0. (6)

In reality, the IMF contains also other modes before the
QNM starts, and noise components become dominant
after the QNM is sufficiently damped. Equations (5)
and (6) do not hold in the merger phase and the noise-
dominant segment. If the IA fits Eq. (5) most properly
during a significant period from a certain time, it can be
defined as the starting time of the QNM, and we call the
segment a QNM-dominant segment.

The general flowchart of our proposed method is shown
in Fig. 1. The method consists of three steps: (A) ap-
plying digital filters and the HHT, (B) determining a
QNM-dominant segment, (C) and fitting IA and IP of
the IMF of interest with the theoretical forms.
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A. Applying digital filters and the HHT

Raw strain data contain detector noise generated from
various origins, such as seismic noise, quantum shot
noise, suspension resonance, and so on. Some of them
are relatively strong and narrow band noises, called line
noises. As shown in Ref. [27], many line noises exist at
the Advanced LIGO’s first observing run (O1).

In this step, to extract a sensitive band and to atten-
uate line noises from raw data, some digital filters are
applied to the data. For extraction of the sensitive band,
one bandpass filter will be applied, and for attenuation
of each line noise, a corresponding notch filter will be ap-
plied. After the data processed by the filters, the HHT
is applied in order to extract the QNM signal.

We must determine some parameters of the filters and
the HHT. The lower cutoff frequency of the bandpass
filter should be equal to the lower limit of the properly
calibrated band. For other parameters, however, since
there is not a universal principle applicable in various
situations, they should be determined based on each tar-
geted data. In our method, we attempt to extract the
QNM of (l,m, n) = (2, 2, 0) into the IMF1, which con-
tains the highest-frequency components, in order to pre-
vent the other IMFs from absorbing some components of
the target mode. Wu and Huang [28] revealed that IMF1
sometimes contains a small but unignorable fraction of
components in frequency bands of other IMFs. There-
fore, if we attempt to extract a target mode into the sec-
ond or higher IMF, some fraction of the component may
be absorbed into the IMF1. To extract the QNM into
the IMF1, we choose the parameters that maximize the
signal energy of the IMF1 in the segment containing the
merger phase and the beginning of the ringdown phase.
The segment will be represented as [tm, tm + Tm], if tm
denotes the time when the amplitude of the GWs is at its
maximum and Tm denotes a certain duration that cov-
ers the merger phase and the beginning of the ringdown
phase. In this paper, we determined to fix Tm at 10 ms
for all input data after several checks. We have confirmed
that this value of Tm does not cause any trouble for our
tests, but if we consider larger total mass than ∼ 60M�,
Tm should take a greater value. We choose the upper
cutoff frequency of the bandpass filter to make the dom-
inant (l,m) = (2, 2) mode be the highest frequency com-
ponents of the filtered data. The non-dominant higher
modes, such as (l,m) = (3, 3) mode, will be eliminated
in this step.

B. Determining QNM-dominant segment

After the QNM signal is extracted into the IMF1, we
will estimate the starting time of the QNM t̂0 and the
duration of QNM-dominant segment T̂ . Figure 3 shows
the flowchart of determining the segment.

The IA in the QNM-dominant segment decreases
monotonically, but monotonically decreasing segments

tm t0 tm + Tm

S
tr

a
in

Time

waveform
amplitude

exponential

FIG. 2. Illustration of the time parameters, where tm is the
time when the amplitude is at its maximum, t0 is the starting
time of the QNM, and Tm is a certain duration that covers
the merger phase and the beginning of the ringdown phase.
They are shown along with a strain of BBH GW (black solid
line), its amplitude (red dashed line), and the best-fitted ex-
ponential curve of the QNM (orange dotted line). In the pre-
processing step, the parameters will be chosen to maximize
the signal power of the IMF1 for the segment [tm, tm + Tm].
In this paper, Tm is fixed at 10 ms.

are not always the QNM-dominant segment. This means
that we need to determine the QNM-dominant segment
in these segments. To begin with, we search for the
longest segment where the IA decreases monotonically.
We assume that it extends from t[nb] to t[ne], or in
the interval [nb, ne]. And then we make a linear regres-
sion of the logarithm of IA, ln a1[n], on a linear func-
tion bt[n]+c for every possible sub-segment [n0, n0 +N ],
where Nmin ≤ N ≤ ne − nb and nb ≤ n0 ≤ ne −N , with
Nmin being a predetermined minimum size of the fitting
interval. There is no definite principle of determining
Nmin, but we set it to 5 here. Defining the root mean
squared error of the fitting as

RMSE(n0, N) =

√√√√ 1

N

n0+N−1∑
n=n0

(ln a1[n]− bt[n]− c)2,

(7)

n̂0(N), which denotes the optimal value of n0 for each
N , is determined by

n̂0(N) = argmin
n0

RMSE(n0, N). (8)

Finally, N̂ , which is the optimal value of N , is determined
as the transition point of a slope ofN – RMSE(n̂0(N), N)
plot, based on following two hypotheses:

• If the segment [n̂0(N), n̂0(N) + N ] is a part of
the QNM-dominant segment, RMSE gradually in-
creases with N , because only detector noise con-
tributes to fitting error.

• If the segment [n̂0(N), n̂0(N) + N ] contains other
modes, merger phase or noise-dominant segment,
RMSE rapidly increases with N , because fitting ba-
sis is not proper for the modes.
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IA of IMF1 a1[n]
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Fitting ln a1[n] with b t[ n] + c

in the region [n0, n0 + N],

and storing RMSE(n0, N) 

Estimating n0 with
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FIG. 3. Flowchart of determining the QNM-dominant seg-
ment. The indices nb and ne respectively denote the start-
ing time and the ending time of the longest segment where
the IA, a1[n], decreases monotonically. The index n̂0 of the

starting time of the QNM and the duration N̂ of the QNM-
dominant segment are determined from the exponentially de-
caying curve best-fitted to the IA.

Specifically, N̂ is determined as:

N̂ = argmin
N

[Err(Nmin, N) + Err(N + 1, Nmax)] , (9)

Err(N1, N2) = min
a,b

√∑N2

N=N1
(e(N)− (aN + b))

2

N2 −N1
,

(10)

e(N) = RMSE(n̂0(N), N). (11)

Figure 4 illustrates how to determine N̂ . It is plotted for
the same data with Fig. 10 (a), which will be described

in section III later. In this case, N̂ is determined to be

22.
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FIG. 4. How to determine N̂ . The black solid line shows
RMSE(n̂0(N), N) we obtain. The red dashed line and the
orange dot-dashed line illustrate the linear regression of it for
small and large values of N , respectively. In this case, N̂ is
determined to be 22, which is shown by the gray vertical line.

C. Fitting IA and IP in the segment

Since taking the logarithm of Eq. (5) gives

ln a1(t) = ωIt− ωIt0 + lnA0, (12)

we can estimate ωI and A0 if ln a1[n] is successfully fitted
onto a linear regression function bt[n] + c in a segment
[n0, n0 +N ], such that

ω̂I = b, Â0 = exp(c+ bt[n0]). (13)

Also, ωR and ϕ0 can be estimated by fitting φ1[n] with
dt[n] + e as

ω̂R = d, ϕ̂0 = e+ dt[n̂0]. (14)

Since GWs are redshifted, the QNM frequencies esti-
mated here should be shifted by the factor 1/(1 + z),
where z is the cosmological redshift parameter of the
source. For tests of GR, frequencies should be evaluated
at the source frame and compared with those estimated
with the theory. The values of frequencies given for the
rest of the paper are what are evaluated at the source
frame:

ω̂src.
R = (1 + z)ω̂R, ω̂src.

I = (1 + z)ω̂I. (15)

Hereinafter, they will be denoted simply by ωR and ωI

without the superscript “src”.

III. SIMULATION

We conduct some simulations in this section to evalu-
ate the efficiency of our method. We make use of wave-
forms obtained through numerical relativity simulation
of BBH mergers by the SXS (Simulating eXtreme Space-
times) project [29, 30]. First, we make analysis of pure
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GWs free from detector noise and compare the obtained
values of the QNM frequencies to the theoretical values
calculated with the parameters given by the SXS. And
then, we make “simulated observation data” by injecting
these waveforms to simulated detector noise and apply
the procedure to them in order to simulate realistic anal-
ysis with observed strain data.

The SXS project provides gravitational waveforms
from BBH mergers in their web site [30]. After the
detection of GW150914, 96 waveforms newly presented
to serve to validate and improve aligned-spin waveform
models for GW science [29]. Each waveform is charac-
terized by the mass ratio, q = m1/m2, and the initial
dimensionless spins, ~χ1 and ~χ2, where m1 and ~χ1 are the
mass and the initial spin of the primary BH of the BBH,
respectively, while m2 and ~χ2 are those of the secondary
BH. The waveforms can be classified into several cat-
egories: Neither is spinning, only one is spinning, and
both are spinning. The direction of the spins may be
aligned or anti-aligned with the orbital angular momen-
tum. The magnitude of the spins may equal or different
if both are spinning. We select some waveforms from
each category such that the largest mass ratio case, the
largest spin magnitude case, and so on are included. As
a result, we selected a total of 24 waveforms out of the
96 waveforms. Moreover, we add two waveforms, which
best fit GW150914 and GW151226. The distribution of
remnant BH’s masses and spins is shown in Fig. 5.
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FIG. 5. Parameter distributions of the remnant BHs in the
SXS catalog for the waveforms that we use. The horizontal
axis represents the ratio of the mass of the remnant BH Mrem

to the initial total mass of the BBH Mt, and the vertical axis
represents the dimensionless spin of the remnant BH χrem.

According to Kinugawa et al. [31], the mass distribu-
tion of Population III BHs has a peak at 30M�, and for
this reason, we set the total mass of a BBH to 60M�.
We assume that the BBH is located at z = 0.09, as
GW150914 and GW151226 are, and adopt a flat ΛCDM
cosmology with the cosmological parameters observed
by the Planck project [32], where Hubble parameter
H0 = 67.9 km s−1 Mpc−1 and matter density parame-
ter Ωm = 0.306.

In order to make simulated observation data, we gen-
erate Gaussian noises based on Advanced LIGO’s de-
sign sensitivity, the zero-detuned high-power sensitivity
curve [33], and add simulated waveforms to them.

TABLE I. Relative errors of ωR and ωI estimated for noise-free
simulated waveforms.

relative errors [%] ωR ωI

average value 0.32 0.70
worst case 2.19 4.42

To begin with, we apply our method to noise-free grav-
itational waveforms. Figure 6 illustrates how the method
works. The blue solid line shows the waveform ana-
lyzed, the red dashed line and the green dot-dashed line
are the IA and the IF calculated with the Hilbert spec-
tral analysis, respectively. The QNM-dominant segment
we determined is represented by the area filled with the
color gray, although only the horizontal time span of the
area is meaningful. The upper and lower orange dot-
ted lines show the exponentially decaying curve fitted to
the IA and its sign-inversion, respectively. It is apparent
that the IF becomes invariant with time in the QNM-
dominant segment as expected from Eq. (1), while the
IF oscillates in the latter part of this segment. The oscil-
lation is causes by the fact that the amplitude becomes
very small and therefore numerical errors grow signifi-
cant.

Figures 7 represents the relative errors of the QNM
frequencies between what we obtain and the theoretical
values, which are calculated for the spin and the mass of
the remnant BH by using the table of QNM frequencies
against parameters of the BH released by Berti [34, 35].
The values of the spin and the mass are presented in
the metadata of each simulation. It is shown that the
obtained frequencies agree with theoretical values suffi-
ciently with some exceptions, while discrepancy in ωI is
somewhat larger than in ωR. Some of the SXS waveforms
in the ringdown phase look deformed, especially in these
exceptional cases. If numerical errors in a waveform are
comparable to the small amplitude of the QNM, it will
be hard to estimate t0 and therefore the discrepancy will
be large. Estimation of ωI is likely to be affected more
sensitively than ωR by the estimation error in t0. The
average and the highest values of the relative errors over
the waveforms are shown in Table I. It means that we
can estimate the frequency and the damping rate of the
QNM with sufficient accuracy if the QNM signal is ex-
actly extracted from observed data.

To be more realistic, we make 1,000 sets of “simulated
observation data” for each waveform with simulated noise
of Advanced LIGO’s design sensitivity and apply our
method to each set of them. Some results of the analysis
for three representative waveforms are shown in Fig. 8,
and some parameters of these three waveforms are listed
in Table. II, where an optimal SNR, ρ, for a waveform
h(t) and a detector sensitivity Sn(f) is given by

ρ = 2

(∫ fmax

fmin

|h̃(f)|2

Sn(f)
df

)1/2

. (16)

We set fmin to 40 Hz and fmax to 2, 048 Hz, following
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(a) SXS:BBH:0305
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(b) SXS:BBH:0262
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FIG. 6. Fitting of noise-free waveforms. As representative examples, results obtained for SXS:BBH:0305, 0262 and 0232 are
shown. In each panel, the black solid line shows the waveform analyzed, the red dashed line and the green dot-dashed line are
the IA and the IF calculated with the Hilbert spectral analysis, respectively. The QNM-dominant segment we determined is
represented by the area filled with the color gray, although only the horizontal time span of the area is meaningful. The upper
and lower orange dotted lines show the exponentially decaying curve fitted to the IA and its sign-inversion, respectively.
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FIG. 7. Relative errors between theoretical values of the QNM
frequencies and values estimated through our analysis with
noise-free simulated waveforms, i.e. (ωR − ω̂R)/ωR and (ωI −
ω̂I)/ωI. The blue circles and the magenta triangles represent
the relative errors for ωR and ωI, respectively.

Ref. [36]. Figures 8 (a) – (i) are the histograms of pa-
rameters t0, ωR, ωI, obtained through the analysis, and
(j) – (l) show the distributions of the estimated QNM
frequencies. The black solid line in each of these figures
represents the Schwarzschild limit and the area above
this line is the prohibited area by GR. The bin widths
of the histograms are 0.5 s for t0, 100 rad/s for ωR, and
25 rad/s for ωI. The gray-colored vertical line in each
histogram shows the positions along the horizontal axis
for the value obtained through the analysis for the corre-
sponding noise-free waveform, which is almost the same
value with the theoretical value for ωR and ωI. The cen-
ters of the gray circle in each distribution plot indicates
the value obtained for the corresponding noise-free wave-
form.

The source parameters including the estimated start-
ing times of the QNM for noise-free waveforms and the
values obtained through our analysis for all 26 waveforms
are listed in Table III.

We confirmed, for noise-free waveforms, that we can
reasonably determine the QNM-dominant segment as
shown by Fig. 6, and the QNM frequencies obtained in
our analysis differ from theoretical values by only 1%

TABLE II. Initial parameters of BBHs of waveforms 0305,
0262 and 0230. Optimal SNRs defined by Eq. (16) are also
shown. In this table, χ1z and χ2z respectively denote the ini-
tial spin components of the primary and the secondary BHs
aligned with the orbital angular momentum of the BBH. For
these three waveforms, either of BHs does not have the com-
ponent of the initial spin perpendicular to the orbital angular
momentum.

ID 0305 0262 0230
mass ratio q 1.22 3 1
initial spin χ1z 0.1 −0.6 0.8
initial spin χ2z −0.09 0.0 0.8
SNR ρ 127.2 83.07 159.6

or less, although there are larger discrepancies in some
cases, as shown by Fig. 7 and Table I. In Fig. 9, we plot
the spin of the remnant BH against the starting time
of the QNM. Apparently there is a correlation between
the starting time and the remnant spin; correlation co-
efficient r is 0.764. It results from the fact that a large
value of the spin causes the merger phase to be long, and
hence the starting time of the ringdown phase is delayed.
It is consistent with the analysis by Zhang et al. [37].

However, the noise added to the waveform increases
the estimation error of t0 as shown by Fig. 8 (a) – (c)
and Table III. It tends to result in the smaller value
of t0, regardless of the SNR of a whole waveform and
other parameters. A primary source of this error is im-
perfectness of the mode decomposition. In Fig. 10, a
comparison is drawn between two examples of the de-
composition and fitting with the same waveform, 0262,
but a different time series of noise. The analysis with the
data in Fig. 10 (a) yields the value of t0 better than that
in Fig. 10 (b), namely, 4.64 ms and 3.17 ms, respectively,
while the value evaluated for the noise-free waveform is
4.64 ms. We can observe that the amplitude of IMF2 in
Fig. 10 (b) is slightly higher than that in Fig. 10 (a). It
means that the signal of the QNM is split into IMF1 and
IMF2 in Fig. 10 (b), although that is almost perfectly
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(a) t̂0 histogram of 0305
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(b) t̂0 histogram of 0262
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(c) t̂0 histogram of 0230
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(d) ω̂R histogram of 0305
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(e) ω̂R histogram of 0262
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(f) ω̂R histogram of 0230
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(g) ω̂I histogram of 0305
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(h) ω̂I histogram of 0262
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(j) ω̂ distribution of 0305
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(k) ω̂ distribution of 0262
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FIG. 8. Results of the analysis of QNM in simulated observation data for waveform 0305, 0262 and 0230. Histograms of the
estimated values of t0, ωR, and ωI are shown in the top row (a) – (c), the second row (d) – (f) and the third row (g) – (i)
of the figure, respectively. The distributions of the estimated ωR and ωI are plotted in the bottom row (j) – (l). The blue
vertical line in each histogram shows the position along the horizontal axis for the value obtained through the analysis for the
corresponding noise-free waveform, which is almost the same value with the theoretical value for ωR and ωI. The black lines in
panels (j) – (l) are the Schwarzschild limit and the area above this line is the prohibited area by GR. The centers of the blue
circles in panels (j) – (l) indicate the values obtained for the corresponding noise-free waveforms.

extracted into IMF1 in Fig. 10 (a). This is caused by a
drawback called “mode-splitting” of mode decomposition
methods such as the EMD.

IV. APPLYING TO GW150914

In this section, we apply our method to the strain data
of GW150914 from LIGO Hanford [38] to estimate its
ability in analysis of real observed data. The spectral
strain sensitivity of the data is shown in Fig. 11 (a).

Strong spectral lines are seen in the data. To reduce large
oscillation outside the most sensitive frequency band and
to attenuate the strong spectral lines inside it, we applied
digital filters based on the Butterworth infinite impulse
response filter of order 4. The properties of the filters are
listed in Table IV, and the spectral strain sensitivity of
the filtered data is shown in Fig. 11 (b).

Figure 12 illustrates the results of the analysis, which
shows the time series data and the IA of the IMF1 ob-
tained through the HHT analysis, the estimated QNM-
dominant segment, and the exponentially decaying curve
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FIG. 9. Spin of the remnant BH against the starting time of
the QNM. The correlation coefficient r is 0.764.

TABLE IV. Properties of filters we applied to the observed
data of GW150914. These are digital filters based on the
Butterworth infinite impulse response filter of order 4. In
this table, fcentral, ∆fpass and ∆fstop denote the central fre-
quency, pass band width and stop band width of a notch filter,
respectively.

Properties of notch filters [Hz]
fcentral ∆fpass ∆fstop

Notch 1 36 1 0.1
Notch 2 40 1 0.1
Notch 3 60 1 0.1
Notch 4 331 10 1

Cutoff frequencies [Hz]
lower upper

Bandstop 330.8 671.6
Bandpass 20.0 320.0

best-fitted to the IA. It is similar to Fig. 10 (a), suggest-
ing that the level of the accuracy in parameter estimates
for real data is same as that for simulated data. The
evaluated values of parameters are listed in Table V. The
error ranges of ωR and ωI shown here are evaluated from
only the standard deviation of the fitting of the IF and
IA. The corresponding frequency and damping time are
f = ωR/2π = 266± 1.6 Hz and τ = 1/|ωI| = 4.73± 0.07
ms, respectively. Assuming that the red shift z = 0.09,
and hence luminosity distance dL = 410 Mpc, following
the parameter estimation in Ref. [39], and that the QNM
we extracted is of (l,m, n) = (2, 2, 0), the dimensionless
spin parameter χrem and the mass Mrem of the remnant
BH are evaluated from the QNM frequency ω by using
the conversion table [34, 35]. They are shown in Table V,
too, as well as measures of statistical errors correspond-
ing to those of ωR and ωI. These values are apparently
larger than those given by Ref. [40]. The reason is that,
as shown in Fig. 8, the systematic error due to noise in
the observed data is large, and both ωR and ωI are tend
to be underestimated. So that the larger values of χrem

and Mrem are given.

V. SUMMARY AND DISCUSSION

We proposed a method of estimating the starting time
of the QNM in the ringdown phase of GWs from BBH
merger, and made its evaluation. The determination of
the starting time of the QNM is essential for the test of
GR proposed by Nakano et al. [1]. We consider it as the
commencing time of the segment in which the IA calcu-
lated with the HHT is well-fitted with an exponentially
decaying form as it is expected for the QNM. Also, we
can estimate the QNM frequency of a remnant BH with
this method. The accuracy of the method was evalu-
ated by applying it to noise-free gravitational waveforms
free from detector noise provided by SXS group, simu-
lated observation data, and then the real observed data
of GW150914. The simulated observation data are made
by injecting waveforms into Gaussian noise based on Ad-
vanced LIGO’s design sensitivity.

The results of analyzing noise-free waveforms show
that the recovered QNM frequencies are consistent with
theoretical values with accuracy of 0.32 % and 0.70 %,
on average, for the real and imaginary parts, respectively.
This means that we can recover parameters of the rem-
nant BH correctly ONLY if the QNM signal is perfectly
extracted. In future, third generation GW detectors,
such as the Einstein Telescope [41] and B-DECIGO [42]
will observe BBH signals with enormously high SNR.
With these detectors, our method can work properly and
contribute to some tests of GR using QNMs. We find also
that starting times of the QNM have a correlation with
spins of remnant BHs. It is attributed to the fact that the
merger phase remain longer and hence the starting time
of the QNM becomes later as the spin of the remnant BH
is larger.

At present, the efficiency of our method for observed
data is not so high. It is mainly caused by the fact that
the EMD is still in developing stage. Noise in observed
data will often give rise to the mode-splitting in the EMD
used in the HHT. In this case, the peak value of the
IMF is reduced and therefore the signal will be observed
to decay more slowly. It also causes the amplitude of
the IMF to fit from earlier to an exponentially decaying
curve. It results in the smaller value of the imaginary
part of the QNM frequency and the smaller value of the
starting time of the QNM. The deformation of the IMF
due to noise usually leads to the smaller value of the IF
through the Hilbert spectral analysis, and thus the real
part of the QNM will be underestimated.

Even though several improvements of the EMD have
been proposed, the mode-splitting problem has not yet
been resolved. If the mode-splitting is controlled more
effectively and thus the signal of the QNM is extracted
into a single IMF, the parameters will be estimated more
accurately through our method. One promising solution
is to take sparsity in the frequency domain into account
in the mode decomposition. This idea is based on the fact
that the instantaneous frequency of the QNM is constant.
It should be noted, however, that this solution can be ap-
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(b) Frequent case

FIG. 10. Two examples of the decomposition and fitting for waveform 0262 with different time series of noise (series with
different random number seeds). Panel (a) is the case that the estimate value of t0 falls on the blue vertical line in Fig. 8 (b),
while panel (b) is the case that t0 falls in the most frequent bin. In each panel, IMF1 and IMF2 are drawn by the black solid
line and the green dot-dashed line, respectively. The red dashed line, the orange dotted lines and the area filled with the color
gray represent the same ones as Fig. 6.
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FIG. 11. Spectral strain sensitivity of observed data of GW150914. The left and right figures show the data before and after
applying digital filters, respectively. The properties of the filter are listed in Table IV.
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FIG. 12. Fitting of the filtered data of GW150914. Lines and
the gray-colored area represent the same ones as Fig. 10.

plied to only some specific cases, in which the frequency
of the mode of interest is known to be constant, and that
it will not always resolve the mode-splitting problem.

We are now focusing on the only dominant, slowest-
damped mode (l,m, n) = (2, 2, 0), by filtering higher
modes such as (l,m) = (3, 3) modes. According to Lon-
don, Shoemaker, and Healy [43], although (l,m, n) =
(2, 2, 1) and (l,m, n) = (2, 1, 0) modes are in the same
band of the target mode, their amplitudes are one order

of magnitude lower than the target mode. We have not
considered the contributions of these modes in this paper.
For further work, we are planning to analyze mixtures of
various modes. Improvement of mode decomposition will
enhance the ability to decompose different modes into
different IMFs properly, and therefore we will be able
to investigate higher QNMs, as well as the fundamental
mode, accurately.
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TABLE V. Estimated parameters of GW150914 by our method. The dimensionless spin parameter χrem and the mass Mrem

of the remnant BH are estimated from the QNM frequency ω = ωR + iωI by using the conversion table [34, 35], assuming the
redshift z = 0.09 and the QNM mode of l = m = 2 and n = 0. The error ranges of ωR and ωI are evaluated from only the
standard deviation of the fitting of the IF and IA. The measures of errors of χrem and Mrem correspinding the errors of ωR and
ωI are also shown.
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