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Maybe not. String theory approaches to both beyond the Standard Model and Inflationary model
building generically predict the existence of scalars (moduli) that are light compared to the scale of
quantum gravity. These moduli become displaced from their low energy minima in the early universe
and lead to a prolonged matter-dominated epoch prior to BBN. In this paper, we examine whether
non-perturbative effects such as parametric resonance or tachyonic instabilities can shorten, or even
eliminate, the moduli condensate and matter-dominated epoch. Such effects depend crucially on the
strength of the couplings, and we find that unless the moduli become strongly coupled the matter-
dominated epoch is unavoidable. In particular, we find that in string and M-theory compactifications
where the lightest moduli are near the TeV-scale that a matter-dominated epoch will persist until
the time of Big Bang Nucleosynthesis.

Moduli are a generic prediction in string theoretic ap-
proaches to beyond the Standard Model [1] and inflation-
ary model building [2]. It was noted long ago that these
moduli could be displaced from their low-energy min-
ima in the early universe, and their coherent oscillations
lead to a period of matter domination [3–7]. This matter
phase has important differences from a strictly thermal
universe and is a rich source of dark matter phenomenol-
ogy – for a review see [1]. The matter phase can also
lead to enhanced growth of structure [8–10], changes in
inflationary predictions for the cosmic microwave back-
ground [11], and also the formation of primordial black
holes [12, 13]. These cosmological and phenomenological
predictions depend on the duration of the matter phase,
which is determined by the moduli mass and couplings
to other fields.

It is expected that moduli couple gravitationally, and
the matter phase will persist until the perturbative decay
of the modulus completes which, for 50 TeV moduli, will
be around the time of Big Bang Nucleosynthesis (BBN)
[1]. In this paper, we want to revisit these assumptions
and determine if effects such as parametric enhancement
[14, 15] or tachyonic instabilities [18] can lead to an en-
hanced decay of the moduli. In the former case, as the
field oscillates, particles are produced, and Bose-Einstein
statistics can lead to a significant enhancement of the de-
cay compared to the perturbative decay rate [14, 15] (for
a review see [16, 17]). Whereas, in tachyonic resonance,
if the mass squared of the field becomes negative due to
the time and/or field dependence of the couplings this
can lead to the efficient decay of the field in less than
a single oscillation [18]. It has also been argued that
the dynamics and backreaction of the produced particles
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could be used to ‘trap’ moduli [19–22]. If these types
of instabilities are present they can significantly enhance
the moduli decay rate resulting in less of a matter phase
or even prevent the formation of the moduli condensate
all together. For very light moduli – that would decay
after BBN – this enhanced decay may lead to a new way
to address the cosmological moduli problem [3–7].

I. MODULI DECAY THROUGH PARAMETRIC
AND TACHYONIC RESONANCE

The moduli will typically couple to other fields with
gravitationally suppressed couplings. This is the case in
examples like KKLT [23], as well as the cases of Large
Volume Compactifications in Type IIB [24] and G2 com-
pactifications of M-theory [25]. The perturbative decay
rate of the modulus is then Γ ∼ m3

σ/Λ
2, where mσ is the

mass of the modulus and Λ the suppression scale. Tak-
ing1 Λ ∼ mp the corresponding reheat temperature for a
mσ = 50 TeV scalar is around 5 MeV [1]. Here we would
like to determine whether parametric or tachyonic insta-
bilities in the moduli can result in a faster decay and so
higher reheat temperature.

We are motivated by recent work on preheating and the
production of gauge fields at the end of inflation [26–28].
In these papers it was found that a tachyonic instability
to production of massless gauge fields from inflaton cou-
plings σFµν F̃µν/Λ [27, 28] or σFµνFµν/Λ [26] can lead
to explosive particle production and drain energy com-
pletely before the inflaton can complete a full oscillation.
If this result were also true for moduli, then this could
prevent the formation of the condensate and the matter-
dominated phase.

1 We work with sign convention (−,+,+,+) and with the reduced
Planck mass mp = 1/(8πG)1/2 = 2.4× 1018 GeV. We use Greek
indices to denote space-time µ = 0, 1, 2, 3 whereas latin indices
imply spatial directions only k = 1, 2, 3.
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A. Moduli Coupling to Gauge Fields

In all of the string constructions mentioned above there
are moduli with masses generated by gravitationally me-
diated Supersymmetry (SUSY) breaking. The corre-
sponding moduli mass is determined by the gravitino
mass m3/2 as mσ = cm3/2 where c is a constant de-
termined by the particular string theory realization, e.g.
in the G2 MSSM c ' 2.

We now consider the coupling of the moduli to a hidden
sector gauge field

S =

∫
d4x
√
−g
(
−1

4
FµνF

µν − c

4Λ
σ FµνF

µν

)
, (1)

where c is an order one constant (computable in a given
string model) and consistency of the effective theory re-
quires σ < Λ. The corresponding equations of motion
are

∇µFµν +
c

Λ
∇µ (σ Fµν) = 0, (2)

2σ =
∂V

∂σ
+

c

4Λ
FµνF

µν . (3)

Working in Coulomb gauge A0 = 0, ∂iA
i = 0, neglect-

ing the expansion of the background, and introducing the
field redefinition Ãk = [a(t) (1 + c σ/Λ)]

1/2
Ak the result-

ing equations of motion are

σ̈ + 3Hσ̇ +m2
σσ

=
c

2Λ

[
ȦµȦ

µ

a2
+ εµνλε

λ
αβ∇µAν∇αAβ

]
(4)

¨̃Ak +

[
k2 +

1

2

(
1

1 + c σ/Λ

)2

×
(

1

2
c2
σ̇2

Λ2
− c2σσ̈

Λ2
− c σ̈

Λ

)]
Ãk = 0, (5)

The moduli will remain frozen in their false minimum
until H ' mσ at which time the moduli begin oscilla-
tions and σ(t) = σ0 cos(mt) where the initial amplitude
is typically σ0 ∼ mp.

The gauge field equation can be put in the form of a
Mathieu equation by introducing the time variable z =
mt/2. Noting that consistency of the effective theory
requires σ0 < Λ and keeping only the leading terms we
have

d2Ak
dz2

+

[
4

(
k

mσ

)2

+ 2c
(σ0

Λ

)
cos(2z)

]
Ak = 0 (6)

where we have dropped terms further suppressed by pow-
ers of σ0/Λ and we note that the leading time-dependent
mass term corresponds to the term ∼ σ̈/Λ in (5).

Comparing (6) to the usual Mathieu equation

d2u

dz2
+ [Ak + 2q cos(2z)]u = 0, (7)

suggests the identifications

Ak ≡ 4

(
k

mσ

)2

, q ≡ c
(σ0

Λ

)
. (8)

Tachyonic instability corresponds to the condition Ak <
2q, broad resonance occurs for q � 1 and narrow reso-
nance occurs for q . 1. We can immediately see that
broad resonance is forbidden, since validity of the effec-
tive theory requires σ0 < Λ or q < 1. Moreover, although
narrow resonance could play a role, it may not lead to
significant enhancement of the production [15]. Thus, we
focus on the case of tachyonic resonance.

B. Tachyonic Resonance – Analytic Treatment

The modes that will undergo tachyonic resonance cor-
respond to Ak < 2q in (7), which for the identification
(8) implies

k <
1√
2

(σ0
Λ

)1/2
mσ. (9)

However, for post-inflation we are interested in sub-
Hubble modes2 so we also require k/H > 1 implying
the modes of interest lie in a band

1 <
k

H
<

1√
2

(σ0
Λ

)1/2 (mσ

H

)
. (10)

Thus, for tachyonic production of modes we require
1√
2

(σ0
Λ

)1/2 (mσ

H

)
� 1, (11)

so at the onset of the moduli phase, when H ' mσ per-
turbativity of the effective theory again seems to limit
the level of enhancement in gauge field production, since
we require σ0 < Λ. However, although the initial mod-
uli displacement is typically expected to be an order of
magnitude or so below the cutoff, as the moduli oscil-
lations continue the Hubble parameter will continue to
decrease H < mσ, and tachyonic resonance becomes pos-
sible. There is a competing effect that the amplitude
of the moduli oscillations also decreases compared to its
initial value σ0. It is a quantitative question of how im-
portant tachyonic resonance is for moduli decay and the
duration of the epoch. Moreover, during oscillations, cre-
ation of moduli (moduli particles, meaning k 6= 0 modes),
particle scattering, and backreaction of both moduli and
gauge fields can play an important role, as well as the
expansion of the universe. To account for these complex-
ities and non-linearities we perform a lattice treatment
and present those results in the next section.

2 This is required by causality if the gauge modes begin in their
vacuum state following inflation.
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C. Tachyonic Resonance – Lattice Results

To determine whether tachyonic (or parametric) insta-
bilities occur in the system (4) and (5) we perform fully
non-linear lattice simulations. We build our simulations
using the software GABE [30], which has been used pre-
viously to study the interactions of scalar fields and U(1)
Abelian gauge fields [26–28]. Our simulations allow us to
account not only for gauge field production, but also the
effects of scalar particle production, rescattering, backre-
action, and the expansion of the universe.

There are several restrictions on the allowed values of
the fields and parameters of our model. For example,
although we perform a lattice simulation, validity of the
effective Supergravity description requires that the non-
renormalizable operator in (1) remain subdominant to
the leading kinetic term. Since c is a dimensionless O(1)
Wilson coefficient this requires that σ not exceed the UV
cutoff Λ (which is typically order the Planck or string
scale).

We note that our simulations are similar to those of
[26], where the role of the inflaton there, is instead given
by the moduli here. As we will see, a key difference in
our results compared to those of [26] is that there the au-
thors considered a toy model with a dilatonic type cou-
pling that could enter a “strong coupling" regime. In this
paper, we are limited by the validity of the effective the-
ory σ < Λ and we’ll see this limits our ability to establish
a strong resonance behavior3.

In order to establish as large a resonance as possible we
will take the initial amplitude of the moduli to be near the
Planck scale σ0 ' mp (we take σ0 = 0.2mpl as a fiducial
value). Then, given our discussion of the validity of the
effective theory requires that we take Λ ∼ mp, and as the
field can change sign this also ensures that the kinetic
term of (1) retains the correct sign. This limits us to
a maximum coupling c/4Λ ≈ 6.9m−1pl . Throughout this
section we will use this maximum value as to make the
potential tachyonic window as large as possible (we have
checked that for lower values of the cutoff the resonance
is even weaker than the results we present here). We are
left with only one free parameter, mσ, which also sets the
Hubble scale at the beginning of coherent oscillations.

Using GABE we discretize space onto a grid of 1283

points that are on a homogeneously expanding box. The
box has initial size, L = 4m−1σ ≈ 2H−10 . The simulations
solve (4) and (5) along with the Friedmann equations.
For numerical simplicity, we employ the standard unit-
less conformal time, dτ = a(t)mdt. We use an adaptive
time step, ∆τ = 0.005/a(τ) so that we resolve the co-
moving modes throughout the simulation. We initialize
the modulus field consistent with the expectations of a

3 The result that validity of an effective field theory approach can
limit the importance of parametric resonance was noted recently
in [31].

field that carries the “freeze out” power as modes re-enter
the horizon4,

〈δσ(k)δσ(k′)〉 =
π2

2

(
∆2
sσ

2
0

H3
0

)
δ (k − k′) , (12)

assuming that most modes have not grown much since
horizon re-entry5 and have recently re-entered (k ≈ H0).
For the gauge fields we set the initial conditions consis-
tent with the Bunch Davies vacuum [26],〈

|Ai(k)Aj(k
′)|2
〉

=
δij δ (k − k′)

2a (1 + cσ/Λ)
, (13)

with zero homogenous mode (we comment on the robust-
ness of this assumption shortly). We take the initial sur-
face in Coulomb gauge, but the rest of the simulation is
carried out in Lorenz gauge, ∂µAµ = 0, where Gauss’
constraint is treated as a dynamical degree of freedom
(as the equation of motion for A0) and we check that
the gauge constraint is maintained throughout our sim-
ulations. As we increase the mass of the modulus field,
we shrink the physical size of the Hubble patch at the
beginning of the simulation. This is the best approach to
resolving shorter wavelength modes of the gauge fields,
and hence, a larger fraction of energy in the gauge sec-
tor. As we set the initial conditions, we impose a win-
dow function (as in [26]) that cuts off power to modes
k & 90mσ for numerical stability. However, this scale is
above the scale at which we would expect to see tachyonic
instabilities.

Following [26], we take the ratio of the gauge field en-
ergy density (ρEM) to the total energy (ρtot) as a figure
of merit of the amplification of the gauge field and the
effectiveness of the tachyonic (and parametric) instabil-
ities. Figure 1 shows the evolution of this parameter as
a function of time for a large range of moduli masses.
We find the robust result that regardless of the (rela-
tive) amplitude of the initial fluctuations of the gauge
fields, tachyonic (and parametric) instabilities are absent
and do not lead to significant amplification of the gauge
fields. The variation in the initial value of ρEM reflects
that we allow for different values of the moduli mass as
discussed above. Considering a pre-existing density of
gauge modes (e.g. non-Bunch Davies initial conditions
with modes that were classically or quantum mechani-
cally excited during inflation6) would have a similar ef-
fect, amplifying the initial spectrum of the gauge field,
and hence, raising ρEM/ρtot on the initial surface.

4 We start our simulations at the beginning of moduli oscillations
and we take adiabatic initial conditions so that the inflaton fluc-
tuations will have been transferred to the moduli that come to
dominate the energy density (we assume no isocurvature, how-
ever see [32]) and assume that ∆2

s ≈ 10−10.
5 Prior to moduli domination we take the universe to be radia-
tion dominated following inflationary reheating and sub-Hubble
modes of the moduli will undergo very little growth (their per-
turbations grow logarithmically with the scale factor ∼ log(a).

6 Model independent bounds on the level of gauge field produc-
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FIG. 1. Plot of ρEM/ρtot vs. unit-less conformal time (see
text) for a set of maximally coupled simulations, c/Λ =
6.7mp. The top panel shows a simulation of the fiducial
value of mσ = 50 TeV and the bottom panel shows a range of
masses, from mσ = 50 TeV (bottom) to mσ = 5 × 1011 TeV,
the 50 TeV case is labeled in blue in both plots. For each sim-
ulation ρtot(t) is approximately the same, since the energy of
the modulus is dominated by its homogeneous mode and is
always the dominant component.

An additional measure at which to look for instabilities
is in the spectra of the coupled fields. In Figure 2, we
see that there is very little change to the power spectra
of the fields. In cases where instabilities exist, we can
generally see these instabilities in the power spectra of
the fields. In none of the cases we studied did we see any
indication of tachyonic or parametric instabilities.

Although we have not found significant evidence for an
increased decay of the moduli, this does not necessarily
imply a matter-dominated epoch. Indeed, it was recently
shown that the non-linear dynamics of the fields can
have an important influence on the equation of state [33].
Thus, we must lastly ensure that the expansion mimics
that of a matter-dominated single-component universe.

tion during inflation was recently established in [29]. There it
was shown that requiring successful inflation limits the ampli-
fication of gauge fields which here limits the size of the initial
amplitude taken for the gauge fields, i.e. one can not take the
initial amplitude to be arbitrarily large.
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FIG. 2. The power spectra of one component of the gauge
field, A1 at the beginning of the simulation (black), at the
first zero crossing (red) and at the second zero crossing (blue)
in a simulation where mσ = 50 TeV. At higher frequencies,
the power is suppressed due to the window function imposed
on the initial slice, the slight increases in these frequencies
is not a physical response, but an accumulation of numerical
truncation errors (and is still many orders of magnitude below
the scales of interest). The increase in the zero-momentum
bin is a consequence of the initial value being set to zero
to machine-precision, with truncation errors making it drift
away. The spectra undergo negligible amplification over the
course of the simulation. The other spatial components of the
field have identical behaviors, and similar results are seen in
all simulations. We find no indication of tachyonic or para-
metric instabilities.

To do this, we track the equation of state parameter,
w = p/ρ, which is the usual ratio of the isotropic pres-
sure to the energy density. Figure 3 shows this for the
fiducial case, mσ = 50 TeV, and shows that w oscillates,
as expected, between ±1 as is the case of a massive scalar
field dominated by its homogeneous value.
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FIG. 3. The equation of state for a simulation where mσ =
50 TeV vs. unit-less conformal time (see text). We see that
the average of the equation of state is that of a matter-
dominated universe.
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II. COMMENTS AND CONCLUSIONS

In this paper, we have considered the coupling of mod-
uli to hidden sector gauge fields for a range of masses
and initial values of the gauge fields. We found that even
as we approach modestly strong coupling, tachyonic and
parametric instabilities have no effect on the moduli de-
cay rate. Moreover, we have seen that the equation of
state during the moduli oscillations averages to the previ-
ously anticipated result of a matter-dominated universe.
As gauge field production relies on the moduli dynamics
breaking the conformal invariance of the gauge field sec-
tor [34], and in these string motivated models the source
of this breaking comes from non-renormalizable opera-
tors, it may not be that surprising that this effect turned
out to be negligible. One reason for considering these
operators was that such couplings generically appear in
string theories, and are model independent in the sense
that they arise strictly in the moduli sector and are typ-
ically independent of how one embeds the visible sector.
This is indeed the case in examples like KKLT [23], as
well as the cases of Large Volume Compactifications in
Type IIB [24] and G2 compactifications of M-theory [25].

One may wonder if more model dependent couplings
(arising from embedding the visible sector in a particular
string construction) may alter our conclusions. For ex-
ample, moduli couplings to the Higgs (∼ σH†H) are rel-
evant operators and the moduli might undergo enhanced
decay to Higgs bosons. However, such couplings were al-
ready considered some time ago by Brandenberger and

Shuhmaher in [35, 36]. They considered relevant opera-
tors arising from SUSY breaking for a range of moduli
masses. Their results are similar to our findings for non-
renormalizable operators. That is, if one requires a per-
turbative theory and consistency of the effective field the-
ory then both parametric and tachyonic resonance does
not significantly alter the moduli decay rate.

Our results, as well as those of [36], suggest that if
one is to eliminate the moduli dominated epoch one is
going to have to consider moduli that are strongly cou-
pled. There is some motivation for this in string theory
[37] (for more recent work see [38]), however there must
typically be at least one light modulus if we are to realize
the perturbative Standard Model in a string construction
[22]. For this reason, we take our results as a robust pre-
diction that string theories lead to the expectation for a
prolonged, matter-dominated epoch prior to BBN.

ACKNOWLEDGMENTS

We are grateful to Peter Adshead, Bhaskar Dutta,
Adrienne Erickcek and Matt Reece for useful discus-
sions. J.T.G. is supported by the National Science Foun-
dation, PHY-1414479. S.W. thanks the Michigan Cen-
ter for Theoretical Physics for hospitality. S.W. is sup-
ported in part by NASA Astrophysics Theory Grant
NNH12ZDA001N and DOE grant DE-FG02-85ER40237.
Y.Z. is supported by DOE grant DE- SC0007859. This
work was completed at the Aspen Center for Physics,
which is supported by National Science Foundation grant
PHY-1066293.

[1] G. Kane, K. Sinha, and S. Watson, Int. J. Mod. Phys.
D24, 1530022 (2015), arXiv:1502.07746 [hep-th].

[2] D. Baumann and L. McAllister,
Inflation and String Theory (Cambridge University
Press, 2015) arXiv:1404.2601 [hep-th].

[3] T. Banks, D. B. Kaplan, and A. E. Nelson, Phys. Rev.
D49, 779 (1994), arXiv:hep-ph/9308292 [hep-ph].

[4] B. de Carlos, J. A. Casas, F. Quevedo, and E. Roulet,
Phys. Lett. B318, 447 (1993), arXiv:hep-ph/9308325
[hep-ph].

[5] G. D. Coughlan, W. Fischler, E. W. Kolb, S. Raby, and
G. G. Ross, Phys. Lett. B131, 59 (1983).

[6] T. Banks, M. Berkooz, and P. J. Steinhardt, Phys. Rev.
D52, 705 (1995), arXiv:hep-th/9501053 [hep-th].

[7] T. Banks, M. Berkooz, S. H. Shenker, G. W. Moore,
and P. J. Steinhardt, Phys. Rev. D52, 3548 (1995),
arXiv:hep-th/9503114 [hep-th].

[8] A. L. Erickcek and K. Sigurdson, Phys.Rev.D84, 083503
(2011), arXiv:1106.0536 [astro-ph.CO].

[9] J. Fan, O. Ozsoy, and S. Watson, Phys. Rev. D90,
043536 (2014), arXiv:1405.7373 [hep-ph].

[10] A. L. Erickcek, K. Sinha, and S. Watson, Phys. Rev.
D94, 063502 (2016), arXiv:1510.04291 [hep-ph].

[11] R. Easther, R. Galvez, O. Ozsoy, and S. Watson, Phys.
Rev. D89, 023522 (2014), arXiv:1307.2453 [hep-ph].

[12] J. Georg, G. Sengor, and S. Watson, Phys. Rev. D93,
123523 (2016), arXiv:1603.00023 [hep-ph].

[13] J. Georg and S. Watson, (2017), arXiv:1703.04825 [astro-
ph.CO].

[14] J. H. Traschen and R. H. Brandenberger, Phys. Rev.
D42, 2491 (1990).

[15] L. Kofman, A. D. Linde, and A. A. Starobinsky, Phys.
Rev. D56, 3258 (1997), arXiv:hep-ph/9704452 [hep-ph].

[16] R. Allahverdi, R. Brandenberger, F. Y. Cyr-Racine and
A. Mazumdar, “Reheating in Inflationary Cosmology:
Theory and Applications,” Ann. Rev. Nucl. Part. Sci.
60, 27 (2010) doi:10.1146/annurev.nucl.012809.104511
[arXiv:1001.2600 [hep-th]].

[17] M. A. Amin, M. P. Hertzberg, D. I. Kaiser and
J. Karouby, “Nonperturbative Dynamics Of Reheat-
ing After Inflation: A Review,” Int. J. Mod. Phys.
D 24, 1530003 (2014) doi:10.1142/S0218271815300037
[arXiv:1410.3808 [hep-ph]].

[18] G. N. Felder, J. Garcia-Bellido, P. B. Greene, L. Kofman,
A. D. Linde, and I. Tkachev, Phys. Rev. Lett. 87, 011601
(2001), arXiv:hep-ph/0012142 [hep-ph].

http://dx.doi.org/10.1142/S0218271815300220
http://dx.doi.org/10.1142/S0218271815300220
http://arxiv.org/abs/1502.07746
http://inspirehep.net/record/1289899/files/arXiv:1404.2601.pdf
http://arxiv.org/abs/1404.2601
http://dx.doi.org/10.1103/PhysRevD.49.779
http://dx.doi.org/10.1103/PhysRevD.49.779
http://arxiv.org/abs/hep-ph/9308292
http://dx.doi.org/10.1016/0370-2693(93)91538-X
http://arxiv.org/abs/hep-ph/9308325
http://arxiv.org/abs/hep-ph/9308325
http://dx.doi.org/ 10.1016/0370-2693(83)91091-2
http://dx.doi.org/10.1103/PhysRevD.52.705
http://dx.doi.org/10.1103/PhysRevD.52.705
http://arxiv.org/abs/hep-th/9501053
http://dx.doi.org/10.1103/PhysRevD.52.3548
http://arxiv.org/abs/hep-th/9503114
http://dx.doi.org/10.1103/PhysRevD.84.083503
http://dx.doi.org/10.1103/PhysRevD.84.083503
http://arxiv.org/abs/1106.0536
http://dx.doi.org/10.1103/PhysRevD.90.043536
http://dx.doi.org/10.1103/PhysRevD.90.043536
http://arxiv.org/abs/1405.7373
http://dx.doi.org/10.1103/PhysRevD.94.063502
http://dx.doi.org/10.1103/PhysRevD.94.063502
http://arxiv.org/abs/1510.04291
http://dx.doi.org/ 10.1103/PhysRevD.89.023522
http://dx.doi.org/ 10.1103/PhysRevD.89.023522
http://arxiv.org/abs/1307.2453
http://dx.doi.org/10.1103/PhysRevD.93.123523
http://dx.doi.org/10.1103/PhysRevD.93.123523
http://arxiv.org/abs/1603.00023
http://arxiv.org/abs/1703.04825
http://arxiv.org/abs/1703.04825
http://dx.doi.org/10.1103/PhysRevD.42.2491
http://dx.doi.org/10.1103/PhysRevD.42.2491
http://dx.doi.org/10.1103/PhysRevD.56.3258
http://dx.doi.org/10.1103/PhysRevD.56.3258
http://arxiv.org/abs/hep-ph/9704452
http://dx.doi.org/10.1103/PhysRevLett.87.011601
http://dx.doi.org/10.1103/PhysRevLett.87.011601
http://arxiv.org/abs/hep-ph/0012142


6

[19] L. Kofman, A. D. Linde, X. Liu, A. Maloney, L. McAllis-
ter, et al., JHEP 0405, 030 (2004), arXiv:hep-th/0403001
[hep-th].

[20] S. Watson, Phys.Rev. D70, 066005 (2004), arXiv:hep-
th/0404177 [hep-th].

[21] B. Greene, S. Judes, J. Levin, S. Watson, and A. Welt-
man, JHEP 0707, 060 (2007), arXiv:hep-th/0702220
[hep-th].

[22] S. Cremonini and S. Watson, Phys.Rev. D73, 086007
(2006), arXiv:hep-th/0601082 [hep-th].

[23] S. Kachru, R. Kallosh, A. D. Linde, and S. P. Trivedi,
Phys.Rev. D68, 046005 (2003), arXiv:hep-th/0301240
[hep-th].

[24] J. P. Conlon, F. Quevedo, and K. Suruliz, JHEP 08, 007
(2005), arXiv:hep-th/0505076 [hep-th].

[25] B. S. Acharya, K. Bobkov, G. L. Kane, J. Shao,
and P. Kumar, Phys. Rev. D78, 065038 (2008),
arXiv:0801.0478 [hep-ph].

[26] J. T. Deskins, J. T. Giblin, and R. R. Caldwell,
Phys. Rev. D88, 063530 (2013), arXiv:1305.7226 [astro-
ph.CO].

[27] P. Adshead, J. T. Giblin, T. R. Scully, and E. I.
Sfakianakis, JCAP 1512, 034 (2015), arXiv:1502.06506
[astro-ph.CO].

[28] P. Adshead, J. T. Giblin, T. R. Scully, and E. I.
Sfakianakis, JCAP 1610, 039 (2016), arXiv:1606.08474

[astro-ph.CO].
[29] D. Green and T. Kobayashi, JCAP 1603, 010 (2016),

arXiv:1511.08793 [astro-ph.CO].
[30] H. L. Child, J. T. Giblin, Jr, R. H. Ribeiro, and D. Seery,

Phys. Rev. Lett. 111, 051301 (2013), arXiv:1305.0561
[astro-ph.CO].

[31] J. T. Giblin, E. Nesbit, O. Ozsoy, G. Sengor, and S. Wat-
son, (2017), arXiv:1701.01455 [hep-th].

[32] L. Iliesiu, D. J. E. Marsh, K. Moodley, and S. Watson,
Phys.Rev. D89, 103513 (2014), arXiv:1312.3636 [astro-
ph.CO].

[33] K. D. Lozanov and M. A. Amin, (2016),
arXiv:1608.01213 [astro-ph.CO].

[34] V. Demozzi, V. Mukhanov, and H. Rubinstein, JCAP
0908, 025 (2009), arXiv:0907.1030 [astro-ph.CO].

[35] N. Shuhmaher, JHEP 12, 094 (2008), arXiv:hep-
ph/0703319 [hep-ph].

[36] N. Shuhmaher and R. Brandenberger, Phys. Rev. D73,
043519 (2006), arXiv:hep-th/0507103 [hep-th].

[37] T. Banks and M. Dine, Phys. Rev. D50, 7454 (1994),
arXiv:hep-th/9406132 [hep-th].

[38] M. Del Zotto, J. J. Heckman, P. Kumar, A. Malekian,
and B. Wecht, (2016), arXiv:1608.06635 [hep-ph].

http://dx.doi.org/ 10.1088/1126-6708/2004/05/030
http://arxiv.org/abs/hep-th/0403001
http://arxiv.org/abs/hep-th/0403001
http://dx.doi.org/10.1103/PhysRevD.70.066005
http://arxiv.org/abs/hep-th/0404177
http://arxiv.org/abs/hep-th/0404177
http://dx.doi.org/ 10.1088/1126-6708/2007/07/060
http://arxiv.org/abs/hep-th/0702220
http://arxiv.org/abs/hep-th/0702220
http://dx.doi.org/10.1103/PhysRevD.73.086007
http://dx.doi.org/10.1103/PhysRevD.73.086007
http://arxiv.org/abs/hep-th/0601082
http://dx.doi.org/10.1103/PhysRevD.68.046005
http://arxiv.org/abs/hep-th/0301240
http://arxiv.org/abs/hep-th/0301240
http://dx.doi.org/10.1088/1126-6708/2005/08/007
http://dx.doi.org/10.1088/1126-6708/2005/08/007
http://arxiv.org/abs/hep-th/0505076
http://dx.doi.org/ 10.1103/PhysRevD.78.065038
http://arxiv.org/abs/0801.0478
http://dx.doi.org/10.1103/PhysRevD.88.063530
http://arxiv.org/abs/1305.7226
http://arxiv.org/abs/1305.7226
http://dx.doi.org/10.1088/1475-7516/2015/12/034
http://arxiv.org/abs/1502.06506
http://arxiv.org/abs/1502.06506
http://dx.doi.org/10.1088/1475-7516/2016/10/039
http://arxiv.org/abs/1606.08474
http://arxiv.org/abs/1606.08474
http://dx.doi.org/10.1088/1475-7516/2016/03/010
http://arxiv.org/abs/1511.08793
http://dx.doi.org/10.1103/PhysRevLett.111.051301
http://arxiv.org/abs/1305.0561
http://arxiv.org/abs/1305.0561
http://arxiv.org/abs/1701.01455
http://dx.doi.org/10.1103/PhysRevD.89.103513
http://arxiv.org/abs/1312.3636
http://arxiv.org/abs/1312.3636
http://arxiv.org/abs/1608.01213
http://dx.doi.org/10.1088/1475-7516/2009/08/025
http://dx.doi.org/10.1088/1475-7516/2009/08/025
http://arxiv.org/abs/0907.1030
http://dx.doi.org/10.1088/1126-6708/2008/12/094
http://arxiv.org/abs/hep-ph/0703319
http://arxiv.org/abs/hep-ph/0703319
http://dx.doi.org/10.1103/PhysRevD.73.043519
http://dx.doi.org/10.1103/PhysRevD.73.043519
http://arxiv.org/abs/hep-th/0507103
http://dx.doi.org/10.1103/PhysRevD.50.7454
http://arxiv.org/abs/hep-th/9406132
http://arxiv.org/abs/1608.06635

	Was the Universe Actually Radiation Dominated Prior to Nucleosynthesis?
	Abstract
	Moduli Decay through Parametric and Tachyonic Resonance
	Moduli Coupling to Gauge Fields
	Tachyonic Resonance – Analytic Treatment
	Tachyonic Resonance – Lattice Results

	Comments and Conclusions
	Acknowledgments
	


