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The direct detection of gravitational waves provides the opportunity to measure fundamental
aspects of gravity which have never been directly probed before, including the polarization of
gravitational waves. In the context of searches for continuous waves from known pulsars, we present
novel methods to detect signals of any polarization content, measure the modes present and place
upper-limits on the amplitude of non-tensorial components. This will allow us to obtain new model-
independent, dynamical constraints on deviations from general relativity. We test this framework
on multiple potential sources using simulated data from three advanced-era detectors at design
sensitivity. We find that signals of any polarization will become detectable and distinguishable for
characteristic strains h & 3× 10−27

√
1 yr/T , for an observation time T . We also find that our ability

to detect non-tensorial components depends only on the power present in those modes, irrespective
of the strength of the tensorial strain.

PACS numbers: 04.80.Cc, 04.30.Nk, 04.50.Kd, 04.80.Nn I.

I. INTRODUCTION

The recent detection of gravitational waves (GWs) by
the advanced Laser Interferometer Gravitational-wave
Observatory (aLIGO) heralds the beginning of the long-
awaited era of GW astronomy [1, 2]. One of the main
goals of this field is to use GWs as a probe of fundamental
physics in the highly-dynamical and strong-field regimes
of gravity, as predicted by the general theory of relativity
(GR). The first few GW detections have already been
used to place some of the most stringent constraints on
deviations from GR in this domain, which is inaccessible to
laboratory, Solar System or cosmological tests of gravity.

However, it has not been possible to use LIGO signals
to learn about the polarization content of GWs [3], a
measurement highly relevant when comparing GR to many
of its alternatives [4, 5]. The reason for this is that the
relative orientation of the two LIGO detectors makes
it nearly impossible to unequivocally characterize the
polarizations of transient GW signals like the compact-
binary coalescences (CBCs) observed so far. In fact, at
least five non-coaligned quadrupolar detectors would be
needed to break the degeneracies of all five non-degenerate
polarizations allowed by generic metric theories of gravity
[6, 7].

Existing observations that are usually taken to con-
strain the amount of allowed non-GR polarizations can
do so only in an indirect and strongly model-dependent
manner. For example, measurements of the orbital decay
of binary systems are sensitive to the total radiated GW
power, but do not probe the waves directly (see e.g. [8, 9],
or [10, 11] for reviews). In the context of specific alter-
native theories (e.g. scalar-tensor) such observations can
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indeed constrain the power in extra polarizations; however,
they provide no direct, model-independent information
on the actual polarization content of the gravitational
radiation. Thus, there may be multiple theories, with
different polarization content, that still predict the correct
observed GW emitted power. Because other traditional
tests of GR (like Solar System tests) have no bearing on
GWs, there currently exist no direct measurements of
GW polarizations.

Unlike CBC transients, continuous gravitational waves
(CWs) are, by definition, long-lasting narrow-band sig-
nals. Although they have not yet been observed [12–17],
CWs are expected to be emitted by stable systems, like
spinning neutron stars with an asymmetric moment of
inertia [18]. If detected, such signals would allow for
tests of gravity complementary to those achievable with
transients, including the study of GW polarizations [19].

In [19] we showed that it is possible to search for CWs
in a polarization-agnostic way and to disentangle the po-
larization content if a signal is present. However, the data
analysis methods proposed were based on a frequentist
approach to statistics and suffered from the associated
limitations. In this paper, we reframe the ideas of [19] in
a more sophisticated Bayesian framework that allows us
to achieve the following novel goals:

1. Model-independent detection: determine whether a
set of GW detector data, prepared for any given
known pulsar and from one or multiple detectors,
provides evidence for the presence of an astrophysi-
cal signal of any polarization content.

2. Model selection: in the presence of a signal, deter-
mine whether the data favor GR or a generic non-
GR model, as well as comparing specific alternative
theories among themselves and to GR; combine data
for multiple sources into a single statement about
the validity of GR.

3. Inference: if the data favor the presence of a GR sig-
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FIG. 1. Effect of different GW polarizations on a ring of
free-falling test particles. Plus (+) and cross (×) tensor modes
(green); vector-x (x) and vector-y (y) modes (red); breathing
(b) and longitudinal (l) scalar modes (black). In all of these
diagrams the wave propagates in the z–direction. This de-
composition into polarizations was first proposed for generic
metric theories in [7].

nal, place constraints on specific alternative theories
using the tools of Bayesian parameter estimation.

Furthermore, while [19] treated only the case of a single
detector, we are now able to consider the generic case of
a network of detectors.

We present Bayesian methods to achieve the three goals
above in the context of searches targeted to known pulsars
and present sensitivity estimates for the advanced detector
era, including the first generic estimates of sensitivity to
non-tensorial CW polarizations ever published. In Section
II, we review the basics of beyond-Einstein polarizations
and the targeted pulsar CW search. In Section III, we
phrase our problem in the language of model selection
and explain the construction of hypotheses that will allow
us to distinguish GR from non-GR signals. In section IV
we specify the details of our analysis, and we explain our
results in Section V. Finally, we summarize our findings
and explain caveats in section VI.

II. BACKGROUND

A. Polarizations

GWs can be decomposed into different polarizations,
which arise from the linearly independent components
of the three-dimensional, rank-two tensor representing
the spatial metric perturbation [7]. A generic metric
theory of gravity may thus allow any combination of up
to six independent modes: plus (+), cross (×), vector
x (x), vector y (y), breathing (b) and longitudinal (l).
The effect of each of these modes is represented in Fig.
1. The rotational properties of the fields underlying any
given theory determines which polarizations the theory

supports: + and × correspond to tensor fields (helicity
±2), x and y to vector fields (helicity ±1), and b and l to
scalar fields (helicity 0).

The components of the tensor and vector pairs are not
separable, in the sense that a signal model that includes
one element of the group must also include the other (e.g.
it is not possible to have a model that allows plus + but
not ×), because the distinction between + and ×, or x
and y, is contingent on the frame of reference (e.g. relative
orientation of source and detector).

Einstein’s theory only allows the existence of the + and
× polarizations. On the other hand, scalar-tensor and
massive-graviton theories may also predict the presence
of some b and/or l component associated to the theory’s
extra scalar field [5]. On top of tensor and scalar modes,
bimetric theories, like Rosen or Lightman-Lee theories,
also predict vector modes [20]. Furthermore, less conven-
tional theories might, in principle, predict the existence
of vector or scalar modes only, while still possibly being
in agreement with all other non-GW tests of GR (see
[21] for an example). Although all these different the-
oretical frameworks serve as motivation for our study,
our approach to the measurement of GW polarizations
is phenomenological and, thus, theory-agnostic (Sec. III).
It is important to underscore that the detection of a GW
signal with a non-GR polarization, no matter how small,
is sufficient to falsify GR (note the converse is not true,
however).

Because different polarizations have geometrically dis-
tinct effects, GW detectors will react differently to each
mode. This is manifested in the detector response func-
tion Fp for each polarization p, which encodes the effect
of a linearly p-polarized GW with unit amplitude, hp = 1.
Ground-based GW detectors, like LIGO and Virgo are
quadrupolar antennas that perform low-noise measure-
ments of the strain associated with the differential motion
of two orthogonal arms. Their detector response function
can thus be written as [19, 22–24]:

F+ =
1

2

[
(wx · dx)2 − (wx · dy)2 − (wy · dx)2 + (wy · dy)2

]
,

(1)

F× = (wx · dx)(wy · dx)− (wx · dy)(wy · dy), (2)

Fx = (wx · dx)(wz · dx)− (wx · dy)(wz · dy), (3)

Fy = (wy · dx)(wz · dx)− (wy · dy)(wz · dy), (4)

Fb =
1

2

[
(wx · dx)2 − (wx · dy)2 + (wy · dx)2 − (wy · dy)2

]
,

(5)

Fl =
1

2

[
(wz · dx)2 − (wz · dy)2

]
. (6)

Here, the spatial vectors dx, dy have unit norm and point
along the detector arms such that dz = dx × dy is the
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local zenith; the direction of propagation of the wave
from a source at known sky location (specified by right
ascension α, and declination δ) is given by wz, and wx,
wy are such that wz = wx × wy. We choose wx to lie
along the intersection of the equatorial plane of the source
with the plane of the sky, and let the angle between wy

and the celestial north be ψ, the polarization angle.
Because of their symmetries, the breathing and longitu-

dinal modes are fully degenerate to networks of quadrupo-
lar antennas (see e.g. section VI of [20]). This means that
no model-independent measurement with such a network
can possibly distinguish between the two, so it is enough
for us to consider just one of them explicitly. We will
refer to the scalar modes jointly by the subscript “s”.

The response of gravitational detectors to signals of a
given polarization and direction of propagation can be
represented, as in Fig. 2, by a spherical polar plot in
which the radial coordinate corresponds to the sensitivity
given by Eqs. (1–6). In the frame of a given detector,
this can be written as (see e.g. [24], keeping in mind their
slightly different wave-frame definition):

F+(ϑ, ϕ ;ψ = 0) = −1

2

(
1 + cos2 ϑ

)
cos 2ϕ , (7)

F×(ϑ, ϕ ;ψ = 0) = − cosϑ sin 2ϕ , (8)

Fx(ϑ, ϕ ;ψ = 0) = sinϑ cosϑ cos 2ϕ , (9)

Fy(ϑ, ϕ ;ψ = 0) = sinϑ sin 2ϕ , (10)

Fb/l(ϑ, ϕ ;ψ = 0) = ±1

2
sin2 ϑ cos 2ϕ , (11)

where ϑ and ϕ are the polar an azimuthal coordinates of
the source with respect to the antenna at any given time
(with detector arms along the x and y-axes), and we have
fixed the wave frame so that ψ = 0. The representation
of Fig. 2 makes it clear that quadrupolar detectors will
generally be more sensitive to some polarizations than
others, although this will vary with the sky location of
the source. For example, for all but a few sky locations,
quadrupolar antennas will respond significantly less to a
breathing signal than a plus or cross signal.

For a given detector, polarization angle and sky location,
the antenna patterns of Eqs. (1–6) become simple, distinct
functions of time determined by the rotation of the Earth.
This can be pictured by noting that, as the Earth spins
on its axis, the angular location of the source with respect
to detector will change, tracing an arc on the surfaces of
Fig. 2 with varying radial distance. As we explain in Sec.
III A 1, the Fp’s of polarizations with different rotational
properties can be distinguished even in the absence of
information on the source orientation; for the minority of
cases in which such information exists, it can be taken
into account to better distinguish among specific signal
models (see Sec. IV).

Because their characteristic period (a sidereal day) is
much longer than the CBC timescale (order of minutes
or less), the Fp’s are treated as constants in transient
searches; however, this simplification is not valid for CW
searches, since their coherent-integration time can be of
the order of months to years. As we have pointed out
before, this can be used to distinguish the polarization
content of a signal [19]. Assuming wave frequency and
speed are the same for all modes, the only differences
between CWs of different polarizations arise from the
sidereal-period amplitude modulations caused by each
antenna pattern.

B. Continuous waves

1. Signal

A CW is an almost-monochromatic gravitational per-
turbation with constant intrinsic amplitude and phase
evolution φ(t). For arbitrary polarization content, such a
GW will induce a strain in a quadrupolar detector which
can be written as:

h(t) =
∑

p

Fp(t)hp(t), (12)

where the sum is over the five independent polarizations,
p ∈ {+, ×, x, y, s}; the Fp’s are those of Eqs. (1–5),
and thus implicitly depend on the relative location and
orientation of source and detector by means of ψ, α and δ;
the hp term encodes the amplitude and phase of the wave
before being projected onto the frame of the detector:

hp(t) = ap cos (φ(t) + φp) , (13)

where ap is a time-independent amplitude with a func-
tional dependence on source parameters determined by
each particular theory of gravity; φ(t) the phase evolu-
tion, a consequence of the dynamics of the source in that
theory; and φp a phase offset for each polarization. The
polarization amplitudes ap and phases φp may take arbi-
trary values depending on the specific theory of gravity
and emission mechanism.

In GR, there are several ways in which a neutron star
could emit CWs, but the most likely is the presence of a
non-axisymmetry in the star’s moment of inertia [25]. For
this type of triaxial, non-precessing source, GR predicts:

h+(t) = h0
1

2
(1 + cos2 ι) cosφ(t), (14)

h×(t) = h0 cos ι sinφ(t), (15)

hx = hy = hs = hl = 0, (16)

where ι is the inclination angle between the spin axis of
the source and the observing line-of-sight, and h0 is an
overall amplitude given by:

h0 =
16π2G

c4
εIzzf

2
rot

r
, (17)
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(a) Plus (+) (b) Cross (×)

(c) Vector-x (x) (d) Vector-y (y)

(e) Scalar (s)

FIG. 2. Angular response of a quadrupolar detector to each GW polarization. The radial distance represents the response of
a single quadrupolar antenna to a unit-amplitude gravitational signal of a tensor (top), vector (middle), or scalar (bottom)
polarization, i.e. |Fp| for each polarization p as given by Eqs. (7–11). The polar and azimuthal coordinates correspond to the
source location with respect to the detector, which is to be imagined as placed with its vertex at the center of each plot and
arms along the x and y-axes. The response is plotted to scale, such that the black lines representing the detector arms have unit
length in all plots. The response to breathing and longitudinal modes is identical, so we only display it once and label it “scalar”.
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where r is the source distance, frot its rotation frequency
around the principal axis z, I the moment-of-inertia tensor
and ε ≡ (Ixx − Iyy)/Izz the equatorial ellipticity. For the
triaxial case, the GW frequency f is twice the rotational
value frot, so that we can write:

φ(t) = 2φrot(t) + φ(GW−EM), (18)

where φrot is the rotational phase as measured via electro-
magnetic (EM) observations and φ(GW−EM) is a potential,
constant phase offset between the GW and EM signals
that can be absorbed into the definition of the φp’s in Eq.
(13).

Note that other emission mechanisms may result in GW
radiation at f = frot [26], or even noninteger powers frot

[27–29]. Furthermore, alternative theories of gravity may
(and, in general, will) support signals at any harmonic.
Although in this paper we only consider the case in which
only the second rotational harmonic appears in the GW
phase, the analysis can be easily generalized to also include
contributions from the fundamental and other multiples
of frot (see Sec. VI).

2. Targeted search

We would like to search a given set of data (from one
or more detectors) for CW signals coming from a specific
candidate pulsar which has already been observed and
timed electromagnetically. Timing solutions are obtained
through the pulsar timing package TEMPO2 [30]. We
want to achieve this regardless of polarization content,
and to reliably distinguish between the different modes
present.

If we assume all polarizations share the same phase
evolution, then detector response is the only factor distin-
guishing CW polarizations and, thus, all the relevant in-
formation is encoded in the sidereal-day-period amplitude
modulation of the signal. This allows us to focus on a nar-
row frequency band around the expected GW frequency
by processing the data following the complex-heterodyne
method presented in [31] and [32]. This procedure is
summarized below.

A signal like Eqs. (12, 13) can be rewritten in the form:

h(t) = Λ(t)eiφ(t) + Λ∗(t)e−iφ(t), (19)

Λ(t) ≡ 1

2

5∑

p=1

ape
iφpFp(tk;ψ, α, δ), (20)

with ∗ indicating complex conjugation and φ(t) given by
a Taylor expansion around f = 2frot:

φ(t) = 2π
(

2frotτ + ḟrotτ
2 + ...

)
, (21)

where τ is itself a function of time given by:

τ(t) = t+ ∆R + ∆E + ∆S + ∆binary . (22)

In the above, τ is the time measured by a clock inertial
with respect to the pulsar; t is the time as measured at a
given detector; ∆R is the Roemer delay; ∆E is the Solar-
System Einstein delay; ∆S is the Solar-System Shapiro
delay; ∆binary is the delay originating from the motion of
the pulsar in its binary (a term that vanishes for isolated
sources) [32].

It is important to remember that, the Fp’s are functions
of the source orientation and sky location relative to the
detector, so we have made this dependence explicit in Eq.
(20) by writing Fp(tk) as Fp(tk;ψ, α, δ). Also, recall that
these functions have a characteristic period of a sidereal
day (∼10−5 Hz).

Because the phase evolution φ(t), including all correc-
tions from Eq. (22), is known (with known uncertainties)
from electromagnetic observations, we can digitally het-
erodyne the data by multiplying by exp [−iφ(t)] so that
the signal therein becomes:

h′(t) ≡ h(t)e−iφ(t) = Λ(t) + Λ∗(t)e−i2φ(t) (23)

and the frequency modulation of the first term is removed,
while that of the second term is doubled. A series of low-
pass filters can then be used to remove the quickly-varying
term, which enables the down-sampling of the data by
averaging over minute-long time bins. As a result, Λ(t)
is the only contribution from the original signal left in
our data, and hence we can use Eq. (20) as the template
for our search. Note that, although we started with real-
valued data, after this process the data are now complex.

From Eq. (23) we see that, in the presence of a signal,
the heterodyned and down-sampled noisy detector strain
data Bk for the kth time bin (which can also be labeled
by the Earth-frame GPS time-of-arrival at the detector,
tk) are expected to be of the form:

Bexpected(tk) = Λ(tk) + n(tk), (24)

where n(tk) is the heterodyned, filtered and downsampled
noise in bin k, which carries no information about the
GW signal. Note then that Bk(tk) − Λ(tk) should be
expected to have the statistical properties of noise, a fact
that will be used below in defining likelihoods.

III. METHOD

A. Model selection

We use the tools of Bayesian model selection (also
known as second-level inference) to determine whether
the data contain a signal and, if so, whether that signal
agrees with the GR prediction or not. Our procedure is
hierarchical and consists of the following stages:

1. detection: select between signal and noise models;

2. test of GR: if a signal is present, select between GR
and non-GR models;
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3. upper limits: if GR is favored, place upper limits on
non-tensorial strain amplitudes, in the context of
specific alternative polarization models.

This subsection covers only the first two items in this
list, since the placement of upper limits belongs in the
section on parameter estimation. We treat the case of a
single data set in III A 1 and III A 2, and we show how to
combine results from multiple analyses in III A 3; we offer
some considerations about how to approach the problem
of non-Gaussian noise in III A 4.

1. Hypotheses

For any given pulsar, we would first like to use reduced
(i.e. heterodyned, filtered and downsampled) GW data
to decide between the following two logically disjoint
hypotheses:

1. noise (HN): no signal, the data are drawn from
a Gaussian distribution of zero mean and some
(possibly slowly varying) standard deviation;

2. signal (HS): the data contain noise drawn from a
Gaussian distribution and a signal with the assumed
phase evolution and any polarization content.

In order to perform model selection, we need to translate
these hypotheses into the corresponding Bayesian models;
this means setting a likelihood function derived from the
expected noise properties and picking a multidimensional
prior distribution over all parameters. It is important to
underscore that a Bayesian model is defined by the choice
of these two probability distributions.

For HN, the construction of the likelihood is straight-
forward. First, let σ be the standard deviation of the
detector noise at or near the expected GW frequency;
then, for each complex-valued data point Bk, Gaussianity
implies:

p(Bk | σ,HN) =
1

2πσ2
exp

(
−|Bk|

2

2σ2

)
. (25)

Here, and throughout this document, a lower-case p is
used for probability densities, while an upper-case P is
used for discrete probabilities.

If the data are split into NS segments of lengths sj
(j = 1, . . . , NS) over which the standard deviation σj is
assumed to remain constant, we can analytically marginal-
ize over this parameter to obtain a likelihood for the en-
tire data set B in the form of a Student’s t-distribution
[32, 33]:

P (B | HN) =

NS∏

j=1

Aj




Kj∑

k=κj

|Bk|2


−sj

, (26)

with Aj = (sj − 1)!/2πsj , κj = 1 +
∑j
n=1 sn−1, Kj =

κj + sj − 1 and s0 = 0. Data streams from ND detectors

can be analyzed coherently by generalizing this to:

P (B | HN) =

ND∏

i=1

NSi∏

j=1

Ai,j




Ki,j∑

k=κi,j

|Bi,k|2


−si,j

, (27)

where i indexes detectors, Bi,k ≡ Bi(tk) is the datum
corresponding to the ith detector at time tk, and Ai,j , κi,j
and Ki,j are defined analogously to sj , κj above. The
splitting of the data into segments of constant standard
deviation may be achieved with a strategy similar to the
Bayesian-blocks algorithm of [34], and explained in detail
in [33].

Note that the likelihood p(B | ~θ,H) of some hypothesis
H, is the probability of observing the data B assuming
H is true and given a specific choice of free parameters
~θ from the model’s parameter space Θ. However, in the
case of the noise (“null”) hypothesis, as defined by the
Student’s t likelihood above, there are no free parameters.

Consequently, Θ = ∅ and p(B | ~θ,HN) = P (B | HN).

The case of HS requires more careful attention. One
could be tempted to use Eq. (24) to define a likelihood like
Eq. (27) with the substitution |Bk| → |Bk−Λk|, for Λk ≡
Λ(tk) including all polarizations like in Eq. (20); the priors
would reflect uncertainties in measured source parameters
and extend over reasonable ranges for ap and φp. However,
for most realistic prior choices, that would correspond to
a hypothesis that assigns most of the prior probability to
regions of parameter space for which ap 6= 0 for all p, thus
downweighting more conservative models (including GR)
that we would like to prioritize. This is simply because
the subspace in parameter space corresponding to any of
these smaller subhypotheses (which, for example, fix one
of the ap’s to be zero) has infinitely less volume (i.e. it
offers infinitesimally less support) than its complement;
hence any practical choice of prior probability density
will also assign this subspace infinitely less weight, and
so the prior for the corresponding subhypothesis will be
vanishingly small.

Formally, the inadequacy of the naive construction of
HS as proposed in the previous paragraph is related to
the logical independence of nested hypotheses. We refer
to this important point multiple times in the following
sections; in particular, we discuss it in the context of odds
computations in the text surrounding Eq. (38). We refer
readers not familiar with this line of reasoning to a similar
discussion in [35], or, more generally, to Ch. 4 in [36] or
Ch. 28 in [37].

Instead, we will construct HS from two logically disjoint
component hypotheses:

1. GR signal (HGR or Ht): the data contain Gaussian
noise and a tensorial signal with the assumed φ(t);

2. non-GR signal (HnGR): the data contain Gaussian
noise and a signal with non-GR polarization content,
but with the assumed φ(t).
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The tensorial hypothesis is embodied most generally
by a signal model such that

Λt(t) =
1

2

[
a+e

iφ+F+(t;ψ = 0) + a×e
iφ×F×(t;ψ = 0)

]
,

(28)
where a+, a×, φ+ and φ× are free parameters, and we
pick a specific polarization frame by setting ψ = 0 (we
are allowed to do this because of a degeneracy between
ψ and a+, a× explained in Appendix A). An alternative
parametrization can be derived from the triaxial emission
model of Eqs. (14–16), namely

ΛGR(t) =
1

2
h0e

iφ0

[
1

2
(1 + cos2 ι)F+(t;ψ)− i cos ιF×(t;ψ)

]
,

(29)

where the free parameters are now h0, φ0, ι and ψ [in the
notation of Eqs. (13, 20), φ+ = φ0 and φ× = φ0 − π/2].
This is the parametrization used in most traditional GR-
only searches (see e.g. [17, 33]).

The templates of Eq. (28) and Eq. (29) span the same
signal space; therefore, if we pick parameter priors prop-
erly related by their Jacobian, the respective hypotheses
(Ht andHGR) will be logically equivalent (i.e.Ht ≡ HGR).
However, we will sometimes want to restrict ψ or ι in Eq.
(29) to incorporate measurements of the source orienta-
tion (see Table 3 in [38]), and compare those results to the
unconstrained model of Eq. (28). In such cases, Ht and
HGR are no longer equivalent: the former corresponds to
a free-tensor signal, while the latter now corresponds to
a GR triaxial signal for some given source orientation [i.e.
a signal with the functional dependence on ι and ψ of
Eq. (29)]. Because of lack of any orientation information,
this is a distinction without a difference for most pulsars.
(See Appendix A for more details.)

The non-GR hypothesis, HnGR, can itself be seen as a
composite hypothesis encompassing all the signal models
that depart from GR in some way, i.e. models that in-
clude polarizations other than + and ×. We denote such
subhypotheses with a subscript listing the polarizations
included in the signal. For example, “st” (meaning “scalar
plus tensor”) corresponds to a model with unrestricted
scalar and tensor contributions:

Λst(t) =
1

2

[
a+e

iφ+F+(t;ψ = 0) + a×e
iφ×F×(t;ψ = 0)

+ ase
iφsFs(t;ψ = 0)

]
. (30)

With this notation extended to the names of the relevant
hypotheses, we may then write HnGR as the logical union
(“or” junction, ∨)

HnGR ≡ Hs ∨Hv ∨Hst ∨Hsv ∨Htv ∨Hstv

=
∨

m∈M̃
Hm, (31)

where, for convenience, we have defined the non-GR sub-
script set M̃ :

M̃ ≡{s, v, st, sv, tv, stv} . (32)

Just as before, we may equivalently use the triaxial
parametrization, Eq. (29), for the tensor modes in the

non-GR hypotheses by instead defining M̃ as

M̃ = {s, v, sv, GR + s, GR + v, GR + sv}, (33)

where, for example, GR+s denotes a signal template like

ΛGR+s(t) =
h0

2
eiφ0

[
1

2
(1 + cos2 ι)F+(t;ψ)− i cos ιF×(t;ψ)

]

+
1

2
abe

iφbFb(t;ψ), (34)

and similarly for GR+v and GR+sv, with the added
vector modes. Again, the two definitions of M̃ , Eqs.
(32, 33), are equivalent unless orientation information is
incorporated in the way explained above.

By the same token, the signal hypothesis can be built
from the logical union of HGR or Ht, and HnGR:

HS ≡ HGR/t ∨HnGR =
∨

m∈M
Hm, (35)

with M defined similarly to M̃ , but also including the
tensor-only hypothesis, HGR or Ht:

M ≡ M̃ ∪ {GR/t}. (36)

The validity of Eqs. (31, 35) is contingent on the mutual
logical independence of all the Hm’s. This requirement is
satisfied by construction, since each of the Hm’s is defined
to exclude regions of parameter space that would corre-
spond to other hypotheses nested within it (e.g. HGR+s

is defined over all values of the scalar amplitude except
as = 0, to avoid including HGR). In practice, however, it
is not necessary to explicitly exclude these infinitesimal
regions of parameter space, as will be explained in the
following section.

2. Odds

We can construct a Bayesian model for HS starting
from its components: for each subhypothesis Hm for
m ∈ M , we use a likelihood function like Eq. (27) with
the substitution |Bi,k| → |Bi,k − Λm,i,k|, i.e.

p(B | ~θ,Hm) =

ND∏

i=1

NSi∏

j=1

Ai,j




Ki,j∑

k=κi,j

|Bi,k − Λm,i,k|2


−si,j

(37)
(where Λm,i,k is the template corresponding to model
m, for detector i and time-bin k), and suitable priors

on the model parameters ~θm ∈ Θm; then, we combine
the posteriors with priors on the models themselves to
obtain the posterior for HS. This last step allows us
to incorporate our a priori beliefs about the validity of
each of the components. This procedure is represented
schematically in Fig. 3 and fleshed out below.
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OS
N+

BGR
N

∫B

p(~θ | HGR)
×
1/7

BstvN

∫B

p(~θ | Hstv)

×1
/7

···

·····
·

FIG. 3. Computation of OS
N. First, the Bayes factor Bm

N is
obtained from the data B and corresponding priors p(θ|Hm)
for each model m ∈ M , by evaluating the integral of Eq.

(40) using a nested sampling algorithm that samples over ~θ
(step indicated by integral sign); these values are then added
and multiplied by P (Hm)/P (HN) to obtain OS

N, as in Eq.
(43). (Note that here we have set P (Hm)/P (HN) = 1/7, as
explained Sec. IV.) The computation of OnGR

GR is analogous.

The choice of model priors can be made clearer by
considering the posterior probability for the signal model.
Given some set of detector data B and underlying as-
sumptions I (suppressed from the following expressions),
the posterior probability for HS is:

P (HS | B) =
∑

m∈M
P (Hm | B) (38)

by Eq. (35) and because the components are all logically
independent [i.e. Hm1

∧ Hm2
= False, hence P (Hm1

∧
Hm2

| B) = 0 for any m1, m2 ∈ M such that m1 6=
m2]. Note that this is true even for hypotheses that may
contain each other as special cases. For instance, even
though the GR template can be obtained from GR+s by
setting the scalar amplitude to as = 0, the points in the
GR+s parameter space satisfying this condition define an
infinitesimally-thin slice in parameter space that offers no
support to the prior distribution and is thus assigned no
weight (see similar discussion in [35]).

We can expand each term on the RHS of Eq. (38) using
Bayes’ theorem:

P (HS | B) =
∑

m∈M
P (Hm)P (B | Hm)/P (B). (39)

Each of the terms on the RHS is made up of three factors:
a marginalized likelihood P (B | Hm), a prior on the
model P (Hm), and a normalization constant P (B).

The marginalized likelihood (also known as evidence)
is computed from the data:

P (B | Hm) =

∫

Θm

p(B | ~θm,Hm) p(~θm | Hm) d~θm,

(40)

where p(B | ~θm,Hm) is itself the likelihood. The evalu-
ation of the multidimensional integral of Eq. (40) is the

most computationally intensive part of our analysis (see
Sec. IV for details).

We are free to choose the model priors (discussed in
Sec. IV), as long as we satisfy the constraint:

P (HN) +
∑

m∈M
P (Hm) = 1. (41)

This is a statement about the exhaustiveness and dis-
jointedness of the hypotheses we are considering: we
assume that reality will agree with one and only one of
the hypotheses at hand. (As we will see in Sec. VI, this
assumption might not hold; for example, the noise may
not be Gaussian.) The particular choice of prior for each
model will encode our expectations about the correspond-
ing theory (before seeing the data), and thus allow for
some degree of subjectivity.

Note that we cannot directly compute P (B) in a
straightforward manner and without assuming that our
hypothesis set is indeed exhaustive (which is not the case
for non-Gaussian detector noise, see Sec. III A 4). How-
ever, the need for this computation can be avoided by
looking at relative probabilities, i.e. odds. The odds for
HS versus HN is defined as:

OS
N ≡

P (HS | B)

P (HN | B)
. (42)

Using Bayes’ theorem again and canceling the P (B) fac-
tors, this simplifies to:

OS
N =

∑
P (Hm)P (B | Hm)

P (HN)P (B | HN)
=
∑

m∈M

P (Hm)

P (HN)
BmN , (43)

where, in the second equality, we have used the definition
of the Bayes factor:

Bij ≡
P (B | Hi)
P (B | Hj)

, (44)

for any two hypotheses Hi, Hj .
The odds in Eq. (43) can be used as a detection statistic

to determine whether it is likely that the data contain
a signal (of any polarization) or not. Once the presence
of a signal has been established, a similar ratio can be
constructed to assess agreement with GR:

OnGR
GR =

P (HnGR | B)

P (HGR | B)
=

∑

m6=GR

P (Hm)

P (HGR)
BmGR. (45)

This ratio encodes the relative probability that there is a
GR violation. Because it is now assumed that there is a
signal in the data, P (HN) = 0 and the model priors must
instead satisfy:

∑

m∈M
P (Hm) = 1. (46)

We can reduce the number of computations needed to
obtain OS

N and OnGR
GR by using the fact that:

Bij =
P (B | Hi)
P (B | Hj)

=
P (B | Hi)
P (B | HN)

P (B | HN)

P (B | Hj)
=
BiN
BjN

. (47)
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This means that we need to evaluate an integral like
Eq. (40) seven times per set of data, to compute BmN for
each m in M . Those seven numbers, together with the
evidence for HN, are enough to compute all the quantities
of interest.

Instead of asking about a generic deviation from GR, we
may also compare GR to a particular alternative theory.
For such purpose, we will usually assign equal prior weight
to GR and its alternative to compute:

OjGR =
P (Hj)
P (HGR)

BjGR = BjGR, (48)

where Hj may be any of the hypotheses in M̃ or an even
more specific hypothesis. (The latter case demands an
extra execution of the inference code.)

3. Multiple data sets

So far we have assumed that the data B, corresponding
to one or more GW detectors, can be analyzed coher-
ently; however, there are cases in which we would like to
combine results from sets of data analyzed incoherently.
Examples are data sets corresponding to different sources
or observation periods. Our Bayesian framework makes it
possible to combine the respective odds in order to make
an overall model selection statement (in our case, about
the presence of signal or the validity of GR).

For instance, we may analyze data for NP pulsars and
ask about the probability that any of them contain a
signal; treating each as an independent observation, the
combined probability can be constructed from the odds
above. Letting HSi , HNi respectively denote signal and
noise hypotheses for the ith source, while HSany corre-
sponds to a signal being present in any of the sources
and HNall

corresponds to Gaussian noise in data for all
sources:

(NP)OSany

Nall
=
P (HSany | B)

P (HNall
| B)

=
1− P (HNall

| B)

P (HNall
| B)

=
1

P (
∧
iHNi | B)

− 1 =

[
NP∏

i=1

1

P (HNi | Bi)

]
− 1

=

[
NP∏

i=1

P (HSi | Bi) + P (HNi | Bi)

P (HNi
| Bi)

]
− 1

=

[
NP∏

i=1

(
OSi

Ni
+ 1
)]
− 1, (49)

where we have used the exclusivity and exhaustiveness of
the signal and noise hypotheses, i.e.

P (HSany
| B) + P (HNall

| B) = 1, (50)

P (HSi
| Bi) + P (HNi

| Bi) = 1, (51)

with i indexing data sets. Note that the data sets for
different sources (Bi’s) are not conditionally independent

under HSany
or HNall

. Also, Eq. (49) does not enforce
the requirement that, if signals are present in multiple
sources, they all correspond to the same model from Eq.
(36); such a constraint could be implemented at this stage,
but is more easily enforced by examining individual values
of OmN when necessary.

The construction of Eq. (49) implicitly assigns model
priors to each of the meta-hypotheses HSany and HNall

such that:

P (HSany)

P (HNall
)

=

[
P (HS)

P (HN)
+ 1

]NP

− 1, (52)

where we have assumed the priors for signal vs noise
are equal for all sources, i.e. P (HSi) = P (HS) and
P (HNi) = P (HN) for all i. When making combined
statements for multiple sources, we may wish to choose
P (HS)/P (HN) such as to produce any desired value of
P (HSany)/P (HNall

), say P (HSany) = P (HNall
). Further-

more, one may wish to weight each pulsar differently
within HSany by incorporating information about the
source distance (or other parameters) into the priors via
a parametrization like Eq. (17); this may improve the sen-
sitivity of the ensemble odds to weak signals in the set, as
suggested in [39]. However, using such a parametrization
generally implies committing to a specific gravitational
theory (or family of theories). We choose not to take such
approach in this study.

Besides combining data for multiple pulsars, for a given
source, we could also (incoherently) combine the results
of analyses using data from different observation periods.
Since the astrophysical CWs we are considering should
either be present in all NR observation runs or in none of
them, the relevant odds, generalizing Eq. (43), are:

[NR]OS
N =

P (HS | B)

P (HN | B)
=
∑

m∈M

P (Hm | B)

P (HN | B)

=
∑

m∈M

P (B | Hm)P (Hm)

P (B | HN)P (HN)

=
∑

m∈M

P (Hm)

P (HN)

NR∏

j=1

(BmN )j , (53)

where we have again used B = {Bj}NR
j=1 to refer to the

totality of data, with j indexing observation runs. The
independence of the Bj ’s, conditional on Hm and HN, is
applied on the last line to write the result in terms of the
individual Bayes factors for each run, (BmN )j .

Similarly, we can use multiple data sets to make a single
statement about deviations from GR. Once we have made
NP detections from different sources, the odds for a GR
violation is:

(NP)OnGR
GR =

∑

m∈M̃

P (Hm)

P (HGR)

NP∏

i=1

(BmGR)i , (54)

where, again, i indexes sources; this is a generalization of
Eq. (45). (See Sec. IIID of [35] for an analogous deriva-
tion.)
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4. Non-Gaussian noise

Up to this point, like most other CW studies, we have
assumed that the detector noise is Gaussian. However,
although previous work has indicated that this is gener-
ally a very good approximation [17, 19], it is not exactly
true for actual detector noise (for some frequencies more
so than others). Happily, most of the model selection
statements expounded so far are valid also in the pres-
ence of non-Gaussian instrumental noise, after some light
reinterpretation.

If the assumption of Gaussianity does not hold, the
hypotheses constructed in Sec. III A 1 are no longer ex-
haustive: the data may not only be explained by Gaussian
noise or a signal (GR or otherwise), but also by non-
Gaussian artifacts that are impossible to satisfactorily
model. Nevertheless, the computation and interpreta-
tion of evidences and odds remain unchanged for all the
hypotheses under consideration.

Because “noise” no longer just means “Gaussian noise”,
OS

N (which compares the signal model vs Gaussian noise)
has to be treated more carefully for detection purposes. In-
deed, instrumental features that are clearly non-Gaussian
(e.g. a loud, narrow-band artifact wandering across the
frequency of interest) will generally result in a relatively
large value of OS

N, even if there is no detectable astrophys-
ical signal in the data. This issue affects the standard GR
searches as well [17], although perhaps to a lesser degree
due to the reduced signal parameter space.

It is possible to mitigate this problem by constructing
a hypothesis that captures some key characteristic of
instrumental features and helps discriminate those from
real astrophysical signals. Perhaps the best way to do this
is to take advantage of the fact that an astrophysical CW
must manifest itself coherently across detectors, while
the same is not true for detector artifacts [40]. We can
thus define an instrumental feature hypothesis (HI) to
encompass the cases in which the data are composed of
Gaussian noise, or features that look like astrophysical
signals but are not coherent across detectors (viz. they do
not have a consistent phase evolution and they are best
described by different waveform parameters).

Formally, we define HI by:

HI ≡
ND∧

d=1

(HSd
∨HNd

) , (55)

where the subscript d identifies detectors, and ∧ is the
logical “and” junction. This definition does not explicitly
encompass instrumental features that are coherent across
some subset of the detectors. Also, note that Eq. (55)
implicitly contains a term equivalent to the usual noise
hypothesis HN =

∧
dHNd

. Similarly, it also contains
a term corresponding to the presence of signals in all
detectors (

∧
dHSd). Importantly, such incoherent term is

not equivalent to the coherent signal hypothesis HS, as

given by the multi-detector likelihood of Eq. (37):

HS 6=
ND∧

d=1

HSd. (56)

While the evidence integral of Eq. (40) factorizes into
single-detector terms for HN (due to the null parameter
space), the same is not true for HS. Furthermore, because
it does not demand detector coherence, the RHS of Eq.
(56) is associated with a considerably larger parameter
space than the LHS. Thus, in the presence of an astro-
physical signal, model selection will favor HS due to its
smaller Occam’s penalty. The same is true, of course,
when comparing HS to HI as a whole.

From Eq. (55), it is straightforward to write the evi-
dence for HI as

P (B | HI) =

ND∏

d=1

[P (Bd | HSd
)P (HSd

| HI)

+ P (Bd | HNd
)P (HNd

| HI)] (57)

and use this to construct the odds comparing against HS:

OS
I =

P (HS)

P (HI)

BS
N∏ND

d=1

[
P (HSd

| HI)(BSd

Nd
− 1) + 1

] . (58)

Here we have used Eq. (57), together with the fact that
P (HSd

| HI) + P (HNd
| HI) = 1 and P (B | HN) =∏

d P (B | HNd), to write OS
I as a function of the detector-

coherent signal vs noise Bayes factor BS
N, the single-

detector signal vs noise Bayes factors BSd

N , and model
priors P (HS), P (HI) and P (HSd

| HI).
As usual, we are free to choose the model priors to give

more or less weight to different hypotheses. For example,
we recover the choice of [17] (Appendix A3) by setting
P (HSd

| HI) = 0.5 for all d and P (HS) = P (HI)× 0.5ND

such that:

lnOS
I = lnBS

N −
ND∑

d=1

ln
(
BSd

Nd
+ 1
)
. (59)

(When comparing to Appendix A3 of [17], however, note
that in that work “I” is used to denote both the back-
ground information and the “incoherent-signal-or-noise”
hypothesis, which can be identified with our HI.)

There is reason to believe that lnOS
I , with model priors

as in Eq. (59), is quite good at picking out instrumental
features, even for data from just two instruments [17].
(Note that we would expect the discriminatory power of
lnOS

I to grow with the number of detectors available.)
However, at the end of the day, we can never be fully con-
fident that HI will indeed capture all non-astrophysical
disturbances. To address this, we may always treat lnOS

N
and lnOS

I as any generic detection statistic and use esti-
mates of the background distribution to establish signifi-
cance.
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B. Parameter estimation

Besides choosing between different models, we can use
Bayesian statistics to obtain posterior probability density
functions (PDFs) on the parameters of a given template
(first–level inference). In the absence of a loud signal,
this can be used to obtain credible intervals that yield
upper–limits on the amplitudes of GR deviations.

For a model H with N parameters, an N -dimensional
posterior PDF covering the parameter space Θ can be
obtained from Bayes’ theorem:

p(~θ | B,H) =
p(B | ~θ,H) p(~θ | H)

P (B | H)
, (60)

for ~θ in Θ, and with p(~θ | H) the prior over Θ. To obtain
a one-dimensional PDF for a single parameter (call it θi),
the N -dimensional distribution must be marginalized over
all nuisance parameters (viz. all parameters except θi):

p(θi | B,H) =

∫

Θ′
p(~θ | B,H) dN−1θj

∝
∫

Θ′
p(B | ~θ,H) p(~θ | H) dN−1θj , (61)

where 0 < j ≤ N , such that j 6= i, and Θ′ denotes the
parameter space Θ with the ith dimension removed. Note
that the equality has been replaced by a relation of propor-
tionality because we have excluded the evidence P (B | H)
from the expression. (Although of great importance for
model selection, this quantity is uninteresting for the pur-
poses of parameter estimation and can be treated as a
simple normalization constant.) As discussed in Sec. IV,
we evaluate Eq. (61) with the same algorithm used to
compute the evidence.

Eq. (61) can be used to place upper limits on model
parameters; in particular, we will use it to place limits on
the amplitude of GR deviations. Consider, for instance,
the case of a scalar-tensor theory that can be encapsu-
lated by our GR+s model as described in the previous
section; the 95%–credible upper limit on the strength of
the breathing mode is h95%

s , defined by:

0.95 =

∫ h95%
s

min(hs)

p(hs | B,HGR+s) dhs, (62)

where min(hs) is the minimum value of hs allowed by the
prior.

Note that there may be reasons to compute posteriors
under different priors than when computing Bayes fac-
tors. In particular, it is conventional to present upper
limits obtained using a uniform prior over some broad
range of the amplitude parameters. With a uniform prior,
the posterior is trivially related to the likelihood. This
approach produces a more conservative upper limit than
other choices, e.g. a Jeffreys prior (see Appendix B).

N

GR

GR

FIG. 4. Model priors. Distribution of prior probability over
subhypotheses for the construction of OS

N (left) and OnGR
GR

(right), according to Eqs. (43) and (45) respectively. For OS
N,

we assign equal weight to the HN (white) and HS (gray); as
in Eq. (64), we make no a priori distinction between non-GR
models (solid) and GR (hatched). For OnGR

GR , we set equal
prior probability for HGR and HnGR, distributing the prior
equally among non-GR models, as in Eq. (66).

IV. ANALYSIS

We quantify our ability to use Bayesian model selection
to detect CW signals and determine their polarization
content as described above. To do this, we use one year
of simulated data from three advanced interferometric de-
tectors at design sensitivity: LIGO Hanford (H1), LIGO
Livingston (L1) and Virgo (V1). Detector noise is simu-
lated by drawing from a Gaussian distribution with zero
mean and variance corresponding to the power spectral
density (PSD) of each detector at the GW frequency of
the pulsar. (Previous work has shown that these are good
assumptions for actual reduced detector data [17, 19].)

As mentioned in the previous section, the key step in
our analysis is the computation of the evidence integral
of Eq. (40) for the hypotheses under consideration (one
noise model, plus seven signal submodels; see Sec. III A 1).
We carry this out using a version of the Bayesian inference
code used for the targeted pulsar search in [33, 41], which
we modified to handle signals from theories other than
GR. This inference code is itself built on the implemen-
tation of Skilling’s nested-sampling algorithm [42] in the
LALInference package [43], part of the LIGO Algorithm
Library Suite [44]. This is the same inference software
used for CBC analyses, including GW150914 [45].

In computing likelihoods, we take source location, fre-
quency and frequency derivatives as known quantities
(relevant uncertainties are negligible for this analysis).
Unless otherwise stated, priors uniform in the logarithm
are used for amplitude parameters (h0 or hp’s), since these
are the least informative priors for scaling coefficients (also
known as “Jeffreys priors”) [46]; we make the somewhat
arbitrary choice of restricting the strain amplitudes to
the 10−28–10−24 range (this is of little consequence for
model selection, as explained in Appendix B). Flat priors
are placed over all phase offsets (φ0 and all the φp’s).

All plots for the Crab pulsar (PSR J0534+2200) in Sec.
V are produced using known values of its orientation pa-
rameters, cos ι and ψ, and with the triaxial parametriza-
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tion of tensor modes; for other pulsars, however, the
free-tensor parametrization is used instead. (See Section
III A 1 and Appendix A.)

We follow common practice by adopting the principle
of indifference (see e.g. Ch. 5 of [36]) in assigning equal
prior probability to the signal and noise models, i.e. we
let

P (HS) = P (HN) = 1/2 . (63)

We must also decide how to split the prior among the
different Hm’s when computing OS

N and OnGR
GR . In the

former case we choose to distribute the prior weight uni-
formly among all signal models, so that:

P (Hm) = |M |−1/2 = 1/14, (64)

with |M | = 7 the cardinality of M [i.e. the number of
signal models that go into the construction of HS, see Eq.
(36)]. In the latter, however, we prioritize GR by setting:

P (HGR | HS) = 1/2, (65)

P (Hm | HS) = |M̃ |−1/2 = 1/12. (66)

This distribution is illustrated schematically in Fig. 4.
Note that these are not the only justifiable options; for
example, we might want to prioritize HGR when con-
structing HS in order to better handle a noise background
that does not conform to our assumption of Gaussianity.
(Other strategies to tackle non-Gaussian noise are dis-
cussed in Sec. III A 4.) In any case, the code is sufficiently
flexible to make different choices for the model priors if
desired.

To study our method in the presence of signal, we
perform several injections of scalar, vector and tensor
polarizations (and combinations thereof) for all the 200
pulsars analyzed in [17]. The simulated signals have a
range of signal-to-noise ratios (SNRs), which we proxy
below by their effective strain amplitudes. We define these
in terms of the ap’s from Eq. (13) by:

ht ≡
√
a2

+ + a2
×, (67)

hv ≡
√
a2

x + a2
y, (68)

hs ≡ as, (69)

for tensor, vector and scalar signals respectively. Each
simulated signal is generated with a random value of the
nuisance phase parameters (φ0 or φp’s). GR injections
are always carried out using the triaxial template of Eq.
(29), with random orientation parameters (ψ and ι) when
those are not known. Location is always taken to be fixed
at the known value for each pulsar.

−3 −2 −1 0 1 2 3
lnOm

N

0.0

0.5

1.0

1.5

P
D
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Any

GR

FIG. 5. Signal vs noise log-odds background distributions for
any-signal and GR hypotheses. Histograms of lnOS

N (black
line, hatched) and lnOGR

N (gray line) over an ensemble of
1000 simulated noise instantiations corresponding to the Crab
pulsar. For each instantiation, three time series of Gaussian
noise were produced using the design noise spectra of H1,
L1 and V1, as outlined in section IV; the data are analyzed
coherently across detectors. (Note that here lnOGR

N = lnBGR
N ,

since we assign equal weight to both models.)

V. RESULTS

A. Model selection

1. Signal versus noise

We first show that OS
N, as defined in Eq. (43), can

be used to discriminate signals of any polarization from
Gaussian noise, without significant loss of sensitivity to
GR signals. The black histogram in Fig. 5 shows the
distribution of the natural logarithm of this quantity
(henceforth, “log-odds”), obtained from the analysis of an
ensemble of noise instantiations corresponding to a single
source—in this case, the Crab pulsar. For comparison,
the gray (unhatched) histogram in Fig. 5 is the analogous
distribution for lnBGR

N [note that BGR
N = OGR

N if we assign
equal priors to the GR and Gaussian noise models, cf.
Eq. (43) with m = GR]; this is the value computed in
regular, GR-only targeted pulsar searches, although with
different signal amplitude priors [17]. Note that odds carry
an intrinsic probabilistic meaning in terms of gambling
probabilities, and a background histogram like this is not
required to interpret their value (see e.g. [36]).

For both quantities shown in Fig. 5, a negative value
marks a preference for the noise model (HN, as defined
at the beginning of section III A 1). However, note that a
conservative (as determined by the priors) analysis should
not be expected to strongly favor HN, since the presence
of a weak signal below the noise threshold cannot be
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FIG. 6. Signal vs noise log-Bayes background distributions for all subhypotheses. Violin plots representing histograms of the
log-Bayes of several models versus noise, computed over an ensemble of 1000 simulated noise instantiations each corresponding
to H1, L1 and V1 design data prepared for the Crab pulsar; the data are analyzed coherently across detectors. The labels on the
x-axis indicate which hypothesis is being compared against noise; the “GR” label indicates tensor modes parametrized by Eq.
(29) with fixed ψ and ι. Black lines mark the range and median of each distribution. (The gray histogram in Fig. 5 corresponds
to the leftmost distribution here.)

discarded; this explains why the ranges in the plots of
Fig. 5 do not extend to more negative values. Generally
speaking, the magnitude of the signal prior volume (viz.
the volume of parameter space allowed by the signal
model, weighted by the prior function) will determine the
mean of background distributions like Fig. 5, which will
be more negative the greater the signal volume. This is a
manifestation of an implicit Occam’s penalty.

The relationship between the Bayes factors for different
signal hypotheses vs noise is illustrated in Fig. 6, which
shows violin plots representing the noise-ensemble distri-
butions of lnBmN for all models discussed in III A 1. The
values for m ∈ {s, v, sv,GR,GR + s,GR + t,GR + sv}
are combined to produce lnOS

N in Fig. 5. As explained
above, the “GR” label indicates that the tensor modes
have been parametrized using the triaxial model of Eq.
(29), with orientation parameters fixed at the known val-
ues for the Crab pulsar; on the other hand, the “t” label
corresponds to the free-tensor template of Eq. (28). We
include both parametrizations to demonstrate the effect
of assuming a triaxial emission mechanism and restricting
the orientation of the source (see also Appendix A).

Interestingly, Fig. 6 reveals the relationship between
lnBmN and the number of degrees of freedom (a proxy
for the prior volume) of model m: models with more
degrees of freedom have a greater prior volume and are
correspondingly downweighted, resulting in more negative
values of lnBmN ; this is a manifestation of the Occam’s
penalty automatically applied by the Bayesian analysis
(see e.g. Ch. 28 in [37]). We underscore that this feature
arises naturally from the computation of the evidence
integral, and not from manually downweighting either
model a priori.

If the data contain a sufficiently loud signal of any
polarization, the evidence for HS will surpass that for
HN, and this can be used to establish a detection. Fig. 7
shows the response of lnOS

N and lnBGR
N to the presence

of GR and non-GR signals. In particular, the second

panel in Fig. 7 shows results for injected signals of the
vector-only model of [21], but the behavior would be
the same for scalar-only signals. The general features
of these plots confirm our expectations that for weak,
subthreshold signals, the analysis should not be able to
distinguish between the signal and noise models, yielding
a Bayes factor close to unity (more precisely, a value of
lnOS

N consistent with the background distributions of Fig.
5). Note that, in agreement with Fig. 5, the noise baseline
for lnOS

N lies below that of lnBGR
N , due to its greater prior

volume.
For stronger (detectable) signals, the basic form of our

likelihood functions, Eq. (25), leads us to expect lnOS
N to

scale linearly with the square of the signal-to-noise ratio
(SNR):

lnBmN ∼
(
B ·ΛMP − |ΛMP|2/2

)
/σ2 ∝ (hinj/σ)

2
, (70)

where the variance σ2 proxies the PSD and we let ΛMP

be the time-series vector corresponding to the maximum
probability template; for a stationary PSD, this implies
lnBmN ∝ h2

inj, as observed in Fig. 7. The spread around
the trendline is due to the individual features of each
noise instantiation and (much less so) to numerical errors
in the computation of the evidence, Eq. (40). For details
on numerical uncertainty, see Appendix C.

From the left panel of Fig. 7, we conclude that lnOS
N

can be as good an indicator of the presence of GR signals
as lnBGR

N itself; this implies that we may include non-GR
polarizations in our search without significantly sacrificing
sensitivity to GR signals. However, the power of lnOS

N
lies in responding also to non-GR signals. As an example
of this, the right panel in Fig. 7 shows lnOS

N and lnBGR
N

as a function of the amplitude of a fully non-GR injection.
Here, we have chosen to inject a particular model of vector
signal developed in [21], but the results are generic.

Note that, for sufficiently loud signals, HGR becomes
preferable over HN (hence lnBGR

N > 0), even when the
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of the indicated strength. The injections were performed with random values of the nuisance phase parameters, and the data
were analyzed coherently across detectors. A logarithmic scale is used for the y-axis, except for a linear stretch corresponding to
the first decade.
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(HGR+s, right) hypotheses versus noise. The any-signal odds is defined in Eq. (43). Each plot was produced by analyzing 2500
instantiations of data (one time series for each detector: H1, L1 and V1) made up of Gaussian noise plus a simulated Crab-pulsar
GR+s signal of the indicated tensor (x-axis) and scalar (y-axis) amplitudes. The color of each hexagon represents the average
value of the log-odds in that region of parameter space; color is normalized logarithmically, except for a linear stretch in the
(−1, 1) range.

injection model does not match the search; this is because
the noise evidence drops faster than GR’s and becomes
very small (i.e. the data do not look at all like Gaussian
noise, although they do not match the expected GR signal
well either). The particular SNR at which this occurs will
depend on the overlap between the antenna patterns of
the injection and those of GR, and will consequently vary
among sources.

For the interesting case of scalar-tensor theories (here,
templates composed of GR plus an extra breathing com-
ponent, and denoted “GR+s”), the behavior is slightly
different. This is both because GR+s has an extra ampli-

tude degree of freedom (as) and, as discussed in section
III A 1, because HGR can be recovered as a special case
of HGR+s (namely, when as → 0). In Fig. 8, we present
the log-odds of signal versus noise hypotheses as a func-
tion of injected GR (x-axis) and scalar (y-axis) strengths.
These plots divide the hs–ht plane in roughly two regions
where the associated signal model (HS, HGR or HGR+s)
is preferred (black) and where it is not (red). The latter
corresponds to the area of parameter space associated
with subthreshold signals that cannot be detected.

As expected, the best coverage is obtained when ana-
lyzing the data using the model matching the injection,
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GR+s, (rightmost plot) or the all-signal model (leftmost
plot). In both these cases, the results improve with either
scalar or tensor SNR. In contrast, the GR analysis (center
plot) is sensitive to tensor strain, but, as evidenced by the
extended red region in the central plot, it misidentifies
strong scalar signals as noise. Nevertheless, if the scalar
component is larger than ∼5 × 10−26, the GR analysis
will disfavor the noise hypothesis, even for a small tensor
component, as in the right panel of Fig. 7; this is the same
behavior observed in Fig. 7. In contrast, the any-signal
analysis is sensitive to the total power of the injected
signal, regardless of polarization.

We have produced distributions of background lnOS
N,

like those of Fig. 5, for all 200 known pulsars in the sensi-
tive band of the three detectors under consideration (same
set analyzed in [17]. In Fig. 9, these are represented by
their respective means and one-sided standard deviations
as a function of the pulsar’s GW frequency. The frequency
dependence is explained by variations in the instrumental
noise spectra. This is explained by the fact that, for a
particular prior choice, more information is gained from
the data if the noise floor is lower: with less noise it is
possible to discard the presence of weaker signals, so the
value of lnOS

N decreases.

2. GR vs non-GR

In the presence of a signal, OnGR
GR , as defined by Eq.

(45), indicates whether there is reason to believe there is
a GR violation or not. Because there could always be an
unresolvably small departure from GR, we do not expect
our analysis (with priors as chosen) to ever strongly favor
the GR hypothesis; rather, in the presence of a GR signal
we will find that lnOnGR

GR remains relatively close to zero,
simply meaning that there is no strong evidence for or
against non-GR features. This is indeed the behavior
observed in the left panel of Fig. 10, where lnOnGR

GR is

shown to be roughly insensitive to tensor injection am-
plitude. For values of ht below certain threshold (which,
in this case, is around 3 × 10−27), the search does not
detect a signal and, consequently, no information is gained
for or against HGR, i.e. lnOnGR

GR ∼ 0. The difference be-
tween the two populations (below and above threshold)
is determined mainly by the choice of amplitude priors.

The behavior of OnGR
GR is less ambiguous in the pres-

ence of a non-GR signal. For instance, if the data contain
a detectable signal that completely lacks tensor compo-
nents, then OnGR

GR will unequivocally reflect this. This is
evidenced by the growth of lnOnGR

GR with injected non-
tensorial SNR in the right panel of Fig. 10. In other
words, while the analysis is inconclusive for GR injections
because it cannot discard the presence of subthreshold
non-GR components hidden by the noise, vector signals
are are clearly identified as not conforming to GR. This
is a reflection of the fact that, as mentioned in the in-
troduction, any evidence of a non-tensorial component is
fatal for GR, but absence of non-GR components does
not mean Einstein’s theory is necessarily correct.

As might be expected, OnGR
GR responds to non-GR sig-

nals that include a tensor component with a combination
of features from both panels of Fig. 10. As an exam-
ple, the left plot of Fig. 11 shows OnGR

GR in the presence
of GR+s injections, as a function of injected tensor and
scalar amplitudes. This plot can be split into three clearly
demarcated regions: one in which the signal is not de-
tected (light red, bottom left), one in which the signal
is detected and the non-GR model is preferred (black,
top), and one which the signal is detected but where the
evidence for a deviation from GR is not clear due to the
predominance of the tensorial component (darker red,
bottom right). The first corresponds to the subthreshold
population on either side of Fig. 10, while the second and
third correspond to the above-threshold populations on
the right and left sides of Fig. 10 respectively; indeed,
note that a horizontal slice taken over the red region of
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(left) or GR+s (right); GR signals are restricted to 10−27 < ht < 10−26, while GR+s signals also satisfy 0.3 < hs/ht < 1. We
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GR for each signal in the set and combine them according to Eq. (54) to obtain the ensemble value
plotted in the y-axis.

the left plot produces a series of points like those in the
left panel of Fig. 10. For reference, Fig. 11 also includes
the direct comparison of GR+s and GR on the right.

We can make a stronger statement about the agreement
of the data with GR by making use of signals from mul-
tiple sources, as discussed in Sec. III A 3. The power of
combining multiple signals is illustrated in Fig. 12, where
lnOnGR

GR , as defined in Eq. (54), is plotted vs number
of GR (left) and GR+s (right) signals detected. Note
that this presumes that, for each source, the presence of
a signal has already been established from the value of
lnOS

N. Computing the ensemble lnOnGR
GR , as done here,

is a good way of summarizing the information contained
in the data about the relative likelihoods between the
two models, but it provides no information not already
present in the set of individual single-source odds.

B. Parameter estimation

When no conclusive evidence for a CW is found in the
data, we are still interested in placing upper limits on the
strength of possible signals (up to some credibility), and
this is done as explained in Sec. III B. By the same token,
if a signal consistent with GR is detected, we can always
place an upper limit on the amplitude of non-GR modes,
even if the odds indicate there is no clear sign of a GR
violation.

For instance, we can get a quantitative estimate of
our sensitivity to scalar modes from a given source by
looking at the distribution of h95%

s , defined in Eq. (62),
computed for a set of noise-only data instantiations. Such
distribution for the Crab pulsar is presented in the left

panel of Fig. 13. Similarly, the right panel presents es-
timates for the sensitivity to vector modes coming from
the Crab pulsar, assuming a vector-tensor model. In this
case, however, the quantity plotted is the upper limit
on total, effective vector strain amplitude hv, Eq. (68).
These plots include distributions produced using the same
log-uniform prior used to obtain Bayes factors, as well as
more conservative ones obtained using uniform amplitude
priors (see Appendix B). In either case, the magnitude of
h95%

v is comparable to that of h95%
s .

Interestingly, our ability to measure scalar and vector
amplitudes is unaffected by the presence of other modes.
We illustrate this for the Crab pulsar in Fig. 14, which
results from analyzing data with GR+s (left) and GR+v
(right) injections. There we plot h95%

s as a function of
scalar and tensor injection amplitudes on the left, and
h95%

v as a function of vector and tensor injection ampli-
tudes on the right. From these plots, one can conclude
that h95%

s and h95%
v are sensitive only to the corresponding

scalar and vector components, and not by ht. (It is worth
emphasized that the upper limits, h95%

s and h95%
v , are

well-defined even when the non-GR component is strong
enough to be detected, as is the case for the darker-colored
regions.)

As shown previously in the literature, the mean of dis-
tributions like those of Fig. 13 will scale with

√
Sn(f)/T ,

where Sn(f) is the effective PSD of the detector noise at
the expected GW frequency f , and T is the integration
time (cf. Eq. (26) and Fig. 1 of [32]). Because of this,
the mean of this distribution will vary with the source’s
expected GW frequency, as shown in Fig. 15. Follow-
ing convention, these upper limits are computed using
uniform amplitude priors, which means they are a fac-
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FIG. 13. Expected Crab non-GR upper-limits in absence of signal. Histogram of 95%-credible upper limits for the scalar (left)
and vector (right) amplitudes, for a set of 1000 noise-only data sets, computed using priors uniform in the amplitude (black) or
uniform in the logarithm of the amplitude (hatched gray); the differences between these two priors are discussed in detail in
Appendix B. Each instantiation (one time series for each detector: H1, L1 and V1) is made up of simulated Gaussian noise
with standard deviation given by the advanced design PSDs. Scalar and vector upper-limits are produced using the GR+s and
GR+v models respectively.
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FIG. 15. Expected upper-limits in absence of signal vs GW frequency. Circles mark the mean of the distribution of h95%
s (top),

h95%
v (middle) and h95%

t (bottom), as a function of expected GW frequency for each pulsar in our set; vertical lines mark
one-sided standard deviations for each source. Each datapoint and corresponding bars summarize the shape of a distribution
like those of Fig. 13, but produced from 100 noise instantiations each. The scalar, vector and tensor upper limits were produced
assuming st, vt and t models respectively. We use uniform priors in all amplitude parameters (see Fig. 13 and Appendix B).
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tor of a few less stringent than those obtained with a
log-uniform prior (see Fig. 13 and Appendix B). Also,
for completeness, Fig. 15 also includes the expected ten-
sor upper-limits, h95%

t . Note that those values are not
the same as would be obtained by the standard GR-only
search, because that analysis looks at the triaxial h0 of
Eq. (29), rather than ht.

In order to compare our sensitivity to the different
polarizations, in Fig. 16 we histogram the the tensor and
vector upper-limits as a ratio of the scalar upper-limits—
this includes the h95%

t and h95%
v values shown in Fig. 15,

as well as the limits on the individual amplitudes from
which they are constructed (h95%

+ , h95%
× , h95%

x and h95%
y ).

The mean of these distributions (vertical dashed lines
in Fig. 16) indicate that, for most pulsars, the scalar
upper-limit is slightly larger in magnitude than those
for the +, ×, x or y modes; this systematic effect is a
manifestation of the decreased sensitivity of quadrupolar
detectors to scalar waves, which was discussed in Sec. II A
(see, in particular, Fig. 2). The fact that the difference

between h95%
s and h95%

t , or h95%
v , is less pronounced can

be easily be explained as a statistical factor arising from
the definitions of ht and hv as square-roots of sums of
squares, Eqs. (67, 68). Both these scalings are discussed
in more detail in Appendix D.

VI. CONCLUSION

We have developed a Bayesian framework to detect
CW signals from known sources regardless of polarization
content, to disentangle the modes present in a given signal,
and to constrain the amplitudes of extra polarizations
that may be hiding under the noise. We have implemented
this as an extension of LIGO’s Bayesian targeted CW
search pipeline [33], and thus benefit from the power of
the nested sampling algorithm on which it is based.

We have tested our methods on one year of simulated
noise for three advanced-era detectors at design sensitivity
(H1, L1, V1), and prepared for a set of multiple known
sources in their frequency band. This allows us to estimate
our future sensitivity to CW polarizations, in this most
optimistic case. Under these conditions and for the Crab
pulsar in particular, we expect signals of any polarization
to become detectable for characteristic strain amplitudes
h & 3 × 10−27 (Figs. 7 and 8); this threshold will vary
among sources, due to differences in position (sky location
and orientation) and detector PSD at the expected GW
frequency (cf. e.g. Fig. 9). Furthermore, the value of this
threshold will decrease linearly with the square-root of
the observation time [32].

A signal louder than the detection threshold will allow
us to determine whether its polarization content is consis-
tent with GR or not, and the strength of this statement
will depend almost exclusively on the power of the non-
GR component (Figs. 10 and 11). In other words, from a
model-selection standpoint, the non-GR hypothesis will
only be unequivocally favored if the total power in non-
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FIG. 16. Tensor and vector upper-limits as a ratio of scalar
upper-limits. Histogram of tensor (top) and vector (bottom)
upper-limits divided by the scalar upper-limit for each pul-
sar. The top plot shows ratios for h95%

t (black), h95%
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gray, hatched), and h95%
× (dark gray); the bottom plot shows

ratios for h95%
v (black), h95%

x (light gray, hatched), and h95%
x

(dark gray). Vertical dashed lines mark the mean of each
distribution.

GR modes is greater than the threshold value, regardless
of the strength of the GR modes. However, for signals
that do not satisfy this, we may always place upper limits
on non-tensorial amplitudes and thus constrain deviations
from GR; for instance, Fig. 15 presents the most opti-
mistic projections for 95%-credible upper limits for scalar
and vector amplitudes of CW signals from all pulsars
in our set (h95%

s ∼ 4 × 10−27 and h95%
v ∼ 3 × 10−27, in

the best case). As far as we are aware, these are the
first generic estimates of sensitivity to scalar and vector
polarizations ever published [47].

From our projected upper-limits, we have found that,
at design sensitivity, the LIGO-Virgo network will be
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generally less sensitive to continuous scalar signals than
to the individual vector or tensor modes by factors of
0.45–0.7, depending on the location of the source (Fig.
16); this diminished sensitivity to scalar modes stems
from the quadrupolar nature of the detector antenna
patterns (Fig. 2 and Appendix D). Also, our injection
studies indicate that the upper-limits on the amplitudes
of non-tensorial modes will be roughly unaffected by the
presence or absence of a tensor signal in the data (Fig.
14).

Although the results presented here made use of simu-
lated Gaussian noise, the procedure is identical for actual
detector data. Furthermore, the assumption of Gaussian-
ity has been shown to hold relatively well for real CW
data [19], so the actual sensitivity limits should not be far
from those presented here. If the data are strongly non-
Gaussian, however, one must be careful in using lnOS

N for
detection purposes and may instead wish to adopt one of
the strategies suggested in Sec. III A 4.

Another important limitation of our results is that here
we only consider CW signals emitted at f = 2frot, while
it is to be expected that other mechanisms (within GR
or not) allow emission at other harmonics, f = frot in
particular. Yet, the only change required to account for
this is to modify the template in Eq. (12) to include terms
at different harmonics; the ability to do this already exists
within our current infrastructure. We also assume that
other aspects of the waves, like their speed, remain in
agreement with the GR prediction, an assumption that
will be relaxed in a future study.
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Appendix A: Tensor models

A conceptual distinction can be drawn between the tri-
axial GR model and a free-tensor model that includes +
and × but does not restrict their relative amplitudes (de-
noted “t”). The former has four free parameters (overall
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FIG. 17. Effect of changing polarization angle. Norm of
the complex plus (a′+, solid line) and cross (a′×, dashed line)
weights after rotating the source by ∆ψ in the plane of the sky,
i.e. letting ψ → ψ′ = ψ+ ∆ψ; this transformation is expressed
in Eqs. (A5) and (A6). In this case, we start from a+ = 1,
a× = 0 and ψ = 0.

amplitude, h0; overall phase, φ0; inclination, ι; polariza-
tion, ψ) and corresponds to a signal template of the form
[same as Eq. (29)]:

ΛGR(t) =
1

2
h0e

iφ0

[
1

2
(1 + cos2 ι)F+(t;ψ)− i cos ιF×(t;ψ)

]
.

(A1)
This is a reparametrization of the free-tensor model, which
also has four parameters (plus amplitude, a+; cross am-
plitude, a×; plus phase, φ+; cross phase, φ×) and whose
template is [same as Eq. (28)]:

Λt(t) =
1

2

[
a+e

iφ+F+(t;ψ = 0) + a×e
iφ×F×(t;ψ = 0)

]
.

(A2)
If ψ and ι are known, it is clear that the two models are
different, since HGR has two free parameters (h0, φ0) and
Ht has four (a+, a×, φ+, φ×). If the orientation is not
fixed, however, the two models span the same signal space.
This is because there is a degeneracy between ψ and a+,
a× due to the way the antenna patterns transform under
changes in ψ:

F+(t;ψ′) = F+(t;ψ) cos 2∆ψ + F×(t;ψ) sin 2∆ψ, (A3)

F×(t;ψ′) = F×(t;ψ) cos 2∆ψ − F+(t;ψ) sin 2∆ψ, (A4)

with ψ′ = ψ + ∆ψ. Eqs. (A3) and (A4) can be derived
from Eqs. (1) and (2) respectively, as in [23] (or see, e.g.,
Sec. 9.2.2 in [18]). Consequently, changing ψ → ψ′ in Eq.
(A2) is equivalent to leaving ψ fixed [at, say, ψ = 0 as
in Eq. (A2)] while replacing the plus and cross complex
amplitudes by:

a′+e
iφ′+ = a+e

iφ+ cos 2∆ψ − a×eiφ× sin 2∆ψ, (A5)

a′×e
iφ′× = a×e

iφ× cos 2∆ψ + a+e
iφ+ sin 2∆ψ. (A6)
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FIG. 18. Tensor posteriors in presence of signal. Posterior PDFs for parameters of HGR (left) and Ht (right) with fixed (top)
and unfixed (bottom) source orientation (ψ, ι). Each panel consists of a corner plot displaying the two-dimensional posteriors for
each pair of parameters as indicated by the x and y labels, with the diagonals showing a histogram of the one-dimensional PDF
for each parameter [i.e. the 1D PDF obtained after marginalization of the multidimensional posterior PDF all other quantities,
as in Eq. (61)]. The data analyzed contain signals with parameters indicated by the red lines; note that C22 = h0/2 is the
quantity that was actually used to parametrize GR triaxial amplitudes in the code [33]. In both (a) and (b), cos ι and ψ are
fully known, and their resolution in these plots is limited by binning only. These plots were produced using the corner.py

package [49].
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of a corner plot displaying the two-dimensional posteriors for each pair of parameters as indicated by the x and y labels, with
the diagonals showing a histogram of the one-dimensional PDF for each parameter. The data sets analyzed contain signals with
parameters indicated by the red lines; note that C22 = h0/2 is the quantity that was actually used to parametrize GR triaxial
amplitudes in the code [33]. On the left, the injected signal corresponds to a face-off source (cos ι ≈ −1), making it difficult
to constrain the polarization angle ψ; on the right, the injection has similar amplitude but corresponds to an edge-on source
(cos ι ≈ 0), making it easy to constrain ψ [modulo π/2 due to the 2∆ψ dependence of Eqs. (A3) and (A4)]. These plots were
produced using the corner.py package [49].
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FIG. 20. Free-tensor vs GR. Natural logarithm of the Bayes factor comparing Ht to HGR, as a function of GR injection
amplitude for fixed (left) and unfixed (right) source orientation. On the left, the analysis correctly gives preference to HGR for
signals above the detection threshold; on the right, however, the analysis is unable to satisfactorily distinguish between Ht and
HGR, due to the orientation degeneracies discussed in appendix A.
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This is illustrated in Fig. 17.
These rotational properties are easily understood by

recalling that GW polarizations can be defined in any
frame, although a given signal might look more or less
simple given the choice of frame. Eqs. (A3) and (A4) pro-
vide the transformation between frames that are coaligned
except for a rotation of ∆ψ around their z-axes. Because
waveform predictions, e.g. Eq. (A1), are made in specific
frames, it is important to orient the wave frame appro-
priately when working with a given theory and emission
mechanism. However, if the signal parametrization is
independent of any theory, e.g. Eq. (A2), one is free to
pick any frame (i.e. any ψ).

The relationship between the different tensor model
parameters is reflected in the posterior probability plots
of Fig. 18. For fixed orientation, both the triaxial (a) and
free-tensor (b) analyses accurately determine the ampli-
tude and phase of the injected signal. In panel (b), a+

and a× are constrained to lie within a region consistent
with h2

inj = a2
+ + a2

× and a+/a× = (1 + cos2 ι)/(2 cos ι),

for an effective injection amplitude given by h2
inj =

h2
0(1 + cos2 ι)2/4 + h2

0 cos2 ι, as in Eq. (67). When the
orientation is allowed to vary, we observe the expected
correlations between the recovered triaxial amplitude and
the orientation parameters in panel (c); in this case, ψ
and cos ι will also become correlated, as better shown in
Fig. 19.

The degeneracy between ψ and a+, a× is particularly
evident in Fig. 18d, where the one-dimensional PDF for
ψ shows that this parameter cannot be constrained, even
for a loud signal. Furthermore, joint posteriors between
ψ and a+ & a× confirm that this is due to the degeneracy
from Eqs. (A5) and (A6), as seen by comparing these
two-dimensional PDFs to Fig. 17. Physically, this is a
consequence of the fact that we are free to orient the
polarization frame as we wish.

Because their signal templates are degenerate when ψ
and ι are allowed to vary, the distinction between HGR

and Ht is not really meaningful for unfixed orientation.
This can be seen from the values of lnBt

GR in the cases
of known and unknown orientations, as in Fig. 20. On
the left panel, HGR is defined with specific values of ψ
and cos ι that match the injections; on the right, the HGR

priors allow ψ and cos ι to range over their full ranges,
and the injections are performed with random values of
both. When the orientation is fixed, HGR will always
be preferred to Ht for resolvable signals because of its
lower Occam’s penalty; however, that is not true for un-
fixed orientation. Note that, in the strictest sense, the
two hypotheses are not logically equivalent unless their
parameter priors are related by the Jacobian of the coor-
dinate transformation between the two parametrizations,
Eqs. (A1, A2); only in that case all regions of signal space
are treated equally by HGR and Ht. This explains the
variation in values of lnBt

GR on the right of Fig. 20.
If one knew the source orientation and one believed

that the only viable mechanism for producing CWs at the
assumed frequency in GR is the triaxial model embodied

by Eq. (A1), then one could include the free-tensor hy-
pothesis and all of its derivatives (i.e. t, st, vt, stv) in the

non-GR set M̃ , on top of {s, v, sv,GR+s,GR+v,GR+sv}.
Doing so would mean treating a tensor-only signal that
does not conform to Eq. (A1) as evidence of a GR vi-
olation, rather than of a different emission mechanism
within GR. Given the many simplifications intrinsic to
the triaxial model, however, having that much confidence
in its validity seems unwarranted; hence we choose to not
take that approach.

Appendix B: Amplitude priors

Previous CW Bayesian searches targeted to known
pulsars have always applied a flat prior on the signal
amplitude parameter [17]. This is because flat priors, if
wide enough, cause the posterior to be only determined
by the likelihood (up to normalization), yielding more
conservative upper limits on the signal strength. Fur-
thermore, unlike with priors uniform in the logarithm of
the quantity, upper limits derived with flat priors will
generally not depend on the limits set by the prior (again,
assuming the range allowed extends from zero amplitude
to some large value that does not truncate the likelihood).

Upper limits obtained using log-uniform priors (uni-
form in the logarithm of the quantity) will, generally, be
dependent on the range of the prior, although not strongly.
For example, consider a one-dimensional problem on some
positive parameter x. For simplicity, further assume we
have a flat likelihood between x = 0 and an upper cutoff
at x = xmax; then, xmax will necessarily also be an upper
bound for the posterior. Because the likelihood is uniform,
below the cutoff the posterior will be determined, up to
normalization, by the prior only, i.e. for x < xmax,

p(x | B,H) ∝ p(x | H). (B1)

Now consider a log-uniform prior p(x | H) ∝ d(log x) ∝
1/x, with a lower bound xmin, such that 0 < xmin < xmax.
Because such prior is uniform in the log x, this implies
that the 95%-credible upper limit on x will be given by:

log x95% = log xmin + 0.95(log xmax − log xmin)

= log
(
x0.95

max/x
0.95−1
min

)
. (B2)

Since xmax is set by the likelihood (by construction), if
the prior is changed by rescaling xmin by a factor α,

xmin → x′min = αxmin, (B3)

then, for a given set of data, the upper limit becomes
x95%
α , satisfying:

x95%
α /x95% = α0.05. (B4)

Thus, the dependence of the upper limit on the range de-
fined by the log-uniform prior is quite weak, as illustrated
in Fig. 21. This explains why upper limits obtained with
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the logarithm of the quantity (hatched gray). The flat prior
causes one to more strongly favor the noise model, due to a
larger implicit Occam’s penalty.

a log-uniform prior differ only by a factor of a few from
those obtained with a flat one, as seen in Fig. 13.

However, the flat priors do not properly represent our
ignorance of the scale of the signal amplitude. This prob-
lem manifests itself in negative Bayes factors that too
quickly favor the noise hypothesis if no loud signal is
clearly present, rather than reflecting our expectation
that a signal might be hiding under the noise. This can
be seen in Fig. 22, where we show the distributions of
lnBGR

N , obtained for several noise-only data instantiations
for the Crab pulsar, corresponding to flat and log-uniform
priors in the GR amplitude parameter, h0; a uniform
prior results in lower values of lnBGR

N that strongly favor
HN. This behavior is not specific to the GR model.

For most of our analysis, we choose to apply priors
uniform in the logarithm of all amplitude quantities. How-
ever, for the sake of consistency with previous searches
and in order to make our limits more conservative, we
also present upper limits produced using flat amplitude
priors, as shown in Fig. 13.

Appendix C: Numerical error

The fractional numerical error in the computation of
the natural logarithm of the evidence by nested sampling
is usually estimated by:

δ [lnP (B | H)] ∼
√
H/Nlive, (C1)

where Nlive is the number of of live points and H is the
information gained in the analysis:

H ≡
∫

Θ

p(~θ | B,H) ln
p(~θ | B,H)

p(~θ | H)
d~θ, (C2)

a quantity that is easy to estimate from the output of the
nested sampling code [42, 50].

An example of the actual statistical error as function
of SNR is presented in Figs. 23 & 24, where the injected
GR signal amplitude serves as proxy for ρ (for fixed PSD).
From these plots it becomes apparent that, although the
actual error might exceed the estimator of Eq. (C1), its
absolute magnitude is quite small and should not affect
our results. In any case, Eq. (C1) indicates that any level
of accuracy may be achieved by increasing the number
of live points (at the cost of increased computational
burden). For more details on the numerical error of the
nested sampling algorithm in LALInference, we refer the
reader to Sec. IVB of [51].

Appendix D: Upper-limit ratios

When comparing upper-limits for the different modes,
as in Fig. 16, two scalings become apparent: first, the +,
×, x, and y upper-limits are, on average, more stringent
than those for the scalar polarization by a factor of ∼1.8;
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second, the upper-limits on ht (ht) are a factor of ∼1.3
larger than those on the individual + and × (x and y)
amplitudes.

The scaling between the scalar upper-limit and those for
the other individual strain amplitudes can be accounted
for by the decreased sensitivity of quadrupolar GW de-

tectors to scalar waves. For a single instrument (that is,
not a network), this can be appreciated visually from Fig.
2, by noting that for most sky locations the magnitude of
the scalar response is considerably less than for the other
modes.

To properly evaluate the effect of the detector geometry
on the analysis, however, it is necessary to look at the
relative SNRs of unit-amplitude scalar, vector and tensor
GWs from a given source, as they are received by the
detector network under consideration (H1, L1, V1) after
some fixed observation time. Assuming all detectors have
comparably noise levels, the network SNR can be proxied
by the root-mean-square (RMS) amplitude of the effective
network antenna patterns, defined by

F rms
p, net =

√√√√ 1

T

∫ T

0

∑

d

F 2
p,d(t), (D1)

for each polarization p, some long observation time T ,
and where the sum is over detectors d. [Here we have
fixed the source and detector parameters so that the Fp’s
of Eqs. (1–5) are now just simple functions of time.] We
may then compute this for all five polarizations and for
multiple sources to obtain a sky-average of the ratio of
the scalar RMS antenna pattern to those of the other
polarizations. We find this ratio to be roughly ∼0.55
for all polarizations, in agreement with Fig. 16, since we
should expect

〈
F rms

s, net

F rms
p, net

〉
∼
〈
h95%
p

h95%
s

〉
, (D2)

where the average 〈·〉 is taken over multiple sources dis-
tributed across the sky.

The relation between the ht (hv) upper-limits and those
for their component amplitudes, + and × (x and y), can
be easily understood by noting that, if using flat priors and
in the absence of signal, the marginalized posteriors for
each of the component amplitudes (h+, h×, hx, hy) will
roughly be described by a one-sided normal distribution.
Consequently, it can be shown that posterior for the
square-root of the sum of the squares of two of these
quantities will be given by a chi distribution with two
degrees of freedom. Considering the definitions of Eqs.
(67, 68). It is straightforward to show (numerically or
analytically) that this explains the observed factor of ∼1.3

difference between h95%
t (h95%

v ) and h95%
+ or h95%

× (h95%
x

or h95%
y ).
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