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We calculate the parameters describing elastic I = 1, P -wave ππ scattering using lattice QCD
with 2 + 1 flavors of clover fermions. Our calculation is performed with a pion mass of mπ ≈
320 MeV and a lattice size of L ≈ 3.6 fm. We construct the two-point correlation matrices with
both quark-antiquark and two-hadron interpolating fields using a combination of smeared forward,
sequential and stochastic propagators. The spectra in all relevant irreducible representations for
total momenta |~P | ≤

√
3 2π
L

are extracted with two alternative methods: a variational analysis
as well as multi-exponential matrix fits. We perform an analysis using Lüscher’s formalism for the
energies below the inelastic thresholds, and investigate several phase shift models, including possible
nonresonant contributions. We find that our data are well described by the minimal Breit-Wigner
form, with no statistically significant nonresonant component. In determining the ρ resonance mass
and coupling we compare two different approaches: fitting the individually extracted phase shifts
versus fitting the t-matrix model directly to the energy spectrum. We find that both methods give
consistent results, and at a pion mass of amπ = 0.18295(36)stat obtain gρππ = 5.69(13)stat(16)sys,
amρ = 0.4609(16)stat(14)sys, and amρ/amN = 0.7476(38)stat(23)sys, where the first uncertainty is
statistical and the second is the systematic uncertainty due to the choice of fit ranges.

I. INTRODUCTION

One of the most fascinating phenomena of QCD is the
hadronic spectrum: a complex set of composite particles
arising from the interactions between quarks and gluons.
If we neglect the electromagnetic and weak interactions,
we can distinguish hadrons that are stable, i.e. those that
do not decay via the strong interaction (for example the
pion), and hadrons that are unstable, such as the ρ me-
son.

The ρ meson is an isotriplet of short-lived hadronic
resonances with quantum numbers JPC = 1−−, which
has been observed in multiple decay modes, including ππ
(with a branching ratio of 99.9%), ππππ, KK̄, and πγ [1].
The two most important parameters of the ρ meson are
its resonant mass mρ and its decay width Γρ→ππ. Both
have been studied extensively with lattice QCD [2–18],
but many questions remain open, concerning for example
the detailed dependence on the quark masses, the effects
of Nf = 2 + 1 versus Nf = 2 sea quarks, the coupling to
the KK̄ channel, and the size of discretization errors for
different lattice actions.

The ρ resonance corresponds to a pole in the I = 1 P -
wave ππ scattering amplitude. This scattering amplitude
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plays an important role in many Standard Model pro-
cesses, and its energy dependence must be determined
accurately as part of lattice calculations of matrix ele-
ments involving the ρ [19], such as πγ → ρ(→ ππ) [20, 21]
and B → ρ(→ ππ)`ν̄`.

In this work, we use the Lüscher method to study the
ρ resonance in ππ scattering with lattice QCD. The en-
ergy levels of a two-hadron system in a finite volume are
shifted by the interactions between the hadrons. These
energy shifts are related to the infinite-volume scatter-
ing matrix via the Lüscher quantization condition [22].
The Lüscher method was initially derived for the scat-
tering of spin-0 particles in the rest frame [22], and
was extended to moving frames for the case of scatter-
ing of two particles with equal mass in Refs. [23–25].
Further generalizations to coupled channels, particles of
unequal mass, arbitary spin, and three-particle systems
were given in Refs. [26–30]. Other methods that have
been used to study resonances are the Hamiltionian ef-
fective field theory approach [31], which is similar to the
Lüscher method, the HALQCD approach [32], where the
Nambu-Bethe-Salpeter wave function is calculated and
used to determine a potential between two hadrons, and
the method of Refs. [33–35], which uses a perturbative
interpretation of the mixing of nearby states.

We construct two-point correlation matrices with two
different types of interpolating fields: quark-antiquark in-
terpolators, and two-pion-scattering interpolators. From
these correlation matrices, we extract the energy spec-
trum below the KK̄ and ππππ thresholds using two dif-
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ferent analysis methods: 1) the variational approach, also
known as the generalized eigenvalue problem, and 2),
multi-exponential fits directly to the correlation matrix.
We carefully compare the results from both methods and
estimate the systematic uncertainties associated with the
choice of the fit range.

In our Lüscher analysis of the elastic ππ scattering,
we again compare two different methods: 1) mapping
each individual energy level to a corresponding scatter-
ing phase shift, and then fitting Breit-Wigner-like mod-
els to the results, and 2) fitting the models for the t-
matrix directly to the energy spectrum, as was proposed
in Ref. [36]. In constructing the models, we also allow
for a possible nonresonant contribution.

Our calculation includes Nf = 2 + 1 dynamical quark
flavors, implemented with a clover-improved Wilson ac-
tion. We use a single ensemble of gauge configurations on
a 323 × 96 lattice with a ≈ 0.114 fm, corresponding to a
large physical volume of (3.6 fm)3× (10.9 fm). The calcu-
lation is performed in the isospin limit with a light-quark
mass corresponding to a pion mass of approximately 320
MeV.

The paper is organized as follows: We begin by briefly
reviewing the continuum description of elastic ππ scat-
tering in Sec. II. Section III contains our lattice parame-
ters and includes an analysis of the pion dispersion rela-
tion. Our choice of interpolating fields and the construc-
tion of the two-point correlation matrices are described
in Sec. IV, and the analysis of the energy spectrum is re-
ported in Sec. V. The formalism of the Lüscher analysis
is reviewed in Sec. VI, while the numerical results for the
scattering phase shifts and resonance parameters are dis-
cussed in Sec. VII.In Sec. VII we also present a detailed
comparison with previous lattice calculations and discuss
systematic uncertainties. We conclude in Sec. VIII.

II. ABOUT ππ SCATTERING

In this section we briefly review the formalism describ-
ing elastic ππ P -wave scattering in the I(JPC) = 1(1−−)
channel in the continuum [37].

We express the 1× 1 elastic scattering ’‘matrix” as

S`(s) = 1 + 2i t`(s), (1)

where t` is the t-matrix (also known as the scattering
amplitude), which depends on the invariant mass s of
the system, and ` is the partial wave of the scattering
channel. The t` matrix is related to the scattering phase
shift δ` via

t`(s) =
1

cot δ`(s)− i
. (2)

A resonant contribution to t`(s) can be described1 by a

1 Note that a typical Breit-Wigner model does not work for very
broad resonance such as the σ and κ scalar resonances [38].

Breit-Wigner (BW) form,

t`(s) =

√
sΓ(s)

m2
R − s− i

√
sΓ(s)

, (3)

which corresponds to the phase shift

δ`(s) = arctan

√
sΓ(s)

m2
R − s

. (4)

In this work, we consider two different forms for the ` = 1
decay width Γ(s):

• BW I: P -wave decay width:

ΓI(s) =
g2
ρππ

6π

k3

s
, (5)

where gρππ is the coupling between the ππ scatter-
ing channel and the ρ resonance, and k is the scat-
tering momentum defined via

√
s = 2

√
m2
π + k2.

This form was used in most previous lattice QCD
studies.

• BW II: P -wave decay width modified with Blatt-
Weisskopf barrier factors [39]:

ΓII(s) =
g2
ρππ

6π

k3

s

1 + (kRr0)2

1 + (kr0)2
, (6)

where kR is the scattering momentum at the reso-
nance position and r0 is the radius of the centrifugal
barrier.

In certain cases, for example in P -wave Nπ scattering,
the phase shift is known to receive both resonant and
nonresonant (NR) contributions [40]. We also allow for
this possibilty in our analysis of ππ scattering and write
the full P -wave phase shift as

δ1(s) = δBW1 (s) + δNR1 (s). (7)

We investigate three different models for a nonresonant
background contribution δNR1 :

• NR I: a constant nonresonant phase A:

δNR1 (s) = A. (8)

• NR II: a nonresonant phase depending linearly on
s:

δNR1 (s) = A+Bs, (9)

where A and B are free parameters.

• NR III: zeroth order nonresonant effective-range
expansion (ERE):

δNR1 (s) = arccot
2a−1

1√
s− sthres

, (10)

where a−1
1 is the inverse scattering length and

sthres = 4m2
π is the ππ threshold invariant mass.
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III. LATTICE PARAMETERS

A. Gauge Ensemble

The parameters of the lattice gauge-field ensemble are
given in Table I. The gluon action is a tadpole-improved
tree-level Symanzik action [41–44]. We use the same
clover-improved Wilson action [45, 46] for the sea and
valence quarks. The gauge links in the fermion action are
smeared using one level of stout smearing [47] with sta-
ple weight ρ = 0.125 (the smearing smoothes out short-
distance fluctuations and alleviates instabilities associ-
ated with low quark masses). The lattice scale reported
in Table I was determined from the Υ(2S)−Υ(1S) split-
ting [48, 49] calculated with NRQCD [50] at the physical
b-quark mass. The strange-quark mass is consistent with
its physical value as indicated by the ’‘ηs” mass [48, 51].

C13

N3
L ×NT 323 × 96

β 6.1

Nf 2 + 1

csw 1.2493097

amu,d −0.285

ams −0.245

Nconfig 1041

a [fm] 0.11403(77)

L [fm] 3.649(25)

amπ 0.18295(36)

amN 0.6165(23)

amηs 0.3882(19)

mπL 5.865(32)

TABLE I. Details of the gauge-field ensemble. NL and NT
denote the number of lattice points in the spatial and time
directions. The lattice spacing, a, was determined using the
Υ(2S) − Υ(1S) splitting. The ensemble was generated with
Nf = 2 + 1 flavors of sea quarks with bare masses amu,d and
ams, which lead to the given values of amπ, amN , and amηs .
The ηs is an artificial pseudoscalar ss̄ meson that can be used
to tune the strange-quark mass [48, 51]. The uncertainties
given here are statistical only.

B. The pion mass and dispersion relation

To determine the ρ resonance parameters with the
Lüscher method we need to know the pion dispersion
relation. We performed a fit of the pion energies us-
ing the form (aE)2 = (amπ)2 + c2(ap)2 in the range
0 ≤ p2 ≤ 3(2π/L)2, which yields amπ = 0.18295(36)
and c2 = 1.0195(86). Given that c2 is consistent with
1 within 2%, we use the relativistic dispersion relation
(aE)2 = (amπ)2 + (ap)2 in the subsequent analysis.
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(aE)2 = (amπ)2 + c2(ap)2

amπ = 0.18295± 0.00036
c2 = 1.0195 ± 0.0086

π dispersion relation

FIG. 1. Pion dispersion relation. The π mass and speed of
light determined from the dispersion relation are consistent
with a relativistic dispersion relation with the rest frame π
energy.

IV. INTERPOLATING FIELDS AND
TWO-POINT FUNCTIONS

The Lüscher quantization condition relates the infinite-
volume ππ scattering phase shifts to the finite-volume
energy spectrum [22]. The first step in our calculation is
therefore to determine this energy spectrum from appro-
priate two-point correlation functions.

If there were no interactions between the two pions, the
discrete energy levels of the two-pion system in a cubic
lattice of size L would be equal to

E
~P
non−int =

√
m2
π + |~k1|2 +

√
m2
π + |~k2|2, (11)

where

~k1 =
2π

L
~d1, ~k2 =

2π

L
~d2, ~d1, ~d2 ∈ Z3, (12)

and the total momentum is ~P = ~k1 +~k2. In the presence

of interactions, the individual momenta ~k1 and ~k2 are no
longer good quantum numbers, but the total momentum
still is, and takes on the values

~P =
2π

L
~d, ~d ∈ Z3. (13)

We denote the interacting energy levels as

E
~P
n , (14)

where n denotes the n-th state with the given total mo-
mentum (and any other relevant quantum numbers). We
relate these energies to the corresponding center-of-mass
energies

E
~P
n,CM =

√
s~Pn =

√
(E ~P

n )2 − ~P 2, (15)

and define the scattering momentum k
~P
n via√

s~Pn = 2

√
m2
π + (k ~Pn )2. (16)
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Note that k
~P
n is not a lattice momentum, and can take on

continuous (possibly even imaginary) values. The inter-
acting energy levels, and hence the scattering momenta,
depend on the scattering phase shifts, the lattice size L,
and the symmetries of the two-particle system, as de-
scribed by the Lüscher quantization condition and its
generalization to moving frames [22, 24, 25].

We aim to determine the values of the scattering phase
shift δ1(s) for many values of s near the ρ resonance mass.
The fairly large lattice volume we use (L ≈ 3.6 fm) allows
us to obtain a sufficient number of energy levels in the
region of interest from only the single volume combined

with multiple moving frames, ~P . In this work, we use the
moving frames and irreducible representations (Λ) listed
in Table II.

~P [ 2π
L

] Little Group Irrep Λ J

(0, 0, 0) Oh T−1 1−, 3−, . . .

(0, 0, 1) D4h (Dic4) A−2 (A1) 1−, 3−, . . .

(0, 0, 1) D4h (Dic4) E− (E) 1−, 3−, . . .

(0, 1, 1) D2h (Dic2) B−1 (A1) 1−, 3−, . . .

(0, 1, 1) D2h (Dic2) B−2 (B1) 1−, 3−, . . .

(0, 1, 1) D2h (Dic2) B−3 (B2) 1−, 3−, . . .

(1, 1, 1) D3d (Dic3) A−2 (A1) 1−, 3−, . . .

(1, 1, 1) D3d (Dic3) E− (E) 1−, 3−, . . .

TABLE II. The reference frames (i.e., total momenta ~P ), as-
sociated Little Groups, and irreducible representations used
to determine the multi-hadron spectrum in the I(JPC) =
1(1−−) channel. For the Little Groups and irreps with give
both the Schönflies notation and the subduction notation.
Due to a reduction in symmetry, the Little Group irreps Λ
contain not only JP = 1− states, but also higher J , start-
ing with J = 3. In the channel we investigate, the J = 3
contributions have been shown to be negligible [12, 52].

A. Interpolating fields

The spectra in the frames and irreps listed in Table
II are obtained from two-point correlation functions con-
structed using two different types of interpolating fields:
local single-hadron quark-antiquark interpolating fields{
Oq̄q

}
, and two-hadron interpolating fields

{
Oππ

}
. We

choose the quantum numbers JPC = 1−− and I = 1, I3 =

1 (corresponding to the ρ+ resonance2), and write

Oq̄q
(
t, ~P

)
=
∑
~x

d̄(t, ~x) Γu(t, ~x) ei~P ·~x , (17)

Oππ
(
t, ~p1, ~p2

)
=

1√
2

(
π+(t, ~p1)π0(t, ~p2)

− π0(t, ~p1)π+(t, ~p2)
)
, (18)

where ~P = ~p1 + ~p2, and the single-pion interpolators are
given by

π+(t, ~p) =
∑
~x

d̄(t, ~x) γ5 u(t, ~x) ei~p·~x

π0(t, ~p) =
∑
~x

1√
2

(
ū(t, ~x) γ5 u(t, ~x)

− d̄(t, ~x) γ5 d(t, ~x)
)

ei~p·~x .

We do not include quark-antiquark interpolators with
derivatives, as past calculations have shown that such
interpolators do not improve the determination of the
spectrum near the ρ resonance mass region [9].

In Eq. (17), we use two different Γi matrices, namely
γi and γ0γi, to obtain overlap with the I(JPC) = 1(1−−)
quantum numbers. The single-hadron interpolators are
projected to the finite-volume irreps Λ of the Little Group

LG(~P ) for the momentum ~P using

OΛ, ~P
q̄q (t) =

dim(Λ)

NLG(~P )

∑
R̂∈LG(~P )

χΛ(R̂)R̂ Oq̄q(t, ~P ), (19)

where dim(Λ) is the dimension of the irrep, NLG(~P ) is

the order of the Little Group, and χΛ(R̂) is the character

of R̂ ∈ LG(~P ) [53].
The second interpolator type, Eq. (18), is built from

products of two single-pion interpolators, each separately
projected to a definite momentum. In this case, the pro-
jection proceeds through the formula given in Ref. [7]:

OΛ, ~P
ππ (t) =

dim(Λ)

NLG(~P )

∑
R̂∈LG(~P )

χΛ(R̂)

(
π+(t, ~P/2 + R̂~p ) π0(t, ~P/2− R̂~p )

− π0(t, ~P/2 + R̂~p ) π+(t, ~P/2− R̂~p )

)
, (20)

where

~p =
~P

2
+

2π

L
~m, ~m ∈ Z3. (21)

2 Due to the exact isospin symmetry in our lattice QCD calcula-
tion all three isospin components ρ+, ρ−, and ρ0 have the same
properties.
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(An alternative method to construct the interpolators is
the subduction method [54–56], which gives the same
types of interpolators as we find with the projection
method.)

In the following, we use the schematic notation O1

for quark-antiquark interpolators with γi, O2 for quark-
antiquark interpolators with γ0γi, and O3, O4 for two-
pion interpolators with the smallest and second-smallest
possible ~p in the given irrep.

B. Wick contractions

The correlation matrix CΛ, ~P
ij (t) is obtained from the

interpolators defined above as

CΛ, ~P
ij (tf − ti) = 〈OΛ, ~P

i (tf )OΛ, ~P
j (ti)

†〉 , (22)

where ti is the source time and tf is the sink time.
The correlation matrix elements are expressed in terms
of quark propagators by performing the Wick contrac-
tions (i.e., by performing the path integral over the quark
fields in a given gauge-field configuration). The result-
ing quark-flow diagrams are shown in Fig. 2 (for the case
I = 1 considered here, further disconnected diagrams
cancel due to exact isospin symmetry). In this section,
we use the generic notation q̄q for the i = 1, 2 interpola-
tors and ππ for the i = 3, 4 interpolators to describe our
method.

q̄q ππ

q̄q

d̄Γiu d̄Γiu

d̄γ5u

ūγ5u

d̄Γiu

ππ

d̄γ5u

ūγ5u

d̄Γiu

d̄γ5u

ūγ5u

d̄γ5u

ūγ5u

d̄γ5u

ūγ5u

d̄γ5u

ūγ5u

FIG. 2. The Wick contractions corresponding to the corre-
lation matrix elements of type Cq̄q−q̄q, Cππ−q̄q, C

direct
ππ−ππ and

Cbox
ππ−ππ.

The diagrams in Fig. 2 are obtained from point-to-all
propagators (labeled f), sequential propagators (labeled
seq) and stochastic timeslice-to-all propagators (labeled
st). In detail, these propagator types are given as follows:
a. Point-to-all propagator: Writing the quark and

anti-quark fields as ψ(tf , ~x)aα and ψ̄(ti, ~xi)
b
β , where α, β

are spin indices and a, b are color indices, the point-to-all
propagator Sf from the fixed initial point xi = (ti, ~xi) to
any final point xf = (tf , ~xf ) on the lattice is the matrix
element of the inverse of the lattice Dirac operator D:

(~xf , tf) Sf (~xi , ti)

Sf (tf , ~x; ti, ~xi)
ab
αβ = 〈ψ(tf , ~xf )aα ψ̄(ti, ~xi)

b
β〉f

= D−1(tf , ~xf ; ti, ~xi)
ab
αβ . (23)

b. Sequential propagator: The sequential propagator
describes the quark flow through a vertex of a given
flavor and Lorentz structure. It is obtained from a point-
to-all propagator by a second (sequential) inversion on
a source built from the point-to-all propagator with an
inserted vertex at timeslice tseq with spin structure Γ
and momentum insertion ~p:

(~xf , tf) (~xi , ti)Sseq

Γ(~p)

Sseq(tf , ~xf ; tseq, ~p,Γ; ti, ~xi)

=
∑
~xseq

D−1(tf , ~xf ; tseq, ~xseq)

× Γ ei~p·~xseq Sf (tseq, ~xseq; ti, ~xi) . (24)

c. Stochastic timeslice-to-all propagator: The
stochastic timeslice-to-all propagator is defined as the in-
version of the Dirac matrix with a stochastic timeslice
momentum source:

(~xf , tf) (~pi , ti)Sst

Sst(tf , ~xf ; ti, ~xi) =

1

Nsample

Nsample∑
r=1

φrti,~pi(tf , ~xf ) ξr
ti,~0

(ti, ~xi)
† , (25)

where

φrti,~pi = D−1 ξrti,~pi and ξrti,~pi(t, ~x) = δt,ti ei~pi·~x ξrti(~x) .

For each r = 1, . . . , Nsample, ξrti is a spin-color timeslice
vector with independently distributed entries for real and
imaginary part, ξrti(t, ~x)aα ∼ Z2×iZ2, so that the expecta-
tion values with respect to the stochastic noise, denoted
as E

[ ]
, satisfy

E
[
ξrti(t, ~x)aα

]
= 0, (26)

E
[
ξr1ti1 (~x1)a1

α1

(
ξr2ti2 (~x2)a2

α2

)∗]
= δr1,r2 δti1 ,ti2 δ~x1,~x2

, δα1,α2
δa1,a2 . (27)

This technique provides a good way to efficiently evaluate
the box (and box-like) diagrams with reasonable cost.
In addition to time-dilution of the stochastic momentum
source, we also apply spin-dilution to make use of the
efficient one-end-trick [57] in our contractions. In this
case the stochastic sources read

ξrti,~pi,α(t, ~x)bβ = δt,ti δα,β ei~pi·~x ξrti(~x)b, (28)

and the color timeslice vectors ξrti have expectation values
analoguous to those in Eqs. (26) and (27).
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d. Smearing: To enhance the dominance of the lowest
lying states contributing to a correlator we apply source
and sink smearing to the propagator types listed above:
for all inversions of the Dirac matrix we replace D−1 →
W
[
UAPE

]
D−1W

[
UAPE

]†
, where W

[
UAPE

]
denotes the

Wuppertal-smearing operator [58] using an APE-smeared
gauge field [59] with the parameters n = 25, αAPE = 2.5.
Since the source and sink smearing is always understood,
we will not denote it explicitly.

e. Coherent sequential sources: In order to increase
the available statistics for a fixed number of gauge con-
figurations we calculate all correlators for 8 equidistant
source locations separated in time by T/8 and with spa-
tial source coordinates independently and uniformly sam-
pled over the spatial lattice. We then take results from
all source locations and average over them.

To reduce the computational cost for the sequential
propagators, we insert 2 point-to-all propagators into a
single sequential source before inverting the Dirac matrix
on the latter:

Sseq = D−1 ξseq, (29)

ξseq(t, ~x) = Γ ei~p·~x
(
δ
t,t

(0)
i
Sf
(
t
(0)
i , ~x; t

(0)
i , ~xi

)
+ δ

t,t
(1)
i
Sf
(
t
(1)
i , ~x; t

(1)
i , ~xi

))
, (30)

where t
(1)
i = t

(0)
i + T/2 mod T .

The correlation matrix is then built from the propga-
tors listed above as follows:

a. q̄q− q̄q correlators: The typical 2-point correlator
with a single-hadron interpolator at source and sink is
constructed using point-to-all propagators:

Cq̄q−q̄q(tf − ti; ~pf ,Γf ; ~pi,Γi) =

−
∑
~xf

Tr
(
(γ5 Sf (tf , ~xf ; ti, ~xi) γ5)†̃

× Γf Sf (tf , ~xf ; ti, ~xi) Γi
)
ei~pf ·~xf+i~pi·~xi . (31)

Above, ( )†̃ denotes the Hermitian adjoint with respect
to only spin-color indices. We use the convention ~pf =
−~pi.

The direct diagram of the Cππ−ππ correlation function
is the product of two of the previous correlators with
Γi = γ5 = Γf . However, translational invariance allows
only one of the ~xi to be fixed. To perform the sum over
~xi, we use the one-end-trick and define

Cq̄q−q̄q,oet(tf − ti; Γf , ~pf ; Γi, ~pi) =

−
∑
α,β

∑
~xf

(Γiγ5)αβ φti,0,β(tf , ~xf )†̃ γ5 Γf

× φti,~pi,α(tf , ~xf ) ei~pf ·~xf , (32)

where φti,0,β and φti,~pi,α are the spin-diluted stochastic
timeslice-to-all propagators from Eqs. (25) and (28). The
stochastic-sample index r is suppressed for brevity.

b. ππ − q̄q correlators: The only contribution to the
I = 1 correlators with a two-pion interpolator at the
source and a single-hadron interpolator at the sink reads

Cq̄q−ππ(tf − ti; Γf , ~pf ; ~pi1 , ~pi2) =

−
∑
~xf

Tr
(
Sf (tf , ~xf ; ti, ~xi1)†̃ γ5 Γf

× Sseq(tf , ~xf ; ti, ~pi2 ; ti, ~xi1)
)

ei~pf ·~xf+i~pi1 ·~xi1 , (33)

where Sseq is the sequential propagator from Eq.(24).
c. ππ − ππ correlators: The direct diagram in the

lower right panel of Fig. 2 is obtained as the product of
two q̄q − q̄q correlators as

Cdirect
ππ−ππ(tf − ti; ~pf1

, ~pf2
, ~pi1 , ~pi2)

= Cq̄q−q̄q(tf − ti; γ5, ~pf1
; γ5, ~pi1)

× Cq̄q−q̄q,oet(tf − ti; γ5, ~pf2
; γ5, ~pi2) . (34)

The box-type diagram in the lower right panel of Fig. 2
requires point-to-all, sequential, and stochastic propaga-
tors and is calculated in two steps:

Cbox
ππ−ππ(tf − ti, ~pf1

, ~pf2
, ~pi1 , ~pi2) =

− 1

Nsample

Nsample∑
r=1

∑
α,a

ηrφ
(
tf , ti; ~pf1 ; ~xi1

)a
α

× ηrξ
(
tf , ti; ~pf2

, ~pi2 ; ~xi1
)a
α

ei~pi1 ·~xi1 , (35)

where

ηrξ
(
tf , ti; ~pf2 , ~pi2 ; ~xi1

)
=
∑
~xf2

ξrtf (tf , ~xf2)†̃ γ5

× Sseq
(
tf , ~xf2 ; ti, ~pi2 ; ti, ~xi1

)
ei~pf2 ·~xf2 (36)

and

ηrφ
(
tf , ti; ~pf1 ; ~xi1

)
=
∑
~xf1

Sf (tf , ~xf1 ; ti, ~xi1)†̃

× φrtf ,0(tf , ~xf1) ei~pf1 ·~xf1 . (37)

In Eqs. (35), (36) and (37) we used γ5-Hermiticity of the
quark propagator as well as Γi1/2

= γ5 = Γf1/2
.

The ππ-ππ elements of the correlation matrix are con-
structed as

Cππ−ππ(tf − ti; ~pf1
, ~pf2

, ~pi1 , ~pi2) =

1

2
Cdirect
ππ−ππ(tf − ti; ~pf1

, ~pf2
, ~pi1 , ~pi2)

− Cbox
ππ−ππ(tf − ti; ~pf1 , ~pf2 , ~pi1 , ~pi2). (38)

V. SPECTRUM RESULTS

We extract the energy levels EΛ, ~P
n from the correla-

tion matrices using two alternative methods. The first
method, discussed in Sec. V A, is the variational anal-
ysis, also known as the generalized eigenvalue problem
(GEVP). The second method, discussed in Sec. V B, em-
ploys multi-exponential fits directly to the correlation
matrix.
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A. Variational analysis

The generalized eigenvalue problem is defined as

CΛ, ~P
ij (t)unj (t) = λn(t, t0)CΛ, ~P

ij (t0)unj (t), (39)

where t0 is a reference time [60–63]. At large t, the eigen-
values λn(t, t0), which are also referred to as principal
correlators, behave as

λn(t, t0) = e−E
Λ, ~P
n (t−t0). (40)

To determine the energies EΛ, ~P
n , we fit the eigenvalues

either with the single-exponential form of Eq. (40) or
with the two-exponential form

λn(t, t0) = (1−B)e−E
Λ, ~P
n (t−t0) +Be−E

′Λ, ~P
n (t−t0), (41)

which perturbatively includes a small pollution from

higher-lying excited states with energies E
′Λ, ~P
n [61, 62].

We checked the GEVP spectrum for t0/a ∈ [2, 9] and
found that the central values are independent of t0 within
statistical uncertainties. We set t0/a = 3 for our main
analysis, which minimizes the overall statistical noise.
The chosen fit types, fit ranges, corresponding χ2 val-
ues, the energies, and other derived quantities are pre-
sented in Table III. The operator basis used is O1234 in
all irreps except E, where we only use O123 because the
energy level dominantly overlapping with O4 is too far
above the region of interest.

For each quantity y, the first uncertainty given is the
statistical uncertainty, obtained from single-elimination
jackknife. The second uncertainty is the systematic un-
certainty, estimated using the prescription

σsysy = max

(
|y′avg − yavg|,

√
|σ′2y − σ2

y|
)
, (42)

where yavg and σy are the central value and statistical
uncertainty for the chosen fit range specificed in Table
III, and y′avg, σ

′
y are the central value and statistical un-

certainty obtained with tmin/a increased by 1.

B. Matrix fit analysis

The spectral decomposition of the correlation matrix
(neglecting the finite time extent of the lattice) reads

CΛ, ~P
ij (t) =

∞∑
n=1

〈0|Oi|n,Λ, ~P 〉〈n,Λ, ~P |O†j |0〉e
−EΛ, ~P

n t, (43)

where |n,Λ, ~P 〉 is the n-th energy eigenstate with the
given quantum numbers. We defined the interpolating

fields Oi such that the entire correlation matrix CΛ, ~P
ij (t)

is real-valued (in the infinite- statistics limit); this is pos-
sible because of charge-conjugation symmetry. Conse-

quently, the overlap factors Zi, n = 〈0|Oi|n,Λ, ~P 〉 can

also be chosen as real-valued. In the matrix fit analysis,
we directly fit the correlation matrix for tmin ≤ t ≤ tmax
using the model

CΛ, ~P
ij (t) ≈

Nstates∑
n=1

Zi, n Zj, n e−E
Λ, ~P
n t, (44)

where tmin has to be chosen large enough such that con-
tributions from n > Nstates become negligible. For an
m×m correlation matrix, this model has Nstates×(m+1)
parameters. To ensure that the energies returned from
the fit are ordered, we used the logarithms of the en-

ergy differences, lΛ,
~P

n = ln
(
aEΛ, ~P

n − aEΛ, ~P
n−1

)
, instead of

aEΛ, ~P
n (for n > 1) as parameters in the fit. To simplify

the task of finding suitable start values for the iterative
χ2-minimization process, we also rewrote the overlap pa-
rameters as Zi, n = Bi, nZi with Bi, n = 1 for n equal to
the state with which Oi has the largest overlap. Good
initial guesses for Zi can then be obtained from single-

exponential fits of the form ZiZie
−EΛ, ~P

n t to the diago-

nal elements CΛ, ~P
ii (t) in an intermediate time window in

which the n-th state dominates, and the start values of
Bi, n can be set to zero. An example matrix fit is shown
in Fig. 3.

In the matrix fits, we excluded the interpolating fields
O2, which are very similar to O1 and did not provide

useful additional information. For each (Λ, ~P ), we per-
formed either 3 × 3 matrix fits (including O1, O3, O4)
with Nstates = 3 or 2 × 2 matrix fits (including O1 and
O3) with Nstates = 2. We set tmax = 20 and varied tmin.

The matrix fit results for aEΛ, ~P
n are shown as the black

diamonds in the right panels of Figs. 4 and 5. We observe
that the results for all extracted energy levels stabilize for
tmin & 8.

4 8 12 16 20
t/a

10−8

10−7

10−6

10−5

10−4

10−3

10−2

C
A

2
,2
π L

ij

χ2

dof = 1.04

i = 1, j = 1

i = 1, j = 3

i = 1, j = 4

i = 3, j = 3

i = 3, j = 4

i = 4, j = 4

FIG. 3. Sample matrix fit with Nstates = 3 for |~P | = 2π
L
,Λ =

A2 in the range between tmin/a = 8 and tmin/a = 20.
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L
2π
|~P | Λ Basis n Fit range χ2

dof
aEΛ, ~P

n a

√
sΛ, ~P
n δ1 [◦] Included

0 T1 O1234 1 8-18 0.82 0.4588(16)(12) 0.4588(16)(12) 86.0(1.6)(1.2) Yes

0 T1 O1234 2 8-18 0.66 0.5467(16)(9) 0.5467(16)(9) 166.5(2.1)(1.3) Yes

0 T1 O1234 3 7-15 1.54 0.6713(41)(104) 0.6713(41)(104) 172.9(4.7)(168.1) No

1 A2 O1234 1 8-18 0.61 0.44536(73)(23) 0.39974(82)(25) 2.81(25)(9) Yes

1 A2 O1234 2 8-18 1.04 0.5124(20)(17) 0.4732(22)(18) 131.3(1.9)(1.6) Yes

1 A2 O1234 3 9-16 0.69 0.5983(31)(37) 0.5652(33)(39) 6.1(7.1)(8.3) No

1 E O123 1 8-18 1.43 0.5004(18)(14) 0.4603(20)(16) 93.7(1.7)(1.3) Yes

1 E O123 2 8-17 1.37 0.6136(25)(24) 0.58134(27)(26) 166.3(2.8)(2.7) Yes√
2 B1 O1234 1 8-18 1.23 0.5041(13)(10) 0.4207(16)(12) 8.84(89)(68) Yes√
2 B1 O1234 2 8-17 1.09 0.5557(26)(27) 0.4814(30)(31) 144.9(2.3)(2.4) Yes√
2 B2 O1234 1 8-18 0.56 0.5189(15)(11) 0.4384(18)(13) 19.9(1.7)(1.2) Yes√
2 B2 O1234 2 8-18 1.18 0.5634(26)(23) 0.4902(30)(27) 152.0(2.6)(2.4) Yes√
2 B2 O1234 3 8-16 1.28 0.6717(40)(49) 0.6116(44)(54) 158(14)(17) No√
2 B3 O1234 1 9-18 0.97 0.5376(38)(34) 0.4603(45)(39) 99.1(3.5)(3.1) Yes√
2 B3 O1234 2 9-18 1.15 0.6573(43)(49) 0.5958(48)(54) 174(15)(172) No√
2 B3 O1234 3 8-14 0.82 0.6780(67)(88) 0.6185(74)(96) 167.0(5.6)(6.9) No√
3 A2 O1234 1 8-18 0.68 0.5538(35)(49) 0.4371(44)(62) 15.5(3.4)(4.8) Yes√
3 A2 O1234 2 8-16 1.41 0.5905(35)(39) 0.4827(43)(48) 149(11)(13) Yes√
3 A2 O1234 3 8-16 1.10 0.6093(49)(50) 0.5055(59)(60) 156.5(7.5)(14.4) No√
3 E O123 1 8-16 0.71 0.5641(37)(41) 0.4501(47)(50) 44.4(5.0)(5.3) Yes√
3 E O123 2 7-16 0.72 0.6195(33)(54) 0.5178(39)(64) 160.6(3.3)(5.4) Yes

TABLE III. GEVP results for the energy levels. We set t0/a = 3 and use the one-exponential form in Eq. (40) to fit the

principal correlators. Also shown are the corresponding center-of-mass energy

√
sΛ, ~P
n and extracted phase shift δ1

(√
sΛ, ~P
n

)
.

The last column indicates whether the energy level is used our global analysis of ππ scattering (see Sec. VII).

C. Comparison between GEVP and MFA

The results obtained from the GEVP and the MFA
are compared in Figs. 4 and 5. The left panels show the
effective energy

aEneff (t) = ln
λn(t, t0)

λn(t+ a, t0)
(45)

of the GEVP principal correlators, while the right panes
show the fit results aEnfit from both the GEVP and the

MFA as a function of tmin (we did not find any signifi-
cant dependence on tmax). For the GEVP, we show both
one- and two-exponential fits using Eqs. (40) and (41).
We find that the one-exponential GEVP fit results are
very similar (both in central value and uncertainty) to
the MFA results, except for the n = 3 energy level of the

|~P | =
√

2 2π
L ,Λ = B1 correlation matrix where the prin-

cipal correlator obtained from the GEVP with the basis
O1234 does not show a plateau and we do not extract
this energy level. Surprisingly, we found that removing
the second quark-antiquark operator O2 from the basis
yields a stable plateau and stable fit results for the n = 3
energy level, as shown in Fig. 6. Note that O2 ∼ q̄γ0γiq
has a very similar structure as O1 ∼ q̄γiq. For n = 1
and n = 2, the one-exponential fit results for the cho-
sen tmin/a = 8 change by less than 0.5σ when removing

O2. We also performed additional GEVP fits with the
reduced basis in all other irreps, and found that none
of the fitted energies changed significantly (in fact, the
reduced basis gives slightly larger uncertainties in most
cases). Given that the n = 3 energy in the B1 irrep is
above the 4π and KK̄ thresholds, we do not use this
energy level in our further analysis.

Finally, we note that the two-exponential fits to the
GEVP principal correlators find plateaus at much smaller
tmin but are significantly noisier compared to the MFA
and one-exponential GEVP fits. Overall, we have shown
that the MFA and GEVP methods are equivalent, and
we use the one-exponential GEVP fit results given in Ta-
ble III in our further analysis. These results are also
indicated with the red bands in Figs. 4 and 5.

VI. THE LÜSCHER ANALYSIS: FORMALISM

Even though we have some energy levels with quite
large invariant mass (see Table III), we limit our energy
region of interest below 0.55a−1 where we are safely away
from the 4π (≈ 0.73) and KK̄ (≈ 0.6) thresholds [64] and
can safely perform the elastic scattering analysis of the
Lüscher method.
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FIG. 4. Comparison between MFA and GEVP for the momentum frames and irreps L
2π
|~P | = 0, 1,

√
2 and Λ = T1, A2, E,B1,

respectively. The green circles on the left panel show the effective energies Eneff determined from the principal correlators. In
the right panel we present the fitted energies as they depend on the choice of tmin. Black diamonds are obtained from MFA,
red squares are obtained from the single exponential fits to the principal correlator [see Eq. (40)], and blue circles are from
two-exponential fits to the principal correlator [see Eq. (41)]. Note that not all two-exponential fits are shown, as they can
become unstable. The red horizontal bands give the 1σ statistical-uncertainty ranges of the selected one-exponential GEVP
fits listed in Table III.

The quantization condition for elastic ππ scattering is

det

(
1 + it`(s)(1 + iM~P )

)
= 0, (46)

where t`(s) is the infinite-volume scattering amplitude,

which is related to the infinite-volume scattering phase

shift δ`(s) via Eq. (2). The matrix M~P has the indices

M~P
lm,l′m′ , where l, l′ label the irreducible representations

of SO(3) and m,m′ are the corresponding row indices.
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FIG. 5. As in Fig. 4, but for L
2π
|~P | =

√
2,
√

3 and Λ = B2, B3, A2, E.

For the case of P -wave ππ scattering, F -wave and higher
contributions are highly suppressed, as was shown in a
previous lattice study [12] and in an analysis of exper-

imental data [52]. Neglecting these contributions, the

matrix M~P takes the form
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FIG. 6. Comparison between MFA and GEVP for the B1 irrep with |~P | =
√

2 2π
L

as in Fig. 4, but with O2 removed from the
basis for the GEVP. The reduced basis gives a better extraction of aE3 compared to the full basis only in this irrep.

M~P =


0 0 1 0 1 1 1 −1

0 0 w00 i
√

3w10 i
√

3w11 i
√

3w1−1

1 0 −i
√

3w10 w00 + 2w20

√
3w21

√
3w2−1

1 1 i
√

3w1−1 −
√

3w2−1 w00 − w20 −
√

6w2−2

1 −1 i
√

3w11 −
√

3w21 −
√

6w22 w00 − w20

, (47)

where the indices lm and l′m′ are indicated next to the
matrix. The functions wlm are equal to

w
~P
lm(k, L) =

Z
~P
lm

(
1; (kL/(2π))2

)
π3/2
√

2l + 1γ(kL2π )l+1
, (48)

where Z
~P
lm(1; (kL2π )2) is the generalized zeta function as

defined for example in Appendix A of Ref. [27], and

γ = E/
√
s is the Lorentz boost factor. The matrix M~P

can be further simplified by taking into account the sym-

metries for a given Little Group (~P ) and its irrep Λ [27].
The quantization condition (46) then reduces to the fol-

lowing equations for each ~P and Λ:



12

~P = 0, Λ = T1:

cot δ1(sΛ, ~P
n ) = w0,0

(
kΛ, ~P
n , L

)
~P =

2π

L
(0, 0, 1), Λ = A2:

cot δ1(sΛ, ~P
n ) = w0,0

(
kΛ, ~P
n , L

)
+ 2w2,0

(
kΛ, ~P
n , L

)
~P =

2π

L
(0, 0, 1), Λ = E:

cot δ1(sΛ, ~P
n ) = w0,0

(
kΛ, ~P
n , L

)
− w2,0

(
kΛ, ~P
n , L

)
~P =

2π

L
(0, 1, 1), Λ = B1:

cot δ1(sΛ, ~P
n ) = w0,0

(
kΛ, ~P
n , L

)
+

1

2
w2,0

(
kΛ, ~P
n , L

)
+ i
√

6w2,1

(
kΛ, ~P
n , L

)
−
√

3

2
w2,2

(
kΛ, ~P
n , L

)
~P =

2π

L
(0, 1, 1), Λ = B2:

cot δ1(sΛ, ~P
n ) = w0,0

(
kΛ, ~P
n , L

)
+

1

2
w2,0

(
kΛ, ~P
n , L

)
− i
√

6w2,1

(
kΛ, ~P
n , L

)
−
√

3

2
w2,2

(
kΛ, ~P
n , L

)
~P =

2π

L
(0, 1, 1), Λ = B3:

cot δ1(sΛ, ~P
n ) = w0,0

(
kΛ, ~P
n , L

)
− w2,0

(
kΛ, ~P
n , L

)
+
√

6w2,2

(
kΛ, ~P
n , L

)
~P =

2π

L
(1, 1, 1), Λ = A2:

cot δ1(sΛ, ~P
n ) = w0,0

(
kΛ, ~P
n , L

)
− i

√
8

3
w2,2

(
kΛ, ~P
n , L

)
−
√

8

3

(
Re
[
w2,1

(
kΛ, ~P
n , L

)]
+ Im

[
w2,1

(
kΛ, ~P
n , L

)])
~P =

2π

L
(1, 1, 1), Λ = E:

cot δ1(sΛ, ~P
n ) = w0,0

(
kΛ, ~P
n , L

)
+ i
√

6w2,2

(
kΛ, ~P
n , L

)
. (49)

The scattering analysis can be performed in two dif-
ferent ways, and in this work we present a comparison
between the methods:

• In the first approach, Eqs. (49) are used to map

each individual energy level (sΛ, ~P
n ) to the cor-

responding value of the scattering phase shift

δ1(sΛ, ~P
n ). One then fits a phase-shift model to the

extracted values of δ1(sΛ, ~P
n ).

• In the second approach, a model for the t-matrix is
fitted directly to the spectrum via the quantization
condition [36]. This method has proven to be quite
successful in recent years [12, 13, 55, 65–68]. Unlike
the first approach, the t-matrix fit method is also
well-suited for more complicated coupled-channel
analyses.

VII. THE LÜSCHER ANALYSIS: RESULTS

A. Direct fits to the phases

Model χ2

dof
amρ gρππ (ar0)2

BW I 0.571 0.4599(19)(13) 5.76(16)(12)

BW II 0.457 0.4600(18)(13) 5.79(16)(12) 8.6(8.0)(1.2)

TABLE IV. Comparison of the parameters for the resonant
Breit-Wigner models I and II.

The discrete P -wave phase shifts determined for sev-

eral ~P ,Λ are listed in Table III next to the invariant
masses. The first uncertainty given is the statistical un-
certainty determined using single-elimination jackknife.
The second uncertainty given is the systematic uncer-
tainty resulting from the choice of tmin in the fits to the
GEVP principal correlators; it is computed by repeat-
ing the extraction of δ with tmin + a, and then applying
Eq. (42) to the two phase shift results.

We then fit the models described in Sec. II to the phase
shift points.

To correctly estimate the uncertainties of the model
parameters, we include the uncertainties in both

√
s and

δ1 in the construction of the χ2 function. To this end,
we define
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FIG. 7. Comparison of fitting Breit-Wigner model BW I
versus fitting Breit-Wigner model BW II to the phase shift
data. The bands indicate the 1σ statistical uncertainty.

Model χ2

dof
amρ gρππ

NR I 0.586 0.4600(19)(13) 5.74(17)(14) A = 0.16(31)(18)◦

NR II 0.488 0.4602(19)(13) 5.84(21)(20) A = −2.9(2.7)(3.4)◦ a−2B = 19.2(16.6)(20.1)◦

NR III 0.552 0.4601(19)(13) 5.74(16)(13) aa−1
1 = −19.8(27.4)(98.1)

TABLE V. Parameters of the phase shift model combining the resonant Breit-Wigner model BW I and various nonresonant
models.

χ2 =
∑
~P ,Λ,n

∑
~P ′,Λ′,n′

∑
i∈
{√

sΛ,
~P

n , δ1(sΛ,
~P

n )

}
∑

j∈
{√

sΛ
′, ~P ′
n′ , δ1(sΛ

′, ~P ′
n′ )

}(yavgi − fi)[C−1]ij(y
avg
j − fj), (50)

where i and j are generalized indices labeling both the
data points for

√
s and δ1. The covariance matrix C is

therefore a 2N × 2N matrix, where N = 15 is the total
number of energy levels included in the fit (see the last
column of Table III). For i corresponding to a

√
s data

point, the function fi is equal to a nuisance parameter√
sΛ, ~P
n ; for i corresponding to a δ1 data point, the func-

tion fi is equal to the phase shift model evaluated at the

corresponding

√
sΛ, ~P
n . The total number of parameters

in the fit is thus equal to N plus the number of parame-
ters in the phase shift model.

When constructing the covariance matrix, we included
the correlations between all invariant-mass values and
the correlations between all phase-shift values. We found
that the covariance matrix becomes ill-conditioned when
including also the cross-correlations between

√
s and δ1

as expected when dealing with fully correlated data. We
therefore neglect these contributions in the evaluation of

χ2. The cross-correlations are nevertheless accounted for
in our estimates of the parameter uncertainties, which
are obtained by jackknife resampling.

The fit of the simplest possible model, BW I, is shown
as the blue curve in Fig. 7 and the resulting parameters
mρ and gρππ are given in the first row of Table IV. As
before, the first uncertainty given is statistical, and the
second uncertainty is the systematic uncertainty arising
from the choice of tmin. To obtain the latter, we repeated
the Breit-Wigner fit for the phase shifts extracted with
tmin + a for all energy levels, and then applied Eq. (42)
to mρ and gρππ. We follow the same procedure for all
other models.

We then investigate the effect of adding the Blatt-
Weisskopf barrier factors [39] to the decay width appear-
ing in the Breit-Wigner parametrization of δ1(s), which
leads to model BW II. The resulting fit is shown as the
red curve in Fig. 7 (alongside the blue BW I curve) and
the resulting parameters are given in the second row of
Table IV. The BW II model appears to give a slightly
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Model χ2

dof
amρ gρππ (ar0)2

NR I 0.470 0.4599(19)(26) 5.83(20)(21) 15.8(23.5)(1825.8) A = −0.28(0.73)(12.56)◦

NR II 0.452 0.4596(20)(14) 5.77(21)(20) 107.0(440.9)(631.0) A = 1.3(4.5)(5.3)◦ a−2B = −19.8(16.0)(17.0)◦

NR III 0.421 0.4595(18)(8) 5.78(20)(9) 109.7(128.7)(117.6) aa−1
1 = 2.4(1.7)(2.4)

TABLE VI. Parameters of the phase shift model combining the resonant Breit-Wigner model BW II and various nonresonant
models.
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better description of the data at high invariant mass, but
the paramaters mρ and gρππ are essentially unchanged.
Furthermore, the centrifugal barrier radius r0 is consis-
tent with zero at the 1.1σ level, indicating that it is not
a very significant degree of freedom. We note that this
could be related to the high pion mass used in our cal-
culation, which limits the phase space available for the
decay and suppresses the centrifugal barrier effect.

We continue by investigating whether there is a nonres-
onant contribution to the scattering phase shift. We first
add a nonresonant contribution to the resonant model
BW I. In Fig. 8 we compare the resonant-only fit (blue
curve) with the full fits for three different forms of the
nonresonant contributions (red curves). For clarity we
also show the nonresonant contributions obtained from
the full fits separately (orange curves). The fit results are
given in Table V. We find that the parameters of each
of the three parametrizations NR I (constant phase),
NR II (a nonresonant phase depending linearly on s),
and NR III (zeroth-order ERE) are consistent with zero,

and the results for mρ and gρππ also do not change sig-
nificantly.

Performing the analoguous analysis for the resonant
model BW II gives the phase shift curves shown in
Fig. 9 and fit parameters in Table VI. Again, the pa-
rameters of the nonresonant contribution are consistent
with zero, and mρ and gρππ do not change significantly.
When adding the nonresonant contributions to the BW
II model, the uncertainty of the centrifugal barrier pa-
rameter r0 increases substantially.

Overall, we find that the minimal resonant model BW
I is sufficient for a good description of our results for the
elastic I = 1 ππ P -wave scattering.

B. Fitting a t-matrix to the spectrum

For the t-matrix fit to the spectrum, we define the χ2

function as

χ2 =
∑
~P ,Λ,n

∑
~P ′,Λ′,n′

(√
sΛ, ~P
n

[avg]

−
√
sΛ, ~P
n

[model])
[C−1]~P ,Λ,n;~P ′,Λ′,n′

(√
sΛ′, ~P ′

n′

[avg]

−
√
sΛ′, ~P ′

n′

[model])
, (51)

where the invariant-mass values

√
sΛ′, ~P ′

n′

[model]

are ob-
tained by solving the inverse Lüscher problem, i.e. deter-
mining the finite-volume spectrum from a given t-matrix
model [12, 36]. Above, C is the matrix of covariances be-

tween all invariant-mass values labeled by ~P ,Λ, n (in our
case, this is a 15 × 15 matrix). The only fit parameters
in this approach are the parameters of the t matrix (for
example, amρ and gρππ for the BW I model).

When fitting the t-matrix directly to the spectrum we
consider only the two resonant models, as results from
Sec. VII A show no indication of a nonresonant phase
contribution. The parameters obtained from the t-matrix
fits are compared to the parameters of the direct fits to
the phase shifts in Table VII. The plots of the models
with parameters from the two different fit approaches
are compared in Fig. 10. The central values and uncer-
tainties obtained with the two methods are consistent,
which confirms previous findings [12, 36] that the two
approaches are equivalent not only theoretically but also
in practice. We note that the values of χ2/dof are gen-
erally quite small. We have tested for the presence of
autocorrelations in the data using binning, but found no
significant effect.

C. Final result for the ρ resonance parameters

Given the discussion in the previous sections, we
choose to quote the results of the t-matrix fit with the
resonant Breit-Wigner model BWI as our final values
of amρ and gρππ for the ensemble of gauge configura-
tions used here [with amπ = 0.18295(36) and amN =
0.6165(23)]:

(
amρ = 0.4609(16)(14) 1.0 0.326

gρππ = 5.69(13)(16) 1.0

)
. (52)

The phase shift curve of our chosen fit is shown in Fig. 11.
Above, the first uncertainties given are statistical, and
the second uncertainties are the systematic uncertainties
related to the choice of tmin in the spectrum analysis.
Also given in Eq. (52) is the statistical correlation matrix
for amρ and gρππ. The exponentially suppressed finite-
volume errors in mρ and gρππ are expected to be of order
O(e−mπL) ≈ 0.3%. Given that we have only one lattice
spacing, we are unable to quantify discretization errors
(except in the pion dispersion relation, Sec. III B, where
we find c2 to be consistent with 1 within 2%). Using
the lattice spacing determined from the Υ(2S) − Υ(1S)
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Fit type χ2

dof
amρ gρππ (ar0)2

BW I Fit to δ1 0.571 0.4599(19)(13) 5.76(16)(12)

BW I t-matrix fit 0.374 0.4609(16)(14) 5.69(13)(16)

BW II Fit to δ1 0.457 0.4600(18)(13) 5.79(16)(12) 8.6(8.0)(1.2)

BW II t-matrix fit 0.318 0.4603(16)(14) 5.77(13)(13) 9.6(5.9)(3.7)

TABLE VII. Comparison of t-matrix fits with direct fits to the phase shifts.
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FIG. 11. Final result of fitting the resonant model BW I to
the spectrum via the t-matrix fit. The gray data points are
the results of the individual phase shift extractions for each
energy level, and are not used in the t-matrix fit.

splitting (see Table I), we obtain

mπ = 316.6(0.6)stat(2.1)a MeV,

mρ = 797.6(2.8)stat(2.4)sys(5.4)a MeV,

gρππ = 5.69(13)stat(16)sys. (53)

It is important to note that the lattice spacing uncer-
tainty given here is statistical only. As a consequence of
the heavier-than-physical pion mass and lattice artefacts,
different quantities used to set the scale of an individual
ensemble yield different results for a and hence for mπ

and mρ in units of MeV. We therefore prefer to report
the dimensionless ratios

amπ

amN
= 0.2968(13)stat,

amρ

amN
= 0.7476(38)stat(23)sys, (54)

in which the lattice scale cancels.
In Fig. 12 we compare our results for the ρ coupling

and mass with the results of previous studies performed
by the CP-PACS collaboration (CP-PACS ’07) [4], the
ETMC collaboration (ETMC ’10) [7], the PACS-CS col-
laboration (PACS-CS ’11) [10], Lang et al. (Lang et al.
’11) [9], the Hadron Spectrum collaboration (HadSpec
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’12 and HadSpec ’15) [12, 13], Pellisier et al. (Pellisier et
al. ’12) [11], the RQCD collaboration (RQCD ’15) [14],
Guo et al. (Guo et al. ’16) [17], Bulava et al. (Bulava
et al. ’16) [15], and Fu et al. (Fu et al. ’16) [18]. In the
right half of the figure, we use the values of mπ and mρ in
MeV as reported in each reference. In the left half of the
figure, we instead use the dimensionless ratios amπ/amN

and amρ/amN , where amπ and amN are the pion and
nucleon masses in lattice units computed on the same en-
semble as amρ. The nucleon masses were obtained from
Refs. [69–76].

We find that our value for the coupling gρππ is in good
agreement with previous studies both as a function of mπ

and amπ/amN . Furthermore, it is consistent with the
general finding that gρππ has no discernible pion-mass
dependence in the region between mπ,phys and approxi-
mately 3mπ,phys.

Concerning the results for the ρ mass, the left and
right panels Fig. 12 show very different behavior. This
discrepancy arises from the different methods used to set
the lattice scale on a single ensemble, which can lead to
misleading conclusions. To avoid the substantial ambigu-
ities associated with the scale setting, we only consider
the dimensionless ratio amρ/amN in the following dis-
cussion.

The Nf = 2 + 1 results for amρ/amN obtained with
Wilson-Clover-based fermion actions all approximately
lie on a straight line leading to the experimental value
(shown as the filled green circle in Fig. 12). The Nf =
2+1 data points using staggered fermions (Fu et al. ’16)
are consistent with that line except for one outlier.

TheNf = 2 results are dispersed around theNf = 2+1
values in both directions. The discrepancies between the
different results could arise from any of several systematic
effects, such as excited-state contamination in the deter-
mination of the ππ spectrum or the nucleon mass, vari-
ous potential issues in fitting the data, and discretization
errors which manifest themselves for example in devia-
tions from the relativistic continuum dispersion relation
for the single-pion energies. Additionally, the Lüscher
method only addresses power-law finite volume effects
and does not take into account the exponentially sup-
pressed finite-volume effects which are estimated to scale
asymptotically as O(e−mπL). Note that for some of the
studies, these can be as high as O(10%) and it is thus not
clear whether the asymptotic regime is reached. An ex-
ample for systematics associated with the pion dispersion
relation can be seen in the CP-PACS ’07 study, where the
two different results for amρ at the same pion mass were
obtained using either the relativistic continuum disper-
sion relation or a free-boson lattice dispersion relation.
An example of systematic effects that might be associ-
ated with the data analysis can be seen when comparing
the Pellisier et al. ’12 results with the Guo et al. ’16 re-
sults at amπ/amN ≈ 0.3. Both studies used the same
ensemble, but arrive at significantly different values for
the ρ resonance parameters.

Keeping these caveats in mind, it is nevertheless in-

teresting to note that our Nf = 2 + 1 results for both
amρ/amN and gρππ agree well with the recent Nf = 2
results from Guo et al. ’16 at almost the same pion mass.
This suggests that the effects of the dynamical strange
quark are small at mπ ≈ 320 MeV. The HadSpec ‘15
study, which explicitly included the KK̄ channel in their
valence sector, provides further evidence that the strange
quark does not play a major role in the ρ resonance mass.

VIII. SUMMARY AND CONCLUSIONS

We have presented a (2 + 1)-flavor lattice QCD calcu-
lation of I = 1, P wave ππ scattering at a pion mass
of approximately 320 MeV. The calculation was per-
formed in a large volume of (3.6 fm)3 × (10.9 fm) and

utilized all irreps of LG(~P ) with total momenta up to

|~P | ≤
√

3 2π
L . Using a method based on forward, se-

quential, and stochastic propagators that scales well with
the volume, we have achieved high statistical precision
(0.35% for amρ and 2.3% for gρππ).

We compared two different methods to determine the
energy spectrum: the generalized eigenvalue problem
(GEVP), and multi-exponential direct matrix fits to the
correlation matrices (MFA). A careful investigation of
the dependence on the fit ranges showed that both ap-
proaches are equally powerful and give consistent results.

After determining the elastic scattering phase shifts
from the spectrum, we analyzed several different mod-
els for the energy dependence of the ππ scattering am-
plitude. We investigated two different Breit-Wigner
forms, one with added Blatt-Weisskopf barrier factors,
and found that the addition of this degree of freedom
was not necessary to describe our data. This could be
due to the higher-than-physical pion mass used in this
work. Additionally, we examined whether there is a non-
resonant contribution to the scattering phase shift, find-
ing that it is consistent with zero within our statistical
uncertainties.

Regarding the technical aspects of the analysis, we also
compared two different ways of determining the scatter-
ing parameters: extracting the discrete phase shift points
from each individual energy level (which is only feasible
for elastic scattering) versus fitting the parameters of the
t-matrix directly to the spectrum (as is also done in mul-
tichannel studies). We have demonstrated numerically
that both methods are equivalent.

In summary, we found that the I = 1, P -wave ππ
scattering at mπ ≈ 320 MeV is well described in the elas-
tic energy region by the minimal resonant Breit-Wigner
model BW I (defined in Sec. II) with the parameters
given in Eq. (52). A comparison with previous lattice
results, shown in Fig. 12, revealed that (i) it is impor-
tant to use dimensionless ratios such as amρ/amN and
amπ/amN to avoid scale setting ambiguities, and (ii)
there are signs of significant systematic errors whose ori-
gins are difficult to disentangle without additional dedi-
cated calculations.
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[28] M. Göckeler, R. Horsley, M. Lage, U. G. Meissner,
P. E. L. Rakow, A. Rusetsky, G. Schierholz, and J. M.
Zanotti, “Scattering phases for meson and baryon res-
onances on general moving-frame lattices,” Phys. Rev.
D86 (2012) 094513, arXiv:1206.4141 [hep-lat].

[29] R. A. Briceño, “Two-particle multichannel systems in a
finite volume with arbitrary spin,” Phys. Rev. D89 no. 7,
(2014) 074507, arXiv:1401.3312 [hep-lat].

[30] R. A. Briceño, M. T. Hansen, and S. R. Sharpe, “Relat-
ing the finite-volume spectrum and the two-and-three-
particle S-matrix for relativistic systems of identical
scalar particles,” arXiv:1701.07465 [hep-lat].

[31] J. M. M. Hall, A. C. P. Hsu, D. B. Leinweber, A. W.
Thomas, and R. D. Young, “Finite-volume matrix Hamil-
tonian model for a ∆ → Nπ system,” Phys. Rev. D87
no. 9, (2013) 094510, arXiv:1303.4157 [hep-lat].

[32] HAL QCD Collaboration, N. Ishii, S. Aoki, T. Doi,
T. Hatsuda, Y. Ikeda, T. Inoue, K. Murano, H. Ne-
mura, and K. Sasaki, “Hadron–hadron interactions from
imaginary-time Nambu–Bethe–Salpeter wave function
on the lattice,” Phys. Lett. B712 (2012) 437–441,
arXiv:1203.3642 [hep-lat].

[33] UKQCD Collaboration, C. McNeile, C. Michael, and
P. Pennanen, “Hybrid meson decay from the lattice,”

http://dx.doi.org/10.1088/1674-1137/40/10/100001
http://dx.doi.org/10.1016/0550-3213(86)90282-8
http://dx.doi.org/10.1016/S0370-2693(03)00130-8
http://arxiv.org/abs/hep-lat/0212020
http://dx.doi.org/10.1103/PhysRevD.76.094506
http://dx.doi.org/10.1103/PhysRevD.76.094506
http://arxiv.org/abs/0708.3705
http://arxiv.org/abs/0810.5337
http://dx.doi.org/10.1103/PhysRevD.80.054510
http://dx.doi.org/10.1103/PhysRevD.80.054510
http://arxiv.org/abs/0906.4720
http://dx.doi.org/10.1103/PhysRevD.83.094505
http://dx.doi.org/10.1103/PhysRevD.83.094505
http://arxiv.org/abs/1011.5288
http://arxiv.org/abs/1011.3413
http://arxiv.org/abs/1011.3413
http://dx.doi.org/10.1103/PhysRevD.89.059903, 10.1103/PhysRevD.84.054503
http://dx.doi.org/10.1103/PhysRevD.89.059903, 10.1103/PhysRevD.84.054503
http://arxiv.org/abs/1105.5636
http://dx.doi.org/10.1103/PhysRevD.84.094505
http://dx.doi.org/10.1103/PhysRevD.84.094505
http://arxiv.org/abs/1106.5365
http://dx.doi.org/10.1103/PhysRevD.87.014503
http://dx.doi.org/10.1103/PhysRevD.87.014503
http://arxiv.org/abs/1211.0092
http://dx.doi.org/10.1103/PhysRevD.87.034505, 10.1103/PhysRevD.90.099902
http://arxiv.org/abs/1212.0830
http://arxiv.org/abs/1212.0830
http://dx.doi.org/10.1103/PhysRevD.92.094502
http://dx.doi.org/10.1103/PhysRevD.92.094502
http://arxiv.org/abs/1507.02599
http://dx.doi.org/10.1103/PhysRevD.93.054509
http://dx.doi.org/10.1103/PhysRevD.93.054509
http://arxiv.org/abs/1512.08678
http://dx.doi.org/10.1016/j.nuclphysb.2016.07.024
http://dx.doi.org/10.1016/j.nuclphysb.2016.07.024
http://arxiv.org/abs/1604.05593
http://dx.doi.org/10.1103/PhysRevLett.117.122001
http://arxiv.org/abs/1605.04823
http://dx.doi.org/10.1103/PhysRevD.94.034501
http://dx.doi.org/10.1103/PhysRevD.94.034501
http://arxiv.org/abs/1605.03993
http://arxiv.org/abs/1605.03993
http://dx.doi.org/10.1103/PhysRevD.94.034505
http://dx.doi.org/10.1103/PhysRevD.94.034505
http://arxiv.org/abs/1608.07478
http://dx.doi.org/10.1103/PhysRevD.91.034501
http://arxiv.org/abs/1406.5965
http://arxiv.org/abs/1406.5965
http://dx.doi.org/10.1103/PhysRevLett.115.242001
http://arxiv.org/abs/1507.06622
http://dx.doi.org/10.1103/PhysRevD.93.114508
http://arxiv.org/abs/1604.03530
http://dx.doi.org/10.1016/0550-3213(91)90366-6
http://dx.doi.org/10.1016/0550-3213(91)90366-6
http://dx.doi.org/10.1016/0550-3213(95)00313-H
http://dx.doi.org/10.1016/0550-3213(95)00313-H
http://arxiv.org/abs/hep-lat/9503028
http://arxiv.org/abs/hep-lat/9503028
http://dx.doi.org/10.1016/j.nuclphysb.2005.08.029
http://arxiv.org/abs/hep-lat/0507006
http://dx.doi.org/10.1103/PhysRevD.72.114506
http://arxiv.org/abs/hep-lat/0507009
http://dx.doi.org/10.1103/PhysRevD.86.016007
http://dx.doi.org/10.1103/PhysRevD.86.016007
http://arxiv.org/abs/1204.0826
http://dx.doi.org/10.1103/PhysRevD.85.114507
http://arxiv.org/abs/1202.2145
http://dx.doi.org/10.1103/PhysRevD.86.094513
http://dx.doi.org/10.1103/PhysRevD.86.094513
http://arxiv.org/abs/1206.4141
http://dx.doi.org/10.1103/PhysRevD.89.074507
http://dx.doi.org/10.1103/PhysRevD.89.074507
http://arxiv.org/abs/1401.3312
http://arxiv.org/abs/1701.07465
http://dx.doi.org/10.1103/PhysRevD.87.094510
http://dx.doi.org/10.1103/PhysRevD.87.094510
http://arxiv.org/abs/1303.4157
http://dx.doi.org/10.1016/j.physletb.2012.04.076
http://arxiv.org/abs/1203.3642


21

Phys. Rev. D65 (2002) 094505, arXiv:hep-lat/0201006
[hep-lat].

[34] C. Alexandrou, J. W. Negele, M. Petschlies,
A. Strelchenko, and A. Tsapalis, “Determination of
∆ resonance parameters from lattice QCD,” Phys. Rev.
D88 no. 3, (2013) 031501, arXiv:1305.6081 [hep-lat].

[35] C. Alexandrou, J. W. Negele, M. Petschlies, A. V.
Pochinsky, and S. N. Syritsyn, “Study of decuplet baryon
resonances from lattice QCD,” Phys. Rev. D93 no. 11,
(2016) 114515, arXiv:1507.02724 [hep-lat].

[36] P. Guo, J. Dudek, R. Edwards, and A. P. Szczepaniak,
“Coupled-channel scattering on a torus,” Phys. Rev. D88
no. 1, (2013) 014501, arXiv:1211.0929 [hep-lat].

[37] S. U. Chung, J. Brose, R. Hackmann, E. Klempt,
S. Spanier, and C. Strassburger, “Partial wave analysis in
K-matrix formalism,” Annalen Phys. 4 (1995) 404–430.

[38] J. R. Pelaez and F. J. Yndurain, “The Pion-pion
scattering amplitude,” Phys. Rev. D71 (2005) 074016,
arXiv:hep-ph/0411334 [hep-ph].

[39] F. Von Hippel and C. Quigg, “Centrifugal-barrier effects
in resonance partial decay widths, shapes, and produc-
tion amplitudes,” Phys. Rev. D5 (1972) 624–638.

[40] B. Long and U. van Kolck, “πN Scattering in the
∆(1232) Region in an Effective Field Theory,” Nucl.
Phys. A840 (2010) 39–75, arXiv:0907.4569 [hep-ph].

[41] K. Symanzik, “Improved lattice actions for nonlinear
sigma model and nonabelian gauge theory,” in Work-
shop on Non-perturbative Field Theory and QCD Trieste,
Italy, December 17-21, 1982, pp. 61–72. 1983. [,61(1983)].

[42] K. Symanzik, “Continuum Limit and Improved Action
in Lattice Theories. 1. Principles and φ4 Theory,” Nucl.
Phys. B226 (1983) 187–204.

[43] K. Symanzik, “Continuum Limit and Improved Action in
Lattice Theories. 2. O(N) Nonlinear Sigma Model in Per-
turbation Theory,” Nucl. Phys. B226 (1983) 205–227.
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