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Light scalar fields can form gravitationally bound compact objects called boson stars. The profile
of boson stars in the Newtonian limit is described by the Gross-Pitaevskii-Poisson equations. We
present a semi-analytic solution to these equations and construct the profile of boson stars formed
by a non-interacting scalar field. Our solution is stable with respect to numerical errors and has
accuracy better than 10−6 over the entire range.

I. INTRODUCTION

Axions are an attractive solution [1–5] to the strong
CP problem of QCD [6, 7], and also provide an attrac-
tive and natural dark matter candidate (for reviews see
[8, 9]). This has motivated multiple search strategies for
axions and axion-like particles [10–21]. It has also been
argued that ultra-light axions [22] can solve problems en-
countered by the usual CDM models [23–26].

For all these purposes, it is important to understand
the spatial structure of axion-like particles if they con-
stitute dark matter. Most importantly, it is crucial to
know whether or not these particles clump into compact
objects (see [27] for a review). The Jeans instability [28–
32] indicates that a uniform density of axions is unstable,
indicating the formation of large compact objects (some-
times called boson stars [33, 34]). The boson stars are
prevented from completely collapsing by a bosonic ana-
logue of the Fermi pressure in white dwarfs [35].

Once the boson stars form, further cosmological evo-
lution can occur by scattering of these boson stars off
other boson stars, as well as baryonic matter [36]. Such
scatterings may either enhance or decrease the number of
these objects. To analyze these scatterings, we must have
a detailed understanding of the bound states, including
their energies and profiles.

At least for fairly dilute1 systems, the compact objects
are bound states of a nonlinear Gross-Pitaevskii-Poisson
equations, which we re-derive below. Numerical solutions
to these equation have found the bound state energies
and mass-radius relation, both in the cases with no self-
interactions, as well as including self interactions, either
attractive or repulsive [34, 41–51]. However, the profiles
are only available numerically; they are computationally
expensive to find and are difficult to extend to perturba-
tions of the boson stars. Furthermore, they tend to have
numerical instabilities in the tails of the profile. The au-
thors of [52] follows a different approach: using a simple
Gaussian ansatz for the density profile they were able to
obtain the mass-radius relation and ground-state energy
within a 10% deviation of the numerical solution. The
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1 There is a different set of solutions with large density: dense

boson stars [37–40].

Gross-Pitaevskii-Poisson equations have also been stud-
ied in the context of quantum state reduction by [53–55].

In this paper, we introduce a combination of analyti-
cal and numerical methods to find approximate solutions
to the Gross-Pitaevskii-Poisson equations. We illustrate
this for the case of no self-interactions among the bosons
(the interacting case will be treated in an upcoming pa-
per [56]). We also perform a detailed analysis of the
accuracy of our results. We show that our method is
much less computationally expensive than previous ap-
proaches, nevertheless we demonstrate that we find ex-
cellent agreement with a full numerical solution over the
entire parameter range. Furthermore, our method is nu-
merically stable and does not diverge far away from the
star, which can occur for a purely numerical approach.

II. THE GROSS-PITAEVSKII-POISSON
EQUATIONS

A. Derivation

Let us consider a complex scalar field φ(~r, t) described
by the Lagrangian

L = gµν(∂µφ
∗)(∂νφ)−m2(φ∗φ)− λ

2
(φ∗φ)2 (1)

We can then expand the field φ in spherical harmonics2

φ(~r, t) =
∑
nlm

Rnl(r)Ylm(θ, φ)e−iEnlmt. (2)

We assume that only the ground state (n, l,m) = (1, 0, 0)
is populated. In this case the field takes the simple
form φ(~r, t) = (2E/N)−

1
2ψ(r)e−iEt, where we denote

the ground-state energy as E. The real function ψ(r)
describes the radial profile of the star and is sometimes
called the wavefunction. We have chosen a normaliza-
tion

∫
ψ2dV = 1, which allows us to identify ψ2 with the

probability density. Let us further make two simplifying
assumptions

2 Note that this expansion allows us to choose all Rnl(r) to be
real.
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Newtonian Gravity: The field is only weakly coupled
to gravity such that we can use a Newtonian ap-
proximation. This allows us to introduce the New-
tonian potential Φ in the metric gµν = diag(1 +
2Φ,−1,−1,−1). The Newtonian potential is re-
lated to the energy density via the Poisson equation
∇2Φ = 4πGρ.

Non-Relativistic: The ground state is non-relativistic.
In this case we can write E = m + e with binding
energy e� m. This implies eψ,Φψ,∇ψ � mψ.

The equation of motion is the Klein-Gordon equation,
�φ+m2φ+ λ|φ|2φ = 0, which we can write in terms of
the wavefunction as

(1 + 2Φ)−1∂2t ψ −∇2ψ +m2ψ +
Nλ

2m
ψ3 = 0. (3)

In the non-relativistic approximation we can write

eψ = − 1

2m
∇2ψ +mΦψ +

Nλ

4m2
ψ3 (4)

and recover the Schrödinger-type equation. For our non-
relativistic approximation to be consistent, the last term
should be sufficiently small i.e. Nλ

4m2ψ
2 � m.

The energy density of the complex scalar field is

ρ = |∂tφ|2 + |∇φ|2 +m2|φ|2 + λ|φ|4 ≈ Nmψ2 (5)

where we used the non-relativistic approximation in the
last step. Newtons equation therefore takes the simple
form

∇2Φ = 4πGNmψ2 (6)

B. Scaling Symmetry of the
Gross-Pitaevskii-Poisson System

As derived above, the ground state of the self-
gravitating boson star in the non-relativistic limit can be
described by a wavefunction ψ(r) and a gravitational po-
tential Φ(r) satisfying the Gross-Pitaevskii-Poisson equa-
tions given in (4) and (6). For the remainder of this pa-
per, we will focus on the non-interacting case λ = 0, and
postpone the discussion of finite self-interactions λ 6= 0 to
a separate study [56]. For simplification, let us introduce
the following dimensionless variables,

x = 2rm, V =
e

2m
− Φ

2
, and S =

√
πGN

2m
ψ (7)

The equations (4) and (6) become

∇2V = −S2 and ∇2S = −V S. (8)

The wavefunction normalization condition
∫
ψ2dV = 1

can be rewritten as∫ ∞
0

x2S2dx = GMm, (9)

where we introduced the star mass M = Nm. These
equations describe the hydrostatic equilibrium of the bo-
son star, in which the gravitational attraction caused by
the potential V is balanced by a repulsive quantum pres-
sure. This quantum pressure arises from Heisenberg’s
uncertainty principle and prevents the system from grav-
itational collapse.

Let us note that Eq. 8 and 9 are invariant under the
scaling

x→ x

f
, S → f2S, V → f2V, M → fM. (10)

where f is a scaling factor. This implies that solutions
corresponding to different masses M can be related to
a unique solution by rescaling. To obtain the unique
solution, we have to fix the scale by choosing a reference
scale k. Although there are many different ways to fix
k, a particularly useful choice for our discussion3 is to
set −k2 = V (∞) = e

2m which transforms as k → fk.
We can then introduce the scale invariant coordinate z,
wavefunction s, potential v and mass β via

z = kx, S = k2s, V = k2v, GMm = 2kβ. (11)

Note that S and V are functions of the scaling depen-
dent coordinate x while s and v are functions of the
scale independent coordinate z. Using the scale indepen-
dent variables, we can write the Gross-Pitaevskii-Poisson
equations as

∇2s = −sv and ∇2v = −s2 with v(∞) = −1. (12)

To obtain the solution corresponding to a boson star with
mass M , we then have to perform the rescaling given in
Eq. 11 with k = GMm

2β . In the following section, we will

obtain an approximate analytical form for s, v and the
mass parameter β.

III. SERIES EXPANSIONS

It has been shown [55, 57] that the Gross-Pitaevskii-
Poisson system given by (12) has a unique square nor-
malizable solution for s, v with s > 0 for all values of
z. The authors of [54] also provide a numerical solution.
However, the authors have also shown that this numeri-
cal solution will diverge at some finite value of z and can
therefore not be used to describe the profile at large ra-
dius. The author of [52] follows a different approach and
approximates the density profile by a Gaussian, which is
able to approximately reproduce thermodynamical prop-
erties of the boson star but otherwise fails to describe the
profile, in particular at large radius. We attempt to solve
this problem by providing an analytical expression for s
and v which describes the profile at all radii with high
precision.

3 For the numerical integration in appendix A, we will choose a
different reference scale k which sets V (0) = 1.
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A. Expansion at Small Radius: z = 0

Since both s and v are well behaved around z = 0, we
can expand them in a series expansion

s =

∞∑
n=0

snz
n and v =

∞∑
n=0

vnz
n . (13)

We can then write the Laplacian on the left hand side of
Eq. 12 as

∇s = s′′ +
2

z
s′ =

∞∑
n=0

(n+ 2)(n+ 3) sn+2 z
n. (14)

and the right hand side as a Cauchy product

sv =

[ ∞∑
i=0

siz
i

][ ∞∑
j=0

vjz
j

]
=

∞∑
n=0

n∑
m=0

smvn−mz
n. (15)

By matching the coefficients in Eq. 12 we obtain the
recursion relations

(n+ 2)(n+ 3)sn+2 = −
n∑

m=0

smvn−m,

(n+ 2)(n+ 3)vn+2 = −
n∑

m=0

smsn−m.

(16)

Note that requiring the profile to be smooth at the origin
implies s1 = v1 = 0 and therefore also all odd coefficients
s2n+1, v2n+1 vanish. The profile at small radius z can
therefore be fully parametrized in terms of the wavefunc-
tion and potential at the origin: s0 and v0. We can
obtain s0 and v0 from a fit to the numerical solution, as
discussed in appendix A.

For practical purposes, we will truncate the infinite se-
ries of Eq. 13 at some N . This is shown in Fig. 1. The
upper panel shows both the numerical solution as well as
the truncated expansion s(N) for different values of N .
The lower panel shows the deviations of the truncated
expansion from the numerical solution. We can see that
already a small number of terms in the series expansion
provides a sub-percent level accuracy for the inner part of
the profile. A better accuracy can be obtained by includ-
ing more terms in the expansion. However, the accuracy
of the series expansion is limited by the accuracy of s0
and v0 which in Fig. 1 is about 10−12. Note that the se-
ries expansion of Eq. 13 diverges at z > 4 and a different
parametrization has to be chosen.

B. Expansion at Large Radius: z =∞

At large radius z → ∞, we expect the wavefunction
to decrease at least exponentially, ψ ∼ e−kr, and the po-
tential to approach the Newtonian potential of a central
point mass Φ ≈ GM

r . A series expansion at large radius
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FIG. 1. The upper panel shows the numerical solution (solid
black) and truncated series expansion (colored dashed lines) of
the central wavefunction. The lower panel shows the accuracy
(s(N) − snum)/snum of the truncated series expansion with
respect to the numerical solution.

must be able to reproduce these limits. Let us choose the
following general ansatz for the form of the solution

s =

∞,∞∑
n,m=0,0

snm

(
e−z

zσ

)n
z−m, v =

∞,∞∑
n,m=0,0

vnm

(
e−z

zσ

)n
z−m (17)

Here we assume the existence of a σ ∈ R, whose meaning
will become clear later. The Laplacian of s can be written
as

∇2s =

∞,∞∑
n,m=0,0

(
snmn

2 + 2snm−1n(nσ +m− 2)

+ snm−2(nσ +m− 3)(nσ +m− 2)
)(e−z

zσ

)n
z−m

(18)

Note that we introduced the short-hand notation sn,−1 =
sn,−2 = 0. The right hand side of Eq. 12 can be rewritten
as Cauchy product:

sv =

 ∞,∞∑
i,a=0,0

sia

(
e−z

zσ

)i
z−a

 ∞,∞∑
j,b=0,0

vjb

(
e−z

zσ

)j
z−b


=

∞,∞∑
n,m=0,0

(
n,m∑

p,q=0,0

spq v
n−p
m−q

)(
e−z

zσ

)n
z−m

(19)
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By matching the coefficients, Eq. 12 we obtain the recur-
sion relations

n,m∑
p,q=0,0

spqv
n−p
m−q + n2 snm + 2n(nσ +m− 2) snm−1

+ (nσ +m− 2)(nσ +m− 3)snm−2 = 0 (20)
n,m∑

p,q=0,0

spqs
n−p
m−q + n2 vnm + 2n(nσ +m− 2) vnm−1

+ (nσ +m− 2)(nσ +m− 3)vnm−2 = 0. (21)

Let us note the following properties of s and v: i) Nor-
malizability requires s00 = 0. Eq. 20 then implies that
all coefficients s0m vanish as well. This means that the
wave function decays at least exponentially. ii) Eq. 21
then implies that all v0m = 0 for m > 1. This means that
at large radius, the potential is described by the New-

tonian potential v(0) = v00 +
v01
z . All other terms in the

expansion of v are at least exponentially suppressed. iii)
Eq. 20 and 21 further imply that the potential contains
only non-vanishing components vnm for even n while the
wavefunction only has non-vanishing components snm for
odd n.

IV. THE SOLUTION FOR THE
WAVEFUNCTION

A. The Wavefunction at Leading Order

Using Eq. 20 and 21, we are able to recursively cal-
culate all coefficients in the expansion of s and v. Let
us first analyze the n = 1 expansion of s which provides
us both a leading order approximation and a deeper un-
derstanding about the form of the solution. We have
seen before that at leading order the potential is given by

v(0) = v00 +
v01
z . Setting m = 0, Eq. 20 reads s10 = −s10v00

which implies v00 = −1 as expected from our scale choice
which fixes v(∞) = −1. Setting m = 1, Eq. 20 reads

s11 + 2(σ − 1)s10 = −s11v00 − s10v01 (22)

which implies v01 = 2(1−σ). This is a remarkable result:
the exponent σ in the series expansion is related to the
the total mass of the system. In the notation of Eq. 11,
we can write σ = 1− 1

2v
0
1 = 1− β. Let us now calculate

the remaining coefficients by setting and m = M+1 with
M ≥ 1. Then Eq. 20 can be written as

s1M+1v
0
0 + s1Mv

0
1 + s1M+1 + 2(σ +M − 1)s1M

+ (σ +M − 1)(σ +M − 2)s1M−1 = 0
(23)

We can therefore recursively compute the coefficients s1M
by

s1M = − (σ +M − 1)(σ +M − 2)

2M
s1M−1. (24)

Using the rising factorials (x)n = x(x+ 1)(x+ 2) · · · (x+
n − 1), (x)0 = 1 we can write the coefficients explicitly
as

s1M = s10
(σ)M (σ − 1)M

M !
· (−2)−M (25)

The leading order wavefunction s(1) can therefore be
written as

s(1) = α
e−z

z1−β

∞∑
m=0

(
(1− β)m(−β)m

m!
(−2z)−m

)
(26)

Here we have introduced the normalization parameter
α = s10. The far-field solution is described by only two
free parameters: the wavefunction normalization α and
the total mass parameter β. At very large radius, the
wavefunction approaches s = αe−zzβ−1.

Let us note that we can rewrite the far-field solution
as

s(1) =
α

2βz
Wβ,− 1

2
(2z) =

α

2βz
e−zU(−β, 0, 2z) (27)

where Wβ,− 1
2
(2z) is the Whittaker function which can

also be expressed in terms of the confluent hypergeomet-
ric function U . This result is not surprising: when consid-
ering the leading order potential v(0) = −1 + 2β

z , Eq. 12
turns into the Whittaker equations. For a more detailed
discussion on different representations of the leading or-
der wavefunction, see appendix B.

It is known that the series expansion of the confluent
hypergeometric function U(a, b, z), and therefore also the
expansion of s(1), are not Cauchy convergent. However,
the infinite sum has a finite value and behaves conver-
gently for a finite number of terms. This is illustrated in
the upper panel of Fig. 2 where we show the coefficients
s1m. We can see that they converge for m < 6 while they
start to diverge again for m > 6. Let us therefore split

the function s(1) into a finite series s
(1)
(M) truncated after

M terms and the corresponding remainder RM :

s(1) = s
(1)
(M) +R1

M with s
(1)
(M) =

M∑
m=0

s1m
e−z

zβ−1
z−m (28)

In the right panel of Fig. 2 we show the relative size
of the remainder R1

M with respect to s(1) for different
values of z. We can see that finite series first converges
quickly, even for values of z close the convergence radius
z > 2. At some M , which depends on the value of z,
the remainder reaches a minimum and diverges for large
M . Note that the coefficients s1m and therefore also the
remainders RM are oscillating which allows the infinite
series s(1) to be finite. In this work, we will avoid the
problem of divergence by truncating the series expansion
of s(1) at m = M and ignoring the remainder. This
precision of this approximation should be sufficient for
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FIG. 2. Coefficients s1m of the leading order series expansion
of s(1) as given in Eq. 25 (upper panel) and remainder R1

M

as defined in Eq. 28 for different values of z. In both panels,
positive values are indicated by a ‘+’ while negative values
are indicated by a ‘−’.

most applications4.
Let us now compare the leading order approximation

with the numerical solution. To obtain the expansion pa-
rameters α and β, we perform a fit of the leading order
expansion to the numerical solution, as explained in ap-
pendix A. In the upper panel of Fig. 3 we compare the
full leading order approximation s(1) and the truncated

series s
(1)
(M) for different M to the numerical solution. We

can see that the full leading order series expansion s(1)

converges to the numerical profile for z > 2 and is already
well described by the truncated series with M = 1.

The lower panel shows the normalized differences be-
tween the truncated series expansion and the full lead-

ing order solution, (s
(1)
(M) − s(1))/s(1), and deviation of

the full leading order solution compared to the numeri-
cal solution. For increasing z, the differences between the
numerical solution and the leading order solution s(1) be-
come exponentially small. For z & 12 we can see that the
precision of the leading order approximation s(1) starts to
be limited by the precision of the expansion parameters α
and β, which we estimated to be of the order 10−9. The

4 As shown in [58], it is possible to perform a hyperasymptotic ex-
pansions in which we truncate the series at m = M and perform
another series expansion for the remainder. This procedure can
be repeated until the desired precision is reached.
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FIG. 3. The upper panel shows the numerical solution (solid

black line), the truncated leading order series expansion s
(1)

(M)

(colored dashed lines) and the full leading order series ex-

pansion s(1) (solid gray line) of the wavefunction. The lower

panel shows the accuracy (s
(1)

(M) − s(1))/s(1) of the truncated

leading order series expansion with respect to the full lead-
ing order series expansion, as indicated by the colored dashed
lines. The solid black line in the lower panel shows the accu-
racy of the leading order series expansion with respect to the
numerical solution: (snum − s(1))/s(1).

colored dashed lines show the remainder R1
M of the trun-

cated series expansion s
(1)
(M). We can see the for M = 4

the uncertainty due to truncation is comparable to the
uncertainty of the input parameters.

At small z, we can see that difference between the nu-
merical solution an s(1) increase and higher order terms
N > 1 start to be important.

B. Next to Leading Order Contributions

In the previous section we have analyzed the leading
orderN = 1 contribution of the series expansion in Eq. 20
to the wave function. We found that at large z & 12, the
contribution from next-to-leading order terms N > 1 is
smaller than the uncertainty induced by the uncertainty
of the parameter α and β. We concluded that in this
range the N > 1 terms can be safely ignored. However,
at intermediate z in the range 2 < z < 12, the next
to leading order terms become important, as we have
seen in Fig. 3 and terms of higher order in N have to be

included. Let us introduce the truncated solution s
(N)
(M)
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(M) of the wavefunc-

tion. The lower panel shows the accuracy (s
(N)

(M)−snum)/snum
of the truncated series expansion with respect to the numeri-
cal solution. We fix M = 4.

and the corresponding remainder RNM via

s = s
(N)
(M) +RNM with s

(N)
(M) =

N,M∑
n,m=0,0

snm

(
e−z

zβ−1

)n
z−m (29)

In the upper panel of Fig. 4 we show the truncated ex-

pansion s
(N)
(M) for the wavefunction for different choices

of N , fixing M = 4. The lower panel shows the corre-
sponding deviations of the truncated expansion from the
numerical solution. We can see that the series always di-
verges for z < 1. Including the N = 3 and N = 5 terms
will increase the accuracy of our series expansion for an
intermediate radius z ≈ 3 to an O(10−5) level. Taking
into account additional terms N > 5 does not signifi-
cantly increase the accuracy of the expansion. In this
case, the dominant contribution to the remainder comes
from neglected terms with m > M , which become more
important at small z.

C. Combined Result and Matching

We can now combine the two truncated solutions, s(N)

and s
(N)
(M), obtained for both small and large values of z

by matching them at a matching point z∗. This is shown

for s(N) with N = 10 and s
(N)
(M) with N = 1, M = 1 in
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FIG. 5. The upper panel shows the truncated series expansion
of the wavefunction s10 at small radius (magenta curve) and
s11 at large radius (red curve), matched at an intermediate
value of z. The solid gray line shows the numerical solution.
The lower panel shows the accuracy of the truncated series
expansion with respect to the numerical solution for different
truncations N,M .

the upper panel of Fig. 5. Here the truncated solution
takes the simple form

s =



1.021− 0.159z2 + 1.63 · 10−2z4

for z < 2.5−1.42 · 10−3z6 + 1.14 · 10−4z8

−8.74 · 10−6z10

e−z · z0.7526
(
3.4951− 2.3053

z

)
for z > 2.5

(30)

We can see that already such few terms in the series
expansion are sufficient to describe the wavefunction well.
The accuracy is at the few percent level at the matching
point z = 2.5 and orders of magnitude better at small
and large z, as shown in the lower panel. A precision of
10−5 at the matching point can be achieved using s(N)

with N = 50 and s
(N)
(M) with N = 5, M = 4, where the

precision at small and large z is again limited by the
precision of the expansion parameters s0, v0, α and β at
the 10−12 level.

We can also determine the expansion parameters by
matching the small and large radius wavefunction and
their derivatives at a matching point z∗. We have per-
formed such a matching using s(N) with N = 250 and
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s
(N)
(M) with N = 10 and M = 6 and obtain

s0 = 1.0215035± 4.46 · 10−6

v0 = 0.9383304± 2.67 · 10−6

α = 3.4951958± 3.17 · 10−5

β = 1.7526505± 6.34 · 10−6

(31)

To estimate the uncertainty associated with the matching
procedure, we performed multiple matchings for 3 < z∗ <
3.5. The obtained values for expansion parameters are
consistent with those in Eq. A1 obtained through the
fitting of the large radius solution but have a significantly
worse precision. This is not surprising, since the precision
of our series expansion is expected to be worst at the
matching point z∗.

V. CONCLUSION

We have found a semi-analytic solution to the coupled
Poisson-Newton equations describing dilute boson stars.
We have shown that our solution is stable to numeri-
cal errors, and that it reproduces the numerical results
with accuracy better than 10−5 over the entire range.
Improvements in accuracy can easily be attained for a
small expense of numerical work.

There are many possible applications of our methods.
The simplest one is to consider interacting bosons, when
a potential for the bosons is added. Such a potential
can significantly modify the solution, because the inter-
actions can be much stronger than gravitational. Rota-
tion can also modify the solution. In all these case, the
large number of parameters makes it impractical to find
purely numerical solutions; our semi-analytical method
would be better suited for these problems.

Another open question is the stability of these solu-
tions. For example, it is not known how the boson stars
are affected by external perturbations e.g. by another
star nearby. Once again, an accurate knowledge of the
profiles is a requirement for the stability analysis. We
hope to return to these and other questions in future
work.
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Appendix A: Numerical Integration and Fitting

To obtain a numerical solution, it is convenient to use
the variables S, V and coordinate x given in Eq. 11 with
a reference scale k chosen such that V (0) = 1. As shown
in [55], the solutions of Eq. 8 can then be parametrized
by the central value of the wavefunction, S0 = S(0) and

categorized into three distinct classes: for S0 > S∗0 the
wavefunction diverges for at large radius towards positive
infinity, for S0 = S∗0 the wavefunction converges to zero,
is positive definite and square integrable, while for S0 <
S∗0 the wavefunction diverges for at large radius towards
negative infinity.

Using a Runge-Kutta 4 method with constant step size
∆x, we perform the numerical integration until the wave-
function starts to diverge and iteratively optimize the
central value of the wavefunction S0 to find S∗0 . The
precision of the wavefunction needed for the numerical
solution to stay finite until a large value of x, which is
needed to fit the large range solution, increases exponen-
tially with the radial coordinate x. In this study we use
a precision of 35 significant figures for S0, providing a
converging numerical solution for x < 35. The accuracy
of the numerical solution is limited by the step size ∆x.
In this study, we use ∆x = 10−3, providing an accuracy
of the solution of order O

(
∆4
x

)
≈ 10−12.

To obtain the expansion parameters α, β, we fit the
Newtonian potential V (x) = −k2 + 2kβ

x and the Whit-

taker solution S(x) = kα
2βx

Wβ,− 1
2
(2kx) to the numerical

solution for V and S at large x. To avoid systematic
effects due to the truncation of subleading terms n > 1
of the series expansion in Eq. 17, we restrict the fitting
range to x > x∗, where the fraction of mass outside radius
x∗ contributed less than 10−12 to the total mass of the
boson star. The expansion parameters at small radius
can then be obtained through s0 = k−2S0 and v0 = k−2.
We find that

s0 = 1.02149303631± 1.4 · 10−10

v0 = 0.93832284019± 1.3 · 10−10

α = 3.4951309897 ± 5.1 · 10−9

β = 1.7526648513 ± 1.3 · 10−9

(A1)

The uncertainty of s0, v0 and β where estimated by the
difference of the best fit values to potential and wave-
function. For α we state the uncertainty of wavefunction
fit.

Appendix B: Representations of the Leading Order
Wavefunction

When considering only the potential v(0) = −1 + 2β
z ,

Eq. 12 can be written as

d2

dz2
(2zs(1)) + 2zs(1)

(
−1 +

2β

z

)
= 0 (B1)

or

d2w

dy2
+

(
−1

4
+
β

y

)
w = 0. (B2)

Here we performed a change of variables to y = 2z and
w = 2z s(1). This is the Whittaker equation [59], which
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has the solution5 w = C ·Wβ,− 1
2
(y) and therefore implies

s(1) = C · (2z)−1Wβ,− 1
2
(2z). Note that the Whittaker

function is related to the confluent hypergeometric func-
tion U throughWκ,µ(z) = e−

1
2 zz

1
2+µU( 1

2+µ−κ, 1+2µ, z)
which was used in Eq. 27. We can expand the Whittaker
function in an infinite series

s(1) =
C

21−β
e−z

z1−β

∞∑
m=0

(
(1− β)m(−β)m

m!
(−2z)−m

)
(B3)

This is the same solution as Eq. 26 and we can identify
α = C2β−1.

The far-field wavefunction can also be written in terms
of the Bateman function kν(z)

s(1) =
α

2βz
e−zU(−β, 0, 2z) =

α

2βz
Γ(1 + β)k2β(z). (B4)

The Bateman function [60] can be expressed via the in-
tegral form

k2β(z) =
2

π

∫ π
2

0

cos (z tan θ − 2βθ) dθ (B5)

which is finite and convergent.
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