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We propose a theory in which the Standard Model gauge symmetry is extended by a new SU(2)` group
acting nontrivially on the lepton sector which is spontaneously broken at the TeV scale. Under this SU(2)`
the ordinary leptons form doublets along with new lepton partner fields. This construction naturally contains a
dark matter candidate, the partner of the right-handed neutrino, stabilized by a residual global U(1)χ symmetry.
We show that one can explain baryogenesis through an asymmetric dark matter scenario, in which generation
of related asymmetries in the dark matter and baryon sectors is driven by the SU(2)` instantons during a first
order phase transition in the early universe.

I. INTRODUCTION

Evidence for the existence of dark matter (DM) composing roughly 25% of the matter in the Universe is extremely compelling
and includes measurements of galactic rotation curves, gravitational lensing, cosmic microwave background anisotropy and X-
ray emission from elliptical galaxies. The Standard Model (SM) of particle physics in its current form does not account for the
presence of DM. However, if DM couples appreciably to visible matter, it is reasonable to expect that it represents an extension
of the SM built on similar principles, i.e. those of a gauge theory. One such possibility is to postulate a larger gauge symmetry
group. Ideally, one would like this expanded symmetry to play a role in explaining why DM is stable on the scale of the age of
the Universe, such that it does not decay into SM states.

Another problem associated with the SM is its inability to explain the current matter-antimatter asymmetry of the Universe.
Two of the Sakharov conditions [1], the requirement of a first order phase transition and sufficient amount of CP violation, are
likely not fulfilled in the SM alone. There are many ideas for how to fix this by introducing new fields in the theory. Similarly
to the approach used for the DM problem, one class of potential solutions relies on extensions of the Standard Model gauge
group. For example, it was shown [2] that the breakdown of a new gauge group can overcome the SM difficulties and provide a
framework for successful baryogenesis.

It is tempting to combine these ideas, positing that the DM interactions with the SM are responsible both for generating its
abundance as well as generating the observed baryon asymmetry. This is the philosophy behind asymmetric dark matter (ADM)
models [3–8], in which the DM and baryon asymmetries are intimately related. A typical feature of these models is that the
natural scale for the DM mass is ∼ GeV, which requires light messengers in order to realize a large enough DM annihilation
cross section to annihilate away the symmetric component. In this paper we construct an ADM model that naturally contains
such particles.

As a starting point it is natural to consider gauged extensions of the SM global symmetries. The possibility of gauging lepton
and baryon number was considered in [9–14]. Unfortunately, models based on this approach offer only a limited possibility
of explaining the primordial baryon asymmetry [15–17]. More recently, a baryogenesis mechanism based on a non-Abelian
extension of the SM baryon number and color in SU(4) gauge group was proposed in [18, 19]. Such an extension successfully
unifies DM with the SM baryons, but ultimately relies on unspecified UV physics represented by higher-dimensional operators
to generate the asymmetry.

In this paper we follow the general approach of [19] and extend the SM gauge group by an additional SU(2)` gauge symmetry
under which the SM leptons transform nontrivially, promoting them to SU(2)` doublets along with additional partner fields. A
lepton number assignment is extended to the partner fields, thus generalizing the SM lepton number. The SU(2)` symmetry is
spontaneously broken via a vacuum expectation value (vev) of a new leptonic Higgs field Φ. All new matter fields introduced in
the model obtain vector-like masses after SU(2)` breaking. The lightest of these particles will be stable due to residual global
symmetries and provides a dark matter candidate of ADM framework. During the SU(2)` phase transition, SU(2)` sphalerons
generate both DM and lepton number, with the latter later converted to baryon number by electroweak sphalerons. A similar use
of sphalerons is described in the aidnogenesis scenario [20].

II. MODEL

We extend the gauge symmetry of the Standard Model to:

SU(3)c × SU(2)W × U(1)Y × SU(2)` . (1)
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Field SU(2)` SU(2)W U(1)Y

l̂L =

(
lL

l̃L

)
2 2 −1/2

êR =

(
eR

ẽR

)
2 1 −1

ν̂R =

(
νR

ν̃R

)
2 1 0

l′R 1 2 −1/2

e′L 1 1 −1

ν′L 1 1 0

Φ1,Φ2 2 1 0

TABLE I: Fields and their representations under the gauge symmetries SU(2)` × SU(2)W × U(1)Y .

The SM leptons reside in upper components of SU(2)` doublets, while the new fermions (denoted by a tilde) reside in lower
components of SU(2)` doublets:

l̂L ≡
(
lL
l̃L

)
, êR ≡

(
eR
ẽR

)
, ν̂R ≡

(
νR
ν̃R

)
. (2)

To maintain cancellation of SU(2)W × U(1)Y anomalies and allow new fermions to acquire Dirac masses after SU(2)` sym-
metry breaking we also introduce a set of leptons that are neutral under SU(2)`,

l′R, e′L, ν′L . (3)

Finally, we introduce two Higgs doublets charged under SU(2)`. The second doublet allows us to introduce two ingredients
necessary for a realistic ADM model: sufficient CP violation to catalyze the production of an adequate baryon asymmetry to
match observation, and an annihilation channel allowing for a sufficient annihilation of the symmetric component of the DM.
The quantum numbers for all the relevant particles, including two SU(2)` Higgs doublets (discussed below) are summarized in
Table I.

To allow for a spontaneous breaking of SU(2)`, we introduce the following scalar potential for SU(2)` doublets Φi:

V (Φ1,Φ2) = m2
1|Φ1|2 +m2

2|Φ2|2 + (m2
12Φ†1Φ2 + h.c.) + λ1|Φ1|4 + λ2|Φ2|4 + λ3|Φ1|2|Φ2|2

+λ4|Φ†1Φ2|2 +
[
λ̃5Φ†1Φ2|Φ1|2 + λ̃6Φ†1Φ2|Φ2|2 + λ̃7(Φ†1Φ2)2 + h.c.

]
(4)

where we have imposed a U(1)1 symmetry (discussed below) to ensure that the dark matter is ultimately stable. In addition,
while we do not explicitly show Φi interactions with the SM Higgs, such interactions are generically present at tree level and
are induced radiatively even if not present. This interaction plays an important role in allowing the lightest component of Φ to
decay through induced mixing with the SM Higgs, with constraints discussed in Sec. IV.

The potential contains four complex parameters: m2
12, λ̃5, λ̃6, and λ̃7. For generic parameters, one phase can be rotated away

by redefining the phase of the combination Φ†1Φ2 (the only combination appearing in the potential), leaving three physical phase
combinations [21].

It is easy to choose parameters so that SU(2)` is completely broken by Φ1,2 vevs. The potential, Eq. (4), is structurally
identical to a two Higgs doublet model (with the global U(1)1 playing the role of the SM’s gauged U(1)Y hypercharge) and
admits a similarly rich array of mass eigenstates for the physical bosons. The vacuum can be parameterized by v` =

√
v2

1 + v2
2

and tanβ = v1/v2, where v1 and v2 are the vevs of the two doublets, respectively, 〈Φ1〉 = 1√
2
(0, v1)T and 〈Φ2〉 = 1√

2
(0, v2)T .

There is a spectrum of five physical scalar Higgs bosons which are mixtures of the original CP-even and CP-odd components of
the doublets Φ1 and Φ2.

The Yukawa interactions consistent with the gauge symmetries are given by

LY =
∑
i

(
Y abl

¯̂
laL Φi l

′b
R + Y abe

¯̂eaR Φi e
′b
L + Y abν

¯̂νaR Φi ν
′b
L

)
+ yabe

¯̂
laLH êbR + yabν

¯̂
laL H̃ ν̂bR + y′

ab
e l̄′

a
R H e′

b
L + y′

ab
ν l̄′

a
R H̃ ν′

b
L + h.c. , (5)



3

Symmetries

Exact & Approximate Lepton Basis Low Energy

Field U(1)1 U(1)2 U(1)′ U(1)1 U(1)L U(1)χ U(1)D U(1)L U(1)χ

l̂L =

(
lL

l̃L

)
0 1 1 0 1 0

−1

1
1 0

êR =

(
eR

ẽR

)
0 1 1 0 1 0

−1

1
1 0

ν̂R =

(
νR

ν̃R

)
0 1 −1 0 0 1

−1

1
0 1

l′R 1 1 1 1 1 0 1 1 0

e′L 1 1 1 1 1 0 1 1 0

ν′L 1 1 −1 1 0 1 1 0 1

Φi, i = 1, 2 −1 0 0 −1 0 0
−2

0
0 0

TABLE II: Charges under global U(1) symmetries. The first two columns represent charges under exact global symmetries of the Lagrangian.
The next four columns represent charges under exact and approximate global symmetries when yν and y′ν can be neglected. The last three
columns represent charges under exact and approximate global symmetries in low energy physics.

where a and b are flavor indices. After electroweak symmetry breaking the Yukawa matrices yabe and yabν lead to the usual lepton
mass matrices (with Dirac neutrino masses). The newly introduced Yukawa matrices Yl, Ye, Yν , y′e are responsible for generation
of Dirac mass terms between the lepton partners and spectators after SU(2)` breaking. In addition, the full mass matrix for new
fields includes mixing between electroweak singlets and doublets induced by the SM Higgs vev:

1√
2

(
ν̃L ν′L

)(Yl v` yνv

y′
†
ν v Y †ν v`

)(
ν′R
ν̃R

)
+

1√
2

(
ẽL e′L

)(Yl v` yev

y′
†
e v Y †e v`

)(
e′R
ẽR

)
+ h.c. , (6)

where each field should be understood as a three-component vector in flavor space, with the Yukawa couplings 3 × 3 complex
matrices, and the vevs v and v` belong to the SM Higgs and the new Higgses, respectively.

The couplings ye and yν are required to reproduce the SM flavor structure, and are thus tiny. If in addition y′ν,ev � Y`,ν,ev`,
there is little mixing between doublets and singlets, and negligible contributions to precision electroweak observables. We find
it convenient to choose parameters in this technically natural regime.

III. BARYOGENESIS

In this section, we discuss the SU(2)` phase transition, which provides the out of equilibrium condition necessary to evolve a
nonzero baryon number.

A. Non-perturbative dynamics

Non-perturbative dynamics lead to simultaneous lepto- and DM-genesis through sphaleron processes during the SU(2)` phase
transition. To understand the generation of lepton and DM numbers during the SU(2)` transition we first need to analyze the
global symmetries of the model. The theory posseses two anomaly-free global U(1) symmetries consistent with the gauge
structure and Yukawa interactions in Eq. (5) (see the first panel of Table II). In a realistic model, neutrino Yukawa couplings
yν and y′ν must be small, therefore an additional approximate global symmetry U(1)′ exists. The U(1)′ global symmetry is
anomalous under SU(2)` and thus will be broken by instanton-generated interactions. For our purposes it is convenient to
construct linear combinations of the U(1)2 and U(1)′ symmetries that will correspond to generalized lepton and DM numbers.
Charge assignments under these symmetries, U(1)L and U(1)χ respectively, are shown in the middle panel of Table II.

The U(1)1 symmetry is spontaneously broken by the Φ1 and Φ2 vevs. However, a global U(1)D subgroup of SU(2)`×U(1)1

survives. This unbroken U(1)D is a diagonal combination of the U(1)1 and the U(1) group generated by the τ3 generator of
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SU(2)`. The charges of the fields in the low energy theory are shown in the last panel of Table II. Note that the charges of
light fields under U(1)D are given by the sum of lepton and DM charges and thus U(1)D is not visible in low energy physics.
However, U(1)D distinguishes between the SM leptons and new particles and thus will be responsible for the stability of the
DM.

Both U(1)L and U(1)χ are individually anomalous under SU(2)` interactions. On the other hand, the sum of lepton and
DM numbers will be conserved since it corresponds to an anomaly free U(1)2 symmetry. This means that SU(2)` instantons
generate effective interactions in low energy theories that break U(1)L and U(1)χ individually while conserving the sum of
the two charges, L + χ. For illustrative purposes, it is convenient to consider a one flavor toy model. The SU(2)` instantons
generate an effective 4-fermion interaction that involves all of the doublets of SU(2)`. Applying results from [22], the one-family
sphalerons can be represented as a dimension six operator,

Oeff ∼ εij

[
(liL · ν̄R)(ljL · ēR)− (liL · ν̄R)(l̃jL · ¯̃eR) + (liL · l̃

j
L)(ν̄R · ¯̃eR)

− (liL · l̃
j
L)(¯̃νR · ēR) + (l̃iL · ¯̃νR)(l̃jL · ¯̃eR)− (l̃iL · ¯̃νR)(ljL · ēR)

]
, (7)

where the dots denote Lorentz contractions, i, j are SU(2)W indices and the SU(2)` indices have been expanded out.
It is easy to see that instanton-induced interactions in Eq. (7) violate lepton and DM numbers by ∆L = −1 and ∆χ = 1

respectively. Consider, for example, the last term in Eq. (7). It is responsible for processes νL ẽL → ν̃R eR and ν̃L eL → ν̃R eR.
Since lL, l̃L, eR, ẽR have L = 1 while νR, ν̃R have χ = 1, the instanton-induced interactions violate lepton and DM numbers by
∆L = −1 and ∆χ = 1.

The generalization to the three generation model is straightforward, leading to a 12 fermion operator. At zero temperature
the instanton operator is exponentially suppressed, but at high temperatures the SU(2)` symmetry is restored, and lepton- and
DM-number violating interactions are unsuppressed. The combined effect of all instanton-induced interactions (7) is calculated
by numerically solving the diffusion equations (see Sec. III B 2).

One might be worried that the lepton and DM numbers will be immediately washed out since both U(1)L and U(1)χ are
explicitly broken by Yukawa interactions. However, the right-handed neutrinos and their partners reach chemical equilibrium
long after the SU(2)` phase transition because of the smallness of their Yukawa couplings. In the case of the SM neutrinos, this
is implied by the small observed neutrino masses. In the case of the neutrino partners, this requires Γ(H ↔ `′ν′) be much less
than the Hubble scale at the SU(2)` phase transition, which will be satisfied provided y′ν . 10−6 for u ∼ TeV. As a result both
the lepton and DM number asymmetries survive until the electroweak transition. At that point the electroweak sphalerons see
the effective lepton number deficit and transfer it into baryons through the Dirac leptogenesis mechanism [23, 24].

B. Phase transition

1. Finite temperature effective potential

The one-loop effective scalar potential at nonzero temperature can be written schematically in terms of the background field
u as

V (u, T ) = Vtree(u) + V1 loop(u, 0) + Vtemp(u, T ) , (8)

where the first of the individual contributions is the tree-level part,

Vtree(u) = −1

2
m2 u2 +

1

4
λu4 , (9)

where the mass parameter m2 and quartic λ schematically indicate combinations of those parameters from the scalar potential,
Eq. (4). The remaining terms on the right-hand side correspond to the zero temperature Coleman-Weinberg correction and the
one-loop finite temperature contribution.

To calculate the Coleman-Weinberg term, we implement the cut-off regularization scheme and assume that the minimum of
the one-loop potential and the SU(2)` Higgs mass are the same as their tree-level values (see, e.g. [25]). The zero-temperature
one-loop correction takes the form,

V1 loop(u) =
1

64π2

∑
i

ni

{
m4
i (u)

[
log

(
m2
i (u)

m2
i (v`)

)
− 3

2

]
+ 2m2

i (u)m2
i (v`)

}
, (10)

where the sum is over all particles charged under SU(2)` and ni denoted the number of degrees of freedom, with an extra minus
sign for the fermions.
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FIG. 1: Plot of the finite temperature effective potential V (u, Tc) for v` = 2 TeV, λ1 = 2 × 10−3, g` = 1 and Tc = 200 GeV.

Using the well-known formula for the one-loop finite temperature correction [25], the temperature-dependent piece is

Vtemp(u, T ) =
T 4

4π2

∑
i

ni(3∓ 1)

∫ ∞
0

dxx2
[
log
(

1∓ e−
√
x2+m2

i (u)/T 2
)
− log

(
1∓ e−x

)]
. (11)

In the expression above the sum is again over all fields, ni is the number of degrees of freedom including a factor of −1 for
fermions; the minus signs are for bosons whereas the plus signs are for fermions.

At this point, one can analyze the shape of the full effective potential for various temperatures. For successful baryogenesis the
phase transition has to be strongly first order, v`(Tc)/Tc & 1, which favors small values of the effective quartic λ. The constraint
on v` coming from the LEP-II experiment is v` & 1.7 TeV [17]. Finally, the critical temperature of the phase transition should
not be lower than ∼ 175 GeV, in order to occur before the electroweak phase transition. Figure 1 shows the plot of V (u, Tc) for
sample parameter values fulfilling those constraints: g` = 1, v` = 2 TeV and λ = 2× 10−3, leading to Tc ∼ 200 GeV.

2. Bubble nucleation and diffusion equations

A first order phase transition takes place at the critical temperature Tc. Bubbles of true vacuum are nucleated and then expand,
eventually filling the entire universe. Following [2] and denoting the bubble radius by R and the width by Lw, we examine an
ansatz for the bubble profile,

u(r) =
1

2
uc

[
1− tanh

(
r −R
Lw

)]
. (12)

In this case the width of the bubble scales as Lw ∼ 1/T . The expanding bubble is assumed to be large, so that to a good
approximation we can analyze its evolution in one dimension, along the z axis, taken to be perpendicular to the bubble wall. We
place the bubble wall at z = 0 with the broken phase on the z > 0 side. We adopt a bubble wall velocity of vw ≈ 0.05 c.

In the presence of CP violation, the SU(2)` instantons produce lepton and DM number asymmetries. In order to estimate their
magnitude, a set of coupled diffusion equations is solved for particle number densities [2, 26]. Since only leptons are affected
by the presence of the new gauge group, there are 12 relevant equations in our case (see Appendix A) involving the following
particle number densities,

n(l) = n(eL) + n(νL) , n(e) = n(eR) , n(ν) = n(νR) , n(l̃) = n(ẽL) + n(ν̃L) , n(ẽ) = n(ẽR) , n(ν̃) = n(ν̃R) ,

n(l
′
) = n(e′R) + n(ν

′
R) , n(e′) = n(e

′
L) , n(ν′) = n(ν

′
L) , n(h) = n(h+) + n(h0) , n(Φu)= n(Φu1 ) , n(Φd)= n(Φd2) .

(13)

There are nine constraints on the particle number densities corresponding to the Yukawa equilibrium conditions, as well as four
constraints coming from the instanton equilibrium requirement (see Appendix B). However, not all of those constraints are
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FIG. 2: SM lepton and DM particle number densities as a function of the spatial position z assuming the bubble wall located at z = 0.

independent. Only seven of the Yukawa equilibrium conditions and one of the instanton equilibrium conditions are linearly
independent.

The diffusion equations contain diffusion constants for each particle species. For particles charged under the SM, their
magnitude has been estimated in Ref. [27]. Carrying out a similar calculation and taking the SU(2)` gauge coupling to be
g` ≈ 1 we obtain the following estimates,

Dl = Dl̃ ∼ De = Dẽ ∼ Dν = Dν̃ ∼ DΦu = DΦd ∼ 25/T , Dh = Dl′ ∼ 100/T , De′ ∼ Dν′ ∼ 400/T . (14)

Finally, we arrive at four coupled equations for the l, ν̃, φu and h particle number densities,

vw [4n′(l) + 4n′(ν̃)− 2n′(Φu)− n′(h)]− 25

T
[22n′′(l) + 4n′′(ν̃)− 20n′′(Φu)− n′′(h)] = 0 , (15)

vw
[
2n′(l) + n′(Φ

u
)
]
− 25

T
[2n′′(l) + n′′(Φu)] = γ1 θ(Lw − |z|) , (16)

vw
[
−n′(l) + 6n′(ν̃) + n′(Φ

u
)− 3

2 n
′(h)

]
− 25

T

[
−n′′(l) + 6n′′(ν̃) + n′′(Φu)− 3

2 n
′′(h)

]
= γ2 θ(Lw − |z|) , (17)

vw
[

5
2 n
′(h)

]
− 25

T
[13n′′(h)] = 0 , (18)

where the primes denote derivatives with respect to z, and γ1, γ2 are the CP-violating sources for the SU(2)` Higgs induced by
the bubble wall. The values for γ1 and γ2 in the two Higgs doublet model have been derived in [28] and are given by

γi(z) ≈
λ̃7

32π
ΓφiT

m2
12

m3
φi

(T )
∂tzφi, (19)

with λ̃7 and m2
12 free parameters from the scalar potential. One can easily choose parameter values such that γ1 ≈ γ2 ≈

5 × 10−5 GeV4, which yields the observed ratio of the baryon to entropy ratio of ∼ 10−10, as discussed in the subsequent
section.

3. Lepton and dark matter asymmetries

We are interested in the particle number densities corresponding to the conserved global U(1) charges given in Table II, i.e.,

∆L(z) = n(l) + n(l̃) + n(l′) + n(e) + n(ẽ) + n(e′) ,

∆χ(z) = n(ν) + n(ν̃) + n(ν′) . (20)
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Using the equilibrium conditions we arrive at,

∆L(z) = 3
[
n(l) + n(ν̃)− 1

2
n(Φu)− 1

2
n(h)

]
, (21)

and

∆χ(z) =
[
n(l) + n(ν̃)− 1

2
n(Φu) +

1

2
n(h)

]
. (22)

Figure 2 shows the solution of the diffusion equations assuming Tc = 200 GeV and γ1 = γ2 = 5 × 10−5 GeV4. The ratio of
the produced lepton and DM asymmetries is, ∣∣∣∣∆L∆χ

∣∣∣∣ = 3 , (23)

roughly independent of the numerical values of vw, Tc, γ1, and γ2.

4. Baryon asymmetry

The particle number densities in Fig. 2 are normalized to the entropy s ≈ (2π2/45)g∗T
3, with g∗ ∼ 100. For the above set

of parameters, the ratio of the lepton number density and the entropy is roughly ∆L/s ∼ 3 × 10−10. The lepton asymmetry is
nL/s ≈ 3× 10−10.

The SU(2)` instantons shut off after the SU(2)` breaking concludes and the DM asymmetry freezes in. However, above
the electroweak phase transition the SM sphalerons are active and they convert part of the SM lepton asymmetry to a baryon
asymmetry. The baryon asymmetry generated by the sphalerons is [29],

∆B =
28

79
∆L . (24)

This result only slightly depends on the lepton partner masses, with the effect minimized if those masses are below the elec-
troweak scale. The final generated baryon asymmetry to entropy ratio is therefore,

nB
s
≈ 10−10 , (25)

in the correct ballpark to match observations.

IV. DARK MATTER

The DM is a mixed state, largely composed of the lightest ν̃R. Through interactions with the SM Higgs, it picks up a small
component of electroweak doublet,

χL = ν′L + ε ν̃L ,

χR = ν̃R + ε ν′R , (26)

with ε ∼ yνv/(Yνv`)� 1.
In standard ADM models, the baryon and DM asymmetries are of similar size, depending on the exact form of the operators

mediating them. Assuming the DM is relativistic at the decoupling temperature, this implies a DM candidate with a mass at
∼ GeV scale1. In particular, the relation between the DM mass and the relic abundances is given by,

mχ = mp
ΩDM

ΩB

∣∣∣∣∆B∆χ

∣∣∣∣ . (27)

1 We note that it is also possible to realize an ADM scenario with a DM mass of several TeV via Xogenesis [30]. In that case the DM mass is approximately
ten times the decoupling temperature and must be roughly mZ′/2 to have a sufficiently large annihilation cross section.
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FIG. 3: Dark matter annihilation channels to the pseudoscalar component of Φ2.

From Eqs. (23) and (24) we obtain |∆B/∆χ| ≈ 1, which gives,

mχ ' 5 GeV . (28)

A mass of few GeV makes it difficult for the symmetric DM component to efficiently annihilate away, a generic challenge
in ADM scenarios. We circumvent this issue by arranging for a light Higgs boson with ∼ GeV mass into which the DM can
annihilate efficiently. Provided the light scalar has a significant CP-odd component, the Yukawa interactions in Eq. (5) and the
DM content (26) imply that, to leading order in ε, the coupling takes the form,

LDM ≈ Yχ χ̄ γ5φχ . (29)

This provides a natural DM annihilation channel as shown in Fig. 3. Using this interaction we obtain,

(σv)NR =
Y 4
χ m

6
χv

2

6π(2m2
χ −m2

φ)4

(
1−

m2
φ

m2
χ

)5/2

. (30)

Writing the thermally averaged annihilation cross section as 〈σAv〉 = σ0 (T/mχ) where

σ0 =
Y 4
χ m

6
χ

2π(2m2
χ −m2

φ)4

(
1−

m2
φ

m2
χ

)5/2

, (31)

the present energy density of the symmetric component of the DM particles is [31, 32],

Ωχh
2 '

(
1.75× 10−10

GeV2

)
1

σ0
√
g∗

(
mχ

Tf

)2

, (32)

where Tf is the freeze-out temperature and g∗ is the number of relativistic degrees of freedom. For mφ ≈ 1 GeV, the remnant
symmetric component will be subdominant to the asymmetric component produced by the SU(2)` phase transition provided the
Yukawa coupling satisfies,

Yν & 0.1 . (33)

Light scalar bosons of mass ∼ GeV are somewhat unexpected from a potential whose overall energy scale is characterized by
v` ∼ TeV. However, they can be realized provided the quartics are all small (which is also favored by the need for a strongly first
order phase transition) and/or tanβ is large, indicating that v1 � v2. While a detailed analysis of the scalar sector is beyond
the scope of this work, it is a generic prediction that there will be light (∼ GeV) scalar particles with weak (∼ 10−3) couplings
to leptons. Such particles are typically not currently constrained by low energy experiments, but may be accessible in the future
[33].

The coupling of φ to the SM Higgs via λ|Φ|2|H|2 terms in the scalar potential allows for thermal equilibrium between φ and
the SM provided Γ(φ → µµ̄) is greater than the expansion rate at temperatures T ∼ 1 GeV. This holds true for λ & 10−6.
While the level of scalar mixing corresponding to the lower limit is too small to be observable at the LHC, larger values could
be detectable.

The primary mediator for dark matter scattering with heavy nuclei is the Z ′ gauge boson, which does not interact with quarks
and therefore does not appear in tree-level DM direct detection diagrams (though contributions do appear at one loop). As a
result, the corresponding bound on v` set by the null search results from the CDMSlite experiment [34] is much less stringent
than the collider constraint from LEP-II of v` & 1.7 TeV. The DM direct detection diagrams involving the SM gauge bosons
are shown in Fig. 4. The calculation of the spin-independent direct detection cross section closely follows the results of [19]
for the electroweak diagrams, which, combined with the CDMSlite bounds, provides an upper limit on the doublet admixture
parameter ε . 0.3, consistent with the assumption that y′ν,ev � Y`,ν,ev`.
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FIG. 4: Diagrams contributing to DM interacting with quarks.

V. CONCLUSIONS

We have investigated a novel extension of the Standard Model, in which SU(3) × SU(2) × U(1) is supplemented by a
non-Abelian gauge group SU(2)`, in which the leptons are promoted to doublets by introducing lepton partner fermions. The
doublet partners pair up with extra SU(2)` singlet fields needed to cancel the anomalies and develop vector-like masses after
SU(2)` breaking. We find that the global symmetries produce a viable dark matter candidate, which is the lightest of the lepton
partners and stable due to a residual U(1)χ global symmetry. In addition, it can explain baryogenesis through the breakdown of
the new gauge group and naturally fits into an asymmetric dark matter framework.

We explicitly analyze the details of the dynamics of SU(2)` phase transition, during which nonperturbative interactions
mediated by SU(2)` instantons violate both lepton and dark matter numbers, leading to a correlated asymmetry in both sectors.
We find that the wide (and relatively unconnected to electroweak observables) parameter space easily allows for a first order
phase transition with sufficient asymmetry generated in the leptons to lead (through the electroweak sphalerons) to a baryon
asymmetry in line with observation. Provided the mass of the dark matter is a few GeV, its correlated abundance will also match
cosmological observations.

Both the lepton partners and the additional neutral gauge bosons are colorless, and thus are not efficiently produced at the
LHC. The most stringent constraints are bounds on the Z ′, which contributes to e+e− at LEP-II. It would be interesting to see
how a future high energy e+e− collider could shed light on such a scenario, and whether it could preclude enough of parameter
space to say something definitive about its potential realization as the mechanism for baryogenesis.

It is also of interest to explore similar extensions of the Standard Model based on generalizations of baryon number. This is
currently work in progress [35].

Acknowledgments

This research was supported in part by the NSF grant PHY-1316792. BF also acknowledges partial support from the DOE
grant DE-SC0009919 and is grateful to the Institute of Advanced Studies at the Nanyang Technological University in Singapore
for hospitality during the completion of this work. TMPT is grateful for helpful conversations with M. Buckley, Y. Kahn, G.
Krnjaic, M. Perelstein, M. Peskin, and C.E.M. Wagner.

Appendix A: Diffusion equations

The rates at which the particle densities change are described by 12 diffusion equations. We denote the common rates for
the SU(2)` instanton induced interactions by Γ. Neglecting the neutrino and neutrino partner Yukawas, the equations for the
particle number densities n(l), n(l̃), n(l′) are given in simplified notation (all particle number densities labeled by their species,
e.g. ˜̀≡ n(˜̀)) by,

l̇ −Dl∇2l = −Γ
[
4l + 2l̃ − 4(ν + e)− 2(ν̃ + ẽ)

]
− ΓYl

(
l

2
− Φu

2
− l′

2

)
− Γye

(
l

2
− h

4
− e
)
, (A1)

˙̃
l −Dl̃∇

2 l̃ = −Γ
[
4l̃ + 2l − 4(ν̃ + ẽ)− 2(ν + e)

]
− ΓYl

(
l̃

2
− Φd

2
− l′

2

)
− Γye

(
l̃

2
− h

4
− ẽ

)
, (A2)

l̇′ −Dl′∇2l′ = −Γy′e

(
l′

2
− h

4
− e′

)
+ ΓYl

(
l

2
− Φu

2
− l′

2

)
+ ΓYl

(
l̃

2
− Φd

2
− l′

2

)
. (A3)
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For ν, ν̃, ν′,

ν̇ −Dν∇2ν = − ΓYν

(
ν − Φu

2
− ν′

)
− Γ

(
3ν̃ + ẽ+ 2e− l − 2l̃

)
, (A4)

˙̃ν −Dν̃∇2ν̃ = − ΓYν

(
ν̃ − Φd

2
− ν′

)
− Γ

(
3ν + e+ 2ẽ− l̃ − 2l

)
, (A5)

ν̇′ −Dν′∇2ν′ = ΓYν

(
ν − Φu

2
− ν′

)
+ ΓYν

(
ν̃ − Φd

2
− ν′

)
. (A6)

For e, ẽ, e′,

ė−De∇2e = − ΓYe

(
e− Φu

2
− e′

)
+ Γye

(
l

2
− h

4
− e
)
− Γ

(
3ẽ+ ν̃ + 2ν − l − 2l̃

)
, (A7)

˙̃e−Dẽ∇2ẽ = − ΓYe

(
ẽ− Φd

2
− e′

)
+ Γye

(
l̃

2
− h

4
− ẽ

)
− Γ

(
3e+ ν + 2ν̃ − l̃ − 2l

)
, (A8)

ė′ −De′∇2e′ = Γy′e

(
l′

2
− h

4
− e′

)
+ ΓYe

(
e− Φu

2
− e′

)
+ ΓYe

(
ẽ− Φd

2
− e′

)
. (A9)

Finally, for the particle number densities Φu,Φd and h,

Φ̇u −DΦu∇2Φu = γ1 + ΓYl

(
l

2
− Φu

2
− l′

2

)
+ ΓYν

(
ν − Φu

2
− ν′

)
+ ΓYe

(
e− Φu

2
− e′

)
, (A10)

Φ̇d −DΦd∇2Φd = γ2 + ΓYl

(
l̃

2
− Φd

2
− l′

2

)
+ ΓYν

(
ν̃ − Φd

2
− ν′

)
+ ΓYe

(
ẽ− Φd

2
− e′

)
, (A11)

ḣ−Dh∇2h = Γye

(
l

2
− h

4
− e
)

+ Γye

(
l̃

2
− h

4
− ẽ

)
− Γy′e

(
l′

2
− h

4
− e′

)
. (A12)

where γ1 and γ2 are the CP-violating sources.

Appendix B: Constraints on particle number densities

The equilibrium conditions emerging from the Yukawa terms are,

l

2
− Φu

2
− l′

2
= 0 ,

l̃

2
− Φd

2
− l′

2
= 0 , ν − Φu

2
− ν′ = 0 , ν̃ − Φd

2
− ν′ = 0 ,

e− Φu

2
− e′ = 0 , ẽ− Φd

2
− e′ = 0 ,

l

2
− h

4
− e = 0 ,

l̃

2
− h

4
− ẽ = 0 ,

l′

2
− h

4
− e′ = 0 . (B1)

And those from the instanton-induced interactions can be written as,

l − ν − e = 0 ,
l

2
+
l̃

2
− ν − ẽ = 0 , l̃ − ν̃ − ẽ = 0 ,

l

2
+
l̃

2
− ν̃ − e = 0 . (B2)

As discussed in the main text, two of the Yukawa equilibrium conditions and three of the instanton conditions are linearly
dependent on the others. Therefore, there are only four independent particle number densities. For example one can choose
them to be l, ν̃, h and Φu, in which case the other particle densities are given by,

l̃ = 2ν̃ − h

2
, l′ = l − Φu , ν =

l

2
+
h

4
, ν′ =

l

2
− Φu

2
+
h

4
,

e =
l

2
− h

4
, ẽ = ν̃ − h

2
, e′ =

l

2
− Φu

2
− h

4
, Φd = 2ν̃ − l + Φu − h

2
. (B3)
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