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In a core-collapse supernova, a huge amount of energy is released in the Kelvin-Helmholtz phase
subsequent to the explosion, when the proto-neutron star cools and deleptonizes as it loses neutrinos.
Most of this energy is emitted through neutrinos, but a fraction of it can be released through
gravitational waves. We model the evolution of a proto-neutron star in the Kelvin-Helmholtz phase
using a general relativistic numerical code, and a recently proposed finite temperature, many-body
equation of state; from this we consistently compute the diffusion coefficients driving the evolution.
To include the many-body equation of state, we develop a new fitting formula for the high density
baryon free energy at finite temperature and intermediate proton fraction. We estimate the emitted
neutrino signal, assessing its detectability by present terrestrial detectors, and we determine the
frequencies and damping times of the quasi-normal modes which would characterize the gravitational
wave signal emitted in this stage.

PACS numbers:

I. INTRODUCTION

When a star with mass greater than about 8M⊙ ex-
hausts its fuel, the electron Fermi pressure can not pre-
vent the collapse of the stellar core. In a few milliseconds,
the density of the collapsing core reaches the nucleon
density, the pressure due to the nucleon Fermi degener-
acy and nuclear interaction sets in, the collapse halts,
and a shock wave is generated as the exterior core lay-
ers bounce off the core. Then, on a longer timescale the
stellar core keeps on contracting as it cools and delep-
tonizes, while the shock wave proceeds through the stel-
lar envelope. This part of the evolution is known as the
Kelvin-Helmholtz phase, and the contracting stellar core
is called proto-neutron star (PNS). This phase lasts for
tens of seconds, during which the PNS matter is opaque
to neutrinos. It has been shown that, after about 200 ms
from the core bounce, the PNS evolution can be modeled
as a sequence of quasi-stationary configurations, where
neutrino diffusion determines the thermal and composi-
tion evolution of the hot remnant [1–3]. When the PNS
has radiated about 1053 erg ≃ 0.1M⊙ by neutrinos, the
temperature is low enough for the matter to become neu-
trino transparent, and a neutron star is born.
The observation of a nearby supernova in the Large

Magellanic Clouds in 1987, and the simultaneous detec-
tion of 19 neutrinos [4, 5] have been milestones for both
astrophysics and particle physics. Since then, impres-
sive progresses have been made in the modeling of super-
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nova (SN) explosions. Numerical codes have been devel-
oped to study the highly dynamical process of core col-
lapse and core bounce. From the earlier 1D simulations,
multi-dimensionality has been extended to one+two and
one+three, while including more and more complex phys-
ical inputs (for a recent review, see e.g. [6]). The effort
in modeling the subsequent PNS phase has been com-
paratively smaller, even though a considerable amount
of energy is emitted in this phase.

Because of its much longer timescale, for many years,
the complex core-collapse numerical codes have not been
able to describe the PNS phase. Only recently core-
collapse codes have been able to describe the PNS
phase [7, 8], mainly with the aim of studying the nu-
cleosynthesis processes due to the neutrino wind.

The quasi-stationary evolution of a PNS was firstly
studied in [1]. After this first, seminal work in the past
years a number of papers have addressed several related
issues, as for instance the sensitivity of the PNS evolution
and of the related neutrino signal to the nuclear Equation
of State (EoS) [2, 3, 9], the possible delayed formation of
black holes [3, 9], convective effects in presence of ac-
cretion [9–13], and nucleosynthesis due to the neutrino
wind [14].

In addition, the frequencies at which a gravitational
wave (GW) signal would be emitted by an oscillat-
ing PNS have been computed in [15, 16], using quasi-
equilibrium configurations obtained from the evolution-
ary code of Pons et al. [3], based on a mean field EoS.
In [17], a many-body EoS was employed, but the entropy
and lepton fraction profiles were included “by hand” in
order to mimic a time evolution similar to that found
in [3]. The entropy and lepton fraction profiles were in-
cluded in a similar way in [18], in order to mimic the
the profiles obtained, in the first second after bounce, by
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numerical core-collapse simulations. However, the EoSs
they employed (such as that of Lattimer and Swesty [19])
are more appropriate to describe the core-collapse phase
than the PNS evolution. We remark that, up to now, fi-
nite temperature, many-body nuclear dynamics have not
been included in a consistent way (i.e., accounting for
the modifications in the neutrino cross sections) in PNS
evolution.
In this paper we describe the results of a new PNS evo-

lutionary code and a formula that allows to fit a general
nucleonic EoS at finite temperature, as the recently pro-
posed many-body EoS of [20, 21]. Using this code and
three different EoSs (among which, the many-body EoS
proposed in [20, 21]), we study the PNS evolution during
the Kelvin-Helmholtz phase. We estimate the neutrino
luminosity, and compute the frequencies and damping
times of the PNS quasi-normal modes (QNMs), which
characterize the emitted GW signal.
The work is organized as follows. In Sec. II we describe

the nucleonic EoSs adopted in this paper and a new nu-
cleonic fitting formula for the free energy. In Sec. III we
describe how we compute the diffusion coefficient, and
show how do we effectively describe the baryon single-
particle spectra by means of effective masses and single-
particle potentials. In Sec. IV we show the results of our
evolutionary code, and discuss how the relevant quan-
tities, which describe the stellar structure and the neu-
trino luminosity, change in time. We also determine the
neutrino signal in the Super-Kamiokande III detector for
our models. In Sec. V we describe the computation of the
QNM frequencies and damping times, and we discuss how
the first QNMs change as the PNS evolve. We derive a re-
lation between the frequencies of the fundamental mode
and of the first pressure mode, and the mean stellar den-
sity. In Sec. VI we draw our conclusions. In Appendix A
we provide the details of the fitting procedure of the nu-
cleonic EoS; in Appendix B we discuss the convergence
of our PNS code and justify some of the approximations
made; in Appendix C we tabulate the frequencies and
damping times of the QNMs of the stellar configurations
we consider.
Unless otherwise stated, we set to unity the speed of

light, the Boltzmann constant, and the gravitational con-
stant c = kB = G = 1. The “microscopic” masses, like
the bare and effective masses of neutron and proton, are
given in MeV. The “macroscopic” masses, that is, the
PNS baryon and gravitational masses, are given in terms
of the Sun mass M⊙. We include the rest mass in the
chemical potential and in the energy density.

II. THE EQUATION OF STATE

In this paper we compare three different finite-
temperature nucleonic EoSs: a mean field EoS, GM3 [22,
23]; a nuclear many-body EoS, CBF-EI, obtained us-
ing the correlated basis function theory [20, 21]; and a
model based on the extrapolation from the measured nu-

clear properties, LS-bulk [19]. In all EoSs the leptonic
part consists of a Fermi gas of non-interacting electrons,
positrons and neutrinos of all flavours, where neutrinos
are treated as massless particles. The baryonic part con-
sists of an interacting Fermi gas of protons and neu-
trons. We neglect the Coulomb force between protons
(which is screened by the electrons), we assume charge-
independent nuclear interactions, and the proton and
neutron bare masses are set equal, mp ≡ mn. Since we
are interested in the evolution of a proto-neutron star,
pasta phases or a solid crust are not included in our
model. We have checked a posteriori that this approxi-
mation is justified, since the PNS temperature is always
above the critical temperature for the formation of alpha
particles, with the exception of the end of the cooling
phase, when this approximation is no longer accurate in
the region near the stellar surface (see Appendix B 3).

In the GM3 EoS, baryons—described by quantum
fields—interact through the exchange of bosons (the σ,
ω and ρ mesons). The resulting equations of motion are
solved in the mean field approximation, which amounts
to treating mesons as classical fields. The LS-bulk EoS,
specifically designed to be easily implemented in stellar
collapse simulations, is based on a dynamical model con-
strained by nuclear phenomenology, and correspond to
the bulk part of the Lattimer and Swesty [19] EoS. The
CBF-EI EoS (that stands for “Correlated Basis Functions
– Effective Interaction”) has been obtained within non-
relativistic many-body theory, using a realistic nuclear
Hamiltonian, which includes the Argonne v′6 and the Ur-
bana IX nuclear potentials. The formalism of correlated
basis functions and the cluster expansion technique have
been used to devise an effective nucleon-nucleon poten-
tial, which includes the effects of both two- and three-
nucleon forces, as well as nuclear correlations. This ef-
fective potential is well behaved and allows to describe
both cold and hot matter, at arbitrary proton fraction at
the Hartree-Fock level.

It is easy and fast to compute the GM3 and LS-
bulk EoSs during the simulation. Conversely, due to
their heavy computational cost, this procedure cannot
be adopted for many-body EoSs (like CBF-EI). There-
fore, one should resort either to an interpolation, or to
a fit. Since we are studying the evolution of a PNS, we
would need thermodynamical consistency and continuity
of the second order derivatives of the free energy [24]. It
is difficult to interpolate a table in a thermodynamically
consistent way, because in a PNS the EoS is characterized
by three independent variables (see below). Therefore, to
describe the baryon interaction we will find, and use, a
fitting formula.

A. Thermodynamical relations

The first law of thermodynamics can be written in
terms of an infinitesimal variation of f , the free energy
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per baryon, as
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where s is the entropy per baryon, P the pressure, T the
temperature, nB the baryon number density, µi and Yi

are the chemical potential of particle i and its particle
fraction (i.e., the number of particles i per baryon) re-
spectively. Note that f ≡ e− Ts, e being the energy per
baryon. In the following we will also use the energy den-
sity ǫ ≡ enB. We remark that we include the rest mass
in the energy and in the free energy, and therefore the
chemical potentials include the rest mass.
Since the number fractions {Yi} are not independent

variables, one should consider the equation

µi =
∂(nBf)

∂ni

∣

∣

∣

∣

T,{nj 6=i}

, (5)

rather than Eq. (4). If only neutrons and protons are
present, Eq. (5) gives

µp = fB +
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nB
+ (1− Yp)
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∣
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∂Yp

∣

∣

∣

∣

T,nB

, (7)

where the subscript B means that we are considering only
the baryon part of the EoS.

B. Baryon free energy fitting formula

In this section we shall discuss a fitting formula for
the interacting part of the baryon free energy; we remark
that all thermodynamical quantities can be obtained in
terms of partial derivatives of the free energy. We shall
not consider here the kinetic part, which is the standard
fermionic free energy (see Sec. II C), and the leptonic free
energy, which will also be discussed in Sec. II C. In the
following, the superscripts I and K refer to the interact-
ing and kinetic parts of the thermodynamical quantities,
respectively:

fB(Yp, T, nB) = fK
B (Yp, T, nB) + f I

B(Yp, T, nB). (8)

To begin with, we discuss the dependency of f I
B on

the proton fraction Yp. In a zero-temperature EoS, the

baryon free energy coincides with the baryon energy eB.
Its dependence on Yp is well approximated [25] by

eIB(Yp, T = 0) = eISNM + (1− 2Yp)
2(eIPNM − eISNM)

= 4Yp(1− Yp)e
I
SNM + (1− 2Yp)

2eIPNM, (9)

where eISNM = eIB(Yp = 1/2, T = 0) and eIPNM = eIB(Yp =
0, T = 0) are the baryon interacting energies of the sym-
metric (SNM) and pure neutron matter (PNM), respec-
tively, at zero-temperature.
Following [26], we assume that finite-temperature ef-

fects do not modify the functional dependency of f I
B on

the proton fraction, i.e.

f I
B(Yp, T, nB) = 4Yp(1− Yp)f

I
SNM(T, nB)

+ (1− 2Yp)
2f I

PNM(T, nB) , (10)

where f I
SNM and f I

PNM are the baryon interacting free en-
ergies per baryon for symmetric and pure neutron matter.
We verify the accuracy of this assumption a posteriori:
for given values of temperature and baryon density, the
difference between the interacting baryon free energy and
the quadratic fit in Yp is . 0.02MeV for the GM3 EoS
and . 0.05MeV for the CBF-EI EoS, to be compared
with an interacting baryon free energy on the order of
∼ 10MeV.
We now discuss the dependency of the interacting part

of the baryon free energy on the temperature and on
the baryon number density, i.e. the fitting formulae of
symmetric and pure neutron matter, f I

SNM(T, nB) and
f I
PNM(T, nB), appearing in Eq. (10). In the literature,
there is no generally accepted fitting formula for these
functions [19, 26–29]. In order to perform our evolu-
tionary numerical simulations, we need a fitting formula
which is accurate in a wide density range, extending from
nB . 0.5 fm−3 to nB & 0.001 fm−3 relevant for the core
and the crust of the star, respectively. Therefore, we can
not use the fitting formula of [26], which is only accurate
for large densities. Moreover, we need a free energy with
continuous second-order derivatives. Finally, the follow-
ing constraints have to be fulfilled: (i) s → 0 as T → 0;
(ii) in the low density limit the EoS must tend to that
of a free gas, i.e., f I

B → 0, sIB → 0, and P I
B → 0, as

nB → 0. Under these conditions, in the range of temper-
atures and densities considered (see Appendix A), we find
that a good trade-off between number of parameters and
precision of the fit is given by the following polynomial
fitting formula:

f I
j (nB, T ) = a1,jnB + a2,jn

2
B + a3,jn

3
B + a4,jn

4
B+

nBT
2(a5,j + a6,jT + a7,jnB + a8,jnBT ), (11)

where j = {SNM;PNM}. We have performed the fit (10),
(11) for the EoSs GM3 and CBF-EI. The details of the
fitting procedure, and the values of the coefficients an,i,
for these two EoSs are given in Appendix A. For the LS-
bulk EoS we have used the analytical expression given
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FIG. 1. T = 0 mass-radius diagrams for the three EoSs con-
sidered in this work.

in [19],

f I
B = [a+ 4bYp(1− Yp)]nB + cnδ

B − Yp∆m , (12)

with

δ = 1.260,

a = − 711.0MeV fm3,

b = − 107.1MeV fm3,

c = 934.6MeV fm3δ,

∆m = 0MeV . (13)

This choice of parameters corresponds to a binding
energy BE = −16MeV, a saturation density ns =
0.155 fm−3, an incompressibility at saturation Ks =
220MeV, a symmetry energy parameter at saturation
Sv = 29.3MeV, and a vanishing neutron-proton mass
difference ∆m. As a comparison, the GM3 EoS has
ns = 0.153 fm−3, BE = −16.3MeV, Ks = 240MeV,
Sv = 32.5MeV, and ∆m = 0 [23]; the CBF-EI EoS
has ns = 0.16 fm−3, BE ≃ −11MeV, Ks = 180MeV,
Sv = 30MeV, and a vanishing bare neutron-proton mass
difference (conversely, the proton and neutron effective
masses are different and change with density, tempera-
ture and composition). In Fig. 1 we show the mass-radius
diagram for cold neutron stars for the three EoSs. To
generate them, we have computed the zero-temperature
EoSs at beta equilibrium, considering both muons and
electrons. The CBF-EI EoS has been linearly extrapo-
lated in the logarithms of P , nB, and ǫ for densities higher
than nB = 0.48 fm−3, enforcing causality (cs ≤ 1). This
is necessary to describe the central region of stars with
a gravitational mass M & 1.64M⊙, corresponding to a
baryonic mass Mb & 1.84M⊙. The maximum mass for
GM3 and LS-bulk is Mmax ≃ 2.02M⊙, while for CBF-EI
we get Mmax ≃ 2.34M⊙.

C. Numerical implementation of the complete EoS

In Sec. II B we discussed the interacting part of the
baryon EoS (composed of protons p and neutrons n). In
addition, for the baryon kinetic part and for electrons
and positrons we have adopted the EoS of free fermions
given in [30, 31], and for the three neutrino families the
EoS of free massless fermions given in [19] [Eqns. (C.1)
and (C.3)]. The thermodynamical quantities of the i-th
lepton are given in terms of the temperature and of the
corresponding chemical potential µi.
During the PNS evolution other particles are expected

to appear, like hyperons, muons, and tauons. Since we
are mostly interested in comparing how mean-field and
many-body EoSs affect the PNS evolution, we have fo-
cused on nucleons (many-body EoSs have been developed
mainly for nucleons). Moreover, we do not include muons
or tauons (as done also in [1, 3]), since a consistent treat-
ment of these particles would considerably increase the
complexity of the transport scheme.
The PNS structure and the transport equations

(Sec. IVA) suggest to use as independent variables the
pressure P , the entropy per baryon s, and the electron
lepton fraction YL ≡ Ye + Yν , where Ye ≡ Ye− − Ye+ and
Yν = Yνe − Yν̄e . To determine the different thermody-
namical quantities of the complete EoS in terms of these
variables, we use a Newton-Raphson cycle, in which we
exploit the fitting formula discussed in Sec. II B for the
baryonic interacting quantities, along with the leptonic
EoS mentioned above, and we assume charge neutrality
Ye ≡ Ye− − Ye+ = Yp, beta equilibrium

µνe = µp − µn + µe− , (14)

and the requirement that muon and tau neutrinos are
not trapped:

µνµ = µντ = 0, (15)

µν̄{e,µ,τ}
= − µν{e,µ,τ}

. (16)

It is easy to obtain the GM3 quantities by directly
solving the corresponding mean-field equations. For this
reason, we have used GM3 as a benchmark for the fitting
procedure of the baryon free energy.

D. EoSs comparison

In this Subsection we compare the features of the three
EoSs, and the accuracy of our fit for the baryon free
energy, by considering three cases: (i) YL = 0.4 and s =
1, (ii) Yν ≡ Yνe = 0 and s = 2 (corresponding to the end
of the deleptonization phase), and (iii) Yν ≡ Yνe = 0 and
T = 5MeV (which is the condition in most of the star
at the end of our simulations, i.e., toward the end of the
cooling phase).
In Fig. 2 we compare the behaviour of the EoS GM3

(continuous line), GM3-fit obtained using the fitting for-
mula (crosses), LS-bulk (dashed line), and CBF-EI (dot-
dashed line). We plot the pressure, the energy density,
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FIG. 2. The pressure (upper panels), the energy density (middle panels), and the speed of sound (bottom panels) are plotted
versus the baryon number density for the EoSs considered in this paper, and for different values of selected parameters (cases
(i)-(iii) described in Sec. IID). The black solid line refers to the GM3 EoS determined by solving numerically the mean-field
equations, the black crosses to the GM3 EoS determined through the fit and the procedure described in Sec. II C, the blue
dashed line to the LS-bulk EoS, and the red dot-dashed line to the CBF-EI EoS.
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central plots we show the temperature and in the right plot we show the entropy per baryon. Colors and line-styles are as in
Fig. 2.

and the sound speed, cs, as functions of the baryon num-
ber density, for the cases (i)-(iii) discussed above. Fig. 2
clearly shows that GM3-fit reproduces the behaviour of
GM3 EoS.

As already noted by Pons et al. [3], the pressure and
the energy density in the three cases have a similar depen-
dence on the number density, since they mainly depend
on the baryon interaction and degeneracy, rather than on
temperature. At the saturation density ns (whose exact
value is slightly different for the three EoSs, but is in the
range ns = 0.15-0.16 fm−3), the sound speed is slightly
larger (lower) for the EoS with larger (lower) incompress-
ibility parameter Ks. At high baryon density, the sound
speed of the CBF-EI EoS is larger than that of the LS-
bulk and GM3 EoSs: this is due to a well-know problem
of the many-body EoSs, which violate causality at very
high density. However, in the regime of interest for this
paper, this unphysical behaviour can safely be neglected.

In Fig. 3 we plot the temperature versus nB for YL =
0.4 and s = 1, and Yν ≡ Yνe = 0 and s = 2 (left and cen-
tral panels) and the entropy per baryon for Yν ≡ Yνe = 0
and T = 5MeV (right panel). From the right panel we
see that, at a fixed temperature, GM3 reaches a given
value of the entropy for a baryon density lower than that
of LS-bulk and higher than that of CBF-EI. This be-
haviour may be traced back to the fact that particles in
the GM3 EoS are less correlated than in the CBF-EI EoS,
and more correlated than in the LS-bulk EoS. Therefore,
the CBF-EI describes a “more ordered” nuclear matter
than GM3 and the entropy is lower. The left and central
panels of Fig. 3, where we plot the temperature for fixed
values of the entropy, show that CBF-EI is hotter than
GM3, which is hotter than LS-bulk. As in Fig. 2, the
GM3-fit reproduces the behaviour of GM3 EoS.

III. NEUTRINO DIFFUSION COEFFICIENTS

A. The equations

The diffusion coefficients D2, D3, D4 employed in the
PNS evolution (Sec. IV) are given in [3]:

D2 = Dνe
2 +Dν̄e

2 , (17)

D3 = Dνe
3 −Dν̄e

3 , (18)

D4 = Dνe
4 +Dν̄e

4 + 4D
νµ
4 , (19)

Dνi
n =

∫ ∞

0

xnλνi
tot(ω)f

νi(ω)
(

1− fνi(ω)
)

dx, (20)

λνi
tot(ω) =





∑

j∈reactions

σνi
j (ω)

V





−1

, (21)

where fνi(ω) = [1+ exp((ω−µνi)/T )]
−1 and λνi

tot(ω) are
the distribution function1 and the total mean free path
of a νi neutrino of energy ω, respectively, and x = ω/T .
The νi neutrino cross section of the j-th reaction is de-
noted with σνi

j . All quantities depend upon the tem-
perature and the particle chemical potentials, which are
determined by the underlying EoS.
To determine the σνi

j we adopt the mean-field approach

of [32] [Eq. (82)] that accounts for in-medium effects, in-
cluding the scattering of all neutrino types on electrons,
protons, and neutrons, and the absorption of electron
neutrinos and electron anti-neutrinos on neutrons and

1 Here we set ~ = 1 and assume that integrals are normalized as
in [3, 32].
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protons, respectively, with the corresponding inverse pro-
cesses, i.e.

νi + n ⇋ νi + n, (22)

νi + p ⇋ νi + p, (23)

νi + e− ⇋ νi + e−, (24)

νe + n ⇋ e− + p, (25)

ν̄e + p ⇋ e+ + n. (26)

Furthermore, we assume that the cross-sections of
all non-electronic neutrinos coincide with that of
muon neutrinos. We do not include nucleon-nucleon
Bremsstrahlung [33].

B. Effective masses and single-particle potentials

Identifying single-particle properties in interacting sys-
tems involves non trivial conceptual difficulties. How-
ever, due to translation invariance, in infinite matter
single-particle states are labeled by the momentum k,
and the corresponding spectrum can be unambiguously
identified. Within the non-relativistic many body theory,
the spectrum of an interacting particle can be expressed
as

E(k) = m+
k2

2m
+ U(k) , (27)

where k = |k| and U(k) is the momentum-dependent
single-particle potential.
A widely used parametrization of E(k) is given in terms

of momentum-independent effective mass m∗ and single-
particle potential U

E(k) ≃ m+
k2

2m∗
+ U (28)

Since the baryonic contributions to the mean free paths
and diffusion coefficients are mostly given by particles
whose energies are close to the particle chemical poten-
tial, it is convenient to determine m∗ and U from the
behaviour of the spectrum near the Fermi momentum

1

m∗
i

=
1

kF

∂Ei
∂k

(kF ), (29)

Ui = Ei(kF )−
k2F
2m∗

i

−m, (30)

where i = ({p;n}, Yp, T, nb).
Within the CBF-EI approach E(k) has been obtained

at the Hartree-Fock level using the same effective poten-
tial employed for the calculation of the EoS. Therefore,
the effective masses and the single-particle potentials are
consistent with the EoS.
Eq. (28) can be easily generalized to the relativistic

case

E(k) =
√

k2 +m∗2 + U∗ , (31)

where we have introduced U∗ = U−m∗+m. To treat the
neutrino transport for the CBF-EI EoS consistently with
that of the GM3 and LS-bulk EoSs, we compute the neu-
trino diffusion coefficients using Eq. (31) and the effective
masses and single-particle potentials given in Eqs. (29)
and (30).
We have verified that this approach reproduces, for the

CBF-EI EoS, the correct baryon densities within ∼ 10%
at saturation density2. This is important, because the
neutrino mean free path [Eq. (21)] is an “intensive” quan-
tity, and it depends on the baryon distribution functions.
A discrepancy on the baryon densities nB and the proton
fraction Yp would yield diffusion coefficients computed at
wrong values of nB and Yp.
This applies also to the LS-bulk EoS, for which we

have assumed that the baryon effective masses are equal
to the neutron bare mass. To satisfy the aforementioned
constraint (that the effective spectrum description yields
the correct baryon density and proton fraction), we use
a non vanishing single-particle potential given by

U∗
i = µI

i = µi − µK
i , (32)

where i = {p;n}, µ is the chemical potential, and µI

and µK are the interacting and free part of the particle
chemical potential, respectively.

C. Numerical implementation

The neutrino diffusion coefficients are evaluated in the
PNS evolution code by linear interpolation of a three-
dimensional table, evenly spaced in Yν (the neutrino
number fraction), T , and nB. The table has been pro-
duced consistently with the underlying EoS, in the follow-
ing way. We have first solved the EoS using the method
described in Sec. II C, obtaining the proton fraction Yp as
function of Yν , T , and nB. The proton and neutron chem-
ical potentials, effective masses, and the single-particle
potentials for the GM3-fit and CBF-EI EoSs have been
obtained by linear interpolation of a table evenly spaced
in Yp, T , and nB. From these quantities, we determine
the neutrino cross-sections, and finally the neutrino dif-
fusion coefficients [Eqs. (17)-(20)].

D. EoS comparison

In Fig 4 we plot the neutrino diffusion coefficient D2,
the electron neutrino scattering mean free path, and the
baryon effective masses in the three cases described in
Sec. II D. The incident neutrino energy which we have

2 The other baryon EoS quantities cannot be recovered from the
baryonic spectrum as one should account also for the meson con-
tributions. This is true also for the GM3 EoS, for which the
description in term of effective spectrum is exact.
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used to compute the neutrino mean free path is Eνe =
max(µνe , πT ). To understand the role of the interactions
and of finite temperature in the neutrino diffusion, we
consider their effects on the baryon distribution function.
To fix ideas, let us consider the distribution function of
a non-relativistic fermion gas,

f(k) =
1

h3

(

1 + e
k2

2m∗T
−µ−U−m

T

)−1

, (33)

If one decreases the temperature T or effective mass m∗,
f approaches a Heaviside function, whereas increasing T
or m∗ it becomes smoother. Because of the Pauli prin-
ciple, at lower temperatures T and effective masses m∗

lower energy neutrinos can interact only with particles
near the Fermi sphere, and therefore the mean free paths
and diffusion coefficients increase. Conversely, a greater
temperature and effective mass imply that the mean free
paths and the diffusion coefficients are smaller. The scat-
tering mean free paths reflect the temperature depen-
dence of the three EoSs: when the matter is hotter, the
scattering is more effective (cf. lower plots of Fig. 3). At
equal temperature, the interaction is more effective when
the effective mass is greater. The behavior of the diffu-
sion coefficient D2 results from a complex interplay be-
tween scattering and absorption, for which the effective
masses and single particle potentials play an important
role. The comparison between the diffusion coefficientD2

for the three EoSs suggests that towards the end of the
cooling phase (in which the thermodynamical conditions
are roughly similar to those in the right plots of Fig. 4),
the CBF-EI star evolves faster than the other EoSs.
As in Figs. 2 and 3, GM3-fit (for which the baryon

spectra effective parameters are determined by table in-
terpolation, Sec. III C) reproduces the results of the GM3
EoS.

IV. PNS EVOLUTION

A. The equations

We developed a numerical code to model the PNS evo-
lution. Our code is similar to that of Pons et al. [3]: it is
energy averaged (the neutrino distribution function has
been assumed Fermi-Dirac and in thermal equilibrium
with matter), general relativistic (we include GR consis-
tently both in the stellar structure and in the neutrino
transport), spherically symmetric (the stellar structure is
determined by integrating the TOV equations), and flux
limited (we use the diffusion approximation and apply
a flux limiter to preserve causality in the optically thin
regions near the border). Since we want to focus on how
the EoS affects the evolution and the gravitational wave
emission, we do not include convection in our simulations
(see e.g.[10] for a PNS simulation including convection
with the mixing length theory) nor accretion [9, 11–13],
that are both present in this phase. The spacetime metric

is

ds2 = −e2φdt2 + e2λdr2 + r2dΩ, (34)

where φ and λ are metric functions that depend on the
radius r, t is the time for an observer at infinity, and dΩ
is the element of solid angle.
The stellar structure, at each timestep, is given by the

TOV equations,

dr

da
=

1

4πr2nBeλ
, (35)

dm

da
=

ǫ

nBeλ
, (36)

dφ

da
=

eλ

4πr4nB
(m+ 4πr3P ), (37)

dP

da
= − (ǫ+ P )

eλ

4πr4nB
(m+ 4πr3P ), (38)

where r is the radius, m is the gravitational mass at
radius r, a is the enclosed baryon number at radius r, ǫ
is the total energy density (matter plus neutrino energy
density), and the metric function λ is given by

e−λ =

√

1− 2m

r
. (39)

The neutrino diffusion equations are [3, 34]

Fν = −e−λe−φT 2

6π~3

(

D3
∂(T eφ)

∂r
+ (T eφ)D2

∂η

∂r

)

, (40)

Hν = −e−λe−φT 3

6π~3

(

D4
∂(T eφ)

∂r
+ (T eφ)D3

∂η

∂r

)

, (41)

∂YL

∂t
+

∂(eφ4πr2Fν)

∂a
= 0, (42)

T
∂s

∂t
+ µνe

∂YL

∂t
+ e−φ (e

2φ4πr2Hν)

∂a
= 0, (43)

where Fν and Hν are the neutrino number and energy3

fluxes, respectively, η = µνe/T is the electron neutrino
degeneracy, and the diffusion coefficients D2, D3, and D4

are given by Eqs. (17), (18), and (19). YL ≡ Ye + Yν =
Ye− +Yνe −Ye+ −Yν̄e is the total electron lepton fraction.
Previous PNS studies have found that the beta equi-

librium does occur almost everywhere in the star during
the evolution [1, 3]. Therefore, to additionally simplify

3 Eq. (43) is derived from the sum of the transport equations for
the neutrino and matter energy,

∂eν

∂t
−

Pν

nB

∂nB

∂t
+ e−φ (e2φ4πr2Hν)

∂a
= + eφ

SE

nB

, (44)

∂ematter

∂t
−

Pmatter

nB

∂nB

∂t
= − eφ

SE

nB

, (45)

where SE is the energy and momentum integrated source term
for the energy [3].
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three EoSs considered in this paper in the three cases described in Sec. II D. For the GM3 EoS, the effective masses of proton
and neutron are identical [22, 23]. We do not show the LS-bulk EoS effective masses, since we have set them equal to the bare
ones, m∗

{p,n}/mn = 1. Colors and line-styles are as in Fig. 2, apart for the line-styles in the lower panel, where the CBF-EI
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the equations, we enforce beta equilibrium (Eq. (14), as
in [2]). We have checked a posteriori that beta equilib-
rium is respected almost everywhere in the star during
the evolution, apart for a thin region near the stellar sur-
face at early times (see Appendix B 2).

B. Numerical implementation

In a PNS in beta equilibrium, all thermodynamical
quantities can be uniquely determined in terms of three
independent variables. A natural choice, looking at the
evolution and structure equations, is to use as indepen-
dent variables the pressure P , the entropy per baryon s,
and the lepton fraction YL (see Sec. II).
We started the simulation assuming entropy and lep-

ton fraction initial profiles similar to those of Pons et al.
[3] (see Fig. 5), that is, the profiles obtained in Wilson
and Mayle [35] at the end of their core-collapse simulation
(200 ms after core bounce). The entropy and lepton frac-
tion content of the PNS depend on the stellar mass. To
qualitatively reproduce this behaviour, we have rescaled
the entropy and lepton fraction profiles with the stellar
baryon mass MB,

s(a, t = 200ms) =
MB

M ′
B

s′(a′, t = 200ms) , (46)

YL(a, t = 200ms) =
MB

M ′
B

Y ′
L(a

′, t = 200ms) , (47)

a =
MB

M ′
B

a′, (48)

where the prime refers to the reference profiles of Wilson
and Mayle [35]. Using these initial entropy and lepton
fraction profiles at 200 ms, we have first determined the
initial structure of the star solving the TOV Eqs. (35)–
(38) by numerical relaxation ([36], Sec. 17.3). We have
then evolved the star solving separately the structure
and diffusion equations in a series of iterative predictor-
corrector steps, as in [3]. To prevent superluminar fluxes,
the neutrino number and energy fluxes [Eqs. (40) and
(41)] have been numerically limited using the flux limiter
of Levermore and Pomraning [37], which is relevant near
the stellar surface, where the matter is optically thin to
neutrinos and the diffusion approximation breaks down.
We discuss the numerical convergence of our code in

Appendix B 1. More details on the code are reported
in [38].

C. Results

We now discuss how the PNS evolution depends on
the EoS adopted and the total stellar baryon mass. In
Fig. 6 we show the evolution of the central and maxi-
mum temperature, central entropy per baryon, central
neutrino and proton fraction, and central baryon density
for the three nucleonic EoSs considered in this paper and

TABLE I. Significant quantities describing the PNS evolution
for the three EoSs described in this paper and for three stel-
lar baryon masses. The first column contains the name of
the EoS, the second column contains the stellar baryon mass,
the third and fourth columns contain the maximum central
temperature and the corresponding time (the latter approx-
imately corresponds to the end of the Joule-heating phase),
respectively, the fifth column contains the time at which the
central neutrino fraction becomes equal to Yν = 0.005 (this is
an indication on the duration of the deleptonization phase),
and the sixth column contains the time at which our simu-
lation ends (namely, when the central temperature becomes
equal to T = 5MeV). All simulations start at tstart = 0.2 s.

EOS MB [M⊙] Tmax [MeV] tJh [s] tdel [s] tend [s]

GM3 1.25 24.6 9.0 13.1 20.8

GM3 1.40 28.7 11.2 18.6 27.1

GM3 1.60 34.9 15.2 27.9 37.7

LS-bulk 1.25 23.6 13.5 17.5 30.6

LS-bulk 1.40 26.6 17.6 26.3 41.0

LS-bulk 1.60 32.1 23.8 41.4 59.2

CBF-EI 1.25 32.3 7.31 3.46 17.0

CBF-EI 1.40 37.0 9.55 5.65 21.6

CBF-EI 1.60 43.7 13.6 11.7 29.4

for the total baryon mass MB = 1.60M⊙. It is appar-
ent that the evolution with the GM3-fit EoS reproduces
that with the GM3 EoS. Therefore, in the rest of this pa-
per we do not distinguish between the GM3-fit and GM3
EoS. In Tab. I we summarize the timescales of the evo-
lutionary phases and the maximum central temperature
for the three EoSs and for three stellar baryon masses
MB = (1.25, 1.40, 1.60)M⊙. In Fig. 7 we plot the time de-
pendency of the total neutrino luminosity, gravitational
mass, and stellar radius of a PNS evolved using the three
EoSs discussed in this paper and with the stellar baryon
masses MB = (1.25, 1.40, 1.60)M⊙.
The qualitative behaviour of the stellar evolution is the

same for the three EoSs and the three stellar masses, even
though the timescales and the thermodynamical profiles
are quantitatively different (Fig. 6 and Tab. I). At the
beginning of the evolution, which is 200 ms from core
bounce, the PNS has a (relatively) low entropy core and
a high entropy envelope (see Fig. 5). The neutrino chemi-
cal potential initially is very high in the center of the star;
the process of neutrino diffusion transfers this degener-
acy energy from neutrinos to the matter and this causes
the heating of the PNS core. Moreover, on timescales
of about 10 s, the star contracts from about 30 km to
its final radius of about 12–13 km. The region which is
affected the most from this contraction is the envelope,
whose temperature significantly increases. At the same
time, the steep negative neutrino chemical potential gra-
dient in the envelope causes a deleptonization of the en-
velope. The neutrinos leave the star, bringing with them
energy. The joint effect of the envelope heating caused
by contraction and the cooling caused by neutrino emis-
sion is apparent in the behaviour of the maximum stellar
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FIG. 5. The initial profiles (at t = 200ms) of the baryon density (left), entropy per baryon (center), and lepton fraction (right)
are plotted versus the enclosed baryonic mass for a MB = 1.60M⊙ star. The initial entropy per baryon and lepton fraction
profiles are the same for the three EoSs adopted, whereas the baryon density depends on the EoS (colors and line-styles are as
in Fig. 2).

temperature: before the central temperature, Tc, reaches
its maximum, the maximum temperature reached in the
interior of the star, Tmax, increases, reaches a maximum
value, and then decreases (Fig. 6). The initial phase,
during which the central temperature increases, lasts for
several seconds and has been referred to as Joule heating

phase in previous works [1, 2]. We may place the end of
this phase approximately at the time Tc reaches its max-
imum (vertical dotted lines in Fig. 6); at that time the
central temperature is also the maximum stellar temper-
ature (see Fig. 6).
After the Joule heating phase, there is a general cool-

ing of the star as the deleptonization proceeds. In [1, 2]
it was found that the end of the Joule heating phase co-
incides with the end of deleptonization, whereas in [3],
with the GM3 EoS and a more refined treatment of neu-
trino opacities, it was found that the deleptonization is
longer than the Joule-heating phase. We agree with this
last result for the stars with the GM3 and LS-bulk EoSs,
whereas in the case of the CBF-EI EoS we find that most
of neutrinos have been radiated away by the end of the
Joule-heating phase (Fig. 6 and Tab. I).
Our results for the MB = 1.60M⊙ PNS with the GM3

EoS are in qualitative agreement with those of [3]. In
particular, the duration of the Joule-heating phase is in
good agreement (cf. Fig. 6 of this paper with Fig. 17
in [3]); however we find lower stellar temperatures and a
shorter cooling phase.
We think that the quantitative differences4 between

our results and those of [3] are due to differences in the

4 The differences amount in about 10% in the value of the central
temperature maximum and of the deleptonization time, and in

initial profiles and in the details of the treatment of the
diffusion processes.
For each EoS, the evolutionary timescales are smaller

for stars with smaller baryonic mass, see Tab. I. This is
due to the way we have rescaled the initial entropy per
baryon and lepton fraction profiles with MB, but also to
the fact that a lower stellar mass corresponds to lower
baryonic densities and then to longer neutrino mean free
paths. We also notice that a lower stellar mass corre-
sponds to lower temperatures. This again depends on
the initial entropy profiles and on the different densities
present in the star, see Fig. 3: at a given entropy per
baryon and lepton (or neutrino) fraction, lower densities
(i.e. lower masses) correspond to lower temperatures. To
simulate a fully consistent PNS evolution, one should use
initial profiles generated by core-collapse simulations of
stars with the same baryonic mass (see [3] for a study on
how the initial conditions affect the PNS evolution).
Fig. 3 shows that, at fixed entropy, CBF-EI EoS is hot-

ter than the GM3 EoS, which is hotter than the LS-bulk
EoS (see discussion in Sec. II D). Since, for a given stel-
lar mass, the initial entropy profiles are the same for the
three EoSs, then the CBF-EI star reaches temperatures
higher than the GM3 stars, which in turn reaches tem-
peratures higher than the LS-bulk star, see Fig. 6 and
Tab. I.
The fact that the LS-bulk evolution is slower than the

GM3 one, which in turn is slower than that of the CBF-
EI EoS, may well be explained by the fact that in the

less than 2% for the time of the end of Joule-heating phase,
compare Tab. I and Fig. 17 of 3.
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FIG. 6. Time dependence of the maximum and central temperature (left and central upper plots), central entropy per baryon
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a star with total baryon mass MB = 1.60M⊙ evolved using the three EoSs. Colors and line-styles are as in Fig. 2. The three
vertical lines in the temperature plots mark the end of the Joule-heating phase (see text).

many-body CBF-EI EoS nuclear correlations are stronger
than in the mean-field GM3 EoS, in which in turn are
stronger than in the LS-bulk EoS (where the baryon
masses are equal to the bare ones). A smaller neutrino
cross section is a consequence of a greater baryon cor-
relation (Sec. III D). This effect is relevant even at the
mean-field level, where one adopts the description of the
baryon spectra in term of effective masses and single-
particle potentials to obtain the diffusion coefficients. For
example, the fact that the proton effective mass is sig-
nificantly smaller than the neutron one in the CBF-EI
framework is a consequence of the tensor correlations
which are stronger in the n-p channel than in the n-n
or p-p channels.

To check this interpretation, that is, that the different
timescales are mainly due to the details of the micro-
physics (i.e., the baryon spectra and hence the neutrino
mean free paths and diffusion coefficients), we have run
a simulation of a MB = 1.60M⊙ PNS with the LS-bulk
and CBF-EI EoSs, but with the diffusion coefficients of

the GM3 EoS. As expected, we find out that the LS-
bulk timescale is reduced with respect to that of a self-
consistent simulation (i.e., using the LS-bulk diffusion
coefficients), and the CBF-EI timescale is increased with
respect to that of a self-consistent simulation. Of course,
the timescales and the evolutionary profiles found in this
non-consistent manner are not equal to those correspond-
ing to the GM3 EoS, the differences due to the details of
the EoSs. Both the EoS and the neutrino mean free paths
influence the PNS evolution; in fact, each EoS has a dif-
ferent thermal content and neutrino degeneracy, and dif-
ferent thermodynamical derivatives that determine how
the stellar profiles change while energy and leptons dif-
fuse through the star.

D. Neutrino luminosity

In 1987 a supernova (SN1987a) has been observed in
the Large Magellanic Cloud [39]. Together with the elec-
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tromagnetic signal, 19 neutrinos were detected by the
Cherenkov detectors Kamiokande II [4] and IMB [5].
These neutrinos have been observed on a timescale of ten
seconds, and are therefore thought to have been emitted
during the PNS phase. However, they were too few to ac-
curately constrain the emitted neutrino spectrum and its
time dependence (see e.g. [40]) and to give unambiguous
answers about the proto-neutron star physics [2, 3, 9, 40].
Today, with the current detectors, a SN event such that
of 1987 would generate ∼ 104 neutrino detections [41],
that would provide valuable information on the physical
processes dominating the PNS evolution. It is therefore
fundamental to determine how the underlying EoS mod-
ifies the PNS neutrino signal.
Our code has some limitations in reconstructing the

emitted spectrum; besides the spherical symmetry it as-
sumes: (i) beta equilibrium, (ii) a Fermi distribution for
all neutrino species, and (iii) a vanishing chemical poten-
tial for the muon and tauon neutrinos everywhere in the
star. The assumptions (i) and (ii) are reasonable in the
interior of the star, and lose accuracy near the stellar bor-
der, where the diffusion approximation breaks down and
in practice the fluxes are always flux-limited. To obtain
a precise description of the neutrino emitted spectrum,
one has to employ multi-flavour multi-group evolution-
ary codes (see e.g. [14]), that possibly also account for
neutrino leakage near the stellar border. This is outside
the aims of our work; however our approximations are
reasonable as far as one is interested in total quantities,
in particular the total neutrino luminosity Lν (Fig. 7),
which is equal to minus the gravitational mass variation
rate,

Lν = e2φ(R)4πR2Hν(R) = −dM

dt
, (49)

where Hν(R) is the neutrino energy luminosity at the
stellar border.
We determine the formula to estimate the signal in

terrestrial detectors following [9] and applying a slight
modification introduced by [3], and we specify our re-
sults for the Super-Kamiokande III detector [41, 42]. The
main reaction that occurs in a water detector like Super-
Kamiokande is the electron antineutrino absorption on
protons, ν̄e + p → n+ e+ (Eq. (1) of [41]). The number
flux of antineutrinos arriving at the detector is given by

dN
dt

=
σ̃0ñpM
4πD2

eφνTνLν̄e

GW (eφνTν , Eth)

7π4/120
, (50)

GW =

∫ ∞

Eth/T

x2
(

x− ∆
T

)

√

(

x− ∆
T

)2 −
(

me

T

)2

1 + ex
W (xT )dx,

(51)

where ñp ≃ 6.7 × 1031 kton−1 is the number of free pro-
tons (i.e., hydrogen atoms) per unit water mass of the
detector, σ̃0 = 0.941× 10−43 cm2MeV−2, M is the water
mass of the detector, D is the SN distance from the de-
tector, GW is a modified and truncated Fermi integral,

Eth is the incoming neutrino energy threshold (to cut
off the low-energy neutrino background that is a noise
for high-energy SN and PNS neutrinos, [41]), ∆m is the
neutron-proton mass difference, me is the electron mass,
and W (E) is the efficiency of the detector at incom-
ing neutrino energy E ≡ xT . eφν , Tν , and µν̄e are the
redshift, temperature, and antineutrino chemical poten-
tial at the neutrinosphere, that is the sphere inside the
PNS at whose radius Rν neutrinos decouple from mat-
ter (therefore, eφνTν and eφνµν̄e are the temperature and
the chemical potential at the neutrinosphere, seen by an
observer at infinity).

We take Super-Kamiokande III as reference detector,
and therefore M ≃ 22.5 ktons [41], Eth = 7.5MeV, and
W is reported in Fig. 3 of [42] and is one for E > Eth.
We consider a galactic PNS, D = 10 kpc, and assume
that the neutrinosphere is at the radius at which the
(total, of all flavours) neutrino energy flux becomes one
third of the (total, of all flavours) neutrino energy den-
sity, Hν/ǫν = 1/3. Finally, we take the electron antineu-
trino energy to be one sixth of the total, Lν̄e = Lν/6,
since (i) at the neutrinosphere all neutrino type chemical
potentials are very small and (ii) we do not account for
neutrino oscillations (which would enhance the flux by
about 10% [41]).

The neutrino signal rate and total signal for the three
EoSs are shown in Fig. 8. Since the binding energies of
the cold neutron star of the three EoSs we consider are
very similar (see Fig. 7), the total energies emitted by
neutrinos during the PNS evolution are very similar too.
On the other hand, the rate of antineutrino emission and
the temperature at the neutrinosphere varies according
to the underlying EoS. Therefore, there is an EoS sig-
nature on the cumulative antineutrino detection. The
signal of the CBF-EI PNS is noticeably larger than the
other EoSs, even though its gravitational binding energy
at the end of the evolution is between those of the LS-
bulk and GM3 EoSs (Fig. 7). This is due to the fact
that the higher temperatures of the CBF-EI EoS cause a
smoother antineutrino distribution function at the neu-
trinosphere, and hence more antineutrinos have an en-
ergy greater than the threshold Eth at the detector.

The different evolutionary timescales for the three
EoSs and stellar masses correspond to different signal
timescales, that may easily be inferred from the antineu-
trino detection rate. The antineutrino detection rates for
the three EoSs and the three stellar masses are qualita-
tively very similar. During the first ten seconds the LS-
bulk and GM3 stars have very similar detection rates;
at later times, the detection rates become different, be-
cause the LS-bulk star has a longer evolution than the
GM3 star. The CBF-EI star, instead, has the peculiarity
of maintaining a higher antineutrino emission rate during
the Joule-heating phase (approximately, during the first
ten seconds), which is due to the faster deleptonization
that we have already discussed in Sec. IVC and to higher
temperatures.
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FIG. 8. Signal in the Super-Kamiokande III Cherenkov detector, for the three EoSs considered in this paper. In the top panels,
electron antineutrino detection rate; in the bottom panels, electron antineutrino cumulative detection. In the left plots, we
consider a star with MB = 1.25M⊙, in the central plots MB = 1.40M⊙, and in the right plots MB = 1.60M⊙. Colors and line
styles are as in Fig. 7.

V. GRAVITATIONAL WAVES FROM

QUASI-NORMAL MODES

A supernova explosion is a highly energetic event and
the PNS which is formed as a remnant is expected
to oscillate wildly. The relativistic theory of stellar
perturbations [43, 44] predicts the existence of stel-
lar oscillation modes, the so-called quasi-normal modes
(QNMs), through which the star loses energy emitting
gravitational waves (GWs). To find the frequencies of
these modes, in the case of a spherical, non rotating
star, Einstein’s equations are perturbed about the back-
ground (34), and the perturbed functions are expanded
in spherical harmonics and Fourier-transformed. Thus,
the spacetime metric describing the perturbed spacetime

can be written as5

ds2 = −e2φ(1 + rlH0Ylmeıωt+ımϕ)dt2

− 2ıωrl+1H1Ylmeıωt+ımϕdtdr

+ e2λ(1− rlH0Ylmeıωt+ımϕ)dr2

+ r2(1− rlKYlmeıωt+ımϕ)dΩ , (52)

where Ylm(ϑ, ϕ) are the scalar spherical harmonics and
H0(r, ω), H1(r, ω), K(r, ω) describe the polar metric per-
turbations. A fluid element in a point xµ is displaced by
the perturbation in the new position x′µ = xµ+ξµ, where

5 We use the gauge adopted in [43].
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the displacement vector ξµ can be written as

ξt = 0, (53)

ξr = rl−1e−λW (r, ω)Ylm(θ, ϕ)eıωt+ımϕ, (54)

ξθ = − rl−2V (r, ω)∂θYlm(θ, ϕ)eıωt+ımϕ, (55)

ξϕ = − rl−2V (r, ω)

sin2 θ
∂ϕYlm(θ, ϕ)eıωt+ımϕ . (56)

The perturbations of the energy density and pressure of
the fluid composing the star are expanded in the same
way. Due to the decomposition in spherical harmon-
ics and to the Fourier expansion, the linearized Ein-
stein+hydro equations do separate, and are reduced to a
set of coupled, linear ordinary differential equations for
the radial part of the perturbed fluid and of the metric
functions.

A QNM is defined as a solution of the perturbed equa-
tions which is regular at the center, continuous at the
stellar surface, and which behaves as a purely outgoing
wave at radial infinity. The set of discrete values of the
complex frequency ω = 2πν + ı/τ for which these con-
ditions are satisfied are the QNM eigenfrequencies: the
real part is the pulsation frequency ν, the imaginary part
is the inverse of the damping time τ .

The QNMs are classified according to the nature of
the restoring force which prevails in bringing back the
perturbed fluid element to the equilibrium position. For
the pn-modes, or “pressure modes”, (n = 1, 2, . . . ) the
main restoring force is due to pressure; for the gn modes
(n = 1, 2, . . . ), or “gravity modes”, the main restoring
force is buoyancy. The order n of the mode corresponds
to the number of nodes of the radial eigenfunction of the
displacement vector. The f -mode, i.e., the fundamental
mode of the star, describes the global pulsation motion
of the fluid, and has no radial nodes. In a cold neutron
star, typical values for the QNM frequencies and damping
times are νf ≃ 1.5 − 2.5 kHz, τf ≃ 0.1 s, νp1

≃ 5 −
10 kHz, and τp1

= 1 − 10 s. The g-modes are due to
the presence of thermal and/or composition gradients; in
absence of composition gradients, all g-modes of a cold
neutron star degenerate to zero frequency. Conversely,
they are present in a PNS [15, 17], as we shall show below.

To determine the quasi-normal mode frequencies at a
given time t of the stellar evolution, we have first evolved
the PNS, finding the profiles of the pressure P (r, t), the
energy density ǫ(r, t), the baryon number density nB(r, t),
and the sound speed, cs(r, t), for the three EoSs and
the different values of the baryonic mass we consider
in this paper. Then we have determined the “effective
barotropic EoS” by inverting the pressure-radius profile,
thus finding r = r(P, t) and then ǫeff (P ; t) = ǫ(r(P, t), t)
and ceffs (P ; t) = cs(r(P, t), t). Using these expressions,
we have solved the equations of stellar perturbations (we
used the formulation of [45]), to find the frequencies and
damping times of the first p- and g-modes and of the
fundamental mode.

A. Results of the numerical evolution
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FIG. 9. Time dependence of the PNS quasi-normal mode
frequencies and damping times for the three EoSs and for
MB = 1.40M⊙.

We have evolved three stellar models with baryon
masses (1.25, 1.40, and 1.60 M⊙) and the EoSs LS-bulk,
CBF-EI and GM3, which was used in [15]. For this EoS,
the QNM frequencies we compute for the 1.60M⊙ star
agree with those of “model A” of [15] within a few per-
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cent. We think that the small differences between our
results and those of [15] are due to differences in the ini-
tial profiles and in the details of the treatment of the
diffusion processes. The numerical values of the f -, g1-
and p1- QNM frequencies and damping times are tabu-
lated in Appendix C.
In Fig. 9 we show, as an example, how the QNM fre-

quencies and damping times change during the first 5
seconds of the PNS life. The plots are given for the
three EoSs we consider, and for a star with baryonic mass
MB = 1.40M⊙ as an example.
In the upper panel we show the frequency of the g1-

and of the f - modes, in the mid panel the frequency of
the mode p1, and in the lower panel the damping time of
the three modes. From the upper panel of Fig. 9 we see
that during the first second, νg1 approaches νf , but they
never cross. At later times, νg1 increases, reaches a max-
imum and then decreases, whereas νf does the opposite:
it reaches a minimum slightly before νg1 reaches its max-
imum, and then increases toward the asymptotic value
of the corresponding cold neutron star. This behaviour
is a general feature of the three EoS; however, the min-
imum (maximum) of νf (νg1) occurs at different times
for different EoSs. In addition frequencies belonging to
different EoSs differ, at each time, as much as ∼ 100–
200Hz. νp1

also has a minimum (which was not found
in [15]), at earlier times with respect to νf and νg1 .
It may be noted that our results are qualitatively dif-

ferent from those of [17] and [18], where the QNMs show
a monotonic increase of the f - and p-modes, and a mono-
tonic decrease of the g-mode. We think that this is due to
the fact that a consistent evolution of the PNS is crucial
to describe the behaviour of the QNMs.
The time dependence of the QNM frequencies de-

scribed above would produce differences in the gravita-
tional waveforms emitted by the PNS which, if detected,
would provide valuable information on the underlying
EoS. The waveform emitted by a star oscillating in a
QNM with frequency ν and damping time τ can be writ-
ten as h(t) = h0e

−(t−t0)/τ sin[2πν(t−t0)], where h0 is the
initial amplitude and t0 some initial time. Since the mode
energy is proportional to the square of the wavefunc-
tion, EQNM ∝ e−2(t−t0)/τ , and the gravitational wave

(GW) luminosity is LGW = −ĖQNM ≃ 2EQNM

τ . There-
fore, QNMs with smaller damping times are more effec-
tive in extracting energy from the PNS in the form of
GWs. In a cold star τf < τp, and this means that the
energy will be radiated mainly at the frequency of the
fundamental mode. However, during the first second of
the PNS life the situation is quite different; the lower
panel of Fig. 9 shows that the p1-mode has a damping
time τp1

≃ 1 s, smaller than that of the f - and of the g1-
modes, and it can be more effective in radiating energy
than the fundamental and the first g-mode. After the
first second, the fundamental mode becomes the more
efficient GW emitter.
It should be stressed that the mechanical energy of a

newly born PNS is dissipated in gravitational waves only

in part. GWs compete with other dissipative mechanisms
associated to neutrino diffusion; therefore, gravitational
waves will be emitted by a PNS only if τGW is smaller
than the dissipation timescales typical of neutrino diffu-
sion. These have been estimated to be of the order of
τν ∼ 10 − 20 s (see [15] for a discussion on this issue
and references therein). From the lower panel of Fig. 9
we see that the damping times of the f - and p1- modes
are always smaller than τν , whereas τg1 becomes larger
than τν after the first few tenths of seconds. Thus, if the
PNS has a significant amount of mechanical energy to
release, we can reasonably expect that a part of it will
be released in gravitational waves.
Recent 3-D simulations of the early explosion phase of

core-collapse supernovae and of the following accretion
phase [46, 47] show that other phenomena than stellar os-
cillations may contribute to gravitational wave emission;
for instance, standing accretion shock instability and con-
vection, which are shown to be associated to stochastic
oscillations, and to unstable g-modes, different from the
stable g-modes considered in this paper. For a review see
also [48].

B. A fit of the fundamental and first p-mode

periods

In non-relativistic variable stars (as Chepheids), the
ratio of the periods P1/P0 = νf/νp1

of the first overtone
(that corresponds in the language of stellar oscillations in
GR to the first p-mode) and of the fundamental mode is a

function of the quantityQ0 = P0

√

ρ̄/ρ⊙, where P0 = ν−1
f

and ρ⊙ = 2.97× 10−18M⊙/km
3 is the mean Sun density

(see e.g. [49]). We have fitted the ratio P1/P0 ≡ νf/νp1

with a linear dependence on Q0 ∝ √
ρ̄/νf , obtaining

P1

P0
= 1.1131(±0.0066)− 1596(±17)

P0

1 s

√

ρ̄
103 km

1M⊙
. (57)

The result of the fit is shown in Fig. 10; the corresponding
reduced chi-square is rather low: χ̃ = 3.2× 10−4. This is
an indication that, even in PNSs, the ratio P1/P0 could
be an universal property, independent of the masses and
EoSs of the PNS.

VI. CONCLUSIONS

In this paper we have studied the evolution and the
gravitational wave emission of a proto-neutron star in
the Kelvin-Helmholtz phase, that is the period of the neu-
tron star life subsequent to the supernova explosion, until
the star becomes transparent to neutrinos. To perform
such a study, we have written a new general relativistic,
one-dimensional, energy-averaged, and flux-limited PNS
evolutionary code which evolves a general EoS consis-
tently. In particular, we have considered three nucleonic
EoSs and three stellar masses, and we have determined
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the neutrino cross sections self-consistently with the cor-
responding EoS. The EoSs considered are all nucleonic
(without hyperons) and are obtained (i) by the extrapo-
lation from the measured nuclear properties (the LS-bulk
EoS [19]) (ii) by the nuclear relativistic mean-field theory
(the GM3 EoS [23]) (iii) by the nuclear non-relativistic
many-body theory (the CBF-EI EoS [20, 21]). We have
determined the frequencies of the quasi-normal oscilla-
tion modes for the different EoSs and stellar masses using
the general relativistic stellar perturbation theory.

The main improvements with respect to previous works
introduced by our study are the following.

• We have developed and tested a new fitting formula
for the interacting part of the baryon free energy
(i.e., neutrons plus protons), which is valid for high
density matter, finite temperature, and arbitrary
proton fractions. We used this fitting formula to
derive the other thermodynamical quantities. This
formula is suitable to be used in evolutionary codes.

• We have computed the neutrino cross sections for
the many-body theory EoS of [20, 21]. They have
been computed at the mean-field level [32], that
is, the interaction between baryons has been ac-
counted for modifying the baryon energy spectra by
means of density-, temperature-, and composition-
dependent effective masses and single-particle en-
ergies.

• We used these neutrino cross sections to evolve the
PNS with the many-body EoS in a consistent way.
To our knowledge, this is the first time that a PNS
with a many-body EoS has been evolved with con-
sistently determined neutrino opacities. From this

evolution, we have determined the stellar quasi-
normal modes.

Our main results are the following.

• The PNS evolution depends on the adopted EoS.
In particular, for the many-body EoS CBF-EI the
PNS cooling is faster than that with the mean-field
EoS GM3, which in turn is faster than that with
the extrapolated EoS LS-bulk. In the extrapolated
EoS LS-bulk the effective baryon masses have been
assumed to be equal to the bare ones, and the result
is that this EoS is “less interacting” than the others
in the computation of the neutrino cross sections.

• The deleptonization of the PNS with the CBF-EI
EoS is almost completed at the end of the Joule-
heating phase (similarly to what was found in the
first PNS numerical studies by [1] and [2]), whereas
the deleptonization for the GM3 and LS-bulk EoSs
proceeds during the cooling phase (as found in [3]).
Pons et al. [3] explained this difference with the
over-simplifications in the treatment of the neu-
trino opacities in [1, 2]. However, we compute
the neutrino cross sections for the CBF-EI and the
other EoSs with the same procedure of [3]. There-
fore, the faster deleptonization is a feature also due
to the EoS properties and not only to the treatment
of neutrino opacities.

• The total number of electron antineutrinos detected
depends on the gravitational binding energy but is
not completely determined by it. In particular, the
CBF-EI EoS has more antineutrinos detected than
the LS-bulk EoS, even though its binding energy is
smaller. This is due to the fact that the PNS with
CBF-EI EoS has higher temperatures than those
with the other EoSs, hence the electron antineu-
trino distribution function at the neutrinosphere
is smoother and more antineutrinos have energies
larger than the detector energy threshold. This re-
sult remarks the importance of an accurate mod-
eling of the PNS evolution in order to extract in-
formation on the PNS physics from the neutrino
signal.

• We show that during the first second, the frequen-
cies at which the PNS oscillates emitting gravita-
tional waves have a non monotonic behaviour. The
fundamental mode frequency decreases, reaches a
minimum and then increases toward the value cor-
responding to the cold neutron star which forms
at the end of the evolution. The frequency of the
first g mode increases, reaches a maximum and then
decreases to the asymptotic zero limit, that of the
mode p1 has a less pronounced minimum at earlier
times with respect to the f mode. We show that
this behaviour, already noted in [15] for the EoS
GM3, is a generic feature when the PNS evolution
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is consistently described, and that the timescale de-
pends on the EoS. Indeed the time needed to reach
the minimum (maximum) for the f - (g1-) mode can
differ by as much as half a second for the EoS we
consider.

During the first second, the damping time of
all modes is shorter than the neutrino diffusive
timescale (∼ 10 s); therefore gravitational wave
emission may be competitive in subtracting energy
from the star. This remains true at later time
only for the fundamental mode and for the first p
mode. However, the damping time of the f mode is
much shorter, thus we should expect that after the
first few seconds gravitational waves will be emitted
mainly at the corresponding frequency.

• The QNM frequencies depend not only on the EoS,
but also on the stellar baryon mass. In particular,
we find that for a lower mass, at the beginning the
p1-mode has higher frequency; for instance, for the
1.25M⊙ star it approaches 2 kHz.

• We have found a relation between the fundamental
and first p-mode frequencies and the mean stellar
density [Eq. (57)] which is valid during all PNS
phases for the cases considered in this paper. This
may be an universal property of PNSs, independent
of the mass and the EoS.

This paper may be improved in several directions.
About the microphysics, improvements may be done to
the neutrino cross section treatment, for example includ-
ing the effects of collective excitations [50, 51] and the
weak magnetism correction [52]. Consistently computed
neutrino cross sections in the many-body theory for finite
temperature and high density matter would be welcome
too. About the EoS, it would be interesting to include
more physical ingredients, like hyperons and the pres-
ence of a crust (alpha particles and a lattice). However,
we do not expect dramatic changes for the inclusion of
a crust since we have checked that alpha particles do
form only near the stellar surface and towards the end
of our simulations (Appendix B 3). About the PNS evo-
lution, it would be interesting to abandon the request
of beta equilibrium (even though, we have checked that
beta equilibrium is almost respected in most of the star,
apart for a region near the stellar layer at the beginning
of the simulation, see Appendix B2 and [1, 3]) and to al-
low for the presence of muons and tauons, accounting for
the transport of their relative lepton numbers. A major
improvement to our work would be the inclusion of accre-
tion [9, 11–13] and convection [10], which could have an
important effect on the evolution. Finally, we are using
as initial configurations the final profile obtained from
an old simulation [35], conveniently rescaling it with the
total stellar mass. This brings a significant amount of
uncertainties; to increase the accuracy of the evolution it
would be important to consistently use the final profiles
of more modern core-collapse simulations.
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Appendix A: Fitting procedure

The fit has been performed using a set of points on an
evenly spaced Cartesian 11× 50× 12 grid in (Yp;T ;nB),
from (0; 1MeV; 0.04 fm−3) to (0.5; 50MeV; 0.48 fm−3),
with steps of (0.05; 1MeV; 0.04 fm−3). The fit is strictly
valid for nB ∈ (0.04; 0.48) fm−3 and T ∈ (1; 50)MeV,
but its analytic form is suitable to be used also for
nB < 0.04 fm−3 and T < 1MeV, see Sec. II B. First,
we have fitted only the interacting free energy f I

B, com-
puting the root mean square σf . We have done the same
for the interacting entropy and pressure, obtaining the
root mean squares σs and σP . Then, we have simulta-

neously fitted the interacting free energy, entropy, and
pressure, giving to each fitting point pi an uniform error
σi={f ;s;P} that depends on which quantity that point is
describing (the free energy, the entropy, or the pressure).
The result of the fit of the GM3 and CBF-EI EoS, is
shown in Tab. II. We have tried to include in the fit also
the second order derivatives, ∂2fB/∂T

2, ∂2fB/∂n
2
B, and

∂2fB/∂T∂nB, but the resulting fit did not improve its
accuracy.

We have checked that in the range we consider, the fits
for the GM3 and the CBF-EI EoSs satisfy the thermo-
dynamic stability conditions (Eqs. (13) and (14) of [24])

∂sB
∂T

∣

∣

∣

∣

nB

> 0, (A1)

∂PB

∂n

∣

∣

∣

∣

T

> 0. (A2)

Appendix B: Code checks

In this appendix we show the checks of the accuracy
of the code, and we justify a posteriori the assumption
of beta equilibrium and the assumption of a baryon EoS
made of an interacting gas with neither alpha particles
nor a solid crust. For simplicity, we show the results of a
PNS evolved with the CBF-EI EoS and with total baryon
mass MB = 1.60M⊙; the results for the other EoSs and
the other baryon masses are similar.
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TABLE II. Interacting baryon free energy per baryon fitting
parameters, Eqs. (10) and (11). In the first column, we report
the fitting coefficient for SNM and PNM, in the second and
third columns we report the results of the fit for the GM3 and
CBF-EI EoSs, in the fourth and last column, we report the
polynomial that is multiplied by that coefficient in the fitting
formula. In the last two rows we report the number of points
used in the fit and the reduced chi-squared. Energies are in
MeV and lengths in fm.

coeff. GM3 CBF-EI polynomial

a1,SNM −402.401 −284.592 4Yp(1− Yp)nB

a2,SNM 1290.54 676.121 4Yp(1− Yp)n
2

B

a3,SNM −1540.52 −662.847 4Yp(1− Yp)n
3

B

a4,SNM 903.8 667.492 4Yp(1− Yp)n
4

B

a5,SNM 0.0669357 0.112911 4Yp(1− Yp)nBT
2

a6,SNM −0.000680098 −0.00124098 4Yp(1− Yp)nBT
3

a7,SNM −0.0769298 −0.148538 4Yp(1− Yp)n
2

BT
2

a8,SNM 0.000915968 0.00192405 4Yp(1− Yp)n
2

BT
3

a1,PNM −274.544 −121.362 (1− 2Yp)
2nB

a2,PNM 1368.86 101.948 (1− 2Yp)
2n2

B

a3,PNM −1609.15 1079.08 (1− 2Yp)
2n3

B

a4,PNM 916.956 −924.248 (1− 2Yp)
2n4

B

a5,PNM 0.0464766 0.0579368 (1− 2Yp)
2nBT

2

a6,PNM −0.000388966 −0.000495044 (1− 2Yp)
2nBT

3

a7,PNM −0.0572916 −0.0729861 (1− 2Yp)
2n2

BT
2

a8,PNM 0.00055403 0.000749914 (1− 2Yp)
2n2

BT
3

N 19782 18686

χ̃ 4.18 2.05

1. Energy and lepton number conservation

The total energy and other quantum numbers (i.e., the
baryon number) are conserved in every physical process.
Our code enforces the conservation of the total baryon
number A = MB/mn, but as it evolves, the PNS loses
energy and lepton number since neutrinos are allowed
to escape from the star. Since the total energy of a star
(matter plus neutrinos) in spherical symmetry is given by
its gravitational mass M , the total energy of the system
(stellar energy plus energy of the emitted neutrinos) is
given by

Etotal = M(t) +

∫ t

200ms

Lν(t)dt, (B1)

where Lν is defined in Eq. (49). Similarly, for the electron
lepton number,

Ntotal = NL(t) +

∫ t

200ms

4πR2eφ(R)Fν(R)dt, (B2)

NL =

∫ A

0

YL(a)da, (B3)

where NL is the total number of electronic leptons in the
star, and Fν is the electron neutrino number flux (we do
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FIG. 11. Total energy Etotal and total lepton number
Ntotal conservation for a PNS with the CBF-EI EoS and
1.60M⊙ baryon mass, normalized with the stellar initial en-
ergy and lepton number (our simulations start at 200ms, see
Sec. IVB). The timestep is changed during the evolution in
such a way that the relative variation in a timestep of the
profiles of entropy per baryon and lepton fraction is approxi-
mately equal to 10−4.

not account for the other lepton numbers since we do
not include muons and tauons in the EoSs and moreover
µνµ = µντ = 0).
Since the conservation of Etotal andNtotal has not been

enforced, they provide a test for our simulations. From
Fig. 11 and from the top plot of Fig. 12, it is clear that
they are conserved better than about 0.03% during the
evolution.
In Fig. 12 we show, for different fixed timesteps and

for different grid dimensions, the total and instantaneous
energy conservation from 0.2 s to 1 s. The instantaneous
energy fractional conservation is defined as

i.e.f.c. =
|Ṁ + Lν |

Lν
. (B4)

We see that reducing the timestep the energy conserva-
tion is improved. The instantaneous energy fractional
conservation as a function of time shows regular spikes,
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FIG. 12. Total energy Etotal (normalized with the stellar ini-
tial energy) and instantaneous energy fractional conservation
for a PNS with the CBF-EI EoS and 1.60M⊙ baryon mass.
The timestep dt is kept fixed during the evolution and n is
the number of grid points. The plots begin at 200ms because
this is the initial time of our simulations (see Sec. IVB).

whose number doubles (triples) if we double (triple) the
grid points, and whose magnitude is approximately in-
versely proportional to the timestep. We explain these
spikes with the non-linearity of the transport equations
([36], Sec. 19.1). In fact, the temperature and the neu-
trino degeneracy appear inside and outside the gradients
in the transport equations [Eqs. (40)–(43)]. As a conse-
quence, the power in the Fourier space is accumulated
in the shorter wavelengths and is finally released in the
longer wavelengths of the solution. This explains why
the frequency of the peaks changes with the grid spacing.
The spikes of the instantaneous energy conservation have
magnitudes which increase when the timestep is lowered,
since one is dividing over a smaller timestep an approx-
imately constant energy jump, [M(t + dt) − M(t)]/dt.
These spikes do not undermine the overall conservation
of the energy and lepton number and the PNS evolution,
see Fig. 11 and upper plot of Fig. 12.

2. Beta equilibrium

Our code (as in [2]) assumes beta equilibrium,
Eqs. (14). This approximation is valid if the timescale
of the beta equilibrium is shorter than the dynamical
timescale. We estimate the beta equilibrium timescale
using Eqs. (16) and (17a) of [1],

tbeta =
1

Dn
, (B5)

Dn = 1.86× 10−2YpT
5[S4(ηe)− S4(ην)]

· 1− e−∆/T

1− e−ηe+ην

neutrinos

baryon · s , (B6)

S4(y) =
y5

5
+ 2π2 y

3

3
+ 7π4 y

15
, (B7)

where Dn is the net rate of production of electron-
neutrinos, η = µ/T is the degeneracy parameter, and
∆ = 0 in the case of beta equilibrium (we refer the reader
to [1] for more details). Since we have assumed beta equi-
librium, we put 1− exp(−∆/T ) ≡ 1 to estimate the cor-
responding timescale. This means that the value of the
beta equilibrium timescale is not fully consistent.
Since the PNS structure changes due to how neutrinos

transfer energy and lepton number through the stellar
layers, we estimate the dynamical timescale with the for-
mula

tdyn = R
nν(r)

Fν(r)
, (B8)

where nν(r) and Fν(r) are the neutrino number density
and number flux, respectively (which depend on the ra-
dial coordinate r), and R is the stellar radius (notice that
Fν/nν has the dimensions of a velocity).
In Fig. 13 we plot the dynamical and beta equilib-

rium timescales for a PNS with the CBF-EI EoS and
MB = 1.60M⊙. The beta equilibrium is valid in most
of the star, apart for a thin shell near the stellar bor-
der. Towards the end of the evolution the dynamical
timescale seems to reduce, and this is counterintuitive.
In fact, we have associated the dynamical timescale with
the neutrino timescale. This is not true towards the end
of the evolution, since as the PNS becomes optically thin
the neutrinos decouple from the matter and the diffu-
sion approximation breaks down. At that point, the neu-
trino timescale drops, but the stellar dynamics is actually
frozen.

3. Baryon gas assumption

In this paper we have not considered the formation of
any kind of crust or envelope, that is, the EoS baryon part
is made by an interacting gas of protons and neutrons.
However, at low temperature and baryon density, the
matter is not constituted by a gas of baryons only. The
alpha particles (i.e., Helium nuclei) are the first species
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FIG. 13. Dynamical timescale (solid lines) and beta equilib-
rium timescale (dashed lines) profiles at different times for a
PNS with the CBF-EI EoS and 1.60M⊙ stellar mass.

that appears decreasing the temperature and the den-
sity. The critical temperature at which alpha particles
begin to form, that is, the lowest temperature at which
protons and neutrons are present alone as an interact-
ing gas, depends on the baryon density and the proton
fraction. Eq. (2.31) of [19] is an estimate of this critical
temperature,

Tc(Yp) = 87.76

(

Ks

375MeV

)1/2 (
0.155 fm−3

ns

)1/3

Yp(1− Yp) MeV, (B9)

where ns and Ks are the saturation density and the in-
compressibility parameter at saturation density of sym-
metric nuclear matter. Eq. (B9) is valid for nB < ns,
otherwise no alpha particles may form. In Fig. 14 we re-
port the profiles of the critical temperature and the PNS
temperature for different snapshots of a PNS with the
CBF-EI EoS and with MB = 1.60M⊙; the results for
the other EoSs and baryon masses are similar. As ex-
pected, the assumption of a proton-neutron interacting
gas is valid at the beginning of the simulation and loses
accuracy towards the end of the evolution, when it is not
valid only in the outermost layers.

Appendix C: PNS quasi-normal modes

In Tables III-XI we report the QNM frequencies and
damping times for the models considered in this paper.
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FIG. 14. Stellar temperature (solid lines) and critical tem-
perature (dashed lines) for the formation of alpha particles at
different times, for a PNS with the CBF-EI EoS and 1.60M⊙

baryon mass. When the baryon density reaches the nuclei
density, 0.155 fm−3, alpha particles could not form and we do
not plot the critical temperature anymore.

TABLE III. QNMs for a MB = 1.25M⊙ star evolved with the
GM3 EoS. The column content, from left to right, is: time of
the snapshot (in s), frequency (in Hz) and damping time (in
s) of the g1-, f -, and p1-modes, stellar gravitational mass (in
M⊙), and stellar radius (in km). The g1-mode quantities are
not shown when τg1 & 107 s.

t νg1 τg1 νf τf νp1 τp1 M R

0.2 784.1 4.01 955.3 2.49 1712. 1.57 1.2064 22.444

0.3 776.6 5.91 928.2 2.18 1619. 1.59 1.2051 23.530

0.4 768.0 11.5 925.7 1.75 1623. 1.56 1.2036 23.320

0.5 752.9 25.9 940.5 1.48 1653. 1.55 1.2021 22.917

0.6 734.4 58.2 965.2 1.31 1696. 1.57 1.2006 22.430

0.7 715.1 123. 995.0 1.17 1752. 1.62 1.1992 21.894

0.8 695.8 247. 1027. 1.05 1817. 1.71 1.1977 21.349

0.9 676.7 472. 1058. .952 1890. 1.83 1.1962 20.812

1.0 658.2 873. 1090. .869 1976. 1.98 1.1948 20.272

2.0 504.3 1.5× 105 1300. .534 3386. 3.96 1.1828 15.893

4.0 326.8 2.8× 105 1412. .446 4593. 5.96 1.1697 13.502

5.0 - - 1433. .434 4756. 6.46 1.1660 13.215

10. - - 1468. .415 5017. 6.77 1.1562 12.778

15. - - 1475. .413 5074. 6.66 1.1520 12.659

20. - - 1473. .415 5091. 6.88 1.1502 12.600
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TABLE IV. As Tab. III, for a MB = 1.25M⊙ star with the
CBF-EI EoS.

t νg1 τg1 νf τf νp1 τp1 M R

0.2 756.2 3.13 1036. 4.41 1625. 1.36 1.2118 23.807

0.3 753.2 3.35 1001. 4.94 1546. 1.38 1.2102 24.808

0.4 767.0 3.47 976.8 4.45 1549. 1.34 1.2085 24.628

0.5 783.5 3.82 959.2 3.53 1572. 1.30 1.2068 24.238

0.6 796.5 4.88 950.3 2.60 1604. 1.27 1.2052 23.765

0.7 800.8 7.85 952.9 1.93 1643. 1.25 1.2035 23.251

0.8 795.4 15.4 967.7 1.55 1686. 1.25 1.2019 22.723

0.9 782.6 32.2 990.7 1.33 1732. 1.26 1.2004 22.200

1.0 766.1 66.4 1019. 1.18 1783. 1.28 1.1988 21.679

2.0 568.0 2.5× 104 1296. .556 2542. 2.32 1.1856 17.255

4.0 377.7 3.7× 105 1512. .385 4206. 6.46 1.1695 13.684

5.0 - - 1553. .365 4643. 7.75 1.1647 13.113

10. - - 1635. .330 5355. 8.57 1.1535 12.240

15. - - 1659. .321 5507. 8.04 1.1499 12.012

20. - - 1664. .319 5568. 8.00 1.1492 11.903

TABLE V. As Tab. III, for a MB = 1.25M⊙ star with the
LS-bulk EoS.

t νg1 τg1 νf τf νp1 τp1 M R

0.2 870.3 8.57 1047. 1.21 1982. 1.23 1.2020 19.925

0.3 839.0 22.0 1045. 1.12 1888. 1.27 1.2006 20.780

0.4 805.6 62.2 1068. 1.01 1907. 1.27 1.1992 20.506

0.5 772.9 161. 1102. .911 1961. 1.30 1.1976 20.047

0.6 742.2 380. 1139. .821 2035. 1.37 1.1961 19.533

0.7 713.6 829. 1176. .743 2125. 1.46 1.1946 19.003

0.8 686.9 1.7× 103 1213. .676 2231. 1.59 1.1931 18.467

0.9 662.0 3.4× 103 1248. .622 2353. 1.74 1.1917 17.948

1.0 638.7 6.5× 103 1279. .579 2490. 1.92 1.1903 17.446

2.0 473.5 5.9× 106 1457. .415 4027. 3.22 1.1789 13.939

4.0 321.8 3.3× 105 1538. .372 4864. 4.89 1.1673 12.557

5.0 278.9 5.9× 105 1552. .366 5010. 5.28 1.1638 12.378

10. - - 1572. .359 5267. 6.01 1.1540 12.091

15. - - 1575. .359 5328. 6.15 1.1493 12.025

20. - - 1575. .360 5352. 6.22 1.1465 11.986

TABLE VI. As Tab. III, for a MB = 1.40M⊙ star with the
GM3 EoS.

t νg1 τg1 νf τf νp1 τp1 M R

0.2 695.5 3.28 954.3 4.83 1495. 1.36 1.3553 25.961

0.3 712.6 3.38 924.5 4.62 1469. 1.35 1.3536 26.289

0.4 734.6 3.67 904.4 3.61 1494. 1.29 1.3518 25.782

0.5 751.3 4.78 895.6 2.54 1530. 1.25 1.3500 25.174

0.6 757.2 8.21 901.1 1.83 1572. 1.22 1.3482 24.560

0.7 752.5 17.2 919.9 1.46 1619. 1.21 1.3464 23.937

0.8 741.5 37.5 947.4 1.24 1672. 1.22 1.3447 23.312

0.9 727.4 78.7 979.1 1.09 1730. 1.25 1.3429 22.704

1.0 712.1 156. 1012. .972 1793. 1.29 1.3412 22.119

2.0 567.7 3.1× 104 1284. .484 2938. 2.57 1.3260 17.122

4.0 387.1 4.6× 106 1447. .372 4461. 4.15 1.3084 13.827

5.0 - - 1476. .357 4678. 4.64 1.3033 13.450

10. - - 1531. .335 5050. 5.14 1.2893 12.872

15. - - 1545. .330 5142. 4.98 1.2827 12.725

20. - - 1548. .330 5175. 4.95 1.2791 12.661

TABLE VII. As Tab. III, for a MB = 1.40M⊙ star with the
CBF-EI EoS.

t νg1 τg1 νf τf νp1 τp1 M R

0.2 652.7 3.67 1029. 6.68 1436. 1.31 1.3613 27.434

0.3 665.1 3.60 1004. 7.48 1410. 1.31 1.3591 27.740

0.4 688.6 3.39 984.5 7.13 1430. 1.26 1.3570 27.266

0.5 715.0 3.20 966.5 6.27 1462. 1.21 1.3550 26.671

0.6 741.6 3.12 950.6 5.11 1498. 1.16 1.3529 26.044

0.7 766.0 3.25 937.7 3.84 1536. 1.12 1.3510 25.421

0.8 785.3 3.89 931.2 2.70 1578. 1.09 1.3490 24.805

0.9 795.7 5.84 934.4 1.91 1621. 1.07 1.3471 24.204

1.0 795.4 11.0 948.7 1.48 1666. 1.06 1.3453 23.622

2.0 633.8 5.4× 103 1239. .556 2308. 1.50 1.3290 18.681

4.0 381.0 3.7× 105 1516. .337 4010. 4.28 1.3079 14.254

5.0 - - 1568. .315 4539. 5.48 1.3013 13.520

10. - - 1670. .280 5459. 7.33 1.2844 12.420

15. - - 1703. .270 5674. 6.92 1.2778 12.146

20. - - 1717. .266 5761. 6.69 1.2752 12.018
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TABLE VIII. As Tab. III, for a MB = 1.40M⊙ star with the
LS-bulk EoS.

t νg1 τg1 νf τf νp1 τp1 M R

0.2 821.7 2.70 1017. 2.61 1739. 1.00 1.3505 22.909

0.3 832.1 3.58 990.7 2.07 1708. .993 1.3488 23.135

0.4 834.6 6.95 988.7 1.46 1739. .958 1.3470 22.658

0.5 821.9 18.2 1010. 1.16 1786. .939 1.3451 22.081

0.6 800.7 49.2 1045. .986 1846. .938 1.3433 21.461

0.7 776.9 122. 1086. .862 1916. .957 1.3415 20.833

0.8 752.7 278. 1128. .761 1996. .996 1.3396 20.219

0.9 729.1 595. 1171. .677 2087. 1.05 1.3379 19.615

1.0 706.3 1.2× 103 1213. .608 2190. 1.13 1.3361 19.035

2.0 533.6 2.5× 105 1472. .359 3688. 2.10 1.3214 14.668

4.0 - - 1590. .305 4757. 3.42 1.3058 12.757

5.0 - - 1610. .298 4946. 3.76 1.3012 12.532

10. - - 1644. .288 5299. 4.41 1.2877 12.165

15. - - 1650. .288 5394. 4.58 1.2807 12.082

20. - - 1650. .289 5431. 4.64 1.2764 12.042

TABLE IX. As Tab. III, for a MB = 1.60M⊙ star with the
GM3 EoS.

t νg1 τg1 νf τf νp1 τp1 M R

0.2 548.5 4.72 946.8 10.6 1232. 1.41 1.5571 32.104

0.3 587.0 4.05 930.4 9.24 1276. 1.32 1.5546 30.898

0.4 626.4 3.53 915.4 7.84 1329. 1.22 1.5522 29.722

0.5 664.1 3.18 901.1 6.38 1381. 1.14 1.5498 28.653

0.6 699.0 3.04 889.0 4.82 1433. 1.07 1.5475 27.675

0.7 728.6 3.24 881.2 3.35 1484. 1.02 1.5453 26.797

0.8 749.6 4.27 881.7 2.22 1535. .983 1.5431 25.993

0.9 758.7 7.45 894.3 1.57 1586. .958 1.5410 25.236

1.0 757.3 15.6 917.9 1.25 1640. .946 1.5388 24.525

2.0 636.9 5.4× 103 1239. .464 2481. 1.46 1.5195 18.838

4.0 458.1 6.7× 105 1484. .305 4246. 2.61 1.4949 14.259

5.0 397.8 106 1526. .289 4531. 3.03 1.4877 13.735

10. - - 1611. .263 5050. 3.69 1.4675 12.955

15. - - 1636. .256 5210. 3.62 1.4572 12.750

20. - - 1646. .254 5261. 3.51 1.4509 12.665

TABLE X. As Tab. III, for a MB = 1.60M⊙ star with the
CBF-EI EoS.

t νg1 τg1 νf τf νp1 τp1 M R

0.2 522.7 7.45 995.1 20.4 1197. 1.41 1.5637 33.618

0.3 549.3 5.01 986.9 15.3 1231. 1.36 1.5606 32.492

0.4 581.2 4.17 978.8 12.3 1273. 1.29 1.5577 31.376

0.5 614.4 3.62 969.0 10.4 1318. 1.21 1.5551 30.341

0.6 647.5 3.21 957.7 8.95 1362. 1.14 1.5525 29.389

0.7 680.3 2.90 945.4 7.56 1408. 1.08 1.5500 28.496

0.8 711.9 2.69 933.3 6.14 1453. 1.02 1.5476 27.677

0.9 741.4 2.62 922.2 4.67 1497. .978 1.5452 26.910

1.0 767.2 2.80 914.3 3.28 1542. .941 1.5430 26.187

1.1 786.1 3.58 913.0 2.20 1588. .911 1.5407 25.510

1.2 794.6 5.98 921.9 1.55 1634. .889 1.5386 24.860

1.3 792.6 12.2 941.4 1.22 1682. .874 1.5364 24.234

1.4 783.8 26.1 967.9 1.04 1732. .867 1.5343 23.633

1.8 725.5 365. 1095. .691 1957. .910 1.5263 21.458

1.9 709.4 648. 1127. .635 2022. .939 1.5244 20.962

2.0 693.2 1.1× 103 1158. .586 2090. .975 1.5226 20.486

4.0 453.8 5.5× 105 1522. .291 3758. 2.55 1.4944 14.944

5.0 - - 1590. .267 4348. 3.37 1.4853 14.006

10. - - 1714. .233 5492. 5.69 1.4600 12.639

15. - - 1755. .224 5801. 5.88 1.4485 12.295

20. - - 1776. .220 5926. 5.64 1.4425 12.143

TABLE XI. As Tab. III, for a MB = 1.60M⊙ star with the
LS-bulk EoS.

t νg1 τg1 νf τf νp1 τp1 M R

0.2 662.9 3.07 1020. 6.83 1440. .997 1.5519 28.240

0.3 709.0 2.72 997.3 5.89 1494. .919 1.5495 27.040

0.4 753.6 2.52 976.8 4.56 1555. .846 1.5471 26.001

0.5 792.9 2.64 962.0 3.06 1618. .787 1.5448 25.029

0.6 819.9 3.71 959.7 1.86 1680. .745 1.5424 24.138

0.7 827.0 8.06 977.4 1.25 1743. .717 1.5401 23.325

0.8 818.3 21.6 1012. .988 1809. .701 1.5379 22.547

0.9 802.1 55.8 1055. .838 1879. .699 1.5356 21.818

1.0 782.9 132. 1102. .728 1956. .708 1.5334 21.124

2.0 606.4 5.3× 104 1473. .315 3237. 1.24 1.5140 15.752

4.0 426.3 1.3× 105 1657. .245 4586. 2.17 1.4924 12.975

5.0 374.9 9.2× 106 1687. .237 4825. 2.44 1.4860 12.678

10. - - 1742. .225 5304. 3.03 1.4670 12.201

15. - - 1755. .223 5452. 3.19 1.4568 12.081

20. - - 1757. .224 5510. 3.25 1.4500 12.032
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