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The characteristic damping times of the natural oscillations of a Kerr black hole become arbitrarily
large as the extremal limit is approached. This behavior is associated with the so-called zero damped
modes (ZDMs), and suggests that extremal black holes are characterized by quasinormal modes
whose frequencies are purely real. Since these frequencies correspond to oscillations whose angular
phase velocity matches the horizon angular velocity of the black hole, they are sometimes called
“synchronous frequencies”. Several authors have studied the ZDMs for near-extremal black holes.
Recently, their correspondence to branch points of the Green’s function of the wave equation was
linked to the Aretakis instability of extremal black holes. Here we investigate the existence of ZDMs
for extremal black holes, showing that these real-axis resonances of the field are unphysical as natural
black hole oscillations: the corresponding frequency is always associated with a scattering mode.
By analyzing the behavior of these modes near the event horizon we obtain new insight into the
transition to extremality, including a simple way to understand the Aretakis instability.

I. INTRODUCTION

The gravitational wave signal produced by a perturbed
rotating (Kerr) black hole can be roughly divided into
three phases [1–4]: the initial burst of radiation, the
ringdown phase, and the late-time tail. The ringdown
phase is dominated by damped oscillations of the form
eiωt with complex quasinormal mode (QNM) frequencies
ω. The real part of ω is the oscillation frequency, while
the imaginary part is associated with the characteristic
damping time. A remarkable fact is that the quasinormal
frequency spectrum depends only on the black hole pa-
rameters, namely its mass M and its specific angular mo-
mentum a (throughout this paper we assume G = c = 1).

Theoretically, the angular momentum of a Kerr black
hole is bound from above by a = M , in which case it
is said to be extremal. The angular velocity of the black
hole depends on the ratio a/M , and is denoted by Ωh [for
an extremal black hole, Ωh = (2M)−1]. In astrophysical
scenarios, it is believed that black holes cannot rotate
faster than a ≈ 0.998M . This is the Thorne limit [5],
predicted from the analysis of a general accretion process
by a black hole; see however [6] (in particular Section 1.1
and references therein), which predicts a limit closer to
extremality.

Despite this limitation, it is nonetheless interesting
and important to study extremal black holes, at least
from a theoretical perspective. In fact, extremal black

∗ mauricio.richartz@ufabc.edu.br
† herdeiro@ua.pt
‡ eberti@olemiss.edu

holes are characterized by vanishing Hawking tempera-
tures and therefore, even semiclassicaly, do not radiate.
Hence, they are believed to possess a simpler description
(compared to nonextremal ones) in a complete quantum
gravity theory [7, 8].

Since Kerr black holes are widely used in both theo-
retical analyses and astrophysical applications [9], it is
crucial to discuss their stability. Mode stability (the ab-
sence of characteristic oscillations with definite frequency
that grow in time) was verified by Whiting for nonex-
tremal black holes in [10] (see also [11–13]), and for ex-
tremal black holes in [14]. Linear stability, on the other
hand, concerns the existence of perturbations of generic
initial data that grow in time. For nonextremal black
holes, linear stability was rigorously demonstrated only
very recently [15, 16], mainly due to the difficulty of prov-
ing that no quasinormal frequencies exist on the real axis
(this was accomplished in [17]).

Aretakis proved the remarkable result that extremal
black holes are linearly unstable [18–21] (see also [22–
25]). The polynomial (rather than exponential) nature of
the Aretakis instability raised the concern that it could
not be explained through a mode analysis. Such concerns
have been recently laid to rest by Casals et al. [26], who
showed that the instability can be understood as branch
points (located at ω = mΩh for every m ∈ Z) of the
frequency domain Green’s function [27, 28].

The explanation of these branch points can be traced
back to the work of Detweiler [29], who used the ana-
lytical results of Press and Teukolsky [30] to prove the
existence of very long-lived quasinormal oscillations for
near-extremal black holes, nowadays called zero-damped
modes (ZDMs). In fact, as the extremal limit is ap-
proached, an infinite number of QNM overtones appears
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to converge to each frequency mΩh, with m ∈ Z∗ (note
that we do not fix Re(ω) > 0, meaning that ZDMs exist
for both positive and negative m). This result naturally
leads to the conjecture that extremal black holes have in-
finitely long-lived quasinormal oscillations with real fre-
quencies given by ω = mΩh = m/(2M). For this reason,
Detweiler considered extremal black holes marginally sta-
ble. After Detweiler, several investigators studied ZDMs
of near-extremal Kerr black holes, both analytically and
numerically [28, 31–41].

The Aretakis instability has been already elucidated
from the point of view of mode analysis [26] (see also
[42, 43]), but it is interesting to investigate whether
ZDMs correspond to solutions of the wave equation in
the frequency domain for extremal black holes. Ref. [26]
puts forward an argument based on energy conservation
as to why ZDMs should not exist in the extremal limit.
The primary goal of this work is to investigate in detail
whether ZDMs exist for extremal black holes, and the
physical nature of the branch points. Instead of relying
on the limit ω → mΩh, as typically done in almost every
related analysis, we will study what happens exactly at
ω = mΩh for an extremal black hole.

We will show that the wave character of the mode solu-
tions is lost near the event horizon for ZDMs. We estab-
lish in Sec. IV that the corresponding frequency is never
a quasinormal (or normal) frequency. It is, instead, as-
sociated with scattering modes if the condition

αs`m ≡ λs`m
(m

2

)
− 7

4
m2 > 0, (1)

which ensures regularity at the horizon, is satisfied. Here
s = 0,±1,±2 is the spin-weight, m is the azimuthal wave
number, ` is the orbital wave number, and λs`m(m/2) is
the spin-s spheroidal eigenvalue [44, 45] λs`m(aω) eval-
uated at aω = m/2. For some values of the parameters
(s, `,m), as shown in Figs. 1 and 2 below, the condition
(1) does not hold and mode solutions are never regular
at the event horizon. Even when condition (1) holds,
sufficiently high-order radial derivative of regular modes
have an irregular behaviour on the horizon. This sug-
gests an intuitive way to picture the Aretakis instability
as being triggered by synchronous modes scattering off
an extremal Kerr black hole. In the rest of the paper we
provide details in support of these conclusions.

II. WAVE EQUATION, ASYMPTOTIC
SOLUTIONS, AND ZERO-DAMPED MODES

A revolution in the field of black hole perturbations
was initiated in the early 1970s. Working in the Newman-
Penrose (NP) formalism [46], and using the Kinnersley
tetrad [47], Teukolsky [44, 48] showed that the pertur-
bation equations are separable when one defines appro-
priate scalar functions Υs. The simplest case is that
of a scalar perturbation, described by a massless Klein-
Gordon field represented by the single function Υ0. Elec-

tromagnetic perturbations, on the other hand, are de-
scribed by the functions Υ−1 and Υ1, which relate, re-
spectively, to the NP electromagnetic scalars φ0 and φ2.
Gravitational perturbations are similarly described by
the functions Υ−2 and Υ2, related to the Weyl scalars
ψ0 and ψ4, respectively.

In the usual Boyer-Lindquist coordinates [49]
(t, r, θ, φ), the Teukolsky fields can be separated by
writing Υs = Rs`mω(r)Ss`m(θ, aω)eimφ−iωt. To simplify
notation, we will write Υs = Rs(r)Ss(θ)e

imφ−iωt.
The angular functions Ss(θ) = Ss`m(θ, aω) are the
(frequency-dependent) spin-weighted spheroidal har-
monics [44, 45]. The radial wave function Rs(r) obeys
the so-called radial Teukolsky equation,

∆
d2Rs
dr2

+ 2(s+ 1)(r −M)
dRs
dr

+(
K2 − 2is(r −M)K

∆
+ 4isωr +Xs

)
Rs = 0, (2)

where ∆ = r2 − 2Mr + a2, K = ω(r2 + a2)− am, Xs =
2maω − a2ω2 − λs`m(aω), and λs`m(aω) is a separation
constant.

For a nonextremal black hole, the smallest and the
largest roots of the function ∆, namely r− = M −√
M2 − a2 and r+ = M +

√
M2 − a2, determine, respec-

tively, the locations of the Cauchy horizon and of the
event horizon of the black hole. In the extremal case,
the two horizons coincide at r = r+ = r− = M . Invari-
ance under rotations φ → φ + 2π implies that m ∈ Z.
By requiring the angular function to be regular at θ = 0
and at θ = π, only a discrete set of separation constants
λs`m(aω), where ` ≥ max(|m|, |s|) is a positive integer,
is allowed.

The most general solution of the radial Teukolsky
equation can only be written in terms of confluent Heun
functions [50–53], but its asymptotic solutions have a
simple analytic form. In terms of the tortoise coordinate
r∗, defined by dr∗/dr = (r2 + a2)/∆, and the function

Ys(r) = ∆s/2
√
r2 + a2Rs(r), we have

Ys(r
∗) = Kh

in(r − r+)−s/2e−ikr
∗

+Kh
out(r − r+)s/2eikr

∗

(3)
near the event horizon (r∗ → −∞, r → r+), and

Ys(r
∗) = K∞in r

se−iωr
∗

+K∞outr
−seiωr

∗
(4)

far away from the black hole (r∗ → ∞, r → ∞). Here
Kh

in, Kh
out, K

∞
in and K∞out are constants and k = ω−mΩh,

with Ωh = a/(2Mr+), is the effective wavenumber near
the horizon.

The simplest way to distinguish between ingoing and
outgoing waves is to calculate the group velocity ∂ω/∂k
for each mode solution. Recognizing that the dispersion
relation is k2 = ω2 far away, and k2 = (ω −mΩh)2 near
the event horizon, it is straightforward to conclude that
the waves associated with Kh

in and K∞in are ingoing, while
the ones associated with Kh

out and K∞out are outgoing.
The fact that, classically, nothing can escape from the
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black hole translates into the boundary condition Kh
out =

0. When studying wave scattering processes, one fixes the
amplitude K∞in 6= 0 of the incident wave, and then solves
the radial Teukolsky equation to determine Kh

in and K∞out
for a given frequency ω.

A peculiar behavior occurs when 0 < ω < mΩh: the
radial phase and group velocities have different signs,
meaning that the ingoing wave will appear to be out-
going to an asymptotic observer. Since the energy flux is
associated with the phase velocity of the wave, this fact is
usually invoked to explain the phenomenon of superradi-
ance [54–58], in which rotational energy is extracted from
the black hole (see also [59–61] for more recent accounts
on the topic, and [62] for the first experimental observa-
tion of the effect). On the contrary, when studying res-
onances of the system, the natural boundary condition
far away from the black hole is that no incident waves
exist, i.e. K∞in = 0. In such a case, only a countably infi-
nite set of frequencies (the QNM frequencies) can satisfy
both boundary conditions simultaneously.

This is the standard description for generic perturba-
tions and scattering processes around a nonextremal ro-
tating black hole. It is also standard procedure to as-
sociate a Wronskian with the equation for Ys(r

∗). The
constancy of the Wronskian implies the relation

Rs = 1− ω −mΩh
ω

Ts, (5)

where the reflection coefficient Rs is defined as the ratio
between the ingoing and the outgoing energy fluxes at
infinity, and the transmission coefficient Ts is defined as
the ratio between the ingoing energy fluxes at the event
horizon and at infinity. Using the stress energy tensor, it
is possible to expressRs and Ts in terms of Kh

in, K∞in , and
K∞out. Note, however, that for the particular frequencies
ω = 0 and ω = mΩh the picture above is incomplete.
If either ω = 0 or ω = mΩh, Eqs. (3) and (4) are not
the most general asymptotic behaviors, because the two
terms appearing in each case become linearly dependent.
A more detailed investigation is desirable at these fre-
quencies.

This consideration led Hod to prove that massive scalar
fields allow the existence of stationary bound states
around Kerr black holes [63]. These bound states, called
stationary scalar clouds, occur only when ω = mΩh.
They were later considered by Herdeiro and Radu [64] in
a fully nonlinear Einstein-Klein-Gordon theory (taking
into account the field’s backreaction), leading to the dis-
covery of black holes with scalar hair [65]. For ω = mΩh
the waves become synchronized with the black hole, since
their angular phase velocity ω/m matches the horizon an-
gular velocity. Therefore we shall refer to mΩh (which
is also the critical superradiant frequency) as the syn-
chronous frequency.

The ZDMs are intimately related to these synchronous
frequencies. Starting with the wave equation for generic
perturbations around a nonextremal Kerr black hole, the
standard procedure [30, 57, 58] is to take the double

limit (a → M , ω → mΩh), where m ∈ Z, resulting
in QNMs whose frequencies ω are such that Re (ω) =

mΩh + O
(
M2 − a2

)
and Im (ω) = O

(√
M2 − a2

)
. As-

suming that each quasinormal frequency is a continuous
function of the spin parameter a, one can extrapolate the
results above to conclude that the corresponding QNMs
for extremal black holes are purely real, i.e. ωextremal =
lima→M ω (a) = mΩh.

While these double limit calculations are valid for near-
extremal black holes, one should be careful when extrap-
olating them to the extremal case by continuity argu-
ments. First of all, unlike the nonextremal case, the fre-
quencies of these purely real modes for extremal black
holes would be exactly the synchronous frequencies. We
have just shown that, in this case, the standard treatment
of the boundary conditions (3) is inappropriate, meaning
that the extremal and nonextremal cases of the ZDMs
have to be analyzed separately. Secondly, for a generic
frequency and a nonextremal black hole, the event hori-
zon is a regular singular point of the radial Teukolsky
equation, while for an extremal black hole, it is an ir-
regular singularity, leading to an exponentially singular
wave behavior [14]. Furthermore, if the synchronous fre-
quency is assumed, the nature of the horizon changes
again. As we will see, it becomes a regular singular point
with logarithmic solutions for nonextremal black holes,
and a regular singular point without logarithmic solu-
tions for extremal ones.

The arguments above suggest that any result for ex-
tremal black holes derived from continuity arguments ap-
plied to near-extremal black holes must be treated with
great care. In fact, originally motivated by calculations
indicating that the entropy of extremal black holes van-
ishes [66, 67], several authors argued that the transition
from a nonextremal to an extremal black hole is not con-
tinuous [68–71]. For instance, whether near-extremal ge-
ometries are asymptotically flat or not depends on the
limiting procedure as a → M [72]. Similarly, results
for the synchronous frequency (and for zero frequency)
based on limits of the corresponding results for generic
frequencies must be interpreted with care. In particular,
the transition of the ZDMs of near-extremal black holes
to hypothetical ZDMs of extremal black holes must be
studied carefully. In other words, for a given overtone,
the quasinormal frequency of the ZDMs might not be a
continuous function of the spin parameter a at a = M
after all, invalidating the previous continuity argument
in favor of their existence.

III. NEAR-HORIZON BEHAVIOR AND
BOUNDARY CONDITIONS FOR
SYNCHRONOUS FREQUENCIES

Let us now see explicitly how the near-horizon behav-
ior changes when the synchronous frequency ω = mΩh
is assumed from the beginning. In this case, for both
nonextremal and extremal black holes, the event horizon
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Synchronous Extremal RIs(r) RIIs (r) GIs(r) GIIs (r)

No No (r − r+)−s−iJ0 (r − r+)iJ0 1 (r − r+)−s+2iJ0

No Yes e
iJ1

r−M (r −M)−2s−2iMω e
−iJ1
r−M (r −M)2iMω 1 e

−2iJ1
r−M (r −M)−2s+4iMω

Yes No (r − r+)ξI
(r − r+)ξII , if s 6= 0

(r − r+)ξI
(r − r+)ξII , if s 6= 0

log(r − r+), if s = 0 log(r − r+), if s = 0

Yes Yes (r −M)−
1
2
−s+δs (r −M)−

1
2
−s−δs (r −M)−

1
2
+im−s+δs (r −M)−

1
2
+im−s−δs

TABLE I. The different near-horizon behaviors of the field for the two radial functions Rs(r) and Gs(r), defined as Υs =

Rs(r)Ss(θ)e
imφ−iωt and Γs = Gs(r)Ss(θ)e

imφ̃−iωv. The parameters are J0 = 2Mr+(ω − mΩh)/(r+ − r−), J1 = 2M2(ω −
mΩh), ξI = max{0,−s}, ξII = min{0,−s}, and δs =

√(
1
2

+ s
)2 − 7

4
m2 + λs`m

(
m
2

)
. Logarithmic terms are present in the

synchronous, nonextremal cases also when s 6= 0, but they are never of leading order near the horizon.

is a regular singular point of the wave equation. Hence,
one can use the Frobenius method to find power series
solutions around the event horizon. In fact, the two in-
dependent solutions for a nonextremal black hole are

RIs(r) ∼ (r − r+)ξI , (6)

and

RIIs (r) ∼ Zs log(r − r+)RIs(r) + (r − r+)ξII , (7)

plus higher order corrections, where ξI = max(0,−s),
ξII = min(0,−s), and Zs 6= 0 is a different constant
for each s. Logarithmic terms are always present, but
the leading-order contribution of RIIs is logarithmic only
when s = 0.

For an extremal black hole, on the other hand, we have

RI,IIs ∼ (r −M)−
1
2−s±δs (8)

plus next-to-leading order corrections, where

δ2s = δ2s(`,m) =

(
1

2
+ s

)2

− 7

4
m2 + λs`m

(m
2

)
, (9)

and the upper (lower) sign refers to the index I (II). The
equation above defines δs up to a sign, so without loss
of generality we assume δs =

√
δ2s , i.e. Re(δs) > 0 in

general and Im(δs) > 0 when its real part vanishes. Since
λ−s`m(m/2) = λs`m(m/2) + 2s [45], the parameter δs
is independent of the sign of s. Additionally, since the
argument aω = m/2 of λs`m(aω) is real, the separation
constant λs`m(m/2) is itself real and, consequently, δs is
either real or purely imaginary.

The typical oscillatory behavior is lost here (even in the
tortoise coordinates). Fortunately, in order to determine
the natural boundary conditions at the event horizon,
there is a more general procedure than the one described
in the previous section [44, 73]. It consists in demanding
that the wave function be regular at the event horizon,

so that the energy-momentum tensor is well behaved and
the test field approximation holds. The Boyer-Lindquist
coordinates, being singular at the horizon, are ill suited
for this purpose. We therefore need to resort to regular
coordinates at the horizon. One such example, that we
shall use here, corresponds to the ingoing Kerr coordi-
nates (v, r, θ, φ̃) [44], related to Boyer-Lindquist coordi-
nates (t, r, θ, φ) by

dv = dt+
r2 + a2

∆
dr, dφ̃ = dφ+

a

∆
dr. (10)

The Kinnersley tetrad is not well behaved at the fu-
ture event horizon. We use instead the tetrad pro-
posed by Hartle and Hawking [30, 74], which is ob-
tained from the Kinnersley tetrad by the transformation
(t → −t, ϕ → −ϕ). With this new tetrad, the Teukol-
sky fields Υs change to new functions Γs = 2s∆−sΥ−s.
Separating these new fields in ingoing Kerr coordinates

as Γs = Gs(r)Ss(θ)e
−iωveimφ̃, Teukolsky and Press [30]

were able to show that the new radial function Gs(r)
satisfies

∆
d2Gs
dr2

+ [2(s+ 1)(r −M)− 2iK]
dGs
dr

+

[−2(2s+ 1)iωr +Xs]Gs = 0, (11)

where the functions K and Xs are the same as in Eq. (2).
Alternatively, using the relations between Γs and Υs and
between the coordinates (v, φ̃) and (t, φ), we can show
that the relation between Gs and Rs is

Gs(r) = R−s(r)2
s(r − r+)−s(r − r−)−s+2iMω

× exp

(
iωr + 2iMr+ (ω −mΩh)

∫
r

dr′

∆

)
. (12)

In terms of Gs, the near-horizon behavior of a spin-
s field with the synchronous frequency coincides with
Eqs. (6) and (7) for nonextremal black holes, the only
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difference being the constant Zs. On the other hand, the
solution for extremal black holes changes slightly to

GI,IIs (r) ∼ (r −M)−
1
2+im−s±δs , (13)

plus next-to-leading-order terms. For comparison
and completeness, all possible variations of frequency
(i.e. synchronous or not) and black hole spin (i.e. ex-
tremal or not), with their respective solutions, are shown
in Table I.

Since the Hartle-Hawking tetrad in ingoing Kerr coor-
dinates is well-behaved for a physical observer located at
the future event horizon, it is natural to take as a bound-
ary condition that Γs (and therefore Gs) must be regular
at the event horizon. For a generic frequency ω 6= mΩh,
this prescription is equivalent to imposing the boundary
condition of an ingoing group velocity at the event hori-
zon. For synchronous frequencies this is the only possi-
bility, since the wave character of the solutions is lost.
From the appropriate boundary condition for Gs(r), it is
straightforward to use the relations above to determine
the corresponding boundary condition for Rs(r).

In terms of the two independent solutions, the most
general solution of the wave equation can be written as

Gs(r) = CIsG
I
s(r) + CIIs G

II
s (r), (14)

where CIs and CIIs are constants (of course, a similar re-
lation holds for Rs in terms of RIs and RIIs ). Note that,
even though the Teukolsky equations for +s and −s sep-
arate, they provide the same physical information [11],
meaning that one can never have Γs without Γ−s (or,
equivalently, Υs without Υ−s). This means that Gs and
G−s are not independent. In fact, they are related by
the Teukolsky-Starobinski identities [30] (usually given
in terms of Rs instead of Gs):

D2R−1 =
Bem

2
R1,

(
D†
)2

∆R1 =
2B∗em

∆
R−1, (15)

for electromagnetic perturbations, and

D4R−2 =
1

4
BgravR2,

(
D†
)4

∆2R2 =
4B∗grav

∆2
R−2,

(16)
for gravitational perturbations, where D = ∂r − iK/∆
and D† = ∂r + iK/∆ are differential operators, and Bem,
Bgrav are the so-called Starobinski-Churilov constants. A
direct consequence of these identities, after plugging in
the formulas for RIs and RIIs given in Table I, is the fact
that CIs and CIIs are proportional, respectively, to CI−s
and CII−s, i.e.

CIs ∝ CI−s, CIIs ∝ CII−s. (17)

We can now formulate the appropriate boundary con-
dition at the event horizon in terms of CIs and CIIs . No-
tice first that, for the first three cases in Table I, GIs(r)
and all its radial derivatives are well-behaved at the event
horizon, while GIIs (r) is always divergent for s ≥ 0.

Hence, the regularity requirement for Γs translates into
the boundary condition CIIs = 0 for s ≥ 0. By virtue
of the Teukolsky-Starobinski identities, through (17), we
must have CIIs = 0 for all s.

The last case in Table I (synchronous and extreme),
however, must be analyzed in more detail. Starting with
m 6= 0, Eq. (13) implies that GI,IIs (r) is regular at r = M
if and only if Re(−1/2 + im− s± δs) > 0 (as before, the
upper/lower sign refers to I/II). We have two possibilities:

(i) If δs is purely imaginary (δ2s < 0) this condition
becomes s < −1/2 for both GIs and GIIs , and will
be automatically satisfied for s = −1 and s = −2
(and never satisfied for s = 0,+1,+2). Therefore,
to avoid irregular solutions at the horizon, we need
CIs = CIIs = 0 for s ≥ 0. For the same reason
as before, this implies CIs = CIIs = 0 for all s,
so that the only regular solution is the trivial one.
Thus, we can rule out the possibility of δ2s < 0 for
synchronous frequencies with m 6= 0.

(ii) If, on the other hand, δs is real (δ2s > 0), the reg-
ularity condition becomes −1/2 − s ± δs > 0. For
the minus sign (corresponding to GIIs ), it is easy
to see that this condition will not be fulfilled for
s = 0, s = 1, and s = 2. Therefore, in order
to allow Γs to be regular at the horizon, we need
CIIs = 0. (As before, by virtue of the Teukolsky-
Starobinski relations, this must hold for any s, not
only for s ≥ 0). Turning our attention to the plus
sign (corresponding to GIs), to guarantee nontrivial
regular solutions we must have both δs > 1/2 + s
and δs > 1/2 − s for any given s (or, equivalently,
δs > 1/2 + |s|), meaning that both GIs and GI−s are
regular at the horizon. If only one of the solutions,
let’s say GIs, were regular, then CIs would vanish,
leading, because of (17), to the trivial solution.

In sum, we are left with the conditions δ2s > 0 and
δs > 1/2+|s| to guarantee regularity at the event horizon.
With our convention Re(δs) ≥ 0, and since we need to
worry only about the nonnegative spin-weights, a more
compact way to express this pair of inequalities is through
the single condition

δ2s > (1/2 + s)2, s ≥ 0, (18)

which is equivalent to (1).

Finally, when m = 0, the synchronous frequency be-
comes ω = 0, and the parameters λs`m(m/2) and δs re-
duce, respectively, to (` − s)(` + s + 1) and ` + 1/2. In
this case, we have GIs(r) ∼ (r − M)`−s and GIIs (r) ∼
(r−M)−`−s−1. Since ` ≥ |s|, the first solution is always
regular at the horizon, while the second one is always
irregular.
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IV. DO ZERO-DAMPED MODES EXIST FOR
EXTREMAL BLACK HOLES?

Typically, since one does not know the quasinormal
frequencies a priori, the Teukolsky equation cannot be
straightforwardly integrated. Finding the QNMs be-
comes an eigenvalue problem, which requires a numeri-
cal method (the continued fraction method [75] is usually
chosen). In Ref. [14], an extensive search for QNMs of
an extremal Kerr black hole was performed using a mod-
ification of the continued fraction method [76]. Unfortu-
nately, the method fails when the frequency of the modes
is exactly equal to the synchronous frequency, and there-
fore it cannot be used to determine whether ZDMs exist
for extremal black holes. Here, however, we do not need
such an extensive search because we focus on (known) fre-
quencies ω = mΩh, with m ∈ Z. In these special cases,
we can simply plug the frequencies into the radial Teukol-
sky equation and solve it to verify whether both bound-
ary conditions (at the horizon and at infinity) can be
simultaneously satisfied. This can be done analytically,
since the Teukolsky equation for synchronous perturba-
tions around an extremal black hole is exactly solvable
in terms of confluent hypergeometric functions [30, 77].

The simplest case is m = 0, for which the most general
solution of the Teukolsky equation is simply

Rs = As(r −M)`−s +Bs(r −M)−`−s−1, (19)

where As and Bs are constants. As explained before,
Bs must be zero to have well-behaved solutions at the
horizon. If As 6= 0, however, Rs(r) [and also Gs(r)] will
diverge when r →∞ unless ` = s = 0 (note that s = ` >
0 is ruled out, because the coexisting solution for s = −`
would be ill-behaved). In conclusion, if ω = m = 0,
nonzero well-behaved perturbations are only possible for
scalar modes with ` = 0, in which case the corresponding
solution is simply a constant.

The analysis for nonaxisymmetric modes is more in-
volved. In fact, if m 6= 0, the most general solution is

Rs(r) =(r −M)−1−s
[
AsM

(
−im+ s, δs;

im(r −M)

M

)
+BsM

(
−im+ s,−δs;

im(r −M)

M

)]
, (20)

where As and Bs are again constants, and M(β, γ; z) is
the Whittaker function. Since M(β, γ; z) → zγ+1/2 as
z → 0, in complete agreement with (8), we deduce that
As is associated with RIs (and GIs), while Bs is associated
with RIIs and (GIIs ). The analysis of the previous section
has already shown us that nontrivial regular solutions are
only possible when Bs = 0 and δs > 1/2+ |s|. To check if
the boundary condition of no incoming waves from r →
∞ can be simultaneously satisfied, we use the asymptotic
series expansion of the confluent hypergeometric function
to find that, far away from the black hole, the solution
when Bs = 0 is given by

Rs(r) = Csr
−1−2s+ime

imr
2M +Dsr

−1−ime−
imr
2M , (21)

where

Cs = As

(
im

M

)im−s
e−i

m
2 Γ(1 + 2δs)

Γ
(
1
2 + im− s+ δs

) (22)

and

Ds = As

(
− im
M

)−im+s
ei

m
2 (−i)−1−2δsΓ(1 + 2δs)

Γ
(
1
2 − im+ s+ δs

) .

(23)

So we have a wave-like solution (21) consisting of a su-
perposition of ingoing and outgoing parts, and it is im-
possible to satisfy both boundary conditions at the same
time. Hence ZDMs are not allowed for extremal Kerr
black holes as natural oscillations (normal modes): the
synchronous frequencies always correspond to scattering
modes.

We can associate reflection and transmission coeffi-
cients with these modes. We first note that the quan-
tity Ws = Hs(dH

∗
−s/dr)− (dHs/dr)H

∗
−s, where Hs(r) =

(r −M)s+1Rs(r), is independent of r. By plugging in
the asymptotic expansions of (20) into Ws, if m 6= 0 and
δ2s > 0 – as required by Eq. (18) – we obtain the following
relation:

DsD
∗
−s − CsC∗−s =

2iδs
M

(
e−iπδsBsA

∗
−s − eiπδsAsB∗−s

)
.

(24)
In the case of regular solutions we have Bs = 0 and,
therefore, the right-hand side of the expression above
vanishes. Using a clever insight by Teukolsky and
Press [30], the reflection coefficient for the scattering of
a spin-s perturbation is given by

Rs =

∣∣∣∣ CsC−sDsD−s

∣∣∣∣ = 1, (25)

where the last equality is a consequence of Bs = 0 in (24).
The fact that Rs = 1 means that synchronous modes
are purely reflected by the extremal black hole, as one
would have concluded from Eq. (5) solely by continuity
arguments.

V. STABILITY OF EXTREMAL BLACK HOLES

We have already noticed that, unless condition (1) is
met, scalar, electromagnetic, and gravitational perturba-
tions with the synchronous frequency will be ill-behaved
at the event horizon of an extremal black hole. However,
we still have to check for which sets of quantum numbers
(s, `,m) this condition is satisfied, thus allowing regular,
synchronous partial waves to scatter off an extremal Kerr
black hole.

By virtue of (1), only a discrete set of values is allowed
for αs`m. In general, the separation constant λs`m(m/2)
(and, consequently, αs`m) can only be determined nu-
merically. The exception is m = 0, in which case we
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FIG. 1. The value of α0`m (top panel), α1`m (middle panel),
and α2`m (bottom panel) as a function of m [αs`m is defined
in (1)]. In each panel, the dashed curves correspond (from
bottom to top) to ` = m, . . . , ` = m + 5. Points above the
horizontal axis (solid black line) satisfy αs`m > 0, correspond-
ing to sets (`,m) for which at least one of the independent
solutions of the Teukolsky equation is regular at the event
horizon. Points above the horizontal axis and below the line
αs`m = 2(1 + s), correspond to regular solutions whose first
radial derivative blows-up at the event horizon.

have already seen that the solution is always ill-behaved
unless ` = s = 0. For m 6= 0, the easiest way to check
if regular solutions at the horizon are possible is to per-
form an extensive search over the discrete set of triples
(s, `,m). The result of this search is shown in Fig. 1,
where we plot the value of αs`m as a function of m for

several values of ` for scalar (top panel), electromagnetic
(middle panel) and gravitational (bottom panel) pertur-
bations. The horizontal axis (black solid line) separates
regular solutions from nonregular ones. It is clear that
several sets of parameters, being above this axis, satisfy
αs`m > 0, allowing regular solutions at the horizon.

Also interesting is the fact that several other sets of
(`,m) do not satisfy this condition. From Fig. 1, we
can infer that, for higher values of m, the number of
possible ` values for which the solution is irregular at
the horizon increases. For instance, when ` = m ≥ 2
the wave function is always irregular at the horizon for
scalar, electromagnetic and gravitational perturbations.
The exact same thing also occurs for all gravitational
perturbations when m = ` − 1. Nonzero scalar modes
withm = `−1, on the other hand, will always be irregular
at the horizon if m ≥ 5. For a given type of perturbation,
we define the critical m value, mcrit, to be the first m
value for which the only regular solution is the trivial one.
In other words, for a given s, mcrit is the first integer m
satisfying αs`m < 0. We summarize our findings in Fig. 2.
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FIG. 2. The critical m value mcrit for s = 0 (blue line), s = 1
(green line), and s = 2 (red line) as a function of ` −m. As
`−m increases, mcrit also increases, roughly linearly.

One could invoke the nonexistence of ZDMs to con-
clude that any perturbation with frequency ω = mΩh will
not be spontaneously excited for extremal black holes (in
other words, that the only allowed solution to the wave
equation is (20) with As = Bs = 0). Nonetheless, this
reasoning does not prevent a gedanken scattering exper-
iment in which an asymptotic observer produces an ex-
ternal perturbation of frequency ω = mΩh and sends it
towards the black hole.

Far away from the black hole it is impossible to dis-
tinguish the Kerr spacetime from flat spacetime, and
therefore there is no difficulty in producing perturbations
with one of the synchronous frequencies. One can argue
that this is a very special (possibly unphysical) situa-
tion, since it apparently requires a fine-tuning of the fre-
quency. To avoid this type of objection, we consider an
initial wavepacket that includes a continuum of frequen-
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cies around a given synchronous frequency, for instance
ψ =

∑
`,m

∫∞
−∞ a(ω)Γsω`mdω, where the function a(ω)

has compact support and is peaked around ω = mΩh for
a given m ∈ Z∗.

If the initial wave packet includes at least one of the
pathological frequencies, the corresponding wave func-
tion will necessarily diverge at the event horizon. As
a consequence, only a selection of modes (`,m), with
ω = mΩh, are allowed in the initial wave packet. The
corresponding behavior at the horizon, given by (13), is

GIs ∼ (r−M)−
1
2+im−s+δs , with δs >

1
2 +s. The function

GIs is regular at the horizon, but its n-th radial derivative

dnGIs
drn

∼ (r −M)−n−
1
2+im−s+δs (26)

will diverge if n > δs−s−1/2. Invoking the arguments of
Ref. [23], divergences in the radial derivatives of the per-
turbation fields at the horizon will produce divergences
of the perturbations themselves as v → ∞. The worst
case occurs for those sets of parameters (`,m) that sat-
isfy |s|+ 1/2 < δs < |s|+ 3/2, for which the first deriva-
tive already blows up at the horizon. In terms of αs`m,
this condition is simply 0 < αs`m < 2(1 + |s|). For in-
stance, this is what happens when (s, `,m) = (0, 1, 1), for
which δs ≈ 0.671, or when (s, `,m) = (2, 3, 1), for which
δs ≈ 3.175. Several, possibly infinite, combinations exist
for each spin parameter.

The result above is basically the Aretakis instability for
extreme black holes, which states that, for initial data
with support away from the horizon, sufficently high-
order transversal derivatives blow up (at least polyno-
mially) in time along the future event horizon. In other
words, we have just shown, in a simple and intuitive way,
that sufficently high-order derivatives of any wave packet
that includes regular synchronous frequencies will diverge
as the wave approaches the event horizon. The diver-
gence we obtained in Eq. (26) exactly matches the one
obtained in [26] for scalar fields through an analysis of
the branch points of the causal Green function. Note the
importance of both the extremality and the synchronous
conditions in our analysis, since any other combination
(as seen in Table I) will produce regular solutions at the
horizon. Ref. [26], on the other hand, while working
in the extremal case, never dealt with calculations per-
formed exactly at the synchronous frequency, since all of
their results were derived from nonsynchronous frequen-
cies in the limit ω → mΩh.

VI. FINAL REMARKS

The synchronous frequencies ω = mΩh lead to a very
peculiar behavior of the wave function at the event hori-
zon of an extremal black hole. First of all, our analysis
confirms the suggestion of Ref. [26] that ZDMs do not
constitute quasinormal type resonances of extremal black
holes, being always associated with scattering modes.

Unlike damped modes of a near-extremal black hole,
which are continuous at extremality [14], ZDMs are not:
ZDMs do not exist for extremal black holes as solutions of
the wave equation with QNM boundary conditions. This
peculiar behavior is somewhat reminiscent of the subtle
nature of the boundary conditions for the algebraically
special modes, which (as first discussed in [78]) are not
genuine QNMs, but rather correspond to total transmis-
sion/reflection modes with different boundary conditions
(see also [3, 53, 79]).

Moreover, for some set of parameters (s, `,m), the scat-
tering modes associated with synchronous frequencies are
either identically zero or diverge at the event horizon. If
we rule out these modes, the remaining ones can be well-
behaved at the event horizon, but higher order deriva-
tives will necessarily diverge, as in the Aretakis instabil-
ity. Even though this instability seems to require a fine
tuning of the frequency, this behavior becomes generic
as soon as one considers wave packets instead of single
modes, providing a simple intuitive understanding of the
Aretakis instability.

Furthermore, if backreaction is allowed, the simple
argument below (inspired by Refs. [28, 80]) suggests
that there might exist a synchronization mechanism that
drives all modes to the synchronous limit. Assume indeed
that a continuous flux of modes with azimuthal number
m and frequency ω 6= mΩh incides upon an extremal Kerr
black hole of mass M . As each mode is absorbed by the
black hole, it will change its mass by δM and its angular
momentum by δJ (recall that the angular momentum J
of a Kerr black hole is given by J = aM).

On the other hand, the average fluxes of energy Ein

and angular momentum Lin far away from the black hole
are given by

Ein ∝ ω(1−Rs), Lin ∝ m(1−Rs), (27)

where Rs is again the reflection coefficient of the scat-
tering process. By conservation of energy, we must then
have δM ∝ ω(1 − Rs) and δJ ∝ m(1 − Rs). If the in-
cident wave has, initially, a frequency ω > mΩh, then
Rs < 1. As a result of the scattering process, some mass
and angular momentum are transferred to the black hole.
Consequently the angular velocity of the black hole will
increase, approaching ω = mΩh. If, on the other hand,
ω < mΩh initially, the scattering will be superradiant
(Rs > 1). The net result of the process is that the re-
flected wave will carry away part of the mass and angu-
lar momentum of the black hole, decreasing its angular
velocity until ω = mΩh. Note, however, that a fully non-
linear analysis of the problem is required to determine
if this is indeed the case (especially for extremal black
holes, since one must worry about maintaining extremal-
ity). In this respect, we remark that a recent nonlinear
analysis showed synchronisation of bound perturbations
can indeed be achieved dynamically [81].

Finally, we remark that massless fermionic fields (s =
±1/2 and s = ±3/2) around a Kerr black hole are also
described by the Teukolsky equation [44, 82, 83], lead-
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ing (with minor differences) to the same conclusions we
obtained for bosonic fields. We also point out that the
behavior of charged fields (s = 0, ±1/2) around an ex-
tremal Reissner-Nordström black hole is completely anal-
ogous to the rotating case [84–89]. The synchronous fre-
quency is now ω = qΦh, where q is the charge of the field
and Φh is the electric potential at the event horizon (for
an extremal Reissner-Nordström black hole, Φh = 1).

Instead of δs =
√

(1/2 + s)2 − 7m2/4 + λs`m(m/2), we

now have δs =
√

(1/2 + s)2 − q2M2 + λs`m(0), which
can be further simplified, due to the spherical symme-
try, to δs =

√
(1/2 + `)2 − q2M2 . When qM < `+ 1/2,

the trivially vanishing solution is the only regular solu-
tion for the synchronous frequency. We therefore require
qM > ` + 1/2, so that at least one nonzero solution
which is regular at the horizon exists, corresponding to
Rs ∼ (r −M)−1/2−s+δs . As in the extremal Kerr case,
sufficiently high-order radial derivatives will always di-
verge like ∼ (r−M)−n−1/2−s+δs , where n is the number

of derivatives, as in the original derivation by Aretakis.
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