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1 Introduction

With the recent measurements of the reactor mixing angle [1–3], the mixing angle pattern
of the Maki-Nakagawa-Sakata-Pontecorvo (MNSP) lepton mixing matrix UMNSP [4] is now
on solid experimental ground, opening the door to a new era of precision lepton mixing
measurements. As the reactor angle is relatively large (roughly Cabibbo-sized), there is an
exciting experimental opportunity for a future direct observation of “Dirac-type” leptonic
CP violation. Even in the absence of such a direct measurement, hints of a nonzero value of
the leptonic Dirac CP-violating phase δ are already originating in global fit analyses of lepton
mixing data [5]. Thus in preparation for a nonzero measurement of this phase, it is useful
to explore whether the underlying theory violates CP explicitly, or if CP is a spontaneously
broken symmetry.

In the case in which CP is conserved in the underlying theory and is broken spontaneously,
it is standard to explore this question in the context of theories with spontaneously broken
discrete lepton family symmetries (see [6] for a review). For the case of Majorana neutrinos,
one compelling idea within this framework is to assume the breaking of a high energy discrete
flavor symmetry to a residual Klein symmetry in the neutrino sector. The residual Klein
symmetry completely fixes the form of UMNSP at leading order, in the diagonal charged lepton
basis up to charged lepton rephasing (although it fails to predict values for the Majorana
phases [7,8]). To make predictions for the Majorana phases, a CP symmetry can be imposed
and then spontaneously broken, resulting in concrete phase predictions. The CP symmetry
should of course be defined consistently together with the discrete flavor symmetry [9]. Many
such models of CP and flavor symmetries have been proposed and investigated, including
models based on A4 [10,11]/∆(3n2) [12–15], A5 [16–19], S4 [21–26]/∆(6n2) [14,27–30], Σ(nφ)

[31, 32], T ′ [33], and D
(1)
9n,3n [34].1

With these studies in mind, is also worthwhile to take a bottom-up perspective, in which
the goal is not to construct a specific top-down model, but instead to elucidate how and
when preserving different residual CP and flavor symmetry elements affects the predictions
for the lepton mixing parameters. To this end, in previous work [40] we constructed the
general residual Klein and generalized CP symmetries in the neutrino sector as a function of
the measured lepton mixing parameters. There the simplifying assumption was made that
the charged lepton sector is diagonal, such that the neutrino sector mixing parameters are
directly related to the experimentally measured (measurable) lepton mixing parameters.

In this paper, we consider the role of general leptonic sector phases. These phases in-
clude charged lepton sector phases and overall shifts to Majorana phases, which are typically
ignored since by definition they cannot have any effect on physical observables. However,
their inclusion clarifies the group theoretical properties at low energies of several quantities
of interest for theoretical model-building, which can be obscured when these phases are set
to zero. In particular, these phases have relevance for making connections of the family and
generalized CP symmetry elements to explicit representations of specific discrete symmetry
groups, and hence their inclusion provides a natural generalization of the bottom-up ap-
proach given in [40]. Our results provide a set of group theoretical relations that must be
satisfied at low energies within any top-down flavor model-building scenario for three light
Majorana neutrinos that leaves a residual Klein symmetry in the neutrino sector. The goal
is to provide guidelines for developing a better understanding of the generalized CP and
flavor symmetries when constructing top-down models, which can in principle lead to new
model-building directions within this general framework.

1We note that CP has been studied for the case of a single preserved Z2 as the residual neutrino flavor
symmetry [26, 35–39].
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This paper is structured in the following way. In Section 2, we examine the effects that
phase redefinitions in lepton mixing can have on the group structures of the underlying
flavor symmetries. We will discuss the effects of elevating the status of certain subsets of
these phases to that of flavor symmetries can have on the form of UMNSP, and analyze the
group structures of such choices of rephasings/symmetries with a special focus on discrete
symmetry groups. In Section 3, we expand this discussion to include the ways in which such
phases affect aspects of generalized CP symmetries. Section 4 provides a detailed exposition
of the connections of this work to the bottom-up approach given in [40], including several
examples. We present our conclusions and outlook in Section 5.

2 Phases and Flavor Symmetries

The starting point of this analysis is the Majorana neutrino mass matrix for the three
light neutrino species, Mν . It is diagonalized by the matrix Uν , as follows:

UT
ν MνUν = MDiag

ν = Diag(m1, m2, m3) = Diag(|m1|e−iα1, |m2|e−iα2, |m3|e−iα3), (1)

in which |m1,2,3| are presumed to be nondegenerate and nonzero, i.e., |m1| 6= |m2| 6= |m3| 6= 0.
The transformation

Uν → UνQν , with Qν = Diag((−1)p1 , (−1)p2, (−1)p3) where p1,2,3 = 0, 1 (2)

also diagonalizes Mν and leaves MDiag
ν invariant.2 There are thus eight possible symmetries

contained in Qν , corresponding to the eight possible assignments of p1,2,3 as given above.
In the charged lepton sector, the mass matrix Me = mem

†
e, which connects left-handed

states, is diagonalized by Ue, as follows:

U †
eMeUe = MDiag

e = Diag(|me|2, |mµ|2, |mτ |2), (3)

in which again |me| 6= |mµ| 6= |mτ | 6= 0. The diagonalization of Me thus can easily be seen
to be left invariant by the transformation

Ue → UeQe, where Qe = Diag(eiβ1 , eiβ2, eiβ3), where β1,2,3 ∈ [0, 2π). (4)

Eqs. (2) and (4) represent the set of transformations which leave the (diagonal) mass matrices
of Eqs. (1) and (3) invariant. As these transformations play no role in the diagonalization of
Mν (Me), they cannot enter any physical predictions that arise from Uν (Ue). More precisely,
Uν → UνQν and Ue → UeQe imply that the MNSP matrix correspondingly transforms as

UMNSP = U †
eUν → Q†

eUMNSPQν = U ′
MNSP, (5)

and that UMNSP and (the infinitely many possible) U ′
MNSP must all yield the same physics

predictions (see [41] for a similar discussion in terms of rephasing invariants). The utility
of including unphysical phases in Eq. (5) can be seen by observing that Qe and Qν can be
related to their nondiagonal forms Te and Sν via the unitary transformations [40]

Sν = UνQνU
†
ν , Te = UeQeU

†
e , (6)

2It is possible to put an overall phase in Uν , i.e., Uν → Uνe
iθν/2, without changing any physical predictions.

This is a point that we will revisit later.
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These relationships can be derived by using Eq. (1) and Eq. (3) as well as the condition for
a flavor symmetry in its nondiagonal basis, i.e.,

ST
ν MνSν = Mν , T †

eMeTe = Me. (7)

Up to this point, we have not yet specified the explicit forms of the mixing matrices Ue

and Uν . Within the top-down approach, one constructs a concrete model of Me and Mν in a
specific flavor basis (for example, it is often taken to be the basis in which Me is diagonal).
Ue and Uν are then found through explicit diagonalization (up to rephasings). By contrast,
from a bottom-up perspective, the forms of Ue and Uν can be fixed or arbitrary depending
on the choice of and/or number of symmetry elements that are to imposed from Eq. (2) and
Eq. (4). For example, in [40] we explicitly constructed the forms of the Sν in the case in
which the four positive determinant choices of Qν are preserved, while the charged leptons
are taken to be diagonal. In this case, the mixing parameters of Uν have a direct connection
to the measured mixing parameters of UMNSP, and thus the flavor symmetry elements can
be given explicitly in terms of measurable quantities [40]. Here we will explore more general
situations in which we allow for different possibilities for the choice and number of conserved
symmetry elements. The upshot of this discussion is that although the unphysical phases
contained in Qe and Qν do not enter any physical observables by construction, they can
clearly play a critical role in model building when it pertains to fixing/predicting lepton
mixing patterns.

To see the way in which imposing specific symmetry elements can fix the mixing param-
eters, it is worthwhile first to consider the case in which there is a two-fold degeneracy in the
entries of Qν and Qe. Applying Eq. (6) to Eq. (7) shows that if pi = pj for some i, j = 1, 2, 3
or βk = βl for some k, l = 1, 2, 3, cf. Eq. (2) or (4) respectively, then there will exist an
additional unitary rotation Uν

ij or Ue
kl that allows for the mixing of the degenerate states,

such that

QT
ν (U

ν
ij)

TMDiag
ν Uν

ijQν = (Uν
ij)

TMDiag
ν Uν

ij, Q†
e(U

e
kl)

†MDiag
e Ue

klQe = (Ue
kl)

†MDiag
e Ue

kl, (8)

in which (Qν)ii = (Qν)jj and (Qe)kk = (Qe)ll. This shows that when there are two degenerate
phases in either Qe or Qν , this is not enough to fix Me or Mν to be of diagonal form. Said
again, a two-fold degeneracy in either Qe or Qν is a symmetry not only of MDiag

e or MDiag
ν ,

but more importantly, (Ue
kl)

†MDiag
e Ue

kl and (Uν
ij)

TMDiag
ν Uν

ij, cf. Eq. (8). Thus, to diagonalize
these mass matrices completely, it is necessary to map

Uν → UνU
ν
ijQν and Ue → UeU

e
klQe, (9)

which implies that the mixing matrices Uν and Ue are only fixed up to these unitary rota-
tions in the degenerate sub-block of eigenvalues.3 The explicit forms of these extra unitary
rotations are of course specified by diagonalizing Me and Mν .

The preceding discussion assumed a single choice of phases for Qe and Qν . However, if
we impose additional choices for the phases, then this can in principle fix the mixing. For
example, let us consider the neutrino sector, for which there are eight possible symmetries
contained in/denoted by Qν . Further imposing Qν = ±1 does not change the result; neither
does Q′

ν = −Qν , i.e., the other phase assignment with the same degenerate sub-block. What
clearly affects the result is to impose an additional phase choice such that (Qν)kk = (Qν)ll for
some k, l yet to be determined. By demanding that this phase choice also holds, we obtain

(Uν
ij)

TMDiag
ν Uν

ij = (Uν
kl)

TMDiag
ν Uν

kl =⇒ MDiag
ν = (Uν

ij(U
ν
kl)

†)TMDiag
ν Uν

ij(U
ν
kl)

†. (10)

3A similar situation occurs if all phases are equal in either Qe or Qν, i.e., pi = pj = pk and βi = βj = βk

in Eqs. (2) and (4) respectively. In this case, the mixing is fixed up to an arbitrary unitary 3× 3 rotation.
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If kl = ij no additional constraints arise, and the mixing still contains the same number of
free parameters (after angle and phase redefinitions). However, if ij 6= kl, a comparison of
Eq. (10) with Eqs. (1)-(2) demonstrates that the arbitrary rotation angles and phases in Uν

ij

and Uν
kl are now related to each other because in this case

Uν
ij(U

ν
kl)

† = Diag(±1,±1,±1) = Qν . (11)

Hence, the transformation Uν → UνU
ν
ijQν in Eq. (9) is then reduced to Uν → UνQν , elimi-

nating the additional mixing parameters that entered when only preserving a single set of
phases containing a two-fold degeneracy.

This discussion can be generalized to the charged lepton sector, with one notable dif-
ference that stems from the fact that the Qν contain only ±1, while the Qe depend on the
arbitrary βi phases. We have seen that for the neutrino sector, two such nontrivial rephas-
ings were required to be chosen subject to Eqs. (10)-(11), in order to guarantee the mixing
matrix Uν has no additional free parameters that result from a degenerate sub-block. How-
ever, there is clearly no such constraint for Qe because the phases contained in Qe can all
be chosen to be distinct, as seen in Eq. (4). This then fixes the mixing matrix Ue, and thus
it fixes the mass matrix Me, up to rephasings by Qe.

Let us now consider the case in which such rephasings are obtained from a flavor symme-
try group, for which these arguments can be described within a group theoretical framework.
To this end, we note that in the preceding discussion, the forms of Ue and Uν were com-
pletely fixed up to rephasing by Qe and Qν (with the possibility of an additional rotation
when there is a degeneracy of phases in Qe or Qν , cf. Eq. (9)). Perhaps just as importantly,
Eq. (6) demonstrates that Uν and Ue are the unitary transformations that relate Qν to Sν

and Qe to Te. As such, Qe and Qν can be interpreted as representations of the elements of a
flavor symmetry in their corresponding diagonal bases. Therefore to understand all possible
residual flavor symmetries, we need only to understand the group properties of Qe and Qν .

We start by noting that the unphysical phases of Eqs. (2) and (4) generally take multiple
values, i.e., Qν represents a collection of eight symmetry transformations and Qe represents
an infinite set of symmetry transformations parameterized by the continuous parameters
β1,2,3. Therefore, the full residual neutrino flavor symmetry group Gν and the full residual
charged lepton flavor symmetry group Ge are expressible as4

Gν
∼= Zp1

2 × Zp2
2 × Zp3

2 , Ge
∼= U(1)β1

× U(1)β2
× U(1)β3

, (12)

(recall Eqs. (2) and (4)). However, the previous discussion shows that it is not necessary to
implement the totality of these symmetries to generate a specific mixing pattern (although
doing so certainly will). Thus with an eye toward minimality, we observe that it is possible
to rewrite Eq. (3) as

MDiag
e = U †

eMeUe = U †
e (P

†
ePe)Me(P

†
ePe)Ue = U †

eP
†
eMePeUe, (13)

in which Pe = eiθe . Clearly, Ue → PeUeQe still diagonalizes Me. The phase in Pe can always
be chosen to fix Det(Qe) = +1, for example by choosing θe = −(β1 + β2 + β3)/3, cf. Eq. (4).

The same result can be obtained for the neutrino sector, i.e., Det(Qν) = +1, but for
different reasons. More precisely, since we have assumed neutrinos are Majorana fermions,
the freedom does not exist to rephase the whole mass matrix Mν by arbitrary phases without
affecting the (complex) neutrino mass eigenvalues. However, global phases on Majorana mass

4We emphasize again that these symmetry groups are contingent upon having nonzero, nondegenerate
lepton masses.
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matrices are phenomenologically irrelevant because they contribute to an overall shift of each
of the individual phases (which is unmeasurable), i.e.,

MDiag
ν = UT

ν MνUν → (P ′
ν)

TMDiag
ν P ′

ν = (P ′
ν)

TUT
ν MνUνP

′
ν = UT

ν (P
′
ν)

TMνP
′
νUν , (14)

where P ′
ν = e−iθ′

ν
/2. Then, letting θ′ν = θν + pπ (p an integer) implies that

P ′
ν = (−1)pPν , (15)

in which Pν = e−iθν/2. This allows for the shift α1,2,3 → α′
1,2,3 = α1,2,3 + θν , cf. Eq. (1),

and the determination of Det(Qν) = +1 by utilizing the (−1)p factor in Eq. (15), with
p = p1+p2+p3, cf. Eq. (2).

5 To summarize, it is possible to restrict Det(Qν) = Det(Qe) = +1
to remove physically redundant symmetries so that the elements of the minimal, residual
leptonic symmetries Gν and Ge can be expressed as6

Gν = Diag((−1)p2+p3, (−1)p2, (−1)p3), Ge = Diag(e−i(β2+β3), eiβ2, eiβ3), (16)

in which p2,3 = 0, 1 and β2,3 ∈ [0, 2π). This restriction is equivalent to “removing” the four
Qν with Det(Qν) = −1 and the infinitely many Qe with Det(Qe) = eiθe , where θe ∈ (0, 2π).

Motivated by these “new” general forms for Gν and Ge, we next define

G̃p2 = Diag((−1)p2, (−1)p2 , 1), G̃p3 = Diag((−1)p3, 1, (−1)p3),

T̃β2
= Diag(e−iβ2, eiβ2 , 1), T̃β3

= Diag(e−iβ3 , 1, eiβ3),
(17)

for all p2,3 = 0, 1 and for all β2,3 ∈ [0, 2π). From these definitions, we see that the mappings

G̃p2 → (−1)p2 and G̃p3 → (−1)p3 (18)

for all p2,3 = 0, 1, imply G̃p2
∼= Zp2

2 and G̃p3
∼= Zp3

2 . Furthermore, it is clear that [G̃p2, G̃p3] =
0 for every p2,3 = 0, 1. Hence, Gν

∼= Zp2
2 × Zp3

2 .
A similar situation occurs in the charged lepton sector, in which it is possible to uniquely

map
T̃β2

→ eiβ2 and T̃β3
→ eiβ3 (19)

for all β2,3 ∈ [0, 2π), implying T̃β2

∼= U(1)β2
and T̃β3

∼= U(1)β3
. The T̃β2,3

also commute

([T̃β2
, T̃β3

] = 0 for all β2,3 ∈ [0, 2π)). Therefore, Ge
∼= U(1)β2

× U(1)β3
. Hence, the most

general, non-redundant set of residual lepton symmetries is

Gν
∼= Zp2

2 × Zp3
2 , Ge

∼= U(1)β2
× U(1)β3

, (20)

in which we remind the reader that the superscripts (subscripts) parameterize all elements
of the discrete (continuous) symmetry group Gν (Ge).

Within the context of discrete lepton family symmetries, it is clear that to obtain both
Gν and Ge from the spontaneous breaking of a specific discrete family symmetry group Gf ,
the infinite parameter space of the continuous group Ge must be restricted. To this end, let
us consider the situation in which β2,3 = 2πk2,3/n2,3, where n2,3 are integers that divide the

5Compare to θe = −(β1 + β2 + β3)/3.
6This is a slight abuse of notation for p1,2,3 and β1,2,3, as they actually should be p′1,2,3 and β′

1,2,3, where
p′1 = 2p1 + p2 + p3, p

′
2 = 2p2 + p1 + p3, p

′
3 = 2p3 + p1 + p2, 3β

′
1 = 2β1 − β2 − β3, 3β

′
2 = 2β2 − β1 − β3,

3β′
3 = 2β3 − β1 − β2.
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order of the discrete group Gf and k2,3 = 0, . . . , n2,3 − 1. In this case, the set of residual
charged lepton symmetries is expressible as

TDiag
k2/n2,k3/n3

= Diag(e−2πi(n3k2+n2k3)/n2n3 , e2πik2/n2 , e2πik3/n3), (21)

in which k2,3 = 0, . . . , n2,3 − 1. This clearly represents the elements of Ge
∼= Zn2

× Zn3
.

Furthermore, if the mixing from the charged lepton sector is to be completely determined,
this fixes n2,3 ≥ 2 from the previous logic when discussing two-fold rephasing degeneracies.

Eq. (21) demonstrates that it is never possible to have a diagonal entry of TDiag
k2/n2,k3/n3

that is always real (i.e., it is unity), because k2,3/n2,3 = 0 for only k2,3 = 0 and not the
remaining k2,3 = 1, . . . n2,3 − 1. To impose this criteria, one of the phases, for example β1,2,3

in Eq. (16), must be set to zero. Without loss of generality, let us take β2 = −β3 = β
(k2/n2 = −k3/n3 = k/n), so that β1 = 0. Equation (21) then becomes

TDiag
k/n = Diag(1, e−2πik/n, e2πik/n), (22)

in which k = 0, . . . , n− 1. Physically, this case corresponds to the complete breaking of one
of the original U(1) symmetries, because Zn

∼= Z1×Zn, in which Z1 is the (trivial) symmetry
of a completely broken U(1). Then, as previously discussed, to completely fix charged lepton
mixing in this case, it is necessary to impose n ≥ 3. Therefore, for the remainder of this
work, we will assume that if Ge

∼= Zn2
× Zn3

, then n2,3 ≥ 2, or if Ge
∼= Zn, then n ≥ 3.

Turning to the neutrino sector, we see that removing the redundant rephasing choices
from Eq. (2) with Det(Qν) = −1 yields the well-known result that in the diagonal basis, the
elements (Gν)i=0,1,2,3 ≡ GDiag

i are given by

GDiag
0 = Diag(1, 1, 1), GDiag

1 = Diag(1,−1,−1),

GDiag
2 = Diag(−1, 1,−1), GDiag

3 = Diag(−1,−1, 1).
(23)

This is of course the aforementioned group Gν
∼= Zp2

2 ×Zp3
2 (cf. Eq. (20)) that is isomorphic to

the Klein symmetry group. The previous logic then dictates that we must preserve/impose
two7 of these nontrivial elements to completely fix Uν because preserving only one nontrivial
element yields a “free” unitary rotation (see Eqs. (8)-(9)).

An inspection of Eq. (23) demonstrates another striking (but perhaps obvious) difference
between the largest possible sets of non-redundant neutrino symmetries and charged lepton
symmetries. The issue is that while the order of all of the nontrivial neutrino symmetry
elements is two, the order of the nontrivial charged lepton symmetries fluctuates depending
on the ratio of β2,3 = k2,3/n2,3 or β = k/n. More precisely, Eqs. (21)-(22) show that the
order of the elements of Ge can oscillate between multiple values depending on the value of
k2,3 = 0, 1, . . . , n2,3 − 1 or k = 0, . . . , n− 1. Hence, we see that

(TDiag
k2/n2,k3/n3

)n2n3 = 1, (TDiag
k/n )n = 1. (24)

The orders of TDiag
k2/n2,k3/n3

and TDiag
k/n are thus given by n2n3 and n, respectively, unless special

conditions are met. For example, if there exist integers l2,3 and l such that n2,3 = l2,3k2,3 and
n = lk,8 then

(TDiag
k2/n2,k3/n3

)l2l3 = (TDiag
1/l2,1/l3

)l2l3 = 1, (TDiag
k/n )l = (TDiag

1/l )l = 1, (25)

7Actually, when preserving two nontrivial elements of such a symmetry, the third comes for free because
GDiag

i GDiag
j = GDiag

k for i 6= j 6= k.
8Note that l2,3, l 6= 1 because by definition k = 0, . . . , n− 1 and k2,3 = 0, . . . , n2,3 − 1.
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which reduces the order of TDiag
k2/n2,k3/n3

from n2n3 to l2l3 and the order of TDiag
k/n from n to l. A

further reduction occurs in TDiag
1/l if l = 0 (k = 0), as the order of TDiag

l then is 1. Similarly,

if k2 (k3) is 0, the order of TDiag
k2/n2,k3/n3

is n3 (n2), and if k2 = k3 = 0, the order of TDiag
0,0 is 1.

Hence, an investigation of the orders of all possible elements that can be contained in
the residual symmetries Ge and Gν (assuming these symmetries originate from a discrete
symmetry group Gf ), shows different results for the two sectors. More precisely, Gν contains
only (3) order 2, nontrivial elements, whereas the orders of the nontrivial elements of Ge can
have a wide range of values. These values depend on the ratios β2,3 = k2,3/n2,3 (β = k/n),
in which k2,3 = 0, . . . , n2,3 − 1, and n2,3 ≥ 2 to completely fix charged lepton mixing.

3 Phases and Generalized CP

Having analyzed the relevance of unphysical phases in fixing lepton mixing predictions
and explored their possible group theoretical origin in terms of flavor symmetries, we next
expand the logic as set forth in Section 2 to include that of generalized CP symmetries.
These conditions take the form [42]

XT
ν MνXν = M∗

ν (26)

and
Y †
e MeYe = M∗

e . (27)

In analogy to the the case of the flavor symmetries Te and Sν as defined in Eq. (7), Ye and
Xν represent (possibly infinite) sets of transformations.

To understand the similarities and differences between Eqs. (26)–(27), we will elaborate
on the discussion in [40], so that it may be easily extended/connected to the charged lepton
sector. We begin with the diagonal neutrino basis. From Eq. (26), we have

(XDiag
ν )TMDiag

ν XDiag
ν = (MDiag

ν )∗ (28)

with
XDiag

ν = Diag(±eiα
′

1 ,±eiα
′

2 ,±eiα
′

3). (29)

In the above, α′
i is given by α′

i = αi+θν , in which θν keeps track of an arbitrary global phase
redefinition of Mν . It is next useful to define

XDiag
0 = Diag(eiα

′

1 , eiα
′

2 , eiα
′

3) (30)

to separate the transformations contained in Qν from the XDiag
ν in Eq. (29). From these

relations, it is straightforward to obtain [40]

XDiag
ν = Qν ×XDiag

0 . (31)

In analogy with Eq. (6), we then have [40]

Xν = UνX
Diag
ν UT

ν , (32)

which relates XDiag
ν to its generally non-diagonal form Xν .

For the charged lepton sector, we proceed as before from Eq. (27). We now have

(Y Diag
e )†MDiag

e Y Diag
e = (MDiag

e )∗ = MDiag
e , (33)
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in which we recall that Me is a Hermitian matrix. From the form of Eq. (3), we see that
Y Diag
e takes the form

Y Diag
e = Diag(eiγ1 , eiγ2 , eiγ3), (34)

where γi ∈ [0, 2π), cf. Eq. (29). Hence, it should be clear that if we wish to separate the
infinitely many nontrivial elements of Qe from Y Diag

e , it is useful to define

Y Diag
0 = Diag(eiβ

′

1 , eiβ
′

2, eiβ
′

3), (35)

in which β ′
i = γi − βi and βi is as defined in Eq. (4), so that in analogy with Eq. (31),

Y Diag
e = Qe × Y Diag

0 . (36)

It is interesting to note [43] that Y Diag
e can be related to its non-diagonal form with a

relationship similar to that of Eq. (32), as follows:

Ye = UeY
Diag
e UT

e . (37)

We note that even though both Eq. (32) and Eq. (37) preserve the relationships in Eq. (26)
and Eq. (27) when Uν → UνQν and Ue → UeQe, they are not generally preserved individually.
To see this explicitly, let Q′

ν and Q′
e represent a different choice of unphysical rephasings.

Applying Uν → UνQ
′
ν and Ue → UeQ

′
e to Eq. (32) and Eq. (37) yields

Xν → X ′
ν = UνQνQ

′2
ν U

T
ν and Ye → Y ′

e = UeQeQ
′2
e U

T
e . (38)

Since Q′2
ν = 1 for any choice of phases in Q′

ν , cf. Eq. (2), clearly X ′
ν = Xν always. On the

other hand, Q′2
e 6= 1 for arbitrary choices of phases in Q′

e, cf. Eq. (4). Therefore, we generally
have that Ye 6= Y ′

e .
This may naively seem problematic, but in actuality these results are consistent. The

consistency of the two mappings in Eq. (38) can be seen by observing that both QνQ
′2
ν and

QeQ
′2
e are actually elements of the original set of unphysical phase choices. In other words,

Q′2
ν = 1 is one of the possible choices of unphysical phase choices (albeit trivial) in Eq. (2),

and Q′2
e is one of the possible phase choices in Eq. (4). Therefore, both mappings in Eq. (38)

reduce to those given in Eq. (32) and Eq. (37) as long as we demand all such phase choices
to exist. However, it is important to note that it even though the mappings in Eq. (38) can
be defined consistently, they can in some cases have important implications for the preserved
underlying symmetries.

For example, such mappings may affect the explicit forms of the symmetry elements. In
the charged lepton sector, the mapping Ue → UeQe can fundamentally alter Eq. (37) because
it (potentially) alters the trace of Y Diag

e , as follows:

Tr(Y Diag
e ) → Tr(QeY

Diag
e QT

e ) = Tr(Y ′
e
Diag), (39)

and thus it can change the trace of Y Diag
e to that of Y ′

e
Diag if Q2

e 6= 1. As one may guess, the
analogous mapping in the neutrino sector, i.e., Uν → UνQν , does not have the same effect
because it leaves Eq. (38) invariant, since Q2

ν = 1. Such a trace-changing result for the XDiag
ν

can be produced through slightly different means, namely that of a global phase redefinition,
cf. Eq. (14). Such a global phase redefinition changes the traces of the XDiag

ν thereby affecting
their group character when θν 6= 0, cf. Eq. (29). Thus, here we see another difference between
the two sectors. Note also that Eq. (39) represents a transformation between the diagonal
elements and will not transform to an object outside of the set Qe possibly unless the original
infinite set of symmetries has been reduced to a smaller more discrete set. However, globally
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rephasing Mν represents an unphysical phase shift to the complex neutrino mases in Eq. (1),
and even by including all such symmetries/phase choices, may lead to something that can
no longer be realized in a specific family symmetry group.

To this end, let us now turn to the consideration of generalized CP within the context
of discrete lepton family symmetries. It is very well known (see e.g. [12, 21, 30, 40, 44]) that
a flavor symmetry element can be formed from the action of two generalized CP transfor-
mations. For the neutrino sector, we see from Eqs. (1) and (26) that for the generalized CP
elements (Xν)i=0,1,2,3 ≡ Xi, we have

X†
jX

T
i MνXiX

∗
j = Mν , (40)

for i, j = 0, 1, 2, 3. By comparing Eq. (40) to Eqs. (29)-(31), it should be clear that the indices
in the above are fixed by the Klein symmetry group as given in Eq. (23). Furthermore,
we recall that for the phenomenologically desirable case of nondegenerate neutrino masses,
XiX

∗
j ∈ Z2 × Z2. Therefore, a flavor symmetry element (Gν)k ≡ Gk can be expressed as

Gk = XiX
∗
j (41)

for i, j, k = 0, 1, 2, 3. For the charged leptons, in analogy, we find from Eqs. (3) and (27)
that the generalized CP elements (Ye)k,l ≡ Yk,l

Y T
l Y †

kMeYkY
∗
l = Me, (42)

which in turn implies that the flavor symmetry element (Te)m ≡ Tm is given by

Tm = YkY
∗
l , (43)

for some m, k, l = 0, . . . , n− 1 if Ge
∼= Zn or m, k, l = 0, . . . , n2 + n3 − 1 if Ge

∼= Zn2
× Zn3

.9

Here we note that it is important to realize that the phases α′
i contained inXDiag

0 , cf. Eq. (30),
are analogous to the β ′

i phases contained in Y Diag
0 , cf. Eq. (35). Thus, Eq. (40) and Eq. (43)

demonstrate that it is possible to relate two successive generalized CP transformations to a
flavor symmetry transformation. Note that the complex conjugation in Eq. (41) and Eq. (43)
plays a crucial role in that it allows the use of unitarity to reduce the products of flavor
symmetry elements when expressed in terms of generalized CP symmetry transformations.

The fact that family symmetry transformations can be expressed in terms of generalized
CP transformations has further implications. As seen in Eq. (31) and Eq. (36), it is also
possible to express the generalized CP transformations in terms of flavor symmetry transfor-
mations. By further assuming Ye and Xν are elements of a discrete family symmetry group
so that the set of possible phases Qe/Ye can possess is reduced, there will exist integers p
and q such that (XDiag

ν )p = (Y Diag
e )q = 1. From Eq. (31) and Eq. (36), we then have

(XDiag
ν )p = Qp

ν × Diag(eipα
′

1 , eipα
′

2, eipα
′

3) = 1 (44)

and
(Y Diag

e )q = Qq
e ×Diag(eiqβ

′

1 , eiqβ
′

2, eiqβ
′

3) = 1. (45)

For the case of the charged lepton sector, we see that if Eq. (45) is ever to be satisfied without
tuning βi contained in Qe and β ′

i against each other so that they cancel, q must be a multiple
of the order of Qe (such that Qq

e = 1) and β ′
i = 2πk′

i/q for some k′
i = 0, 1, . . . , q − 1 (such

9Note that we could not just apply one general CP transformation to Me to get a relationship between
Te and Ye because the resulting space-time indices of the fields would be inconsistent.
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that (Y Diag
0 )q = 1).10 Following the same logic for the neutrino sector, it is straightforward

to deduce that α′
i = 2πai/p for some ai = 0, 1, . . . , p− 1, in which p must be an even integer

(Q2
ν = 1) to satisfy Eq. (44). As a result, XDiag

ν must be of even order, confirming the results
of [12]. Additionally, XDiag

0 from Eq. (31) must be the same even order (even though G0 is
order one) because α′

i = 2πai/p for some ai = 0, 1, . . . , p − 1, which it has inherited from
the nontrivial Klein group elements. A similar situation occurs for Y Diag

0 in Eq. (36); i.e., if
Qe = 1, the order of the corresponding Y Diag

e need not be unity.
We note that the previous result that p must be even and q must be a multiple of the

order of Qe may not hold in the nondiagonal basis, i.e., for Xν and Ye. This cetainly is the
case if Uν and Ue are real so that Uν = U∗

ν and Ue = U∗
e , i.e., UeU

T
e = 1 and UνU

T
ν = 1.

However, this may not always be true. Thus with an eye towards deriving the most general
conditions which Xν and Ye must satisfy so that their orders are p and q respectively, we
proceed by inverting the transformations in Eq. (32) and Eq. (37):

(XDiag
ν )p = (U †

νXνU
∗
ν )

p = 1 and (Y Diag
e )q = (U †

eYeU
∗
e )

q = 1. (46)

Taking the determinant of both of the above relations leads to

Det(U∗
ν )

2pDet(Xν)
p = 1 and Det(U∗

e )
2q Det(Ye)

q = 1. (47)

We also note that the above conditions relating the determinants of Xν and Ye to U∗
ν and U∗

e

are invariant under the transformation Uν → UνQν and Ue → UeQe because Q2q
e = Q2p

ν = 1.

4 Generalization of Bottom-Up Constructions

We now discuss how these considerations allow for a generalization of the bottom-up
approach given in [40]. This approach, which was based on the hypothesis that the full Klein
symmetry is preserved in the neutrino sector such that lepton mixing is fully determined (up
to charged lepton rephasings), is summarized as follows. The Klein generators and the
generalized CP symmetry elements of the neutrino sector can be expressed as a function of
the lepton mixing parameters in the basis in which the charged lepton sector is diagonal.
Up to leptonic rephasings, in this basis Uν can be written as

Uν = UDiag
e UMNSP. (48)

Hence, for UDiag
e as the identity, Uν can be parametrized in terms of the MNSP mixing

parameters. With this form of Uν , the Klein symmetry elements (Gν)i ≡ Gi and the gener-
alized CP elements (Xν)i ≡ Xi can then be constructed explicitly as a function of the lepton
mixing parameters, as follows11 (see Eq. (32)):

Gi = UνG
Diag
i U †

ν , Xi = UνX
Diag
i UT

ν . (49)

This analysis was then carried out for several popular model scenarios for the MNSP mixing
parameters [40]. We note that in addition to working in the diagonal charged lepton sector
basis, we also made simplifying assumptions in [40] about the leptonic sector phases. More
precisely, we parametrized Uν as follows:

Uν = PR1(θ23)R
′
2(θ13, δ)R3(θ12), (50)

10In the unlikely case that βi + β′
i = 0 for every i, then the orders of Ye and Te are identical.

11Recall that the Gi are what we previously called Sν in Eq. (6) with positive determinant.
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in which the Ri (R
′
i) are the usual (complexified) rotation matrices involving the leptonic

mixing angles (θ12, θ23, θ13) and the leptonic Dirac phase δ, while P is a diagonal matrix of
the form P = Diag(1, 1,−1). This choice is thus very similar to the standard PDG form,
except for the inclusion of P and the neglect of the Majorana phases, which are included in
the complex neutrino mass eigenvalues, as given in Eq. (1).

We will now revisit this analysis in the context of this work. We will primarily focus once
again on the case of a diagonal charged lepton sector, but now allowing for general leptonic
phases. As we will see, in this case useful relations can be obtained that can be of utility in
top-down model building scenarios based on discrete groups. We will also comment briefly
on the case of a non-diagonal charged lepton sector, in which case the unphysical phases can
play a role in the connection of the Klein and generalized CP symmetry elements in both
sectors, depending on how Ue and Uν are reconstructed from the lepton data.

Starting with the case of the diagonal charged lepton basis, it is straightforward to see
that the inclusion of nontrivial leptonic phases can affect the reconstruction of Uν as given
in Eq. (48). More precisely, since we have set Ue to be the identity, the inclusion of a general
phase matrix Qe means that Eq. (48) is shifted to

Uν = UDiag
e QeUMNSP. (51)

As a result, the phases in Qe can explicitly enter the Klein and generalized CP symmetry
elements. Indeed, from Eq. (50), the matrix P itself can be interpreted as a specific choice
of Qe (one with a negative determinant). As discussed in [40], this choice was made for
convenience in making an identification between the Klein and generalized CP symmetry
elements with standard representations of elements of specific discrete groups. However,
another interpretation of P can be understood from considering general leptonic phases, as
follows. Let us now take the case in which Uν is instead parametrized by

Uν = QePR1(θ23)R
′
2(θ13, δ)R3(θ12) ≡ P ′R1(θ23)R

′
2(θ13, δ)R3(θ12), (52)

where Qe are the charged lepton phases as given in Eq. (4), and we define the matrix P ′ as

P ′ = Diag(eiφ1, eiφ2 , eiφ3) ≡ QeP = Diag(eiβ1 , eiβ2,−eiβ3). (53)

Therefore, in the basis in which the charged leptons are diagonal, the charged lepton rephas-
ing degrees of freedom as discussed in this paper can be interpreted, in this context, as the
following transformation of Uν :

Uν → QeUν . (54)

In direct contrast to the Klein symmetry transformations that we previously discussed,
for which Uν → UνQν , it is clear that Eq. (54) is not a symmetry of Eq. (1), but rather
changes the specific Mν that results in a given MDiag

ν . As a result, the Klein and generalized
CP elements are necessarily modified, according to Eq. (49). As we will now discuss, these
modifications can elucidate certain aspects of connecting these symmetry elements to specific
elements of an assumed discrete symmetry group.

For the Klein generators, since the Gi are related to their diagonal forms via a unitary
transformation (see Eq. (49)), it is straightforward to see that the elements of Gi are then
modified from their forms as given in [40], as follows:

(Gi)rs → (Gi)rs e
i(βr−βs), (r, s = 1, 2, 3), (55)

and we recall that β1,2 = φ1,2 and β3 = φ3 ± π (see Eq. (53)). We see that the diagonal
entries of the Gi (and hence the trace) are unaffected by this rephasing, but the off-diagonal

12



entries are changed. In addition, the modified Gi clearly satisfy the standard Klein relations

G2
i = 1, G0Gi=1,2,3 = Gi=1,2,3, GiGj = Gk(i 6= j 6= k 6= 0). (56)

Such rephasings, while unphysical, can be helpful in the context of top-down model building
based on discrete symmetry groups. As an example, there is a known connection in this
context between the eigenvector of each of the Gi=1,2,3 with a positive +1 eigenvalue and
the corresponding (ith) column of the MNSP matrix (up to permutations). This one-to-
one correspondence holds irrespective of whether nontrivial charged lepton rephasings are
included in the parameterization of Uν or not. To see the ways in which including the phases
can be informative, for concreteness let us express the Klein element G3 as a function of the
mixing parameters and the lepton rephasings. Using Eq. (52) and Eq. (53), G3 then takes
the following form (see also [40]):

G3 =




−c′13 e−i(δ−φ1+φ2)s′13s23 e−i(δ−φ1+φ3)s′13c23
ei(δ−φ1+φ2)s′13s23 −c213c

′
23 − s213 ei(φ2−φ3)c213s

′
23

ei(δ−φ1+φ3)c23s
′
13 e−i(φ2−φ3)c213s

′
23 c213c

′
23 − s213


 , (57)

in which (as in [40]), sij = sin θij , cij = cos θij , s
′
ij = sin 2θij, and c′ij = cos 2θij.

Let us now consider the class of models in which θ23 = π/4 and θ13 = 0. This includes
the well-known tribimaximal (TBM) mixing scenario [45], for which the solar mixing angle
is given by

θTBM
12 = tan−1

(
1√
2

)
. (58)

It also includes other situations, such as golden ratio (GR1) mixing [46–49] for which

θGR1
12 = tan−1

(
1

φ

)
, (59)

which depends on the golden ratio φ = (1 +
√
5)/2, as well as other scenarios (see e.g. [6]

for a detailed review). In this class of models, it is straightforward to see from Eq. (57) that
the Klein element G3 takes the form

G3 =




−1 0 0
0 0 ei(φ2−φ3)

0 e−i(φ2−φ3) 0


 . (60)

In the case of tribimaximal mixing, this can be identified with the canonical U generator of
the discrete group S4, which is known to be the minimal group that contains the three Klein
elements SU , S, and U that generate tribimaximal mixing when they are preserved [20]. As
is well known, in the group representation typically used in the literature (see e.g. [22]), the
S4 U generator is given by

U =




−1 0 0
0 0 −1
0 −1 0


 . (61)

Hence, for the choice of phases with φ2 − φ3 = ±π, we see from Eq. (60) that we can make
the identification that G3 = U . Clearly, in addition, to make the connection with discrete
groups, the phases φi need to be consistent with a specific subgroup of the discrete symmetry.
A minimal implementation of this condition is simply to set φ2 = 0 and φ3 = ±π, which
results in P ′ = P , as used in [40]. Similar statements can be made for the identification
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of G3 as an element of A5, the minimal group that results in GR1 mixing [49]. The same
considerations can be explored for the G1,2 Klein elements, which also depend on θ12. It can
easily be shown that the same phase choice results in the identification of G1 = SU and
G2 = S of S4 for the case of tribimaximal mixing, and that a similar identification holds for
the elements G1,2 in A5 for GR1 mixing.

An example in which θ13 6= 0 is the case of bitrimaximal (BTM) mixing [50,51], for which
the neutrino sector mixing matrix is given by

UBTM
ν =




1
6

(
3 +

√
3
)

1√
3

1
6

(
3−

√
3
)

− 1√
3

1√
3

1√
3

1
6

(
−3 +

√
3
)

1√
3

1
6

(
−3−

√
3
)


 . (62)

For a diagonal charged lepton sector, the lepton mixing angles and Dirac CP-violating phase
in this scheme are given by

θBTM
12 = θBTM

23 = tan−1(
√
3− 1), θBTM

13 = sin−1

(
1

6
(3−

√
3)

)
, δBTM = 0. (63)

The BTM mixing pattern as outlined above can naturally arise from the spontaneous break-
ing of a ∆(96) flavor symmetry [50,51], which is in fact the smallest group for realizing BTM
mixing. Extending the discussion of [40] shows that with the inclusion of general charged
lepton rephasings, we see for example that G3 takes the form

G3 =




−1
3
− 1√

3

(
−1

3
+ 1√

3

)
ei(φ1−φ2) 1

3
ei(φ1−φ3)

(
−1

3
+ 1√

3

)
e−i(φ1−φ2) −1

3

(
1
3
+ 1√

3

)
ei(φ2−φ3)

1
3
e−i(φ1−φ3)

(
1
3
+ 1√

3

)
e−i(φ2−φ3) −1

3
+ 1√

3


 , (64)

which again reduces to the canonical form for G3 as given in the literature for ∆(96) models
in the case that φ1 − φ2 = 0, φ1 − φ3 = ±π, φ2 − φ3 = ±π. Again, a consistent and minimal
implementation of this requirement is the choice of P , as before.

For the generalized CP symmetry elements, the situation is different since the Xi are not
related to their diagonal counterparts by a standard similarity transformation, but instead
by Xi = UνX

Diag
i UT

ν , as given in Eq. (32) and Eq. (49). We see that both the Qe phases and
the overall Majorana phase shift θν (see the discussion just after Eq. (29)) affect both the
diagonal and the off-diagonal entries of the Xi, and thus the traces are also affected. More
explicitly, using Eq. (52), the generalized CP symmetry elements given in [40] take the form

(Xi)rs → (Xi)rs e
i(βr+βs), (r, s = 1, 2, 3), (65)

in which once again the αi in the expressions for Xi in [40] are to be replaced by α′
i = αi+θν

(see Eq. (29)), and we recall the relation between the βi and φi as given in Eq. (53). As
discussed in [40], if the Majorana phases α′

i are trivial, then for the choice of φ1−φ2 = 0, φ1−
φ3 = ±π, φ2−φ3 = ±π, for the case of tribimaximal mixing, the Xi are identical to the Klein
elements of the identity, S, SU , and U of S4, which are elements of the automorphism group
of S4.

12 Analogous statements can be made for the cases of GR1 mixing and bitrimaximal
mixing in the case of trivial Majorana phases [40].

12Recall that a nontrivial prediction for the Dirac phase δ was obtained in S4 for the case in which a single
Z2 flavor symmetry element was preserved [22].
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However, in the case of bitrimaximal mixing and the connection to its minimal discrete
group, ∆(96), there can also be nontrivial rephasings that yield new possible candidates for
the generalized CP symmetry elements. In such situations, we can be guided by the general
relations given in Eq. (47). For the case in which the phases of Qe are set to zero, we have

Det(XBTM
i )p = 1, (66)

and hence the order of the product of the eigenvalues of XBTM
i must be an even integer p

(note that Det(Xi) need not be 1, as this is not a necessary condition for Eq. (47)). This
can also be seen that by noting that for Qe = 1, UBTM

ν = (UBTM
ν )∗, and hence Eq. (32)

is a similarity transformation that preserves the eigenvalues of (XBTM
i )Diag. However, if

nontrivial phases are included in Uν as given in Eq. (52), Eq. (66) instead is modified to

Det(XBTM
i )p = e2i(φ1+φ2+φ3), (67)

and recall that when we consider discrete symmetry groups, the φi by necessity do not take
on continuous values, but instead discrete values consistent with group transformations.

With these results in mind, we now consider the group theory of ∆(96), which is arguably
all derivable from the character table of ∆(96), as given in Table 1. The character table can

∆(96) 1 1′ 2 3 3̃ 3 3′ 3̃′ 3
′

6

I 1 1 2 3 3 3 3 3 3 6
3C4 1 1 2 −1 + 2i −1 −1− 2i −1 + 2i −1 −1− 2i 2
3C2 1 1 2 −1 3 −1 −1 3 −1 −2
3C ′

4 1 1 2 −1 − 2i −1 −1 + 2i −1− 2i −1 −1 + 2i 2
6C ′′

4 1 1 2 1 −1 1 1 −1 1 −2
32C3 1 1 −1 0 0 0 0 0 0 0
12C ′

2 1 −1 0 −1 −1 −1 1 1 1 0
12C8 1 −1 0 i 1 −i −i −1 i 0
12C ′′′

4 1 −1 0 1 −1 1 −1 1 −1 0
12C ′

8 1 −1 0 −i 1 i i −1 −i 0

Table 1: The Character Table of ∆(96), where kCn denotes a conjugacy class of k elements all of order n.

be used to deduce the sum of the eigenvalues of XBTM
i , as this is just the trace/character of

this element. Thus, we can immediately restrict ourselves to considering the 3-dimensional
irreducible representations of ∆(96), i.e., the 3, 3′, 3̃, 3̃′, 3̄, and 3̄′. We further restrict our-
selves to the four faithful 3-dimensional irreducible representations, i.e., the 3, 3′, 3̄, and 3̄′,
as the 3̃ and 3̃′ furnish unfaithful representations of ∆(96) that are isomorphic to S4.

For concreteness, let us first set the phases of Qe to zero, then consider the implications
of a nonzero Qe. From Eq. (32), we thus obtain for a trivial Qe that

Tr(XBTM
i ) = (−1)p1eiα

′

1 + (−1)p2eiα
′

2 + (−1)p3eiα
′

3 , (68)

while allowing for nontrivial Qe yields

Tr(XBTM
i ) =

1

3

[
(−1)p1eiα

′

1

(
ρ11e

2iφ1 + e2iφ2 + ρ13e
2iφ3

)
(69)

+ (−1)p2eiα
′

2(e2iφ1 + e2iφ2 + e2iφ3) + (−1)p3eiα
′

3

(
ρ31e

2iφ1 + e2iφ2 + ρ33e
2iφ3

) ]
,

in which
ρ11 = ρ33 = 1 +

√
3/2, ρ13 = ρ31 = 1−

√
3/2. (70)
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We now recall the discussion of the BTM example in [40], in which it was posited that for
this case, α1 = α3 =

π
6
and α2 = −π

3
, so that α31 = α3 − α1 = 0 and α21 = α2 − α1 = −π/2,

to match known results in the literature [28]. Let us first consider the case in which the
phases of Qe are trivial. With these assumptions, we can see that for XBTM

0 and XBTM
2 ,

their traces satisfy
Tr(XBTM

0 ) = e2πi/3+iθν (−1− 2i), (71)

and
Tr(XBTM

2 ) = e2πi/3+iθν (−1 + 2i). (72)

We thus see that if we take the overall unphysical phase shift θν to be θν = 4π/3 + 2nπ,
then Eqs. (71) and (72) are in agreement with the entries for the 3C4 and 3C ′

4 in Table 1.
This phase shift must also be made so that the order of the XBTM

i is changed from 12 to 4
as ∆(96) does not have a C12 conjugacy class, as seen from Table 1. Similar statements can
be made for the XBTM

1 and XBTM
3 elements, with the identification of either the 6C ′′

4 or the
12C ′′′

4 conjugacy classes. We also note that in each case, the order of Xi is a multiple of 2, as
previously discussed. Therefore, the order of the nontrivial ∆(96) Klein symmetry elements
is consistent with this implementation of BTM mixing.

For nontrivialQe, there is more freedom to match to specific discrete groups. Here it is not
just the trace of Xi that must be fixed, as it is also important to ensure that Xi respects the
group multiplication laws. In certain cases, these conditions require that the φi take trivial
values (0 or ±π), i.e., the rephasing symmetry associated with the φi must be restricted to
a Z2 × Z2 × Z2 subgroup along with an overall phase that must itself be restricted by the
group multiplication laws. This can easily be seen from the form of Eq. (69), which does not
distinguish between φi = 0 and φi = ±π. In the case previously discussed of connecting the
BTM symmetry elements with group elements of ∆(96) with the nontrivial choice of α′

i as
given above, it is straightforward to show that the φi must indeed be constrained in this way
to satisfy the group multiplication laws (with an overall phase of e±(iπ/2+2nπ), which we note
is consistent with order 4 symmetry elements). With other choices of α′

i and φi, there may
in principle be other connections of interest that can be made to different discrete groups
for a given mixing angle pattern.

Up to this point, we have taken Ue to be the identity, and in so doing, absorbed the effects
of Qe in the parametrization of Uν (see Eq. (52)). It is of course also possible, and indeed
must be physically equivalent, instead to keep Qe in the charged lepton sector. In either
case, the diagonal form of Ue then also usually implies the existence of a residual, diagonal
charged lepton flavor symmetry [6] that contains elements that are a subset of the possibilities
represented byQe of Eqs. (21)-(22). As previously discussed, the unphysical phases contained
in the residual charged lepton symmetry should all be distinct, or additional free parameters
will in general arise, “forcing” the charged lepton mixing away from the identity unless these
parameters are tuned accordingly. Since we are working in the diagonal charged lepton basis,
Me is real and diagonal. The invariance condition given in Eq. (47) with Ue = 1 then implies
that for the case at hand (neglecting Qe), the generalized CP elements Ye obey the relation

Det(Y BTM
e )q = 1, (73)

in which q is a multiple of the order of the corresponding residual charged lepton flavor sym-
metry. We also note that all possible generalized CP symmetry elements that are consistent
with Ue = 1 can be found from Eq. (36).

Finally, it is worthwhile to comment on the situation for which a general basis is chosen
such that neither the charged leptons or the neutrinos are diagonal. The reason is that even
though a basis change can always been made to diagonalize either sector, a general basis may
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facilitate the connection between the flavor and generalized CP symmetry elements and the
representations of a specific discrete group. In this case, within the bottom-up construction
there is then a question of how the observed lepton mixing parameters are split between the
two sectors, i.e. the choice of Ue and Uν such that U †

eUν = UMNSP (up to lepton rephasings).
When Ue is not the identity, clearly the rephasing matrix Qe is not so easily translated into
Uν , as in Eq. (51). However, Ue and Uν can be transformed more generally, as follows:

Ue → Q̃UeQe, Uν → Q̃UνQν , (74)

in which the transformation given by Q̃ clearly leaves UMNSP invariant. The matrix Q̃ can be
a full U(3) transformation, or it can be a subset of this full set of transformations, such as a

U(1)3-preserving transformation. The specific choice of Q̃ thus also has obvious implications
for the bottom-up construction of the symmetry elements, in analogy to the effects discussed
here in the diagonal case. Once again, it may be that such lines of reasoning open up new
model-building directions in the context of family and generalized CP symmetry groups.

In summary, given that there can be a mismatch in the way in which the mixing angles of
Uν and/or Ue are parametrized and the ways in which group representations of discrete groups
are given in the literature, the unphysical leptonic phases can be of utility in connecting the
bottom-up construction of symmetry elements to specific discrete group representations.
The case in which the charged leptons are taken to be diagonal is just one simple example.
That being said, since including Qe into Uν is a priori not necessary since by definition it can
be removed by rephasing the charged lepton fields, an equivalent alternative is that these
group elements can be shifted via a unitary transformation such that they align with a trivial
reconstruction of the Klein generators in this context, based on the standard parametrization
of UMSNP and setting P ′ as the identity. A further (equivalent) alternative is to carry out the
bottom-up construction with a different parametrization of UMNSP, as clearly there is nothing
sacred from the model-building point of view about the PDG parametrization. However,
selecting a specific parametrization and including these phases in the construction of the
Klein generators and the generalized CP symmetry elements allows for this freedom to be
taken into account in a straightforward way that can facilitate the identification of viable
discrete groups for top-down flavor model building.

5 Conclusions

If experiments reveal that neutrinos are Majorana particles, the possibility exists that
there is a residual symmetry in the neutrino sector that completely fixes UMNSP in the diag-
onal charged lepton basis, up to rephasing by unphysical charged lepton phases. However,
such a symmetry cannot make predictions for Majorana phases. In order to produce such
predictions, a popular and well-motivated approach is to impose a generalized CP symmetry
(consistently) alongside of the flavor symmetry and spontaneously break both symmetries
(presumably at a high scale, such as the unification scale) to generate mixing angle and
phase predictions, accordingly. In such a top-down approach, the angle and phase predic-
tions that arise from this breaking become subject to model-dependent corrections such as
renormalization group evolution, canonical normalization and corrections from subleading
contributions to either the charged lepton or neutrino sectors.13 Alternatively, we can start
from a bottom-up approach, in which the flavor and generalized CP symmetry elements can

13One may anticipate such corrections to be subleading because renormalization group and canonical
normalization effects are expected to be small in realistic models with hierarchical neutrino masses, and the
charged lepton corrections are typically at most Cabibbo-sized [52–54]. It is possible to have large charged
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be constructed explicitly based on specific mixing angle scenarios, and thus can be used
as a roadmap for top-down model building. In this work, we have investigated the effects
of considering nontrivial unphysical lepton sector phases in this context, focusing on their
group-theoretical properties. We also have discussed how such lepton sector rephasings ex-
tend the results of [40], in order to further elucidate the interplay between generalized CP
and flavor symmetries in the charged lepton and neutrino sectors.

By extending the results of [40], we have put forth a more complete bottom-up approach
that incorporates nontrivial, unphysical charged lepton phases as well as unphysical shifts
to Majorana phases. Our analysis further identifies the similarities and differences between
generalized CP symmetries in the charged lepton and neutrino sectors while further elucidat-
ing the group properties of the generalized CP symmetry elements. The results provide a set
of group theoretical relations that must be satisfied at low energies for all models within this
general framework. To this end, the methods outlined here can serve as guidance for future
model-building by further clarifying the effects that preserving various residual generalized
CP and flavor symmetry elements can have on models of lepton masses and mixing angles.
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