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Abstract: We study the contributions of colorless vectorlike fermions to the triple gauge

couplings W+W−γ and W+W−Z0. We consider models in which their coupling to the

Standard Model Higgs boson is allowed or forbidden by quantum numbers. We assess the

sensitivity of the future accelerators FCC-ee, ILC and CLIC to the parameters of these

models, assuming they will be able to constrain the anomalous triple gauge couplings with

a precision δκV ∼ O(10−4), V = γ, Z0. We show that the combination of measurements

at different center-of-mass energies helps to improve the sensitivity to the contribution of

vectorlike fermions, in particular when they couple to the Higgs. In fact, the measurements

at the FCC-ee and, especially, the ILC and the CLIC, may turn the triple gauge couplings

into a new set of precision parameters able to constrain the models better than the oblique

parameters or the H → γγ decay, even assuming the considerable improvement of the latter

measurements achievable at the new machines.
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1 Introduction

All experimental data collected so far have confirmed the Standard Model (SM) predictions,

including the existence of a scalar particle that seems to have the right properties to match

those of a Higgs boson. The SM cannot however be the final theory of Particle Physics, since

it does not explain neutrino masses, the baryon asymmetry of the universe and it does not

contain a Dark Matter (DM) candidate. Moreover, if the naturalness principle applies, New

Physics (NP) is expected.

The nature of the NP models that are supposed to complete the SM is elusive and unknown.

Taking a bottom up approach, however, we can suppose that, exactly as the SM particles are

vectorlike from the low energy QED/QCD point of view, the first particles to be discovered

(if any) will be vectorlike from the SM point of view [1]. In addition, vectorlike fermions arise

in many well motivated SM extensions such as models with extra dimensions [2–5], composite

Higgs [6–8], two Higgs doublet model extensions [9], low-scale supersymmetry [10, 11] and,

more recently, in new solutions of the hierarchy problem [12, 13]. Vectorlike fermions are

much less constrained than extra chiral families, which in fact are now pretty much ruled out

by data after the observation of the 125 GeV boson at the LHC [14, 15]. Vectorlike quarks

masses are typically bounded from ATLAS and CMS Run 1 data to be & (800-1000) GeV

[16–23], while direct constraints on vectorlike leptons come only from the LEP experiments

and are constrained to be & 100 GeV [24]. Bounds from electric and magnetic dipole moments

and electroweak precision measurements have been also considered [25, 26].

As no new particles have been discovered so far, there is a growing interest of the community

in future e+ e− colliders that could pursue the electroweak precision tests started by LEP

and the SLC profiting of higher energies and luminosities. This moves from the observation

that, for heavy enough particles, NP may first show up through loop effects, and as such

be bounded by electroweak precision measurements, modifications of H → γγ or anomalous

triple gauge couplings (TGC). In particular, the new machines can probe the anomalous

TGC’s W+W−γ, W+W−Z0 and Z0Z0γ to unprecedented levels. Since the structure of the

TGC’s is a direct manifestation of the non abelian nature of the SM gauge group, they are

sensitive to the presence of NP with SU(2)L × U(1)Y representation and, in particular, to

the presence of vectorlike fermions.

The purpose of this paper is to estimate the sensitivity of future e+ e− machines to vectorlike

leptons, in many possible realizations, via the measurements of triple gauge couplings which

will putatively reach a O(10−4) precision. The paper is organized as follows. In Sec. 2 we

start by defining the TGC’s form factors that can be modified by SM loop corrections and

new physics. Next, in Sec. 3 we describe the vectorlike lepton models that we will study in

this paper and how they can contribute to the TGC’s form factors. In Sec. 4 we estimate the

constraints on these models that can be achieved by TGC’s measurements at three proposed

future accelerator facilities: the Future Circular Collider (FCC-ee) [27], International Linear
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Figure 1. Feynman diagram of the WWV vertex in momentum space.

Collider (ILC) [28] and the Compact Linear Collider (CLIC) [29]. Finally, in Sec.5 we discuss

our conclusions.

2 Triple Gauge Couplings

The typical structure of the charged TGC’s that we will consider in this paper is shown

in Fig. 1, where V can be either the Z0 boson or the photon. The complete one-loop SM

contribution to the charged TGC’s W+W−γ and W+W−Z0 have been computed some time

ago [30–32], while the contribution to the neutral TGC Z0Z0γ have been studied in [30, 33].

The charged couplings can be directly studied in future e+e− colliders, through e+e− →
W+W−. The neutral couplings, on the other hand, can be studied using the processes

e+e− → Z0γ or e+e− → Z0Z0, with subsequent decays Z0 → ν̄ν and Z0 → `+`−[34–36]. Let

us note that only fermions with an axial coupling to the Z0 boson can generate non vanishing

corrections to the neutral TGC’s [33]. As such, since our focus are vectorlike fermions, we

will just consider the effects on the charged vertexes.

The generic charged TGC vertex WWV , with V = γ, Z0, can be parametrized using the

following effective lagrangian [37]

LWWV =− igV [(W †µνW
µV ν −WµνW

µ†V ν) + κVW
†
µWνV

µν +
λV
M2
W

W †µτW
τ
ν V

νµ

+ LnCP
WWV , (2.1)

where LnCP
WWV contains P or C odd terms, κV and λV are form factors, the field strengths are

defined as Wµν = ∂µWν − ∂νWµ, 1 Vµν = ∂µVν − ∂νVµ, and the coupling gV is given by

gV =

{
e for V = γ,

e cot θW for V = Z0.
(2.2)

1Notice that with this definition, the W field strength is not U(1)em invariant. New quadrilinear terms

must be introduced in L to make the whole Lagrangian gauge invariant.
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In the SM at tree level, κV = 1 and λV = 0. We will focus only on the C and P conserving

terms, discarding LnCP
WWV in the following. In the photon case, the form factors are related

to the static properties of the W boson (namely the magnetic dipole µW and the electric

quadrupole moment QW ) through the relations [37]

µW =
e

2MW
(1 + κγ + λγ),

QW = − e

M2
W

(κγ − λγ).
(2.3)

Following a notation analogous to the one used in [30] (see Figure 1 for the definition of the

momenta), the WWV vertex in momentum space can be written as

ΓVµαβ = −igV
{
f(q2) [2gαβpµ + 4(gαµqβ − gβµqα)] + 2∆κV (q2)(gαµqβ − gβµqα)

+4
∆Q(q2)

M2
W

(
pµqαqβ −

1

2
q2gαβpµ

)}
, (2.4)

with the f(q2) form factor connected to the renormalization of the charge, while ∆κV (q2)

and ∆QV (q2), related to κV and λV through the expressions

∆κV = κV + λV − 1 ≡ ∆κSMV + ∆κNPV ,

∆QV = −2λV ≡ ∆QSMV + ∆QNPV ,
(2.5)

are designed to be zero at tree level in the SM. The SM 1-loop contributions can be found

in Refs. [30–32], while the explicit calculation of ∆κNPV and ∆QNPV in the case of vectorlike

fermions is presented in Appendix A.

The quantity used by the experimental collaborations to show their results is the deviation

from the SM value of κV a tree level, δκV = κV − 1, which will correspond to a linear

combination of ∆κV and ∆QV , namely

δκV = ∆κV +
1

2
∆QV , (2.6)

and this is the quantity we will be using throughout the paper.

3 Models of Colorless Vectorlike Fermions

For our study, we will consider two classes of colorless vectorlike fermions: (i) a set of fermions

in a unique SU(2)L representation, with no couplings to the Higgs boson allowed, and (ii) a

set of at least two extra fermions in representations such that a Yukawa term with the Higgs

boson is allowed. In both cases we will assume that, due to some unspecified symmetry G,

all the mixing between the vectorlike and the SM fermions are forbidden.
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3.1 Unmixed Colorless Vectorlike Fermions

As already mentioned, we start adding to the SM particle content one vectorlike fermion Ψ,

transforming under SU(2)L × U(1)Y as Ψ ∼ (2j + 1, Y ) and with mass mΨ. The lagrangian

is given by

L = iΨγµ(∂µ − igW a
µT

a − ig′Y Bµ)Ψ−mΨΨΨ , (3.1)

where T a are the 2j + 1 dimensional generators of the SU(2)L Lie algebra. An important

consequence of considering a unique SU(2)L representation for all the NF vectorlike fermions

is that the δκΨ
V form factor just depends on the hypercharge and on the dimension j of the

SU(2)L representation, and not on the eigenvalues of the T 3 operator. This is shown explicitly

in Appendix B, from which we see that we can write

δκΨ
V ∝ FjI(mΨ), Fj ≡ NF Y

2

3
j(j + 1)(2j + 1), (3.2)

where I(mΨ) is a loop factor that only depends on the vectorlike lepton mass mΨ. An

equivalent statement is that all the contributions to the W+W−W 3 TGC cancel out, leaving

only W+W−B (with B the hypercharge gauge boson). Integrating numerically over the

Feynman parameters of Eq. (A.1) we obtain ∆κΨ
V and ∆κΨ

Z as a function of
√
s =

√
(2q)2

(see Appendix A for details).

In Fig. 2 we show the contour lines for δκΨ
V in the (mΨ, |Fj |) plane for the four different center-

of-mass energies
√
s = mH , 500 GeV, 1 TeV and 3 TeV. We observe that |δκΨ

γ | < |δκΨ
Z0 | and

they have opposite sign (see Eq. (B.12) in Appendix B). The typical values of |δκΨ
V | are

smaller than a few 10−4.

For fixed
√
s, the loop factor in Eq. (3.2) vanishes for mΨ = mΨ1 and mΨ = mΨ2 , where

mΨ1,Ψ2 are complicated functions of
√
s. The general behavior of δκΨ

γ as a function of mΨ

is the following: it starts positive, it vanishes for mΨ = mΨ1 , goes through a minimum

(negative) value, it increases again until it reaches zero for mΨ = mΨ2 , goes through a

maximum (positive) value and then decreases again until it goes back to zero. Because of

the flip in sign, δκΨ
Z0 has the opposite behavior. For

√
s = mH both cancellations occur for

mΨ < 100 GeV so they do not appear in the plot. For
√
s = 500 GeV and 1 TeV, we can

only see in Fig. 2 the second cancellation at mΨ2 ≈ 200 GeV and 400 GeV, respectively,

while for
√
s = 3 TeV we can see the first cancellation at mΨ1 ≈ 250 GeV. Note that after

the second cancellation the loop integral gets suppressed (mΨ becomes too off-shell for that

specific center-of-mass energy) so to reach the same |δκΨ
V | one has to increase the effective

coupling, i.e. go to higher values of |Fj |.

3.2 Mixed Colorless Vectorlike Fermions

Let us now consider the case in which the colorless vectorlike fermions transform in different

SU(2)L×U(1)Y representations, such that an invariant Yukawa coupling with the Higgs boson
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Figure 2. Contour lines of δκΨ
V (see Eq. (2.6)) in the plane (mΨ, |Fj |) for the models with

unmixed vectorlike colorless fermions (vectorlike leptons) at four different center-of-mass energies:√
s = mH , 500 GeV, 1 TeV and 3 TeV. For the definition of Fj see Eq. (3.2). The full blue (dashed

red) lines correspond to V = γ (Z0).

is allowed. Since a general discussion would be quite involved, we will consider two examples

to illustrate the impact of the future experiments measuring the TGC’s. Specifically, we will

examine the two models studied in [38], corresponding to the addition of a singlet and a

doublet, and a doublet plus a triplet of fermions.
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Doublet-singlet model. We introduce a singlet Dirac fermion N = NL + NR with hyper-

charge Y and a doublet Dirac fermion L = LL + LR with hypercharge Y − 1
2 . 2 We will

write explicitly the components of the L doublet as L = (N0, E)T for the two chiralities. The

lagrangian is given by

L2+1 = iL /DL+ iN /DN −MNNRNL −MLLRLL − cNRHLL − c′NLHLR + h.c. (3.3)

With the hypercharge assignment we are considering, the electric charges of the various

components are
E → qχ ≡ Y − 1 ,

N,N0 → qω ≡ Y ,
(3.4)

so that after electroweak symmetry breaking the Higgs introduces a mixing between N0 and

N , while E does not mix.

The three mass eigenstates ω1,2 and χ are defined as

ω =

(
ω1

ω2

)
= U †L

(
N

N0

)

L

+ U †R

(
N

N0

)

R

, χ = EL + ER , (3.5)

with UL/R the unitary matrices that diagonalize the mass matrix obtained from Eq. (3.3)

after electroweak symmetry breaking.

In terms of the mass eigenstates the gauge lagrangian can be written as

L2+1
gauge =e qχχ̄γ

µχAµ + eqω ωγ
µωAµ −

1

2

(
(2Y − 1)g′sW + gcW

)
χγµχZµ

+ ω

[
U †L

(
−Y g′sW 0

0 1
2

(
g cW − (2Y − 1)g′sW

)
)
ULPL + (L→ R)

]
γµωZµ,

+
g√
2
ωγµ[U †LPL + U †RPR](0 W+

µ )Tχ ,

(3.6)

where g and g′ are the usual SM gauge couplings, sW = sin θW and cW = cos θW .

Having established our model, we proceed to compute the 1-loop contributions of the new

vectorlike fermions to the TGCs. Using the general result for the 1-loop contribution, given

in Appendix A, we computed the ∆κ2+1
V and ∆Q2+1

V form factors for this model. Note that

the W+W−Z0 vertex gets an additional correction with respect to the W+W−γ one, due to

the mixing between the doublet and the singlet.

In Fig. 3 we show the contour lines for δκ2+1
V in the (M, c) plane, where M = ML = MN

and c′ = c, for the same four center-of-mass energies as before. Assuming c real, the mass

spectrum is mχ = M , mω1,ω2 = |M ± 2c v|, where v = 175 GeV is the SM Higgs vacuum

2Notice that although we use a notation suggesting heavier copies of a lepton doublet and right handed

neutrinos, we leave the hypercharge Y of N unspecified. The case Y = 0 corresponds, for example, to the

situation studied in [13].
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Figure 3. Iso-contour lines of the deviations δκ2+1
V from the SM couplings in the plane (MN =

ML, c = c′) for the vectorlike colorless fermion doublet-singlet model at four different center-of-mass

energies:
√
s = mH , 500 GeV, 1 TeV and 3 TeV. We have chosen Y = 1, so ω1 and ω2 are charged

whereas χ is neutral. The full blue (dashed red) lines correspond to V = γ (Z0). The dotted green

lines correspond to the physical masses mω1
and mω2

, for MN = ML =
√
s/2.

expectation value. As an illustration we have chosen the case Y = 1, so ω1 and ω2 are particles

with charge 1 that participate in both δκ2+1
γ and δκ2+1

Z0 , whereas χ is a neutral fermion and so

it only contributes to the latter. For a fixed coupling c = c′, δκ2+1
γ has the following behavior

as a function of M = ML = MN . It starts positive when, for a give center-of-mass energy,
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all vectorlike fermion masses are irrelevant for the loop function. Then, decreases as the

lowest fermion mass starts to play a role, until it reaches a minimum at mω1 = |√s/2− 2cv|;
next, increases when the next massive vectorlike fermion starts to contribute, passes again

through zero before reaching a maximum at mω2 =
√
s/2 + 2cv. As MN continues to increase

δκ2+1
γ → 0 as we approach the decoupling limit. The behavior of δκ2+1

Z0 is somewhat similar

but a bit more involved at lower values of MN due to the mixing between ω1,2. Also as MN

increases, the contribution of the neutral vectorlike fermion, χ, appears giving rise to the

maximum value for δκ2+1
Z0 at MN = mχ. Here again the typical values of |δκ2+1

V | are smaller

than a few 10−4. The green dotted lines that can be seen on the
√
s = 500 GeV and 1 TeV

panels correspond to the values of mω1 and mω2 computed with M =
√
s/2. At the other

center-of-mass energies these masses lie outside of the plot range.

Triplet-doublet model. We will now add to the SM particle content a Dirac SU(2)L doublet

L = LL +LR, and a Dirac triplet T = TL +TR, with hypercharges Y and Y − 1
2 , respectively.

The total lagrangian is given by

L3+2 = iL /DL+ iT /DT −MLLLLR −MTTLTR − cLLTRH − c′ LRTLH + h.c. , (3.7)

where the doublet and triplet fermions are written as

L =

(
N0

E

)
, T =

(
Ta√

2
Tb

Tc − Ta√
2

)
. (3.8)

With the hypercharge assignment we are considering, the electric charge of the various com-

ponents read
Tc → qχ ≡ Y − 3

2 ,

Ta, E → qξ ≡ Y − 1
2 ,

Tb, N0 → qω ≡ Y + 1
2 ,

(3.9)

in such a way that, after electroweak symmetry breaking, there is a mixing between Ta and

E, as well as between Tb and N0. Defining the mass eigenstates as

ω =

(
ω1

ω2

)
= U †L

(
N0

Tb

)

L

+ U †R

(
N0

Tb

)

R

, ξ =

(
ξ1

ξ2

)
= V †L

(
E

Ta

)

L

+ V †R

(
E

Ta

)

R

,

(3.10)

χ = TcL + TcR,
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the gauge lagrangian can be written as

L3+2 =e qχ χγ
µχAµ + e qω ωγ

µωAµ + e qξ ξγ
µξAµ −

(
qξ g
′ sW + g cW

)
χγµχZµ

+ω̄

[
U †L

(
g
2cW − Y g′sW 0

0 gcW − qξ g′sW

)
ULPL + (L→ R)

]
γµωZµ

+ξ

[
V †L

(
−g

2cW − Y g′sW 0

0 −qξg′sW

)
VLPL + (L→ R)

]
γµξZµ

+g (ω ξ χ)γµ







02×2 W+
µ U †L V

′
L 02×1

W−µ V ′†L UL 02×2 V †L W̃
+T
µ

01×2 W̃−Tµ VL 0


PL + (L→ R)






ω

ξ

χ


 , (3.11)

where W̃±µ = (0 W±µ ) and

V ′L =
1√
2

(
VL11 VL12√
2VL21

√
2VL22

)
.

In Fig. 4 we show the iso-contour lines for the δκ3+2
V combinations for this model in the plane

ML = MT versus c = c′ for the same four different center-of-mass energies as before. In this

case the physical mass spectrum is: mχ =
√
s/2, mω1 = |√s/2 − 2c v|, mω2 =

√
s/2 + 2c v,

mξ1 = |√s/2−
√

2c v| and mξ2 =
√
s/2 +

√
2c v. The green dotted lines that can be seen on

the
√
s = 500 GeV and 1 TeV panels correspond to the values of the charged particle masses

mω1 , mω2 and mχ. At the other center-of-mass energies these masses lie outside of the plot

range.

Here we show the case Y = 1/2, so χ, ω1 and ω2 are charged particles that participate of

both δκ3+2
γ and δκ3+2

Z0 , whereas ξ1 and ξ2 are neutral fermions and only contribute to the

latter. Here the typical values of |δκ3+2
V | can get about an order of magnitude larger than in

the previous models, but always smaller than a few 10−3.

For a fixed coupling c, δκ3+2
γ as a function of ML has the same general behavior as for the

doublet-singlet model. It goes through a minimum at mω1 , and through a maximum at mχ

and mω2 . This can be best seen on the panel for
√
s = 1 TeV. The behavior of δκ3+2

Z0 is

somewhat similar but even more involved than the previous mixed case because now we have

five particles coupling to the Z0 so in addition to the charged particle peaks, we also have

peaks for the neutral particles. We note that in this case |δκ3+2
Z0 | ∼ |δκ3+2

γ | and sometimes

even a bit larger.

4 TGC Constraints on Vectorlike Colorless Fermion Models

We move now to estimate the possible future constraints that can be imposed on vectorlike

colorless fermion models by TGC measurements at future e+e− accelerator facilities such as
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Figure 4. Iso-contour lines of the deviations δκ3+2
V from the SM couplings in the plane (ML =

MT , c = c′) for the vectorlike colorless fermion triplet-doublet model at four different center-of-mass

energies:
√
s = mH , 500 GeV, 1 TeV and 3 TeV. We have chosen Y = 1/2, so there are three charged

states and two neutral ones. The full blue (dashed red) lines correspond to V = γ (Z0) and the dotted

green lines correspond to the physical masses mω1
, mω2

, and mχ.

the proposed Future Circular Collider (FCC-ee) [27], International Linear Collider (ILC) [28]

and the Compact Linear Collider (CLIC) [29]. For the FCC-ee experiment we considered the

following center-of-mass energies:
√
s = mZ , mH , 2mZ and 2mt [27], for the ILC:

√
s =

500, 800 and 1000 GeV [28] and for the CLIC (in the so-called scenario A):
√
s = 500, 1400

– 11 –
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Figure 5. Possible TGC reach to probe the parameters of the unmixed vectorlike colorless fermion

models by combining different center-of-mass energies at the ILC (
√
s = 500, 800, 1000 GeV) and the

CLIC (
√
s = 500, 1400, 3000 GeV) facilities. We assume the same three different sensitivities for δκγ

and δκZ0 at all center-of mass energies considered: 4× 10−4, 2× 10−4 and 1× 10−4. The regions of

accessibility were computed at 95.45% CL. See text for more details.

and 3000 GeV [29].

We do this for each of the models addressed in this paper by minimizing a combined χ2(δκZ , δκγ ;
√
si)

assuming the following three different benchmark sensitivities for both TGCs: 4 × 10−4,

2 × 10−4 and 1 × 10−4 [39, 40]. We assume the same benchmarks for all facilities at all

center-of-mass energies.

In Fig. 5 we show the regions on the plane (mΨ, |Fj |) of the unmixed vectorlike model that can

be probed at 2σ CL by combining the various center-of-mass energies at these accelerators.

Because of the relatively low center-of-mass energies proposed for the FCC-ee, it can only

probe a very limited range of mΨ . 200 GeV for |Fj | & (1− 4) at 2σ CL if the sensitivity is

at least 1×10−4. This is why we do not show this case on Fig. 5. The ILC will be able to test

mΨ . 250 GeV (mΨ . 300 GeV) for |Fj | & 16 if a sensitivity of 2× 10−4 (1× 10−4) can be

achieved. At the CLIC the reach is somewhat reduced, as, for instance, no region is accessible

at 2σ CL even for a sensitivity of 2× 10−4 for |Fj | < 20. Note that CLIC is less sensitive to

the unmixed colorless vectorlike scenario than ILC due to its higher center-of-mass energies

as explained by the following reasoning. As can be seen in Fig. 2, the contribution to TGCs

is higher when
√
s is close to the vectorlike fermions mass threshold, but the heavier are the

fermions, the smaller is the TGC deviation in general. Deviations at the O(10−4) level are

typically caused by particles below the TeV scale, and thus having a lower center-of-mass

– 12 –



energy leads to better sensitivity.

In Fig. 6 we show the regions on the plane (MN = ML, c = c′) of the doublet-singlet model

with Y = 1 than can be explored 2σ CL by the FCC-ee, ILC and CLIC by combining the

same center-of-mass energies as before. For comparison we also show the current limits one

can obtain from H → γγ (Rγγ , full red line; see e.g. Ref. [41]) and electroweak precision

measurements (δT , full dark green line), as well as the effect of a future possible improvement

on the uncertainty on Rγγ to 8% (dashed red line) or 3% (dotted-dashed red line) and on

the uncertainty on δT (dashed dark green line). These future prospects on the uncertainties

were taken from [28, 42]; for comparison we show the same δT and Rγγ sensitivities for all

proposed facilities. The region in gray was excluded by LEP searches for neutral and charged

leptons [24].

At present Rγγ excludes more of the parameter space of the doublet-singlet model than δT

if MN . 600 GeV, but for larger values of MN , δT is more restrictive. We see that at the

FCC-ee one can have the sensitivity to probe and exclude a larger region of the parameter

space, that can only be comparable to a future sensitivity on Rγγ of 8% or better, if one can

reach a sensitivity of ∼ 1.5× 10−4 on the TGCs. Here since the center-of-mass energies that

we have combined are comparatively low, the peak structure only appears around MN ∼ 180

GeV, the rest of the exclusion region being quite smooth. At the ILC, because the center-

of-mass energies are higher, the exclusion region is more complicated due to the maxima and

minima that appear for the different masses of the vectorlike fermions that run in the loop

functions at different
√
s. In general, the ILC can exclude the same regions probed by the

FCC-ee but, for the most part of the parameter space, requiring a less challenging sensitivity

to the TGCs.

The CLIC, involving even higher center-of-mass energies, in spite of the fact that, because of

the peak structure, loses some sensitivity for MN ∼ 700 GeV, can test 800 .MN/GeV . 1400

and 1600 . MN/GeV . 1900 for a TGC sensitivity of 1× 10−4, a region that could only be

otherwise inspected by a Rγγ or a δT measurement with 2-3% uncertainty.

Finally, in Fig. 7 we show the regions on the plane (ML = MT , c = c′) of the triplet-doublet

model with Y = 1/2 than can be explored at 2σ CL by the FCC-ee, ILC and CLIC again

combing the same center-of-mass energies as before. In this case, the FCC-ee can explore a

region than can only be attainable by measuring Rγγ with an uncertainty of at least 3% if

the TGC sensitivity is 2× 10−4, while the ILC is a bit better except for ML . 250 GeV. As

before CLIC is, in general, less sensitive for ML . 700 GeV because of the peak structure but

becomes more sensitive for higher masses, probing the model down to regions where even a

very aggressive measurement of Rγγ would not reach.

Let us conclude with some remarks about the limits from direct searches at the LHC. As

shown for instance in [13, 43], the collider signatures of the doublet-singlet model are very

similar to those of electroweakinos in minimal SUSY models. Moreover, we expect the limits
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Figure 6. Possible TGC reach to probe the parameters of the doublet-singlet vectorlike colorless

fermion model with Y = 1, by combining different center-of-mass energies at the FCC-ee, the ILC

and the CLIC facilities at 2σ CL. We also show the current limits from H → γγ (Rγγ , full red

line) and electroweak precision measurements (δT , full dark green line), as well as the possible future

sensitivities of Rγγ assuming an uncertainty of 8% (dashed red line) or 3% (dotted-dashed red line)

and of δT (dashed dark green line). The gray region has been excluded by LEP [24] while the black

dashed (dotted) lines correspond to the LHC current limit (future sensitivity).

for the other representations not to be too different. Current lower bounds can be found

in [44], and are of order 150 GeV for the lightest neutral state and of order 450 GeV for the

heavier states. Future sensitivities have been estimated in [45]; with a luminosity of 3000
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Figure 7. Same as Fig. 6 but for the triplet-doublet vectorlike colorless fermion model with Y = 1/2.

fb−1 (at
√
s = 14 TeV), the lower bound on the lightest neutral mass becomes 400 GeV,

while the lower bound on the heavier states becomes 1.1 TeV. We included the current limit

(dashed black line) and future sensitivity (dotted black line) in figures 6 and 7. As can be

seen, even considering the future LHC reach there are regions not probed by the LHC that

will be probed by TGC’s searches.
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5 Conclusions

We have studied vectorlike colorless fermions contributions to the triple gauge couplings

W+W−γ and W+W−Z0 in the context of two classes of models. First we consider the

unmixed case, where an arbitrary set of fermions in a given representation of SU(2)L cannot

couple to the SM Higgs boson. Second we consider the mixed case, where the vectorlike

fermion fields transform as different representations of SU(2)L allowing for invariant Yukawa

couplings with the Higgs boson. In the latter case we study two concrete situations: the

doublet-singlet model, where three new vectorlike physical particles are introduced, and the

triplet-doublet model, where five new vectorlike physical particles appear.

We established that the contributions of the above vectorlike fermion models to the combi-

nation of the form factors, δκV , V = γ, Z0, used by the experimental collaborations, have

several minima and maxima as a function of the mass parameters of the model. Since to go

from a negative minimum to a positive maximum one has to cross zero, this also implies that

there are values of the mass parameter for which δκV → 0. These maxima and minima will

depend on the center-of-mass energy considered, and how close one is to a physical particle

which contributes to the TGC loop function being on the mass-shell.

In the case of the unmixed vectorlike colorless fermion model, we have assumed that all

fermions, independent of how many multiplets of a given representation, are degenerate in

mass (mΨ). Since |δκγ | starts large when mΨ �
√
s/2, and we expect a maximum at

mΨ ∼
√
s/2, there are, in general, two values of mΨ, for a given

√
s, where δκV → 0.

For the doublet-singlet and triplet-doublet model the minima and maxima for δκγ (δκZ0) as

a function of ML, the mass parameter, correspond to the values of the charged (all) physical

particles of the model, which clearly depend on
√
s and the hypercharge Y , which defines the

charges of the particles.

We made an assessment of the sensitivity of the proposed future precision test accelerators

FCC-ee, ILC and CLIC to the parameters of these models assuming they will be able to

constrain δκV ∼ O(10−4) at different
√
s. Using the same benchmark sensitivities for all

accelerators allow us to clearly see the effect of the different center-of-mass energy combi-

nations. For the FCC-ee experiment we considered the following center-of-mass energies:√
s = mZ , mH , 2mZ and 2mt. For the ILC:

√
s = 500, 800 and 1000 GeV and for the CLIC

(in the so-called scenario A):
√
s = 500, 1400 and 3000 GeV.

Only for the unmixed vectorlike colorless fermion case the FCC-ee is definitely not as capable

to probe the model as the ILC or the CLIC. However, for both mixed vectorlike models we

have examined, the ILC is generally better than the FCC-ee, but not as powerful as CLIC at

larger values of the mass parameters MN or ML. This is because the
√
s used by FCC-ee are

all quite low, making the exclusion region basically insensitive to the maxima and minima

caused by the physical particle masses. For the ILC the gaps between the center-of-mass
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energies and their high values exhibit some synergy that helps to improve the sensitivity in a

large region of the parameter. This also happens for the CLIC, but since the center-of-mass

energies are more spread out there is an overall decrease in sensitivity to the model parameters

for MN , ML . 700 GeV, with respect to the ILC. However, for higher masses (due to the

3000 GeV center-of-mass energy contribution) we have again an increase of sensitivity because

heavier vectorlike fermion physical masses come into play.

It is also important to note that if one is able to achieve O(10−4) sensitivity on TGC’s with

the FCC-ee ILC or CLIC, one will be able to use them to do precision measurements that

surpass the sensitivities of the oblique parameters or H → γγ even assuming a considerable

improvement of the latter measurements in these new machines.
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A Vectorlike Fermion Contribution to Triple Gauge Couplings

Vµ

W−
β W+

α

f1 f2

f3

2q

p− q−p−
q

cV12

cW13 cW23

Figure 8. Vectorlike fermions contribution to TGC.

The 1-loop correction to the TGCs coming from a set of NF vectorlike fermions can be

obtained from the diagram in Fig. 8. Here, we will keep as general as possible, by supposing
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that three different fermions run into the loop, fi, i = {1, 2, 3}, with masses mi and generic

couplings between them and the gauge bosons, cBij , where i, j = {1, 2, 3} and B = {γ,W,Z}.
Proceeding in a standard way, we find the ∆κNPV and ∆QNPV form factors,

∆κNPV = −NF
cV12c

W
23c

W
31

8π2gV

∫ 1

0
dx

∫ 1

0
dy

x

Λ̃

{
4q2

M2
W

x2(3x− 2)y(1− y) + x2(x− 1)

+(R1 −R2)xy(x− 1) + (R3 −R1)x(x− 1) +
√
R1R2x

+
√
R2R3(1− x− 2xy) +

√
R1R3(1− 3x+ 2xy)

}
, (A.1a)

∆QNPV = −NF
cV12c

W
23c

W
31

π2gV

∫ 1

0
dx

∫ 1

0
dy

x3(1− x)y(1− y)

Λ̃
, (A.1b)

where

Λ̃ = − 4q2

M2
W

x2y(1− y) + x2 − x(1 +R3 −R1)− (R1 −R2)xy +R3, (A.2)

and Ri =
m2
i

M2
W

.

B Dependence on the Hypercharge in the Unmixed Case

The proof that the one-loop contributions to the TGC are independent of the eigenvalues of

the T 3 operator is as follows; for simplicity in the notation, we consider here just one copy

of the multiplet. Writing the multiplet in terms of its 2j + 1 states, j the principal quantum

number, as

Ψ = {ψj,m} =




ψj,j
ψj,j−1

...

ψj,−j+1

ψj,−j



, (B.1)

where m = j, j − 1, . . . , 0 (or 1
2 ,−1

2), . . . ,−j + 1,−j is the magnetic quantum number, we

first rotate to the physical gauge boson states, W±, Z0, γ. Introducing the ladder operators

as usual,

T± = T 1 ± iT 2, (B.2)

together with the T 3 operator, we write the covariant derivative acting on the multiplet as

LG = iΨ̄γµ
(
∂µ − i

g√
2

(W+
µ T

+ +W−µ T
−)− i g

cW
(c2
W T 3 − s2

W Y )Zµ − ie(T 3 + Y )Aµ

)
Ψ,

(B.3)
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where cW = cos θW and sW = sin θW , θW is the weak angle. In terms of the function multiplet

of Ψ, eq (B.1), we get

iΨ̄γµDµΨ =

j∑

m=−j

[
iψ̄mγ

µ

(
∂µ − i

g

cW
(c2
W m− s2

W Y )Zµ − ie(m+ Y )Aµ

)
ψm

+
g√
2

√
(j + 1−m)(j +m)W−µ ψ̄m−1γ

µψm + h.c.

]
, (B.4)

here we used the action of the ladder operators on the multiplet.

Now, we have to compute the 1-loop correction to the charged TGCs coming from the new

fermions. We have to add all the possible diagrams,

Vµ

W−
β

W+
α

m m

m− 1

Vµ

m m

m+ 1

W−
β

W+
α

+ΓVµαβ =
1

2

j∑

m=−j

to determine the form factors ∆κΨ
V and ∆QΨ

V . Each diagram can be written as a product of the

couplings of the fermions with the gauge bosons times a loop integral, Iµαβ(mm,mm,mm±1).

Therefore, the amplitude will be

ΓVµαβ =
g2

4

j∑

m=−j
gmV [(j + 1−m)(j +m)Iµαβ(mm,mm,mm−1)

+ (j −m)(j +m+ 1)Iµαβ(mm,mm,mm+1)] , (B.5)

where

gmV =

{
e(m+ Y ) for γ,
g
cW

(c2
W m− s2

W Y ) for Z0.
(B.6)

Since the mass of the components of the multiplet is the same, we have that the loop integral

will depend only in the mass mΨ,

Iµαβ(mm,mm,mm±1) = Iµαβ(mΨ),

then, the amplitude will take a simpler form,

ΓVµαβ =
g2

2
Iµαβ(mΨ)

j∑

m=−j
gmV [j(j + 1)−m2]. (B.7)

– 19 –



Summing over the magnetic quantum number m,

j∑

m=−j
[j(j + 1)−m2] =

2

3
j(j + 1)(2j + 1), (B.8a)

j∑

m=−j
m[j(j + 1)−m2] = 0, (B.8b)

we see here that the amplitude of the 1-loop correction will be proportional to the hypercharge,

ΓVµαβ =
g2cVΨY

3
j(j + 1)(2j + 1) Iµαβ(mΨ), (B.9)

being

cVΨ =

{
e for γ,

−e tW for Z0,
(B.10)

with tW = tan θW . Finally, the form factors will be computed in a standard manner. The

expressions for ∆κΨ
V and ∆QΨ

V can be obtained from the general expressions in the Appendix A

by taking all the masses as identical and

cW23 = cW13 =
g√
2
Gj , (B.11)

cV12 = cVΨ Y, (B.12)

where Gj is the square root of the multiplet factor,

Gj =

√
2

3
j(j + 1)(2j + 1). (B.13)
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