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Abstract: We explore double Higgs production via gluon fusion in the bb̄γγ channel at the

high-luminosity LHC using machine learning tools. We first propose a Bayesian optimization

approach to select cuts on kinematic variables, obtaining a 30− 50 % increase in the signifi-

cance compared to current results in the literature. We show that this improvement persists

once systematic uncertainties are taken into account. We next use boosted decision trees

(BDT) to further discriminate signal and background events. Our analysis shows that a joint

optimization of kinematic cuts and BDT hyperparameters results in an appreciable improve-

ment in the significance. Finally, we perform a multivariate analysis of the output scores of

the BDT. We find that assuming a very low level of systematics, the techniques proposed here

will be able to confirm the production of a pair of Standard Model Higgs bosons at 5σ level

with 3 ab−1 of data. Assuming a more realistic projection of the level of systematics, around

10%, the optimization of cuts to train BDTs combined with a multivariate analysis delivers

a respectable significance of 4.6σ. Even assuming large systematics of 20%, our analysis pre-

dicts a 3.6σ significance, which represents at least strong evidence in favor of double Higgs

production. We carefully incorporate background contributions coming from light flavor jets

or c-jets being misidentified as b-jets and jets being misidentified as photons in our analysis.
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1 Introduction

Measuring possible deviations of the triple Higgs coupling λ3 from its predicted Standard

Model (SM) value is a key goal of future colliders. This has implications for a whole range

of new physics scenarios, such as supersymmetry and other extensions of the SM with two

Higgs doublets. The cosmological implications are also profound, since λ3 is related to the

strength of the electroweak phase transition which is critical for understanding electroweak

baryogenesis, for example.

The triple Higgs coupling can be probed by Higgs pair production processes, which have

been extensively studied in the context of the high-luminosity LHC and future hadron col-

liders. Higgs pair production occurs dominantly via gluon fusion, with other production

processes being more than an order of magnitude smaller. Final states that have been stud-

ied, in the context of di-Higgs production at the LHC, include bb̄γγ [1–7], bb̄τ+τ− [8, 9],

bb̄W+W− [10], and bb̄bb̄ [11–13].

The purpose of this paper is to investigate the prospects of Higgs pair production at

the LHC in the bb̄γγ channel. Our analysis builds on previous studies in two ways: we use

tools from the machine learning (ML) literature in our analysis, and we carefully account

for background contributions coming from light flavor jets (j) or c-jets being misidentified

as b-jets and electrons or jets being misidentified as photons. With regard to the use of ML

tools, we note that this is somewhat hostile terrain for theorists. However, the comparative

gains in discovery prospects over other methods, which we discuss at length, will hopefully

convince the reader that planning for future colliders should exploit state of the art data

analysis tools to ensure that projections are reasonable.

For the benefit of the reader, we chart out the steps in our analysis and the main results

of each step. We present the details of our signal and background simulation in section 2. We

provide a brief discussion on previous studies in section 3.

In section 4, we ask the question: given an event topology and a set of kinematic observ-

ables, is there a systematic and computationally feasible method to obtain the most optimal

selections that maximize the significance? We show that Bayesian optimization, as described

in refs. [14, 15], performs better than selections currently proposed in the literature, and is

computationally much more tractable than a brute force multivariable scan. We demonstrate

our results with the Python algorithm Hyperopt [16]. Our main results of this section are

presented in figure 2 and we find that there is a 30− 50 % increase in the significance metric

S/
√
B compared to current results in the literature. Moreover, this relative improvement per-

sisted after incorporating systematic uncertainties on the background rate, as demonstrated

in figure 3.

In section 5, we build on the Bayesian optimization of kinematic cuts, and show that

training a Boosted Decision Tree (BDT) algorithm to better classify signal and backgrounds

events, in addition to the procedure of using optimal cuts to select the best volume of the

features space for the BDT training, increases the discovery prospects dramatically. For our

calculations, we use the XGBoost [17] implementation of BDTs for Python. We present our
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results in three stages. In section 5.1, we first introduce the kinematic observables used in

the BDT analysis, and provide a discussion of the interplay between BDT classifiers and cut

selections, without addressing the question of cut optimization. In section 5.2 we sequentially

optimize the cuts on the kinematic observables using Hyperopt , and then optimize the BDT

hyperparameters. Finally, in section 5.3, we perform a joint optimization of the kinematic

cuts and the BDT hyperparameters.

Our results from this stage of the analysis are summarized in table 5 and figure 8. We find

that the use of BDT enhances the significance irrespective of the kinematic cuts used. The

largest enhancement, however, occurs with cuts optimized using Hyperopt , and we reach a

significance of 3.88 for 3000 fb−1 of data.

In section 6, we focus on the statistical side of the analysis by estimating the log-likelihood

ratio statistics from the output scores of the BDTs provided by XGBoost , following [18].

The final results of our paper are presented in table 7. We find that assuming a very low

level of systematics, the techniques proposed here will be able to confirm the production of

a pair of SM Higgs bosons at 5σ level. Assuming a more realistic projection of the level of

systematics, around 10%, the optimization of cuts to train BDTs combined with a multivariate

analysis delivers a respectable significance of 4.6σ. This is the largest significance achieved

so far in the bb̄γγ channel with realistic assumptions concerning backgrounds and systematic

uncertainties at the 14 TeV LHC. Even assuming large systematics of 20%, our analysis

predicts a 3.6σ significance, which represents at least strong evidence in favor of double SM

Higgs production.

We pause to make a few comments about signal and background event rate estimation

before proceeding with our analysis. There has been considerable disagreement about this in

the literature, with some of the older studies giving optimistic results due to an underestima-

tion of background. We discuss these issues in section 3, where we compare and summarize

previous studies. Throughout this work, we will take the background and signal event rates

of Azatov et. al., ref. [4], which we consider robust, as a reference point. However, we are

also careful to incorporate the backgrounds cc̄γγ, bb̄γj and cc̄γj, whose importance has been

highlighted by ATLAS ref. [5].

In appendix A we briefly comment about the metrics used to compute the statistical

significances, and in appendix B we show a Python snippet of a simple code to implement

the selection cuts optimization based on Hyperopt .

2 Details of pp→ bb̄γγ simulations

The details of the signal and background simulation will be presented in this section.

Instead of re-evaluating all cross sections for the process of interest, the strategy we

will pursue in this work is to assume the production rates presented in ref. [4]. In our

opinion, the calculations performed by Azatov et. al. are reliable enough to be used as a

starting point, especially given that we are interested in a close comparison of our results

with those previously obtained in the literature. We will use events generated only as a
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means of estimating the kinematic distributions germane to the cut-and-count analysis and

to train our ML algorithms. We do, however, take into account three additional sub-dominant

backgrounds beyond those of ref. [4].

2.1 Higgs pair production

For the simulation of the signal and backgrounds events, we use MadGraph5 aMC@NLO v2.3.3

[19] with the CTEQ5L [20] and CTEQ6L [21] parton distribution functions, respectively.

At the leading order (LO), there are two one-loop diagrams that contribute to the process

pp → hh [22–24] and they interfere destructively. While the triangle diagram is sensitive to

the Higgs trilinear coupling, λ3, the box diagram is not. The simulation of our signal includes

the effect of both these diagrams. However, over the last 30 years significant improvement on

the theoretical calculation of this process to higher orders [25–31] has taken place.

In ref. [4], the signal cross section at the 14 TeV LHC was calculated at LO with

MadGraph5 aMC@NLO v2.1.1 and then multiplied by the partial NNLO K-factor of 2.27 [27],

calculated in the large quark mass limit. The resulting production cross section is 36.8 fb.

The combined branching ratio of the bb̄γγ channel is small, only 0.264%. The number of

signal events after 3000 fb−1, before cuts and efficiencies, is around 290.

Effects of the finite top quark mass to the NLO QCD cross section of Higgs pair pro-

duction has been taken into account in refs. [32, 33]. The full mass dependence diminishes

the NLO prediction by 14% compared to the large top quark mass approximation, however

approximated NNLO effects increase the NLO predictions by ∼ 20% according to ref. [34],

therefore, the K-factor adopted by Azatov et. al. constitutes a fair approximation to the

total rate.

Hard jet radiation and finite top quark mass effects are also expected to change the shape

of distributions involving the four-momenta of the reconstructed Higgs bosons at higher orders

as shown in refs. [32–35].

In order to obtain the distributions of the kinematic variables of interest, we pass our

simulated events to PYTHIA v6.4 [36] for showering and hadronization. Finally, these

events are passed to DELPHES v3.3 [37] for detector simulation. For the signal, the Higgs

bosons are decayed into bottom quarks and photons with the MadSpin module of MadGraph5.

In contrast, for the relevant backgrounds which contain a Higgs in the final state, the Higgs

boson has been decayed within PYTHIA. Photon isolation criteria and jet clustering are similar

of those of Azatov et. al. who found that their results do not differ much from other works

with somewhat different criteria.

Both signals and backgrounds were required to pass the following minimal selection cri-

teria

pT (j) > 20 GeV, pT (γ) > 20 GeV, |η(j)| < 2.5, |η(γ)| < 2.5 (2.1)

100 GeV < |Mjj | < 150 GeV, 100 GeV < |Mγγ | < 150 GeV . (2.2)

In the next section we comment about the backgrounds and give further details of the com-

putations.
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It is important to stress that a better estimation of production rates and invariant mass

distributions would mainly require including the effects of the finite top quark mass and

higher order corrections. That, however, is beyond the scope of this work.

2.2 Backgrounds

We have evaluated the backgrounds to (h→ bb̄)+(h→ γγ) signal from multiple SM processes:

1. bb̄γγ;

2. Zh, Z → bb̄ and h→ γγ;

3. bb̄h, h→ γγ;

4. tt̄h→ bb̄+ γγ +X;

5. jjγγ, where the light-jets jj are mistaken for a b-jet pair in the detector;

6. bb̄jj, where the light-jets jj are mistaken for a photon pair in the detector;

7. cc̄γγ, where a c-jet is mistagged as a b-jet;

8. bb̄γj, one light-jet is mistaken for a photon;

9. cc̄γj, the c-jets are mistagged as bottom jets and the light-jet as a photon.

The cross section normalizations for the backgrounds from 1 to 5 are taken from ref. [4].

In that work, the continuum bb̄γγ is computed at LO with one extra jet radiation and a

K-factor of 2 is estimated for the NLO QCD corrections.This large K-factor for the dominant

background has been neglected in many previous studies in this channel. The backgrounds

Zh and bb̄h were also evaluated with one extra jet radiation to estimate the higher-order QCD

corrections. The tt̄h K-factor was taken from [38] and it is small. The signal and backgrounds

estimates of Azatov et. al. are found to agree reasonably well of the Snowmass group report

of ref. [39].

Our backgrounds events (1–4) are also generated with 1 extra parton radiation in order

to better simulate the kinematic distributions. MLM scheme [40] of jet-parton matching

has been utilized to avoid double counting. The extra hard jet was included in the bb̄γγ

background once it is the dominant one. The reason for including the extra QCD radiation in

the ressonant backgrounds tt̄h, Zh and bb̄h is that the Higgs boson recoils against the extra

hard jets which is important to obtain the Mbb̄γγ invariant mass distribution. Unfortunately,

it is computationally too expensive to simulate the signals in the same way, and beyond our

means.

The tt̄h background is simulated in the inclusive way. Events with hard charged leptons

are easily classified as backgrounds events however and efficiently discarded as we are going

to see.

– 5 –



signal bb̄γγ cc̄γγ jjγγ bb̄γj tt̄h cc̄γj bb̄h Zh total backgrounds

42.6 1594.5 447.7 160.3 137 101.1 38.2 2.4 1.8 2483

Table 1. The number of signal and the various types of backgrounds considered in this work after

imposing the basic cuts of eq. (2.2) for 3 ab−1 of data. We found bb̄jj negligible after cuts and

estimating the probability of the jet pair fakes a photon pair.

Background processes with light jets are important when a jet radiates a hard photon

which is mistaken for an isolated photon in the detector. This is the case of the backgrounds

bb̄jj, bb̄γj and cc̄γj. All the backgrounds from 5 to 9 in the above list were simulated with

MadGraph5 aMC@NLO v2.3.3 at LO and multiplied by the NLO QCD K-factors presented in

ref. [41].

Following previous studies [1–6], we adopt the probability of 1.2 × 10−4 for a light-jet

to be mistagged as a photon. However, in the presence of pile-up events this value might

be an underestimate [7]. Nevertheless, the bb̄jj background was found to be negligible after

imposing cuts and mistagging factors.

Finally, for cc̄γγ backgrounds where a c-jet is mistagged as a b-jet, the b and c-tagging,

and also the light-jet mistagging are parametrized according to the jet’s transverse momentum

and rapidity as implemented in Delphes , specifically as the the default simulation of the

CMS detector. The Delphes parametrization assumes that a 70% b-tagging efficiency is

reached for pT > 100 GeV at the cost of a 20(5)% mistagging factor for c(j)-jets. These

sub-dominant backgrounds bb̄γj, cc̄γγ and cc̄γj were not taken into account in the majority

of the previous studies we are considering in this work for comparisons, except for [3, 5, 7]. All

the uncertainties in the backgrounds rates are taken into account in this work as systematic

uncertainties in the calculation of the signal significances.

The numbers of backgrounds events after imposing the basic cuts of eq. (2.2) for 3 ab−1

of integrated luminosity is shown in table 1.

In the next section, we will investigate a method to optimize the cut-and-count analysis,

instead of manual tuning of cut thresholds as is commonly done. This requires us to plant

ourselves on a set of baseline results and cut strategies, but also to adopt the signal and

background normalizations of this baseline work. We chose to adopt the results, cuts and

normalization of ref. [4] as our baseline due their careful treatment of signals and backgrounds

concerning QCD higher order effects. As we will show, this work also presents the best cut

strategy when compared to other theoretical and experimental works. On the other hand, we

go beyond that work by including the sub-dominant backgrounds bb̄γj, cc̄γγ and cc̄γj. Our

simulations for these backgrounds agree reasonably well with those from [3, 5, 7].

3 Comparison and Summary of Previous Studies

In this section, we present a summary of previous studies of double Higgs production at the

LHC, taking refs. [1–6] as representatives. Our main goal here is to show that despite the
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varying levels of rigor in terms of calculating signal and background event rates, and the

differences in selection strategies, the cut and count analyses employed in these disparate

studies yield similar significances.

The process pp → hh → bb̄γγ, with final states containing two b-jets and two hard

photons, presents many features which make it possible to employ a large variety of kinematic

variables and selection strategies. We describe the most pertinent ones below:

1. transverse momentum of b-jets and photons: pT (b) and pT (γ)

2. bb̄ and γγ invariant masses: Mbb and Mγγ , where signal events exhibit resonance peaks

at mh

3. transverse momentum of bb̄ and γγ: pT (bb) and pT (γγ)

4. invariant mass of two b-jets and two photons: Mbbγγ

5. distance between pairs of b-jets and photons: ∆R(bb), ∆R(γγ) and ∆R(bγ), where

∆R =
√

(∆η)2 + (∆φ)2 in the pseudo-rapidity and azimuthal angle plane (η, φ)

6. the fraction ET /Mγγ for the two hardest photons in the event; these are variables used

in experimental searches as in ref. [42, 43]

Some of these kinematic distributions have been presented in figure 1 for the signal, and

continuum bb̄γγ, tt̄h and Zh backgrounds. In panel (a), we show the invariant mass of two

b-jets and two photons. In panel (b), we show the transverse momentum of a pair of photons.

In panels (c) and (d), we show the distance ∆R between a pair of photons, and between the

hardest photon and the hardest b-jet, respectively.

In table 2, we display the analyses performed by the representative theory groups, along

with the ATLAS study [5], which is shown in the last row. The first column gives the

relevant reference, while the second column gives the kinematic variables and selections that

were applied in the corresponding paper. The different groups made very different signal and

background estimates, and we refer to ref. [4] for a detailed discussion of these differences.

For the significance calculations shown in the final column, we take all signal and background

cross sections to be normalized to the values obtained by ref. [4], which, in our opinion, is the

most robust theory study. However, we also take into account the backgrounds cc̄γγ, bb̄γj

and cc̄γj which were not taken into account in ref. [4].

The final column of table 2 thus shows the performance that each group would have had

with its selection strategies, if all cross-sections had been normalized by the ones of ref. [4] and

if cc̄γγ, bb̄γj and cc̄γj backgrounds had been taken into account. The statistical significance

for each study is calculated with the naive metrics of eq. (A.1), for 3 ab−1 of data with no

systematic uncertainties. The numbers inside parenthesis denote the S/B ratio of each study.

Our main message from table 2 is that the different search strategies employed by the

groups yield similar significances, once signal and background cross sections are normalized to
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Figure 1. Kinematic distributions of the signal (shaded red), and the backgrounds bb̄γγ (black), tt̄h

(blue) and Zh (green) are displayed. In (a), we show the invariant mass of two b-jets and two photons.

In (b), we show the transverse momentum of a pair of photons. In (c) and (d), we show the distance

∆R between a pair of photons, and between the hardest photon and the hardest b-jet, respectively.

the proper value. In other words, the selections and cut and count analysis of any particular

group does not radically outperform that of any other.

We now discuss the studies conducted by the different groups in more detail.

The sets (A) and (D), from refs. [1] and [4], displayed in the first and fourth rows of table 2,

respectively, rely on the very distinctive shapes of the ∆Rbb, ∆Rγγ and ∆Rbγ distributions to

reduce background events. In plot (c) of figure 1 we show the ∆Rγγ distribution for the signal

and the main backgrounds. For the signal, photons come from the decay of a heavy particle

and are more collimated with diminished distance in the (η, φ) plane. On the other hand,

the photons and b-jets from the bb̄γγ continuum originate from QED and QCD radiation,

respectively, and are thus less collimated. The tt̄h and Zh backgrounds resemble the signal

as they contain a Higgs boson. The same occurs for the ∆Rbb distribution except for tt̄h as
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Reference Kinematic cuts AMS(σ) (S/B)

pTγ(b) > 20(45) GeV, |ηb,γ | < 2.5

(A) [1] |Mbb −mh| < 20 GeV, |Mγγ −mh| < 2.3 GeV 1.54(0.30)

∆Rbγ > 1.0, ∆R(γγ) < 2.0

pTb,γ > 50 GeV, |ηb,γ | < 2.5, ∆Rbγ > 0.4, ∆R(bb) < 2.5

(B) [2] 110 < Mbb < 135 GeV, |Mγγ −mh| < 5 GeV, Mbbγγ > 350 GeV 1.33(0.39)

|ηH | < 2, PTH > 100 GeV

pTb,γ > 30 GeV, |ηb,γ | < 2.5

(C) [3] |Mbb −mh| < 12.5 GeV, |Mγγ −mh| < 5 GeV 1.51(0.17)

Mbbγγ > 350 GeV

pT1(2) > 30(50) GeV, |ηb,γ | < 2.4

(D) [4] ∆Rbγ > 1.5, ∆R(bb, γγ) < 2 1.76(0.27)

|Mbb −mh| < 20 GeV, |Mγγ −mh| < 5 GeV

pTγ > 30(30) GeV, pTγ > 40(25) GeV, |ηb,γ | < 2.4

ATLAS [5] ∆Rbγ > 0.4, ∆R(bb, γγ) < 2, pTbb,γγ > 110 GeV 1.73(0.28)

|Mbb −mh| < 25 GeV, 123 < Mγγ < 128 GeV

Table 2. In the first column at left we show the literature references of each cut strategy displayed at

the second column. In the last column we compute the signal significance with the number of signal

and background events estimated in this work. The number inside parenthesis in the last columns are

the signal-to-background ratios. We took the cc̄γγ, bb̄γj and cc̄γj backgrounds into account but no

systematics. The Approximated Mean Significance (AMS) function significance is that of eq.(A.3).

the b-jets come from different top decays. The ∆Rbγ distribution between the hardest b-jet

and photon, shown in the panel (d) of figure 1, is more useful to reduce the tt̄h backgrounds

since the bottoms from top decays and the radiated photons from them tend to get more

collimated.

The sets (B) and (C), from refs. [2, 3], displayed in the second and third rows of table 2,

respectively, take advantage of the fact that the signal events feature a harder spectrum of the

bb̄γγ invariant mass and the transverse momentum of the b-jet and photon pair distributions,

pT (bb) and pT (γγ). This is evident from panels (a) and (b) of figure 1. We note that these

strategies, however, do not reach a higher efficiency compared to those based solely on ∆R

distributions. Moreover, the S/B ratio also does not differ significantly. The set (B) is able

to reach almost 0.4, but at the expense of accepting more backgrounds which decreases the

significance with no systematics compared to the other analyses. This conclusion may be

somewhat modified if systematic uncertainties are incorporated.

The set of cuts from ATLAS combines selections across all the theoretical studies, as can

be seen from the last row of table 2. A signal significance of ∼ 1.73σ, very similar to that of

set (D) from ref. [4], is obtained.

It is interesting to compare the signal and background yields obtained in our work to

those of the ATLAS paper, ref. [5]. Adopting the cuts of the last row of table 2, we found
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11.8 and 41.9 events for signal and backgrounds, respectively, compared to 8.4 for the signal

and 47.1 for backgrounds quoted in ref. [5]. The S/
√
B significance of the ATLAS paper,

with 7.5% systematics in the background rate quoted in that study, is 1.3σ, against 1.6σ from

our results. This cross check gives us confidence in our signal and background estimates and

reassure the importance of including systematic uncertainties. The discrepancy between our

estimates and those of ATLAS may in part be explained by the fact that we do not discard

photons which hit the Barrel/End-Cap transition region, 1.37 < |η| < 1.52, and are totally

inclusive in the number of jets accepted. The ATLAS study, on the other hand, included

events up to 5 jets with pT > 25 GeV. These somewhat looser criteria might explain part of

the discrepancy between our estimates.

More recently, the ATLAS Collaboration updated the prospects for this channel in ref. [7]

taking pile-up effects and some other sub-dominant backgrounds, such as Z(→ bb̄)γγ and tt̄γ,

into account. Pile-up effects were shown to have moderate influence in the discovery prospects,

but the backgrounds were found to be somewhat larger than before. The signal significance

is estimated to be approximately 1σ for around 8% systematics in the background rate with

the S/
√
B metrics. The major discrepancy compared to the previous ATLAS study of ref. [5]

and other works is in the number of bb̄γj events, which was estimated to be almost as large as

bb̄γγ due to an estimated probability for a jet to fake photons that was four times larger than

that assumed in previous studies. Since we do not take into account the effect of pile-up, we

keep comparing our results against those of ref. [5].

The cut strategy in this new ATLAS study ref. [7] followed the previous study of ref. [5]

closely. The main difference was a softening of the pT (bb̄, γγ) cut by vetoing events where

this variable is less than 80 GeV. The significance obtained after applying these cuts with

our extended backgrounds, assuming no systematics and using the AMS metric, is 1.76σ and

S/B = 0.26. This is very similar to the results of the last row of table 2.

Finally, since the subsequent sections will be devoted to applications of ML algorithms

to the question of Higgs pair production, we note that in ref. [6], a likelihood function-type

discriminator was built to better discriminate between signal and background events with a

large improvement in the signal significance. In that work, however, an underestimation of

backgrounds led to a large significance not confirmed in subsequent analyses.

4 Optimal Selection of Kinematic Cuts

In the previous section, we discussed the analysis performed by several theory groups, as well

as an ATLAS study. The summary is provided in table 2, where it is evident that once signal

and background cross sections are properly accounted for, the studies are similar in their

performances.

The similarity among the performances of refs. [1–5] shown in table 2 suggests that the

quest for superior performance in cut and count analyses is largely based on previous results

and well known variables proposed in the literature. Sometimes, new variables are found to

exhibit good discriminative power, such as the ratio ET (γ)/Mγγ proposed in ref. [43]. Of
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course, there is a lot of variation in the way different groups design their cuts, the extent to

which they experiment with old and new variables, and the methods they employ to estimate

the boundary of the chosen kinematic variables

4.1 Bayesian Optimization of Kinematic Cuts

Given an event topology and a set of kinematic observables, is there a way to systematically

obtain the most optimal cuts on the kinematic observables, so as to maximize the signifi-

cance? Our purpose in this section is to probe this question, and we shall see that Bayesian

optimization offers a pathway.

A typical cut analysis consists in finding a set of kinematic variables thresholds {xck, k =

1, · · · , n} such that the number of signal or background events is given by

S,B(xc1, · · · , xcn) = L× σS,B(pp→ X)× εeff ×
n∏
k=1

H(Ok(xk, xck)) (4.1)

where L is the integrated luminosity, σS,B is the signal or background production cross section

of X, εeff a factor that accounts for detection efficiencies, and H is the Heaviside step

function. The functions O(x, y) relate a kinematic variable x and its cut xc according to one

of the following alternatives in this work: x− xc, xc − x, and |x−M | − xc. The goal of our

phenomenological analysis is of maximizing a signal significance metric, such as S/
√
B, by

retaining the largest possible number of signal events while rejecting the largest amount of

background events by finding an optimal set of cuts {xck, k = 1, · · · , n}.
When a ML algorithm is trained to better classify the signal and background events, it

may be asked to return the probability of a given event to be a signal event. We will call

this an output score. In this way, we can construct distributions of scores for signal and

background events and then apply another cut on this distribution. In this case, eq. (4.1) is

modified by multiplying it by another unit step function H(OML(xML, x
c
ML)). The ML scores

xML may themselves depend on other specific parameters θML and must also be adjusted for

a good performance. We discuss this in section 5.

The most brute force method to obtain the optimal set of cuts, a multivariable scan, is

also the one that is the least pragmatic. For example, the ATLAS [5] study makes use of more

than 10 kinematic variables. A hypercube in this space with just a 10-fold division in each

direction represents 1010 different cut strategies. To cite another example, one can consider

the search for single-top production at the Tevatron [44], which trained neural networks with

up to 30 variables that could be used in a cut analysis. It is evident that large grids are

unfeasible without large computational facilities.

The situation becomes even more untenable when ML algorithms are used to enhance

the collider searches, since they add a much longer time of computation in the analysis chain.

A deep neural network, for example, might take from several minutes to several hours to

train, depending on the computational resources and the size of the training/testing samples.

On the other hand, selection cuts may have a significant effect on the kinematic variables
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(features) which are used to train ML algorithms. These effects are often neglected but may

significantly impact the performance of discrimination tools.

Intuitively, one expects that requiring hard cuts to clean up samples would force one into

a small corner of feature space where signal and background events present little distinction.

This degrades the ML performance. In other words, hard cuts introduce biases which make

signal and background distributions indistinguishable. Loosening the cuts reduces bias, but

the gain in performance of the ML discrimination may not compensate for the increased

number of background events. This, too, may lead to a degraded performance, especially

when systematic uncertainties are taken into account.

The maximum significance achievable must, therefore, be a trade-off between cuts on the

kinematic variables and ML performance. We note that ML classification can be performed

in two ways: (1) by generating a new distribution with the ML output classification ranking

of signal and background events, where a good discriminator should give the majority of

signal (backgrounds) events a score close to 1(0), for example, and subsequently using this

distribution to place another cut as discussed above, and (2) using the output distributions

in a multivariate statistical analysis (MVA) based on the likelihood ratio statistic for the final

discrimination.

The solution to avoid expensive grid searches can be found in the data science literature

itself. The most powerful ML algorithms, such as neural networks and decision trees, have

a large number of parameters (called hyperparameters) which control their performance.

Adjusting hyperparameters to achieve a high classification accuracy is an important goal in

ML, and avoiding extensive scans in the space of hyperparameters is desirable. It is now

common practice to perform either randomized grid searches or use dedicated algorithms for

model configuration [14]. Surprisingly, a simple random search with hundreds of trials may

perform as good as, or even better than, a manual search.

For large parameter spaces, however, it has been demonstrated that Bayesian optimiza-

tion performs better than either manual or randomized searches [15]. The algorithm described

in ref. [15], implemented in the Python library Hyperopt [16], is based on the so-called se-

quential model-based optimization (SMBO) technique [45]. This class of algorithms suggests

a new model (a new configuration of parameters) at each iteration in order to optimize the

criterion of Expected Improvement (EI), which is the expectation that under a model M of

a function f , y = f(x) will exceed some threshold yc

EIyc(x) =

∫ +∞

−∞
max(yc − y, 0)pM (y|x)dy (4.2)

in the search for the minimum of f .

The major obstacle in computing EI(x) is estimating the conditional probability pM (y|x).

Hyperopt overcomes this difficulty by means of the Bayes rule, pM (y|x) = p(x|y)p(y)
p(x) , where

p(x) is an assumed prior distribution of the parameters. By keeping a sorted list of obser-

vations of y = f(x), it is possible to compute the quantiles γ = p(y < yc), while p(x|y) is

a non-parametric distribution estimated from previous observations along the run of the al-
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gorithm. The strategy to evaluate p(x|y) in Hyperopt is known as a Tree-structured Parzen

Estimator approach, TPE for short. In TPE, p(x|y) equals `(x)(g(x)) if y < yc(y ≥ yc), thus

providing an non-parametric estimate of p(x|y) from previous runs of the algorithm. Further

details of the algorithm can be found in ref. [15] and references therein.

This way, it is possible to show that EIyc(x) is such that

EIyc(x) ∝
(
γ +

g(x)

`(x)
(1− γ)

)−1

(4.3)

where, on each iteration, the algorithm returns the point on the parameters space xc with

greatest expectation improvement. The algorithm is efficient once EIyc(x) grows as the ratio

g(x)/`(x) drops, that is, as `(x) accumulates with the learning process and g(x) represents

more rare configurations.

The main result of this section is to use Bayesian optimization to look for better discrim-

inating kinematic cuts. In this case, x is a point in a kinematic multivariable space designed

to discriminate between signal and backgrounds and f(x) is an Approximated Mean Signif-

icance (AMS) function, a significance metric as defined in eqs.(A.1,A.2,A.3). In section 5.3

we will investigate an augmented searching space comprising the thresholds of the kinematic

variables for cuts and the hyperparameters which models a boosted decision trees algorithm,

thus performing a joint cuts plus hyperparameters search.

4.2 Results using Bayesian optimization in Hyperopt

We use Hyperopt [16] for the search with the TPE strategy described above. The inputs of

the program are a Python dictionary with the names and variation ranges of the variables,

the prior random distributions assumed for those variables, the objective function to be

minimized, and the number of experiments which the algorithm is allowed to perform in the

search, that is, the number of trials. The algorithm can be easily parallelized as described in

ref. [15], but our searches were all obtained within a single thread of the computer, thus the

running time of cut searches could be greatly reduced. In appendix B we display a simple

code that can be adapted by the reader for immediate use in a cut-and-count analysis.

In table 3 we show the kinematic variables used for cut optimization and their ranges of

variation. For all of them, we assume uniform priors. The corresponding number of points in

such a grid would be staggering 1.86368× 1014 possible cut strategies.

Compared to the variables of table 2, we also experimented with the invariant mass of

the hardest b-jet and photon,Mb1γ1 . We required the same ∆R cut for b-jets and photons

pairs and for all bγ combinations according to the first two rows of table 3. We also put the

same cut on the transverse momentum of the hardest(second hardest) photon and bottom.

Of course, we could have chosen different cuts for each particle pT and ∆R pair. The rapidity

cuts are kept constant throughout the experiments, |η| < 2.4 for all photons and jets.

In table 4 we show the set of cuts that achieves the largest significance in a cut-and-count

analysis found with the Bayesian search after 200 trials. The first row shows the optimized

cuts and the significance, computed with S/
√
B, reached for the same backgrounds of ref. [4].
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Kinematic variable Variation range in Hyperopt

∆Rii < (1.4, 4, 0.05)

∆Rij > (0, 2, 0.05)

pT (1) > (30, 100, 1) GeV

pT (2) > (20, 70, 1) GeV

pTii > (0, 200, 5) GeV

Mbb̄γγ > (0, 400, 5) GeV

Mb1γ1 > (0, 200, 5) GeV

|Mγγ −mh| < (5, 15, 1) GeV

|Mbb −mh| < (10, 30, 1) GeV

Table 3. The kinematic variables used for cuts and their allowed variation ranges in Hyperopt . The

prior distributions for all these variables are set to uniform distributions over the ranges shown in the

table within the steps shown as the last entry of each vector.

In the second row we show the results for the extended backgrounds including cc̄γγ, bb̄γj

and cc̄γj events. The last row displays the results for the cuts of Azatov et. al., ref. [4]; the

upper sub-row is the significance computed with the same backgrounds of that work, while

the lower sub-row contains the S/
√
B with the extended set of backgrounds considered in our

work.

First of all we note that the learning process selects somewhat different sets depending

on the actual size of the backgrounds. The Best (1) strategy of the first row, with smaller

backgrounds, relied mainly on the Mbb̄γγ and pTγγ variables to eliminate backgrounds. The

Best (2) set of the second row, for extended backgrounds, put a stronger cut on the ∆Rii
compared to the Best (1) set, while the other cuts remained more or less the same. This

confirms that the ∆Rii variables are indeed discriminative. Second, both strategies found

better discrimination putting cuts on Mbb̄γγ and pTbb,γγ which also confirms the usefulness of

these variables. Third, we observe that the optimized sets relax the pT cuts on the softer b’s

and photons whereas strengthening the cut on the hardest particles. As in previous studies,

the window around the bb̄ peak is wider than the γγ peak. Finally, ∆Rij and Mb1γ1 were

found to be less important in the discrimination as observed in table 4.

We now investigate how often Hyperopt finds cuts with higher significances compared

to the cuts of ref. [4] and with the same background assumptions of that work. For this

investigation we performed 500 trials and created histograms for the number of sets cuts in

a given S/
√
B interval as shown at the left plot of figure 2. The blue(red)[green] histogram

displays the number of sets for a given AMS interval after 100(300)[500] trials.

Around 90% of all Bayesian optimization searches yielded a greater significance than the

2.1σ achieved by the cuts of Azatov et. al., represented by the dashed line at the left plot of

figure 2. The 300 and 500 trials histograms also make evident the way the algorithm improves

the objective function, S/
√
B in this case. The bins of higher significances get more populated
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Kinematic cuts NS NB S/
√
B(σ) (S/B)

Best (1): pT (1) > 90 GeV, pT (2) > 21 GeV

∆Rij > 0.65, ∆Rii < 3.75 21.0 55.1 2.81(0.38)

Mbb̄γγ > 385 GeV, pTii > 100 GeV, Mb1γ1 > 60 GeV

|Mbb −mh| < 24 GeV, |Mγγ −mh| < 7 GeV

Best (2): pT (1) > 86 GeV, pT (2) > 22 GeV

∆Rij > 0.4, ∆Rii < 1.85 18.0 52.1 2.48(0.35)

Mbb̄γγ > 390 GeV, pTii > 100 GeV, Mb1γ1 > 25 GeV

|Mbb −mh| < 24 GeV, |Mγγ −mh| < 8 GeV

Default: pT (1) > 30 GeV, pT (2) > 50 GeV 12.8 37.1 2.1(0.34)

∆Rij > 1.5, ∆Rii < 2

|Mbb −mh| < 20 GeV, |Mγγ −mh| < 5 GeV 12.8 48.7 1.85(0.27)

Table 4. The rows show a set of cuts at the left column, and the number of signal and backgrounds

after these cuts and the significance(signal-to-background ratio) in the subsequent columns. The first

row shows the results reached for the same backgrounds as ref. [4] after 200 Hyperopt trials. In the

second row we show the results for the extended backgrounds including cc̄γγ, bb̄γj and cc̄γj events

again with 200 Bayesian searches. The last row displays the results for the cuts of Azatov et. al.,

ref. [4]; the upper numbers in red in this row are computed with the same backgrounds of that work,

while the lower ones in blue contains are computed with the extended set of backgrounds considered

in our work.

as we increase the number of trials indicating that the algorithm learns with past cut-and-

count experiments in order to search for better ones as expected. This is no surprise, since

the Bayesian optimization is actually a generative machine learning algorithm as described

in the previous section.

In the inset frame at the left plot of figure 2 we show S/
√
B as a function of the number

of trials. We see that after 100-200 trials, the signal significance does not change much up

to 500 trials. After 200 trials, the optimized cuts achieved a significance of 2.81σ against

2.1σ of the manual search of ref. [4], a 34% improvement. With extended backgrounds, the

Bayesian search reached 2.48σ against 1.85σ of the cuts of ref. [4], again roughly the same

improvement. A larger S/B was also achieved as shown in table 4.

We also point out that the previous works of refs. [46–48] approached in different ways the

optimum locus of the variables space for better discernment between signal and backgrounds.

Similarly to our findings, those works also highlight the relative importance of the Mbb̄γγ ,

pTγγ , pTbb , and ∆γγ,bb variables.

4.3 Reliability of the Bayesian Search

In order to probe the reliability of the Bayesian approach, we performed an exhaustive grid

search in a reduced variables space. We choose the 4-dimensional (∆Rii, ∆Rij , Mbb̄γγ , pT (1))

space with ten evenly spaced values in each direction amounting to 104 different sets of cuts.
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Figure 2. The histograms of number of cut strategies producing a given significance interval in a cut-

and-count analysis. At the left plot we show the optimized search with the TPE algorithm in Hyperopt

. The inset frame in the left plot shows the significance as a function of the number of trials. At the

right plot we display a non-optimized random search after 1000 trials. No systematics are assumed,

the backgrounds are those of ref. [4] and the S/
√
B used to compute the signal significances. The

black dashed line represents the results obtained with the default cuts of Azatov et. al., ref. [4] in all

plots.

We allowed Hyperopt to carry out up to 300 TPE trials. Both ∆R ranges were chosen to lie

in (1, 3, 0.2), the bb̄γγ invariant mass, (300, 600, 30) GeV, and the pT (1) variable, (20, 70, 5)

GeV.

The maximum S/
√
B found were

Grid search: 2.11σ, ∆Rii < 1.6, ∆Rij > 1.0, Mbb̄γγ > 390 GeV, pT (1) > 25 GeV

Optimized search: 2.06σ, ∆Rii < 1.6, ∆Rij > 1.8, Mbb̄γγ > 390 GeV, pT (1) > 25 GeV

(4.4)

The only different cut was in the less discriminative variable ∆Rij , for the all the other

ones, Bayesian optimization was able to find the same cut thresholds of the Grid search. Of

course, in a much larger searching space it is hard to tell how close to the best grid point the

Bayesian optimization gets, but our results show that the cut strategies found with hundreds

of trials improve significantly the statistical significances compared to the manual searches

of table 2. We also point out that other open source algorithm optimization programs are

available [49] for experimentation.

4.4 Random versus Manual Search

In phenomenological analyses, one frequently tunes the cut thresholds by visually estimating

the regions of variable space which are more populated by signal or background events.

Sometimes, after a first round of requirements, one looks for more discriminative variables to

apply cuts on. The entire process, however, is not optimized. The similar results found by
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manual searches of this nature, for the cut thresholds displayed in table 2, suggest that the

majority of cut strategies should indeed perform nearly identically by this method.

Another strategy to avoid large grid scans is simply performing a random search for cuts.

As we discussed in the previous section, this approach presents good results in the search for

ML hyperparameters according to ref. [14]. In order to investigate how the manual strategies

compare to a random search, we allowed for 1000 trials in Hyperopt , running in the random

mode (see appendix B for more details), in the variables region of table 3. We then computed

S/
√
B for each set of cuts without systematics and with the same backgrounds of ref. [4].

The search lasted around 20 minutes with a single thread.

At the right plot of figure 2 we show the histogram of the number of cut strategies for a

given significance interval in this random search. The vertical dashed line is the significance

of 2.1σ reached by the best manual search of ref. [4]. The mean of the distribution is 2.06σ

with 0.27 standard deviation. Around 45% of all cut strategies result in a signal significance

larger than 2.1σ. In other words, a good manual search is likely to reproduce just the mean

performance of a random search when we look for a promising region of the variables space for

cut-and-count. We suspect that similar behavior can be observed in other phenomenological

analysis based on cut-and-count.

As observed in ref. [14], the Bayesian search performed slightly better than the random

search in our case too. However, while a thousand experiments were necessary to reach an

∼ 2.7σ of significance in the random search, with just 200 trials is possible to reach around

2.8σ as we see in figure 2. Both searches, however, present an enhancement compared to the

manual searches of table 2.

We now investigate how the Bayesian cut optimization works when systematic uncertain-

ties are present.

4.5 Optimization with Systematic Uncertainties

As we observed in the previous section, the optimization procedure is able of not just increas-

ing the signal significance but also the S/B ratio which is essential when we take systematic

uncertainties into account in the statistical analysis. This observation leads us to investigate

whether Hyperopt would also be able to find cuts with higher S/B in order to tame the

systematics.

In figure 3 we show the signal significance in terms of the background rate systematic

uncertainty εB from 0 to 20% after 100 trials. The red solid line represents the significance

for the default cuts of Azatov et. al. The points of the black dashed line are obtained by

optimizing only the cuts of the 0% case and then using S/
√
B + (εBB)2 to extrapolate the

significance for other εB, keeping the same set of cuts found in the no systematics case.

This is not the best that can be done, though, as the S/B ratio remains the same as in the

no systematics scenario. The upper black solid line shows the results when we optmize the

significance function for each systematics level. In this case, the Bayesian algorithm is able to

find points with larger S/B ratio trying to overcome the systematics constraints. The inset
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Figure 3. The S/
√
B + (εBB)2 significance metric as function of εB , the systematic uncertainty in

the total background rate. The red line represents the default cuts of Azatov et. al., ref. [4], the black

dashed assumes an optimized strategy just for the 0% systematics point, while for the solid upper

line, the algorithm was solicited to learn the best cuts for each systematics level from 0 to 20%. In

the inner plot we show the S/B ratio for the point-to-point optimization case.

plot shows that Hyperopt learned that S/B should double from the 0 to the 20% systematics

case to reach larger significances.

As a consequence of larger S/B ratios, the difference between the point-to-point optimized

significance and the 0% optimized curves gets larger as the systematics increase. It is also

interesting to observe how the algorithm learns to increase the signal-to-background ratio

and reach high significances as the systematics get more important. For that aim we show in

figure 4 the cut thresholds of some key variables used in the analysis with systematics up to

30%.

Some clear tendencies are noticeable: the preferred variables to hardening cuts are ∆Rii,

the window around the bb and γγ mass peaks, especially this last one, and the transverse

momentum of the softer particles shown in panels (c), (f) and (d) of figure 4, respectively.

On the other hand, ∆Rij and the transverse momentum of the harder particles become less

relevant. We already knew that ∆Rij is not so important for the discrimination as the other

variables. The softening of the cut of pT (hard), however, can be understood in view that we

are not trying to optimize S/B but the significance metric, and the algorithm seems to find

a way through the second hardest pT cut instead. Despite being more erratic, a tendency to

irrelevance is also observed in other discriminants like Mbb̄γγ , Mb1γ1 and pTγγ , for example, as

seen in panel (e) of figure 4. This can be explained in view of the panels (a) and (b) which

show the correlation between two of the most discriminative variables, ∆Rγγ and Mbb̄γγ . A
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hard cut on ∆Rγγ makes a cut on Mbb̄γγ somewhat irrelevant and vice-versa. Of course, this

does not mean that this is the only way to increase S/B, but it does suggest that not all the

kinematic variables are relevant for that task at the same time.

We especially note that for the level of background rate systematics estimated by the

ATLAS and CMS Collaborations, around 10% [5, 7, 43], the optimized cuts give a significance

of 1.9σ against ∼ 1.4σ of the default cuts of Azatov et. al., all with the extended backgrounds.

5 Signal versus Background Discrimination with Boosted Decision Trees

The analysis presented in the previous section has been based solely on cut-and-count and

can be employed in any phenomenological study where optimal cuts are necessary to clean

up backgrounds and raise the signal significance. In appendix B we give more details about

implementing this procedure in a simple and fast Python code.

In this section, we go beyond the cut-and-count analysis and focus exclusively on propos-

ing tools to obtain even larger significances in the search for double Higgs production at the

LHC, with and without systematics. Our goal now is to show that training a Boosted Deci-

sion Tree (BDT) algorithm to better classify signal and backgrounds events, in addition to

the procedure of using optimal cuts to select the best volume of the features space for the

BDT training, increases the signal significance dramatically.

We present our results in three stages. In section 5.1, we first introduce the kinematic

observables used in the BDT analysis, and provide a discussion of the interplay between

BDT classifiers and cut selections, without addressing the question of cut optimization. In

section 5.2 we sequentially optimize the cuts on the kinematic observables using Hyperopt

, and then optimize the BDT hyperparameters. Finally, in section 5.3, we perform a joint

optimization of the kinematic cuts and the BDT hyperparameters.

5.1 BDT Analysis Without Cut Optimization

The performance of any ML algorithm aimed to better classify signal and background events,

or even an MVA analysis based on likelihood ratios, depends strongly on the portion of the

feature space from which the events are selected, in other words, the number of signal and

background are as follows

Nev = Nev({xck, k = 1, · · · , nc} ∪ {xcML(θML, {xck, k = 1, · · · , nc})} , (5.1)

where θML represents the hyperparameters of the ML algorithm and Nev = S(B) is the

number of signal(total background) events. This is especially true in subtle searches for new

physics, and is the reason we have investigated the Bayesian optimization method thoroughly

in the previous section.

Ideally, the least biasing portion of any variables space is the one with minimal cuts,

possibly requiring just acceptance and trigger cuts. However, in processes with low signals and

large backgrounds like pp → bb̄γγ, if one employs just acceptance cuts, detection efficiencies

and even takes b-tagging into account, one is still presented with backgrounds that are many
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Figure 4. The learning process evolution of the cut variables in the search for maximum significance

in the presence of increasing systematic uncertainties are displayed in panels (c-f). Panels (a) and (b),

show the correlation between two of the most discriminative kinematic variables, ∆Rγγ and Mbb̄γγ

for the the signal and the dominant bb̄γγ background, respectively. In the panel (c), we show the

distance of pairs of particles in the (η, φ) plane. The panel (d) displays the transverse momentum

of the hardest and second hardest b’s and photons. In the panels (e) and (f), various invariant mass

combinations used in the discrimination plus the transverse momentum of the pair of photons.
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Figure 5. Four out of the 27 kinematic distributions of signal (shaded red), and the backgrounds bb̄γγ

(black), tt̄h (blue) and Zh (green), used for the BDT discrimination. In (a), we show the Barr variable

of the two photons (see the text for its description). Plots (b) and (c) display the Barr variable and

the difference of the azimuthal angle of the reconstructed Higgs pair, respectively. In panel (d), the

invariant mass of the second hardest b-jet and photon.

orders of magnitude larger than the signal. This would require a ML classifier with an

extremely exquisite signal acceptance versus background rejection performance, which cannot

be reached in practice. On the other hand, applying harder cuts may not necessarily degrade

the ML performance to the point of making them useless for further discrimination.

Therefore, a trade-off between cuts and ML performance should be expected in a phe-

nomenological analysis. We now proceed to study this interplay.

We use the XGBoost [17] implementation of BDTs for Python for its very good discrim-

ination performance, speed and capacity of parallelization. The events features used to train

the BDT are as follows:

1. transverse momentum of the two hardest b-jets and photons: pT (b1, b2) and pT (γ1, γ2)
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2. transverse momentum of bb̄ and γγ pairs: pT (bb) and pT (γγ)

3. invariant mass of all four combinations of a b-jet and a photon: Mbiγj , (i, j) = 1, 2

4. invariant mass of the two b-jets and two photons of the event: Mbb̄γγ

5. distance between pairs of bottoms and photons: ∆R(bb), ∆R(γγ) and all the four

combinations of a b-jet and a photon ∆R(biγj), (i, j) = 1, 2

6. the Barr variable [50, 51] between all the six combinations of two particles in the event

defined as cos θ∗ij = tanh
(

∆ηij
2

)
where ∆ηij is the rapidity separation of the i and j

particles

7. the Barr variable between the two reconstructed Higgs bosons, cos θ∗hh

8. azimuthal angle difference between the two reconstructed Higgs bosons, ∆φ(h, h)

9. missing energy of the event

10. the number of charged leptons with pT > 20 GeV and |η| < 2.5

These are 27 features in total. We do not use all of them for kinematic cuts; just

those shown in the first and second rows of table 3. The missing energy and the number of

charged leptons are used to better distinguish the multi-jet backgrounds and semi-leptonic

tt̄h backgrounds. In figure 5 we show some other good features besides the ones shown in

figure 1. We simulated ∼ 240000 signal and ∼ 640000 background events to train, test and

cross-validate the BDTs. After optimized cuts we observed that the number of Monte Carlo

samples of signal and background events get much more balanced.

We preprocess the features prior to the BDT training which improves their performances.

First, to the distributions with skewness larger than 1.0 we add a small value of 10−8, the

logarithm is taken and then they are normalized as in ref. [52]. All the features are rescaled

to smaller and standardized ranges better suited for the training process.

The behavior of the statistical significance in terms of the output scores may sometimes

oscillate very badly if the number of test samples is small as a consequence of not too smooth

signal and background scores distributions [53]. We checked that the AMS function, in terms

of the score cut threshold for one of the five evaluations of the BDT in the five-fold cross

validation for an optimized set of cuts, is very smooth and well behaved. The maximum

AMS, in this case, occurs for scores cut around 0.5. For all the cut strategies with BDTs, the

threshold score is chosen in order to achieve the maximum significance.

We next go on to an investigation of how the cuts affect the discrimination power of the

BDT. We fixed the set of cuts as the default cuts of Azatov et. al. shown in table 2, except

the ∆Rij variables. The panels (a) and (b) of figure 6 show the ∆Rb1γ1 distribution with

just the acceptance cuts of eq. (2.2) and after imposing the default cuts of Azatov et. al.,

respectively. Interestingly, the cuts seem to make the distributions more distinctive in this

case; contrary to intuition, therefore, the cuts may help the ML classification in some cases.
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The panel (c) of figure 6 shows the normalized ∆Rb1γ1 histograms for the signal and the

bb̄γγ continuum background, the signal efficiency(background rejection) is the red(blu) line,

and the area under the Receiver-Operator curve (ROC), AUC, is the dashed line. The bigger

the AUC, the better the performance of a cut-and-count analysis based on that distribution.

To eliminate backgrounds we should demand that an event has a large ∆Rb1γ1 . The effect of

hardening this cut is that the total background rejection increases and the signal efficiency

decreases as expected. For example, requiring ∆Rb1γ1 > 1.5, as in the default cuts of Azatov

et. al. almost exactly rejects 70% of backgrounds at the same time that it retains 70% of

signal. However, as the cuts get harder the AUC drops from 0.913 to 0.789 as we see from

the dashed line. It is common that tiny increments in AUC represent a significant increase

in the significance, thus the magnitude of difference in AUC in this case represents a large

decrease in the ML performance.

The BDT scores distributions for signal and backgrounds are shown in panel (d) of

figure 6. We chose to place harder cuts to make the signal and backgrounds scores distributions

more similar. In fact, the hollow histograms of events with hard cuts overlap more noticeably

than the scores of the best set of cuts found with the Bayesian optimization. We note,

especially, that the green shaded histogram of backgrounds with best cuts presents a more

pronounced hill on the left compared to the hollow blue histogram showing some degradation.

This isolated left hill is populated mainly by the reducible backgrounds with charged leptons

and missing energy. The signal histograms also show marked differences, especially the right

hill of best cuts which disappears from the hard cuts of the red hollow histogram.

We next turn to a discussion of the results for the BDT analysis with optimized cuts.

5.2 Sequential Search for Optimal Cuts and BDT Hyperparameters

In this section, we study how best to perform an optimization of the cut analysis and the

selection of BDT hyperparameters, in a sequential manner.

The necessity of tuning BDT hyperparameters before optimizing the cuts arises from the

need to avoid overfitting and underfitting. This used to be a costly part of a ML analysis.

Beside keeping the complexity of the algorithm under control to achieve a good generalization

performance, an efficient way to avoid overfitting is to use a large number of training samples

whenever possible. For our ML analysis we simulated ∼ 880000 events as discussed in the

previous section. Depending on the cuts, however, the total number of events usually drops

to around 100000–300000 events which also turned out to be a sufficient number of samples

to keep overfitting under control.

Our first approach was to apply the default cuts of Azatov et. al., and run 500 Hyperopt

trials in the space of the chosen hyperparameters of XGBoost in the search for the highest

AUC over 1/3 of the total samples, the other 2/3 were used for a 5-fold cross validation by

randomly splitting the remaining samples in the 2:1 proportion for training and testing the

BDT, respectively. The hyperparameters chosen were the number of boosted trees, from

100 to 500, the learning rate from 0.001 to 0.5, the maximum depth of the trees, from

2 to 15 final leaves, and the minimum sum of instance weight needed in a child to continue

– 23 –



1 2 3 4 5
∆R(b1 ,γ1 )

0.0

0.2

0.4

0.6

0.8

1.0

1.2

1/
σ
d
σ
/d

∆
R

(b
1
,γ

1
)

Signal
b̄bγγ

t̄th

Zh

(a)

0.5 1.0 1.5 2.0 2.5 3.0 3.5 4.0
∆R(b1 ,γ1 )

0.0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

1/
σ
d
σ
/d

∆
R

(b
1
,γ

1
)

Signal
b̄bγγ

t̄th

Zh

(b)

0.5 1.0 1.5 2.0 2.5
∆R(b1 ,γ1 )

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1.0

Signal

bb̄γγ

0.913

0.789AUC
εS

1−εB

(c)

0.0 0.2 0.4 0.6 0.8 1.0
score

0

1

2

3

4

5

6

7

Pr
ob

ab
ili

ty

BDT Outputs versus Cuts
Signal: best cuts
Backgrounds: best cuts
Signal: hard cuts
Backgrounds: hard cuts

(d)

Figure 6. Panels (a) and (b) show the ∆Rb1γ1 distributions of signal and backgrounds requiring the

acceptance (default) cuts of eq. (2.2) (Azatov et. al., ref. [4], last row of table 2). In the panel (c)

we present the results of the effects of cutting on ∆Rb1γ1 for the BDT performance, see the text for

further details. The output scores of the BDT are shown in panel (d) for signal and backgrounds for

the optimized set of cuts and a hard set of cuts.

the splitting process of the tress, min child weight, from 1 to 6. Once we found the best

hyperparameters, we then checked the learning curves of the algorithm, as the classification

error and the log-loss, to confirm that it generalizes well from the training to the testing

samples.

From this initial tuning we fixed:

number of boosted trees = 200, learning rate = 0.1

maximum depth of the trees = 6, min child weight = 1. (5.2)

Hyperparameters like the number of boosted trees, maximum depth of the trees

and the min child weight are directly related to the complexity of the algorithm by con-
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Figure 7. The histogram of number of cut strategies producing a given significance interval in a

BDT-aided classification analysis. The inset plot shows the significance as a function of the number

of Hyperopt trials. No systematics are assumed, the backgrounds are those of ref. [4] and the S/
√
B

used to compute the signal significances. The black dashed line represents the results obtained with

the default cuts of Azatov et. al., ref. [4].

trolling the number, size and configuration of the trees. The learning rate, also known as

shrinkage in this context, is a parameter that controls the weight new trees have to further

model the data. A large value permits a larger effect from new added trees and might lead to

more severe overfitting. There are other parameters which can be eventually used to prevent

overfitting and loss of generalization power as explained in refs. [17, 54], but we found that

tuning these parameters was sufficient to achieve a good performance.

In principle, it would also be possible to tune the BDT for each set of cuts. But that

would be computationally expensive. As we show going forward, keeping these parameters

fixed already leads to very good results in terms of signal significance.

In figure 7 we repeat the analysis presented in figure 2, but now after performing the

BDT classification. The black dashed line is the maximum signal significance encountered by

cutting on the BDT output scores distributions of signal and backgrounds with no systematics

using the S/
√
B metric for the default cuts of Azatov et. al. In this case we take only the

backgrounds of the ref. [4] for the comparison.

As in the case of the cut-and-count analysis with no BDT classification, we used Hyperopt

to search for the best cuts in 500 experiments with the same kinematic variables and ranges

of table 3. Again, around 90% of all cut strategies produced a signal significance larger

than the default cuts of Azatov et. al. With 200 experiments, the maximum AMS found

with the optimized search was 4.9σ and an AUC of 0.904, whereas for the default cuts the
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maximum AMS significance is 2.9σ with an AUC of 0.869. The best set of cuts found with

200 experiments was

pT (1) > 52 GeV, pT (2) > 22 GeV

∆Rij > 0.1, ∆Rii < 2.75

Mbb̄γγ > 340 GeV, pTii > 145 GeV, Mb1γ1 > 45 GeV

|Mbb −mh| < 26 GeV, |Mγγ −mh| < 10 GeV (5.3)

Including the extended backgrounds, again after 200 trials, Hyperopt found a significance

of 4.5σ, AUC of 0.910, and for the default cuts of Azatov et. al., an AMS of 2.6σ and AUC of

0.869. In this case, the Bayesian optimization algorithm found another way into the variables

space

pT (1) > 52 GeV, pT (2) > 20 GeV

∆Rij > 0.65, ∆Rii < 3.85

Mbb̄γγ > 90 GeV, pTii > 160 GeV, Mb1γ1 > 125 GeV

|Mbb −mh| < 24 GeV, |Mγγ −mh| < 12 GeV (5.4)

There is an enormous gain in the significance after using BDT to help classifying signal

and background events. However, the S/
√
B metric overestimates the significance when

the number of signal events is not much smaller than the number of background events. In

table 5 we show the maximum signal significance by cutting on the BDT scores with extended

backgrounds and using the more conservative and best suited significance AMS of eq. (A.3).

We display in this table the results for all the cut strategies of table 2 plus the best cut

strategy found with the Bayesian method.

First, whatever the cut strategy, the BDT classification significantly enhances the signal

significance compared to the simple cut-and-count analysis. The larger AMS, however, is

once again the one obtained by selecting the cut strategy with the optimized search, reaching

∼ 3.9σ with 3 ab−1 of integrated luminosity. It is interesting to note that the selection cuts

found for AMS are different from those of eq. (5.4) for S/
√
B

pT (1) > 92 GeV, pT (2) > 20 GeV

∆Rij > 0.2, ∆Rii < 2.6

Mbb̄γγ > 10 GeV, pTii > 125 GeV, Mb1γ1 > 70 GeV

|Mbb −mh| < 30 GeV, |Mγγ −mh| < 9 GeV (5.5)

From the previous results and those of eqs. (5.3, 5.4, 5.5) we observe that the Bayesian

optimization algorithm learns basically two types of selection criteria to increase the signif-

icance: either relaxing the ∆R and hardening some of the invariant masses and transverse

momenta variables, or placing more stringent ∆R and relaxing invariant mass and transverse

momentum cuts. This is perfectly understandable from the physics point of view: events with
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Reference max AMS(σ) with BDT AUC

(A) [1] 2.36 0.884

(B) [2] 1.96 0.885

(C) [3] 2.43 0.885

(D) [4] 2.65 0.870

ATLAS [5] 2.67 0.883

Our work (with Hyperopt ) 3.88 0.901

Table 5. Comparison of the performance of the BDT implementation in XGBoost trained with samples

selected with the cuts various previous works in the literature and with the optimized set of cuts. The

second column contains the maximum AMS obtained by cutting on the BDT outputs after a 5-fold

cross validation. The last column displays the AUC metric of the BDT for each set of cuts.

high pT particles and large invariant masses are more likely to contain collimated photons

and b-jets, thus cutting both on ∆R and invariant masses, for example, would be redundant

as also can be seen in panels (a) and (b) of figure 4. The job of the optimization algorithm

is more a fine tuning of the cuts throughout the variables space.

Another feature of the best cut criteria found so far by the Bayesian approach is the

b-tagging dependence with the transverse momentum as parametrized in the Delphes detec-

tor simulator. Once the b-tagging increases with the bottom quark transverse momentum,

selection criteria with at least one high-pT is likely to provide a better discrimination against

important non-b jet backgrounds as jjγγ, cc̄γγ and cc̄γj.

5.3 Joint Search for Best Cuts and BDT Hyperparameters

In the previous section we carried out a sequential search for cuts and BDT hyperparameters,

first adjusting the BDT to perform well on the baseline selection criteria, then, with the

hyperparameters fixed, continuing to the search of best cuts.

In this section, we will investigate whether a joint search for all the parameters of the

phenomenological analysis can also yield good results. The relevant parameters that need

to be adjusted together are both the cut thresholds and the BDT hyperparameters. This

represents a more thorough approach to the problem of getting the best performance possible

using a ML algorithm.

For this global search we used Hyperopt with the parameters space of the table 6. All

the prior distributions were assumed to be uniform in the range indicated in the right column.

As in the previous analysis, the objective function to be minimized was −AMS. All the BDT

results were obtained from a 5-fold cross validation by randomly splitting training and testing

samples at the proportion of 2/3 and 1/3 of the total sample, respectively. As the parameter

space is larger now, we allowed for 300 trials.

As in the previous sections, we plot, in figure 8, histograms of the number of cut strategies

for a given significance interval for the joint search. The black dashed line now represents

the maximum significance of the sequential search of the previous section. In contrast to the
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Kinematic variable/BDT Hyperparameter Variation range in Hyperopt

∆Rii < (1.4, 4, 0.05)

∆Rij > (0, 2, 0.05)

pT (1) > (30, 100, 1) GeV

pT (2) > (20, 70, 1) GeV

pTii > (0, 200, 5) GeV

Mbb̄γγ > (0, 400, 5) GeV

Mb1γ1 > (0, 200, 5) GeV

|Mγγ −mh| < (5, 15, 1) GeV

|Mbb −mh| < (10, 30, 1) GeV

number of trees (150, 250, 1)

learning rate (0.001, 0.5, 0.001)

maxixum tree depth (2, 20, 1)

min child weight (1, 6, 1)

Table 6. The kinematic variables used for cuts and BDT hyperparameters and their allowed variation

ranges in Hyperopt for the joint optimization. The prior distributions for all these variables are set

to uniform distributions over the ranges shown in the table within the steps shown as the last entry

of each vector. In a grid search, the number of evaluation points would be approximately 8.9× 1020.

other cases, the global search found just a few better cut strategies, but the important fact

is that it actually found a better strategy than the sequential search, showing that a joint

search is not only possible but also beneficial to the AMS maximization.

The maximum AMS is 4.0σ for an AUC of 0.904, against 3.9σ and AUC of 0.901 of the

sequential parameters search. The parameters of the joint search are the following

pT (1) > 72 GeV, pT (2) > 20 GeV

∆Rij > 0.15, ∆Rii < 3.6

Mbb̄γγ > 370 GeV, pTii > 145 GeV, Mb1γ1 > 100 GeV

|Mbb −mh| < 27 GeV, |Mγγ −mh| < 11 GeV

number of trees = 157

learning rate = 0.101

maximum tree depth = 14

min child weight = 5 (5.6)

The joint search was able to find a more regularized set of BDT hyperparameters to avoid

overfitting. This is why the number of trees is smaller and min child weight bigger than

those of the sequential search. This is a very welcome result - with harder cuts than those

of the default cuts of Azatov et. al., Hyperopt learned how to control the loss in AMS that

would be caused by a more dangerous overfitted BDT due a smaller size sample for training
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Figure 8. The histogram of number of cut strategies producing a given significance interval with BDT

adjusted in a joint optimization of cuts and hyperparameters. The inset plot shows the significance as

a function of the number of Hyperopt trials. No systematics are assumed, the backgrounds are those

of ref. [4] and the S/
√
B used to compute the signal significances. The black dashed line represents

the results obtained with the default cuts of Azatov et. al., ref. [4].

and testing. Moreover, it was able to tune the parameters to perform slightly better than

the sequential search. Finally, we note that the optimized cuts are of the type that feature

harder invariant masses and transverse momenta and relaxed ∆R cuts.

As a final investigation, we present in the next section a multivariate statistical analysis

based on the BDT output scores and the inclusion of systematic uncertainties for our final

more realistic prospects of discovering the double Higgs production at the LHC.

6 Final Results: Further Discrimination with Multivariate Analysis of

BDT Outputs

In the previous sections, we employed a ML algorithm to boost our classification accuracy

of signal and background events, relying exclusively on cut-and-count analysis and posterior

calculation of the significance with an approximated median significance formula.

In this section, we will attempt to improve the signal significance by focusing on the

statistical side of the analysis encouraged by the results of ref. [46], around 4σ for 3 ab−1

with MVA based on kinematic variables but with no systematics included. This will be done

by estimating the log-likelihood ratio statistics from the output scores of the BDT algorithm

provided by XGBoost . This is a well known and established procedure used by the LHC

Collaborations for a long time, but only recently more rigorously justified [18].
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We calculate the log-likelihood ratio of the binned BDT output scores for signal si and

backgrounds bi, i = 1, · · · , Nbins, after cuts, shown in the panel (d) of figure 6, according

to [55]

Λ =

Nbins∑
i=1

[
−si + di ln

(
1 +

si
bi

)]
(6.1)

We assume that the simulated data di follows either the null hypothesis with no signal,

di ∼ Pois(xBDTi |B), to compute ΛB, or the alternative hypothesis where di ∼ Pois(xBDTi |S+

B) to compute ΛS+B. The estimation of the non-parametric statistical distributions of ΛB
and ΛS+B, P (Λ|B) and P (Λ|S + B), respectively, is done with a large number of pseudoex-

periments with new statistically varied BDT output distributions assuming that the number

of events in each bin is drawn from a Poisson distribution, Pois(x|µ), of mean µ. From these

distributions the p-value of the background hypothesis is calculated

pB =

∫ +∞

ΛS+B

P (Λ|B)dΛ (6.2)

and the statistical significance is computed as Φ−1(1− pB), where Φ is the cumulative distri-

bution function of the standard Gaussian with zero mean and unit variance.

According to the Neyman-Pearson lemma [56], the likelihood ratio is the most powerful

test statistic to discriminate a signal hypothesis for a fixed significance level of the background

hypothesis (a fixed background efficiency) in the absence of systematic uncertainties.

In this work, in order to estimate P (Λ|B) and P (Λ|S + B), we performed 40000 pseu-

doexperiments from the binned BDT output scores. As in the previous sections, we used

Hyperopt to search for the cut strategy with the biggest significance after training the BDTs

and computing the AMS as described above. The BDT hyperparameters were fixed as in

eq. (5.2), so Bayesian search was applied in the sequential way.

The histogram of cut strategies as a function of the significance of figure 9, as in the other

cases, shows that more than 90% of all cut selections found by Hyperopt lead to a better

MVA performance than that of the default cuts of Azatov et. al., which are definitely not

suited to MVA. Also, similarly to other cases studied previously, the maximum significance

is found rather early in the searching, with 100 experiments, as shown in the inset plot of

figure 9. A very high AMS is already obtained at that stage, and it is the best strategy up

to almost the 500th experiment which improves it very slightly.

Our final analysis and results take into account systematic uncertainties of 10% and 20%

and are shown in the table 7. The systematic uncertainties are incorporated in MVA in mixed

frequentist-Bayesian method, by marginalizing over the background rate in eq. (6.2) assuming

that the systematic errors are Gaussian. All the backgrounds are taken into account, including

cc̄γγ, bb̄γj and cc̄γj, the significance was calculated with the AMS formula (A.3), and the

integrated luminosity corresponds to 3 ab−1.

With a very low level of systematics, the techniques proposed here with the selection

criteria optimization may be able to confirm the production of a pair of SM Higgs bosons
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Figure 9. The histogram of number of cut strategies producing a given significance interval in

MVA. The inset plot shows the significance as a function of the number of Hyperopt trials. No

systematics are assumed, the backgrounds are those of ref. [4] and the S/
√
B used to compute the

signal significances. The black dashed line represents the results obtained with the default cuts of

Azatov et. al., ref. [4]. The optimization was of the sequential type.

with 5σ. Within a more realistic projection of the level of systematics, around 10%, the

optimization of cuts to train boosted decision trees combined with a multivariate analysis

delivers a respectable significance of 4.6σ. This is the largest significance achieved so far in

the bb̄γγ channel with realistic assumptions concerning backgrounds and systematic uncer-

tainties at the 14 TeV LHC. Even assuming large systematics of 20%, our analysis predicts

a 3.6σ significance, which represents at least a strong evidence in favor of double SM Higgs

production.

Relying just on BDT classification with optimized cuts, for systematics below 20%, a

robust evidence for double Higgs production is possible according to table 7.

Compared to the default cuts of ref. [4], which we took in this work as our baseline

results, the cuts found from the Bayesian optimization are able to enhance the significance

by 30%–50% with little computational efforts and speed. The results for the default cuts of

Azatov et. al. are shown between brackets in the second column of table 7 for comparison.

Finally, we elect from all the results presented, those of the second row of table 7 as

the most representative of our findings, again stressing that these results take into account

realistic backgrounds, the level of systematic uncertainties expected for this channel, and also

better suited significance metrics for the number of signal and background events expected

at the LHC with these selection criteria.
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systematics (%) Cut-and-count BDT MVA

0 2.34[1.76] 3.88 5.05

10 1.93[1.43] 3.57 4.64

20 1.51[1.0] 3.10 3.60

Table 7. Signal significances for cut-and-count, BDT and MVA are shown in the second, third and

fourth column, respectively, for 0, 10 and 20% systematics. We took all backgrounds into account for

the computation of the AMS with optimized cuts and an integrated luminosity of 3 ab−1 at the 14

TeV LHC. The bold-face numbers represent the significances expected with the level of systematics

anticipated by the experimental collaborations in refs. [5, 7, 43]. The numbers inside brackets are

the significances computed with the default cuts of Azatov et. al., ref. [4], which we took as baseline

results.

7 Conclusions and Prospects

In this paper, we explored double Higgs production via gluon fusion at the LHC. Our anal-

ysis builds significantly on previous studies in that we used tools from the ML literature to

discriminate signal and background events. We also incorporated background contributions

coming from light flavor jets or c-jets being misidentified as b-jets and electrons or jets being

misidentified as photons.

First we used Bayesian optimization, implemented in Hyperopt , to select cuts on kine-

matic variables, obtaining a 30 − 50 % increase in the significance metric S/
√
B compared

to current results in the literature. Then, we used BDTs implemented in XGBoost to further

discriminate signal and background events. At this stage, we showed that a joint optimiza-

tion of kinematic cuts and BDT hyperparameters results in an appreciable improvement in

performance. Finally, we turned to the statistical side of the analysis by estimating the log-

likelihood ratio statistics from the output scores of the BDT algorithm provided by XGBoost

. The final results of our paper are presented in table 7. We find that assuming a very low

level of systematics, the techniques proposed here will be able to confirm the production of a

pair of SM Higgs bosons at 5σ level. Assuming a more realistic projection of the level of sys-

tematics, around 10%, the optimization of cuts to train BDTs combined with a multivariate

analysis delivers a respectable significance of 4.6σ. This is the largest significance achieved

so far in the bb̄γγ channel with realistic assumptions concerning backgrounds and system-

atic uncertainties at the 14 TeV LHC. Even assuming large systematics of 20%, our analysis

predicts a 3.6σ significance, which represents at least strong evidence in favor of double SM

Higgs production.

We pause for a moment to recapitulate the reasons behind the larger significances ob-

tained in this paper, compared to previous studies. What makes the significances larger is

precisely the better discrimination between the signal and background classes achieved by the

machine learning algorithms as they find more profound correlations among the kinematic

features and those classes. These correlations cannot be fully explored in simple/manual

rectangular cut-and-count analyses. There is a tradeoff between the efficiency of the cuts
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and the ML performance which is usually neglected in phenomenological works where these

tools are employed. The reasoning is simple: cutting harder cleans up more backgrounds

but weakens the correlations between the kinematic variables and the event classes, thereby

decreasing the ML performance. On the other hand, relaxing the cuts makes the correlations

stronger helping to boost ML but the discrimination power gained might not be enough to get

a good significance with a large number of surviving background events. Finding the optimal

performance from this competition is the core of the method present in the paper.

We now turn to some future prospects. One immediate future goal is to study the

prospects of measuring deviations of λ3 from the SM prediction at the high-luminosity LHC

using our work on double Higgs processes in the bb̄γγ channel [57]. In this context, it would

also be interesting to pursue the ensuing implications for the electroweak phase transition

within an effective potential framework. Another set of goals is to extend our work to other

final states like bb̄τ+τ−, bb̄W+W−, and bb̄bb̄, as well as other production channels.

There are also several directions one can pursue that are not necessarily related to studies

of the Higgs sector. The Bayesian optimization approach to the cut selection presented in this

work can be used in other phenomenological studies. For example, it would be very interesting

to use our methods to re-evaluate the discovery prospects for compressed supersymmetric

searches or dark matter [58–60]. The Bayesian optimization can also be used to design a cut

selection that helps to overcome the effect of various types of systematic uncertainties which

affect the shape of the distributions and the normalization of the cross sections.

The measurement of particles masses, couplings and quantum numbers like spin and CP

also depend strongly on the kinematic selection criteria. This is another target for optimiza-

tion using Hyperopt . As we showed in this work, a multivariate analysis used for hypothesis

tests can be greatly enhanced with a careful set of cuts aimed to keep strong correlations but

eliminating as much backgrounds as possible. Some other discrimination techniques which

suffer with hard cuts, such as the calculation of asymmetries [50, 51, 61–63], are also worth

investigating using our methods.

While we performed a discovery analysis in this work, an optimized set of cuts, with

or without further classification with the help of ML tools, can also be employed to obtain

stringent limits in exclusion studies.

It is certain that cut optimization will be able to improve the performance of other

classifiers such as neural networks and naive Bayes-inspired algorithms which are commonly

explored in phenomenological studies, although it is difficult to estimate the extent. One

might anticipate that the cut selection which optimizes a given classifier should not corre-

spond to the selection that improves another. The joint optimization presented here is also a

potential target of further investigation as the cut optimization can be performed at the same

time of hyperparameters tuning of classifiers as decision trees and neural networks. These are

directions that can also be pursued in the future.
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A Statistical significance metrics

A comparative study of various statistical significance metrics can be found in [64]. In that

work, the problem of incorporating systematic uncertainties in the background normalization

for a Poisson process is addressed and it is found that three most widely used significance

metrics perform similarly in many situations concerning the relative number of signal and

background events and the level of systematics.

The three significance methods are:

(1) The naive and most simple way to incorporate systematic uncertainties in the calculation

of the significances for S signal events and B background events in a Poisson process

for a given integrated luminosity

S√
B + (εBB)2

(A.1)

In all cases, we assume that the systematic uncertainty in the total background normal-

ization is proportional to the number of background events, εBB. This is simple and

fast, but it somewhat overestimates the discovery reach with or without systematics.

(2) The Bayesian-frequentist hybrid recipe to the estimation of the systematics impact on

the significance. Assuming that systematic errors are normally distributed we marginal-

ize over the systematic errors to obtain the p-value

pB =
+∞∑

k=S+B

∫ +∞

−∞

e−B(1+zεB)

k!
[B(1 + zεB)]k × e−

z2

2

√
2π

dz (A.2)

and the significance is computed as Z = Φ−1(1 − pB), where Φ(z) is the cumulative

distribution function of the standard normal distribution.

This is method of incorporating systematics into the significance was employed in sec-

tion 6 for the MVA analysis and it is computationally more demanding.
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(3) The Profile Likelihood method originally proposed in [65] in astrophysical searches with

subsidiary measurements of the background adapted to a high energy experiment where

the systematics is a fraction of background events, εBB

AMS =


√

2
{

(S +B) ln
[(

1 + 1
Bε2B

)
S+B

S+B+1/ε2B

]
+ 1

ε2B
ln
[

B+1/ε2B
S+B+1/ε2B

]} 1
2
, ε > 0

√
2
[
−S + (S +B) ln

(
1 + S

B

)] 1
2 , ε = 0

(A.3)

Among the three metrics this is the most conservative and reliable, and it is as simple

and fast to compute as the naive metrics of eq. (A.1). Moreover, its performance is

very close to the consistent frequentist approach for tests of the ratio of Poisson means

implemented in ROOT [66], for example.

A comparison of these three methods are also investigated in ref. [67] in the context

of the search for dark matter production in the mono-Z channel confirming all the features

anticipated in ref. [64]. In the case of double Higgs production, we also checked that the naive

formula of eq. (A.1) always provide larger significances with or without systematics compared

to the other metrics for the same number of signal and background events.

B Python code of the optimization method using Hyperopt

We show a snippet of the code used to optimize the cut strategies right below.

1 # loading packages

2 import numpy as np

3 from hyperopt import hp , fmin , tpe , STATUS_OK , Trials

4 from functools import partial

5 # loading data

6 data = np.genfromtxt(’data/data.csv’, delimiter=’,’)

7 n_data , ncol = data.shape

8 print data.shape

9 ncol=ncol -1

10 # raw data

11 X_raw = data [:,1: ncol] #vector of features , 27 for HH production

12 y_raw = data [:,0] #labels

13 weights=data[:,ncol] #events weights

14 print (’finish loading ’+str(n_data)+’ samples from csv file’)

15 # evaluation parameters

16 nevals =200

17 # building the selector function

18 def selector(y):

19 aux_min=int(min(y))

20 aux_max=int(max(y))

21 sel =[[] for i in range(int(aux_max))]

22 for i in range(int(aux_max)):
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23 sel[i] = np.array([y[k] == float(i+1) for k in range(len(y))])

24 return sel

25 # AMS metrics

26 def ams(s,b,sys):

27 breg =0.0

28 #return s/np.sqrt(b+breg+(sys*(b+breg))**2)

29 #return np.sqrt (2.0)*np.sqrt( (s+b+breg)*np.log (1.0+s/(b+breg))-s

)

30 if b==0. and sys !=0.:

31 aux=np.sqrt (2*s*(1.+1./ sys))

32 else:

33 b=b+breg

34 if sys ==0.:

35 aux=np.sqrt (2.0)*np.sqrt(-s+(s+b)*np.log (1.+s/b))

36 else:

37 aux=np.sqrt (2.0)*np.sqrt((s+b)*np.log ((1.+1./(b*sys **2))*(

s+b)/(s+b+1./ sys **2))+(1./ sys)**2*np.log ((1.+b*sys **2) *(1/ sys **2)/(

s+b+1./ sys **2)))

38 return aux

39 # computing the number of signal , backgrounds events for a given

selection

40 def Nevents(w,sel):

41 nev=len(y)

42 # number of events of each class

43 nevS = np.sum(np.array([w[sel [0]]])) #signal

44 nevB1 = np.sum(np.array ([w[sel [1]]])) #background 1

45 nevB2 = np.sum(np.array ([w[sel [2]]])) #backgriund 2

46 nevB3 = np.sum(np.array ([w[sel [3]]])) #background 3

47 nevB = nevB1+nevB2+nevB3

48 events= np.array([nevS ,nevB1 ,nevB2 ,nevB3])

49 return events

50 #############################

51 # Passcuts Boolean function #

52 #############################

53 # variables contained in the vector of features

54 vars={’pT1’:1, ’pT2’:2, ’Mii’:3, ’Mij’:4, ’Rij’:5}

55 # defining cut variables

56 mh =125.0

57 vd1=data[:,vars[’pT1’]]

58 vd2=data[:,vars[’pT2’]]

59 vd3=data[:,vars[’Mii’]]

60 vd4=data[:,vars[’Mij’]]

61 vd5=data[:,vars[’Rij’]]

62 vd6=abs(vd4 -vd3+mh*np.ones(n_data))

63 # cuts function

64 def passcuts(cut ,a):
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65 if a[0]>=cut [0] and a[1]>=cut [1] and abs(a[2]-mh)<=cut [2] \

66 and a[3]>=cut[3] and a[4]<=cut[4] and a[5]>=cut [5]:

67 aux=True

68 else:

69 aux=False

70 return aux

71 ###############################

72 # CUT -AND -COUNT: TPE/HyperOpt #

73 ###############################

74 best_cc =[[] for i in range (22)]

75 best_cut =[[] for i in range (22)]

76 def objective(cuts):

77 cut=np.array([cuts[’pT1_cut ’],cuts[’pT2_cut ’],cuts[’Wii_cut ’], \

78 cuts[’Mij_cut ’],cuts[’Rij_cut ’],cuts[’Mxx_cut ’]])

79 data_cut=np.array ([data[i] for i in range(n_data) if \

80 passcuts(cut ,[vd1[i],vd2[i],vd3[i],\

81 vd4[i],vd5[i],vd6[i]])])

82 if len(data_cut)!=0:

83 y_cut = data_cut [:,0]

84 n_cut = len(y_cut)

85 w_cut = data_cut[:,ncol]

86 sel_cut = selector(y_cut)

87 # number of events of each class

88 nevS , nevB1 , nevB2 , nevB3 = Nevents(w_cut ,sel_cut)

89 nevB = nevB1+nevB2+nevB3

90 loss=-ams(nevS ,nevB ,sys)

91 print -loss

92 else:

93 print ’no events passed cuts’

94 loss =0.

95 return{’loss’:loss , ’status ’: STATUS_OK}

96 # Cuts dictionary

97 cuts={

98 ’pT1_cut ’: hp.quniform("pT1_cut", 30., 100., 1.), #70

99 ’pT2_cut ’: hp.quniform("pT2_cut", 20., 60., 1.), #30

100 ’Wii_cut ’: hp.quniform("Wii_cut", 5., 15., 1.), #10

101 ’Mij_cut ’: hp.quniform("Mij_cut", 100., 300., 10.), #20

102 ’Rij_cut ’: hp.quniform("Rij_cut", 0.4, 1.4, 0.1), #10

103 ’Mxx_cut ’: hp.quniform("Mxx_cut", 100., 200., 10.) #20

104 }

105 print ’-----HyperOpt SEARCH: ’+str(nevals)+’ experiments ------’

106 for j in range (0,25,5):

107 sys=j*0.01

108 print ’systematics = ’+str(j)+’%’

109 trials = Trials ()

110 best = fmin(fn=objective ,
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111 space=cuts ,

112 algo=partial(tpe.suggest , n_startup_jobs =10)#rand. for

random search

113 max_evals=nevals ,

114 trials=trials)

115 print ’best:’

116 print best

117 best_cut[j]=best

118 # best ams calculation

119 cut=np.array([best[’pT1_cut ’],best[’pT2_cut ’],best[’Wii_cut ’], \

120 best[’Mij_cut ’],best[’Rij_cut ’],best[’Mxx_cut ’]])

121 data_best=np.array ([data[i] for i in range(n_data) if \

122 passcuts(cut ,[vd1[i],vd2[i],vd3[i], \

123 vd4[i],vd5[i],vd6[i]])])

124 y_best = data_best [:,0]

125 n_best=len(y_best)

126 w_best = data_best[:,ncol]

127 # number of events of each class

128 nevS , nevB1 , nevB2 , nevB3 = Nevents(w_best ,y_best)

129 nevB = nevB1+nevB2+nevB3

130 best_cc[j]=ams(nevS ,nevB ,sys)

131 print ’sys , AMS , S/B =’, sys , ams(nevS ,nevB ,sys), nevS/nevB

Listing 1. Python snippet of the optimization code.

This code illustrates the basic steps to optimize a cut strategy with a single signal class

and three different background classes as an example. It cannot be immediately used, but

should be adapted to the reader analysis.

First, we load the basic Python packages NumPy and Hyperopt and also load the data

from lines 1 to 14. If the data size is too big it might be necessary to load it in batches. In

line 16 we set the number of Hyperopt trials.

Signal and background samples need to be identified in several steps of the computation,

we then create an event selector with the event labels as input in line 18. Significance metrics

discussed in the previous appendix can be chosen in the definition of the ams function at line

26, s(b) is the number of signal(backgrounds) events and sys the systematics level in the

background rate εB.

In the line 40 we define a function that returns the number of signal and background

events given a selector vector.

From lines 50 to 70 we build a Boolean function which returns True if an event pass the

cuts, otherwise it returns False. This function is inspired in the Fortran routine PASSCUTS

found in the MadAnalysis package for MadGraph [19]. This function needs to be adjusted by

the user according to his/her selection criteria. In this example we put cuts on all the features

of the event but this is not mandatory, of course. Instead, we construct in line 62 another

cut variable which does not compound the features vector.
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Now comes the part of the code where we actually perform the optimization. At the line

76 we define our objective function which is going to be minimized by Hyperopt , its input

is the cut dictionary placed at line 77. In this case, we are interested in maximize the ams

function, that is, minimize -ams. Note that prior to the computation of ams we select those

events which pass the cuts designed in passcuts. The labels and weights of these selected

events are denoted by y cut and w cut, respectively. With y cut we set the events selector at

line 86 and then call the Nevents function to calculate the number of signal and background

events after cuts, these numbers feed the -ams function at line 90.

In the line 97 we set the a Python dictionary for the cut thresholds to be chosen by

Hyperopt with the corresponding priors, in this case, all the priors were chosen to be uniform

distributions. In ref. [15] the user can find all the options to set the functioning of the program.

At line 106 we start a loop in the systematics level sys from 0 to 20%, from 5 to 5%.

The TPE search is called in 110 in order to find the best cuts (with a warm-up phase of 10

trials) which return the larger AMS within nevals trials. From line 118 until the line 131

we calculate and print the results of the optimization for a given systematics. If one wants

to perform a random search instead of using TPE, the line 112 should be modified to algo

= rand.suggest.

Note that the quantile γ discussed in section 4.1 is, in principle, an adjustable parameter,

but as far as we know there is no option to change it in Hyperopt . In ref. [14], however, the

authors keep this parameter at 0.15 for their studies.
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