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Fluctuations of conserved charges allow to study the chemical composition of hadronic matter.
A comparison between lattice simulations and the Hadron Resonance Gas (HRG) model suggested
the existence of missing strange resonances. To clarify this issue we calculate the partial pressures
of mesons and baryons with different strangeness quantum numbers using lattice simulations in
the confined phase of QCD. In order to make this calculation feasible, we perform simulations at
imaginary strangeness chemical potentials. We systematically study the effect of different hadronic
spectra on thermodynamic observables in the HRG model and compare to lattice QCD results.
We show that, for each hadronic sector, the well established states are not enough in order to
have agreement with the lattice results. Additional states, either listed in the Particle Data Group
booklet (PDG) but not well established, or predicted by the Quark Model (QM), are necessary in
order to reproduce the lattice data. For mesons, it appears that the PDG and the quark model do
not list enough strange mesons, or that, in this sector, interactions beyond those included in the
HRG model are needed to reproduce the lattice QCD results.

INTRODUCTION

The precision achieved by recent lattice simulations
of QCD thermodynamics allows to extract, for the first
time, quantitative predictions which provide a new in-
sight into our understanding of strongly interacting mat-
ter. Recent examples include the precise determination
of the QCD transition temperature [1–4], the QCD equa-
tion of state at zero [5–7] and small chemical potential
[8–10] and fluctuations of quark flavors and/or conserved
charges near the QCD transition [11–13]. The latter are
particularly interesting because they can be related to
experimental measurements of particle multiplicity cu-
mulants, thus allowing to extract the freeze-out param-
eters of heavy-ion collisions from first principles [14–18].
Furthermore, they can be used to study the chemical
composition of strongly interacting matter and identify
the degrees of freedom which populate the system in the
vicinity of the QCD phase transition [19–21].

The vast majority of lattice results for QCD thermo-
dynamics can be described, in the hadronic phase, by a
non-interacting gas of hadrons and resonances which in-
cludes the measured hadronic spectrum up to a certain
mass cut-off. This approach is commonly known as the
Hadron Resonance Gas (HRG) model [22–26]. There is
basically no free parameter in such a model, the only
uncertainty being the number of states, which is deter-
mined by the spectrum listed in the Particle Data Book.

It has been proposed recently to use the precise lattice
QCD results on specific observables, and their possible
discrepancy with the HRG model predictions, to infer
the existence of higher mass states [27–29], not yet mea-
sured but predicted by Quark Model (QM) calculations
[30, 31] and lattice QCD simulations [32]. This leads
to a better agreement between selected lattice QCD ob-
servables and the corresponding HRG curves. However,
for other observables the agreement with the lattice gets
worse, once the QM states are included.

Amongst experimentally measured hadronic reso-
nances within the Particle Data Group (PDG) list, there
are different confidence levels on the existence of indi-
vidual resonances. The most well-established states are
denoted by **** stars whereas * states indicate states
with the least experimental confirmation. Furthermore,
states with the fewest stars often do not have the full de-
cay channel information known nor the branching ratios
for different decay channels.

In Fig. 1 we compare, for several particle species, the
states listed in the PDG2016 (including states with two,
three and four stars) [33], in the PDG2016+ (including
also states with one star) [33] and those predicted by the
original Quark Model [30, 31] and a more recent hyper-
central version (hQM) [34]. The latter contains fewer
states than the ones found in Refs. [30, 31], due to in-
clusion of an interaction term between the quarks in the
bound state, and the decay modes are listed for most
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FIG. 1. (Color online). Comparison of hadronic states,
grouped according to the particle species, experimentally es-
tablished in the PDG2016 (green), PDG2016 including also
one star states (red) [33] and predicted by the QM (blue)
[30, 31] and the hQM (magenta) [34, 35].

of the predicted states. No mass cut-off has been im-
posed. The total number of measured particles and anti-
particles, excluding the charm and the bottom sector,
increases from the 2016 to the 2016+ listing: consider-
ing particles and antiparticles and their isospin multiplic-
ity we get 608 states with two, three and four stars and
738 states when we also include the one star states. In
the QM description the overall increase is much larger:
in total there are 1517 states when merging the non-
relativistic QM states [30, 31] with the PDG2016+ and
985 in the list which adds the hQM states [34, 35] to the
ones listed in the PDG2016+. The QM predicts such a
large number of states because they arise from all possible
combinations of different quark-flavor, spin and momen-
tum configurations. However, many of these states have
not been observed in experiments so far; besides the basic
QM description does not provide any information on the
decay properties of such particles. As already mentioned,
the hQM reduces the number of states by including an in-
teraction term between quarks in a bound state. A more
drastic reduction can be achieved by assuming a diquark
structure [34, 36, 37] as part of the baryonic states, al-
though experiments and lattice QCD may disfavor such
a configuration [38].

In this paper, we perform an analysis of several
strangeness-related observables, by comparing the lattice
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FIG. 2. (Color online) Logarithmic plot illustrating the many
orders of magnitude the values of the partial pressures studied
in this paper cover. The total pressure is taken from Ref. [6].
Note, that the value for the B = 0, |S| = 1 sector is not a
proper continuum limit, it is a continuum estimate based on
the Nt = 12 and 16 lattices. For all other cases, the data are
properly continuum extrapolated. In all cases, the solid lines
correspond to the HRG model results based on the PDG2016
spectrum.

QCD results to those of the HRG model based on dif-
ferent resonance spectra: the PDG 2016 including only
the more established states (labeled with two, three and
four stars), the PDG 2016 including all listed states (also
the ones with one star), and the PDG 2016 with the in-
clusion of additional Quark Model states. This is done
in order to systematically test the results for different
particle species, and get differential information on the
missing states, based on their strangeness content. The
observables which allow the most striking conclusions are
the partial pressures, namely the contribution to the total
pressure of QCD from the hadrons, grouped according to
their baryon number and strangeness content. The main
result of this paper is a lattice determination of these
partial pressures. This is a difficult task, since the par-
tial pressures involve a cancellation of positive and neg-
ative contributions (see the next section), and they span
many orders of magnitude, as can be seen in Fig. 2. From
this analysis a consistent picture emerges: all observables
confirm the need for not yet detected, or at least not yet
fully established, strangeness states. The full PDG2016
list provides a satisfactory description for most observ-
ables, but for some of them the QM states are needed in
order to reproduce the lattice QCD results. Moreover,
all hadronic lists currently available underestimate the
partial pressure for strange mesons. This might mean
that, in this sector, even more states, in addition to the
ones predicted by the QM, are missing or that an addi-
tional attractive interaction beyond the one included in
the HRG model is needed to reproduce the lattice QCD
data [39, 40].
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HRG AND THE STRANGENESS SECTORS

The HRG model provides an accurate description of
the thermodynamic properties of hadronic matter below
Tc. This is especially true for global observables such
as the total pressure and other collective thermodynamic
quantities. However, it was recently noticed that more
differential observables which are sensitive to the flavor
content of the hadrons show a discrepancy between HRG
model and lattice results [29]. An example of such dis-
crepancy is shown in Fig. 3 and will be explained below.
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FIG. 3. (Color online). Ratio µS/µB at leading order as
a function of the temperature. The HRG results are shown
for different hadronic spectra, namely by using the PDG2012
(black solid line) and the QM (dashed red line).

Such observables involve the evaluation of susceptibili-
ties of conserved charges in the system at vanishing che-
mical potential:

χBQSlmn =

(
∂l+m+nP (T, µB , µQ, µS)/T 4

∂(µB/T )l∂(µQ/T )m∂(µS/T )n

)
µ=0

. (1)

Cumulants of net-strangeness fluctuations and corre-
lations with net-baryon number and net-electric charge
have been evaluated on the lattice in a system of (2 + 1)
flavours at physical quark masses and in the continuum
limit [13, 16, 41].

The same quantities can be obtained within the HRG
model. In this approach, the total pressure in the ther-
modynamic limit for a gas of non-interacting particles in
the grand-canonical ensemble is given by:

Ptot(T, µ) =
∑
k

Pk(T, µk) =
∑
k

(−1)Bk+1 dkT

(2π)3
× (2)

∫
d3~p ln

(
1 + (−1)Bk+1 exp

[
−

(
√
~p2 +m2

k − µk)

T

])
where the sum runs over all the hadrons and resonances

included in the model. Here the single particle chemical
potential is defined with respect to the global conserved
charges (baryonic B, electric Q and strangeness S) as
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FIG. 4. (Color online). Upper panel: Ratio χS
4 /χ

S
2 as a

function of the temperature. HRG model calculations based
on the PDG2012 (black solid line) and the QM (red dashed
line) spectra are shown in comparison to the lattice results
from Ref. [21]. Lower panel: comparison of up-strange corre-
lator χus

11 simulated on the lattice [13] and calculated in the
HRG model using the PDG2012 (solid black line) and the QM
(dashed red line) spectra.

µk = BkµB + QkµQ + SkµS . More details on the HRG
model used here can be found in Ref. [42]. In order to
describe the initial conditions of the system occurring
during a heavy-ion collision, we require strangeness neu-
trality and the proper ratio of protons to baryons given
by the colliding nuclei, nQ = Z

AnB ' 0.4nB . These con-
ditions yield µS and µQ as functions of µB ; their specific
dependence on µB is affected by the amount of strange
particles and charged particles included in the model. To
leading order in µB , the ratio µS/µB reads [15, 16]:(

µS
µB

)
LO

= −χ
BS
11

χS2
− χQS11

χS2

µQ
µB

. (3)

The inclusion of a larger number of heavy hyperons, such
as Λ and Ξ, and the constraint of strangeness neutrality
are reflected by a larger value of the strange chemical
potential µS as a function of temperature and baryo-
chemical potential. In Fig. 3 this ratio is shown as a
function of the temperature: our new, continuum extrap-
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olated lattice results are compared to the HRG model
calculations based on the 2012 version of the PDG and
on the Quark Model states (as done in Ref. [29]). One
should expect agreement between HRG model and lattice
calculations up to the transition temperature which has
been determined independently on the lattice to be ∼ 155
MeV [1–4]. The HRG model based on the QM particle
list yields a better agreement with the lattice data within
error bars, while the HRG results based on the PDG2012
spectrum underestimate the data. However, for other ob-
servables such as χS4 /χ

S
2 and χus11 (see the two panels of

Fig. 4), the agreement between HRG model and lattice
results is spoiled when including the QM states. The
QM result overestimates both χS4 /χ

S
2 and χus11 ; χS4 /χ

S
2 is

proportional to the average strangeness squared in the
system: the fact that the QM overestimates it, means
that it contains either too many multi-strange states or
not enough |S| = 1 states. Moreover, the contribution
to χus11 is positive for baryons and negative for mesons:
this observable provides the additional information that
the QM list contains too many (multi-)strange baryons
or not enough |S| = 1 mesons.

In this paper, we try to solve this ambiguity, even
though we are aware that it might be difficult to resolve
the contribution of high mass particles in our simula-
tions. We separate the pressure of QCD as a function of
the temperature into contributions coming from hadrons
grouped according to their quantum numbers. This is
done by assuming that, in the low temperature region
we are interested in, the HRG model in the Boltzmann
approximation yields a valid description of QCD thermo-
dynamics. If this is the case, the pressure of the system
can be written as [18, 20]:

P (µ̂B , µ̂S) = PBS00 + PBS10 cosh(µ̂B) + PBS01 cosh(−µ̂S)

+ PBS11 cosh(µ̂B − µ̂S)

+ PBS12 cosh(µ̂B − 2µ̂S)

+ PBS13 cosh(µ̂B − 3µ̂S) , (4)

where µ̂i = µi/T , and the quantum numbers can be un-
derstood as absolute values. These partial pressures are
the main observables we study. Notice that we do not
distinguish the particles according to their electric charge
content.

Equation (4) is a truncation of the virial expansion
in the fugacity parameters eµB/T and eµS/T , which will
break down at high temperatures (the deconfined phase),
due to the appearance of higher virial coefficients, cor-
responding to contributions from e.g. the |B| = 2 or
|S| = 4 sectors of the Hilbert space. When using only
the observables χSi with i = 1, 2, 3, 4, as in this paper,
the appearance of the |S| = 4 sector can potentially spoil
the χ2 for our fits using the ansatz given by eq. (4). On
the other hand, the appearance of the |B| = 2 sector
will not be visible in the χ2 values, but can be observed
by using different observables. For example, the bary-
onic sectors PBS1i , with i = 1, 2, 3 can be extracted either
from χS1 and its derivatives, or χBS11 and its derivatives.

If equation (4) does not hold, the two results will not
agree, because of the appearance of sectors with higher
quantum numbers. One could study deconfinement in
terms of these higher virial coefficients. For the purpose
of this paper, we restrict our attention to the confined
phase, where eq. (4) can safely be assumed to hold.

Assuming this ansatz for the pressure, the partial pres-
sures PBSij can be expressed as linear combinations of the

susceptibilities χBSij . An example of one such formula is:

PBS01 = χS2 − χBS22 , (5)

which gives the strange meson contribution to the pres-
sure. This means that in principle one could determine
these partial pressures directly from µ = 0 simulations,
by evaluating linear combinations of the χBSij directly.
This can be done on the lattice, by calculating fermion
matrix traces, that can be evaluated with the help of ran-
dom sources [13, 43]. This direct method gives access to
the temperature at which Eq. (4) breaks down as well
[20].

This is not the approach we pursue here, since the
noise level in the calculation would be too high, cer-
tainly for the S = 2 or 3 sectors, but as Fig. 6 (bot-
tom) shows, probably already for S = 1. The higher
order fluctuations are already quite noisy, because they
involve big cancellations between positive and negative
contributions [13]. In addition, when we take linear com-
binations to calculate the partial pressures, we introduce
extra cancellations between the susceptibilities. There-
fore we propose to use an imaginary strangeness chemi-
cal potential and extract the partial pressures from the
ImµS dependence of low order susceptibilities. For ear-
lier works exploiting imaginary chemical potentials, see
[44–50]. A more recent work, that uses imaginary chemi-
cal potentials to estimate higher order susceptibilities is
[51].

LATTICE METHOD

Our lattice simulations use the same 4stout staggered
action as [9, 13, 52, 53]. We generate configurations
at µB = µS = µQ = 0 as well as µB = µQ = 0 and
ImµS > 0, in the temperature range 135MeV ≤ T ≤
165MeV. All of our lattices have an aspect ratio of LT =
4. We run roughly 1000 − 2000 configurations at each
simulation point, separated by 10 HMC trajectories. For
the determination of the strangeness sectors we use the
HRG ansatz of equation (4) for the pressure. With the
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notation µS = iµI we obtain by simple differentiation:

ImχB1 = −PBS11 sin(µI)− PBS12 sin(2µI)

−PBS13 sin(3µI),

χB2 = PBS10 + PBS11 cos(µI) + PBS12 cos(2µI)

+PBS13 cos(3µI), (6)

ImχS1 = (PBS01 + PBS11 ) sin(µI) + 2PBS12 sin(2µI)

+3PBS13 sin(3µI),

Similar terms can be derived for χS2 , χS3 and χS4 . The
advantage of the imaginary chemical potential approach
is that, even though it is based on the exact same as-
sumption as the direct evaluation of linear combinations,
see e.g. equation (5) where the linear combinations were
already derived from equation 4, it reduces the errors
considerably. The lower derivatives already contain the
information on the higher strangeness sectors, therefore
this reduction in errors is achieved without introducing
extra assumptions compared to the linear combination
method.[54] We further note that simulations at imag-
inary chemical potential are not hampered by the sign
problem, so the evaluation of the lower order susceptibi-

 0

 0.001

 0.002

 0.003

 0.004

 0.005

 0.006

 0.007

 0.008

 0  0.002  0.004  0.006  0.008  0.01  0.012

p |
S

|=
2

1/Nt
2

T=135MeV

T=145MeV

T=150MeV

 0.08

 0.1

 0.12

 0.14

 0.16

 0.18

 0.2

 0.22

 0.24

 0.26

 135  140  145  150  155  160

p B
=

0,
|S

|=
1

T[MeV]

Direct method at µ=0, Nt=16
Imaginary µS method, Nt=16
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µ = 0 data for P01. The statistics would explain only a factor
of 2 difference in the error bars, but the improvement is much
more pronounced.

lities at ImµS > 0 is not any harder than at µ = 0.
To obtain the Fourier coefficients (PBS01 + PBS11 ), PBS12

and PBS13 we perform a correlated fit with the previous
ansatz for the observables χS1 , χS2 , χS3 and χS4 at every
temperature. To obtain PBS10 we fit χB2 , to obtain PBS11 we
fit χB1 . We note that PBS11 could be deduced from χB2 as
well, but with considerably higher statistical errors. To
get PBS01 we just take the difference (PBS01 +PBS11 )−PBS11 .
As an illustration that the HRG based ansatz fits our
lattice data we include an example of the correlated fit
for χS1 , χS2 , χS3 and χS4 in Fig. 5

For statistical errors, we use the jackknife method. For
the continuum limit we use Nt = 10, 12 and 16 lattices.
To estimate the systematic errors we repeat the anaylsis
in several different ways: to connect the lattice parame-
ters to physical temperatures we use two different scale
settings, based on w0 and fπ. More details on the scale
setting can be found in [13]. For each choice of the scale
settings we use two different spline interpolations for the
temperature dependence of the PBSij . Both of these de-
scribe the data well. For each of these four choices we do
the continuum limit in four different ways, by applying
tree level improvement or not, and by using a straight
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points are the lattice results, while the curves are PDG2016
(solid black), PDG2016+ (including one star states, red dot-
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dashed) [34, 35], PDG2016+ and additional states from the
QM (cyan, dash-dotted) [30, 31].

a+ b/N2
t and a rational function 1/(a+ b/N2

t ) ansatz for
the continuum limit. These 16 different results are then
weighted with the AKAIKE information criterion [55] us-
ing the histogram method [56]. Examples of linear con-
tinuum limit extrapolations are included in Fig. 6 (top).
For the B = 0, S = 1 sector, which includes a large con-
tribution from kaons, the continuum extrapolation could
not be carried out using these lattices. For this case we
obtain a continuum estimate, based on the assumption
that only Nt = 10 is not in the scaling regime, therefore
using only the Nt = 12 and Nt = 16 lattices, and the
same sources of systematic error as before, but now with
uniform weights.

Finally, as a comparison we show in Fig. 6 (bottom)
one of the partial pressures determined with both meth-
ods for Nt = 16, using the same action. The figure shows
that using imaginary chemical potential improved the ac-
curacy drastically already in the S = 1 sector. In the
S = 2, 3 sectors, the direct method would be too noisy
to plot, while the imaginary µ method allows for a quite
accurate determination of the strangeness sectors.

At the highest temperature, T = 160 MeV, the new
method and the linear combination method do not agree
any longer, which is not surprising, since at this tempera-
ture the system is already beyond the pseudocritical tem-
perature, and therefore equation (4) is not expected to
hold anymore. Our conclusions about the phenomenol-
ogy are not affected, as this data point was not used in
our HRG comparisons with the lattice. The method for
the precise detection of the breakdown of the ansatz is

discussed in the paragraph after eq. (4). For this highest
temperature point our fit quality is χ2/ndof = 30.248/31.

RESULTS AND THEIR INTERPRETATION

We evaluate the contributions to the total QCD pres-
sure from the following sectors: strange mesons, non-
strange baryons, and baryons with |S| = 1, 2, 3. For
each sector, we compare the lattice QCD results to
the predictions of the HRG model using the PDG2016,
PDG2016+, hQM and QM spectra.

In Figs. 7 and 8 we show our results. Fig. 7 shows the
contributrion of strange mesons, while Fig. 8 shows the
contribution of non-strange baryons (upper left), |S| = 1
baryons (upper right), |S| = 2 baryons (lower left) and
|S| = 3 baryons (lower right).

We observe that, in all cases except the non-strange
baryons, the established states from the most updated
version of the PDG are not sufficient to describe the lat-
tice data. For the baryons with |S| = 2, a consider-
able improvement is achieved when the one star states
from PDG2016 are included. The inclusion of the hQM
states pushes the agreement with the lattice results to
higher temperatures, but one has to keep in mind that
the crossover nature of the QCD phase transition implies
the presence of quark degrees of freedom in the system
above T ' 155 MeV, which naturally yields a deviation
from the HRG model curves. Notice that, in the case of
|S| = 1, 3 baryons, it looks like even more states than
PDG2016+ with hQM are needed in order to reproduce
the lattice results: the agreement improves when the res-
onances predicted by the QM [30, 31] are added to the
spectrum. Fig. 2 shows the relative contribution of the
sectors to the total pressure. Notice that three orders of
magnitude separate the |S|=1 meson contribution from
the |S| = 3 baryon one. The method we used for this
analysis, namely simulations at imaginary µS , was crucial
in order to extract a signal for the multi-strange baryons.

As for strange mesons, we point out that the PDG2016
and 2016+ coincide since there is no star ranking for
mesons. In this sector, it was not possible to perform
a continuum extrapolation for the data, since apparently
they are not in the scaling regime. However, there is clear
trend in the Nt = 10, 12, 16 data that makes it very nat-
ural to assume that the continuum extrapolated results
will lie above the HRG curves. We also include a contin-
uum estimate of this quantity, based on only the Nt = 12
and 16 lattices, which is clearly above the HRG curves.
This might mean that, for strange mesons, the interac-
tion between particles is not well mimicked by the HRG
model in the Boltzmann approximation, or that we need
even more states than the ones predicted by the QM.
This was already suggested in Ref. [57], based on a dif-
ferent analysis. In general, one should keep in mind that
here we use a version of the HRG model in which par-
ticles are considered stable (no width is included). Any
width effects on the partial pressures can be considered
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FIG. 8. (Color online). Comparison between the lattice results for the partial pressures and the HRG model predictions. Upper
panels: non-strange baryons (left), |S| = 1 baryons (right). Lower panels: |S| = 2 baryons (left), |S| = 3 baryons (right). The
points are the lattice results, while the curves are PDG2016 (solid black), PDG2016+ (including one star states, red dotted),
PDG2016+ and additional states from the hQM (blue, dashed) [34, 35], PDG2016+ and additional states from the QM (cyan,
dash-dotted) [30, 31].

in future work. Besides, our previous lattice QCD results
did not show indications of finite volume effects for the
total pressure. These effects have not been checked for
the partial pressures presented here.

Our analysis shows that, for most hadronic sectors, the
spectrum PDG2016, does not yield a satisfactory descrip-
tion of the lattice results. All sectors clearly indicate the
need for more states, in some cases up to those predicted
by the original Quark Model. One has to keep in mind
that using the QM states in a HRG description will intro-
duce additional difficulties in calculations used in heavy
ion phenomenology, as the QM does not give us the de-
cay properties of these new states. The HRG model is
successfully used to describe the freeze-out of a heavy-
ion collision, by fitting the yields of particles produced in
the collision and thus extracting the freeze-out temper-
ature and chemical potential [58–60], which are known
as “thermal fits”. To this purpose, one needs to know
the decay modes of the resonances into the ground state
particles which are reaching the detector. As of yet, the

QM decay channels are unknown so predictions for their
decay channels are needed first, before one can use them
in thermal fits models.

In conclusion, we re-calculate the two observables
which triggered our analysis, namely (µS/µB)LO and
χS4 /χ

S
2 , with the updated hadronic spectra. They are

shown in the two panels of Fig. 9. The upper panel shows
(µS/µB)LO as a function of the temperature: the lattice
results are compared to the HRG model curves based
on the PDG2016, PDG2016+ and PDG2016+ with the
inclusion of the states predicted by the hQM. The two
latter spectra yield a satisfactory description of the data
up to T ' 145 MeV. In the case of χS4 /χ

S
2 , all three spec-

tra yield a good agreement with the lattice results. Our
analysis shows that the original QM overestimates these
quantities because it predicts too many |S| = 2 baryons
and not enough |S| = 1 mesons. In the context of fu-
ture experimental measurements this study gives guid-
ance to the RHIC, LHC and the future JLab experiments
on where to focus their searches for as of yet undetected
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FIG. 9. (Color online). Upper panel: Ratio (µS/µB)LO as
a function of the temperature. Lower panel: χS

4 /χ
S
2 as a

function of the temperature. In both cases, the lattice results
are compared to the HRG model curves based on the PDG
2016 (black, solid line), the PDG2016+ (green, dashed line)
and the PDG2016+ with additional states from the hQM (red,
dotted line).

hadronic resonances.
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