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We study a lattice model comprising four massless reduced staggered fermions in four dimensions
coupled through an SU(4)-invariant four-fermion interaction. We present both theoretical argu-
ments and numerical evidence that no bilinear fermion condensates are present for any value of
the four-fermi coupling, in contrast to earlier studies of Higgs–Yukawa models with different exact
lattice symmetries. At strong coupling we observe the formation of a four-fermion condensate and
a mass gap in spite of the absence of bilinear condensates. Unlike those previously studied sys-
tems we do not find a ferromagnetic phase separating this strong-coupling phase from the massless
weak-coupling phase. Instead we observe long-range correlations in a narrow region of the coupling,
still with vanishing bilinear condensates. While our numerical results come from relatively small
lattice volumes that call for caution in drawing conclusions, if this novel phase structure is verified
by future investigations employing larger volumes it may offer the possibility for new continuum
limits for strongly interacting fermions in four dimensions.

I. INTRODUCTION

In this paper we study a four-dimensional lattice the-
ory comprising four massless reduced staggered fermions
coupled through an SU(4)-invariant four-fermion inter-
action. Strong-coupling arguments indicate that the sys-
tem develops a massive phase for sufficiently large four-
fermi coupling without breaking symmetries. Such a
(paramagnetic strong-coupling or PMS) phase has been
seen before in other lattice Higgs–Yukawa models, and
is generically separated from a massless paramagnetic
weak-coupling (PMW) phase by an intermediate ferro-
magnetic phase characterized by a symmetry-breaking
bilinear fermion condensate. A representative small sam-
ple of this earlier work can be found in Refs. [1–7] and
references therein. The key result of our current work
is that we see no evidence for this intermediate broken
phase in the model described here, which possesses differ-
ent exact lattice symmetries than the systems considered
previously. Instead we observe a narrow region of four-
fermi coupling separating the PMW and PMS phases in
which the fermions develop long-range correlations but
no bilinear condensate is formed.

The same model was studied previously in three di-
mensions utilizing three different numerical algorithms:
fermion bags, rational hybrid Monte Carlo (RHMC) and
quantum Monte Carlo [8–11]. These studies revealed an
interesting two-phase structure for the model; a massless
phase at weak coupling (the analog of the PMW phase
in four dimensions) is separated by a continuous phase
transition with non-Heisenberg exponents from a massive
(PMS-like) phase at strong coupling.

The four-dimensional theory which is the focus of the
current work was also recently studied in Ref. [12]. The
conclusion of that work was that a narrow broken phase
reappears upon lifting the theory from three to four di-
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mensions. It is important to note that this conclusion was
not based on an explicit measurement of a condensate
but rather inferred from the volume scaling of a certain
susceptibility.

In our work we have augmented the action used in
that recent study with source terms to directly address
the question of whether spontaneous symmetry breaking
associated with the formation of specific bilinear conden-
sates takes place. Our measurements of susceptibilities
at zero source agree with those reported in [12] and are
consistent with the possibility of a narrow intermediate
phase that they describe. However, in contrast to that
work we do not see any evidence for the formation of
bilinear condensates and spontaneous symmetry break-
ing in that region of the phase diagram. Thus the in-
termediate phase—if it exists—must be of an unusual
character. It goes without saying that the appearance
of potentially new critical behavior in lattice theories of
strongly interacting fermions in four dimensions would be
very interesting from both theoretical and phenomeno-
logical viewpoints, with regards to constructing theories
of BSM physics. Similar models have also received con-
siderable interest in recent years within the condensed
matter community [13, 14]. Of course one must be some-
what cautious in drawing too strong a conclusion at this
point since our simulations are currently limited to rather
modest lattice volumes. We plan to investigate larger vol-
umes in future RHMC calculations, and also hope to see
additional studies of this system employing fermion bags
or other algorithms.

The plan of the paper is as follows: in the next section
we describe the lattice model and its symmetries and in
Sec. III we describe the phases expected at strong and
weak four-fermi coupling. In Sec. IV we show how to re-
place the four-fermion interaction by appropriate Yukawa
terms and prove that the resulting Pfaffian is real positive
semi-definite. This fact allows us to simulate the model
using the RHMC algorithm and we show results for the
phase diagram from those simulations in Sec. V. To ex-
amine the question of whether spontaneous symmetry
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breaking occurs we have conducted the bulk of our sim-
ulations with an action that includes explicit symmetry-
breaking source terms and we include a detailed study
of the volume and source dependence of possible bilin-
ear condensates in Sec. VI. In Sec. VII we strengthen
these conclusions by computing the one-loop Coleman–
Weinberg effective potential associated with a particular
single-site condensate that breaks the SU(4) symmetry
of the model. We show that the unbroken state remains a
minimum of the potential for all values of the four-fermi
coupling, in agreement with our numerical study. Fi-
nally we summarize our findings and outline future work
in Sec. VIII.

II. LATTICE ACTION AND SYMMETRIES

Consider a theory of four reduced staggered fermions
in four dimensions whose action contains a single-site
SU(4)-invariant four-fermion term.1 The action is

S =
∑
x

∑
µ

ηµ(x)ψa(x)∆ab
µ ψ

b(x)

− 1

4
G2
∑
x

εabcdψ
a(x)ψb(x)ψc(x)ψd(x)

(1)

where ∆ab
µ ψ

b(x) = 1
2δab

(
ψb(x+ µ̂)− ψb(x− µ̂)

)
with µ̂

representing unit displacement in the lattice in the µ di-
rection and ηµ(x) is the usual staggered fermion phase

ηµ(x) = (−1)
∑µ−1
i=0 xi . The reduced staggered fermions

are taken to transform according to

ψ(x)→ eiε(x)αψ(x) (2)

with α an arbitrary element of the algebra of SU(4)

and ε(x) = (−1)
∑d−1
i=0 xi denoting the lattice parity. The

presence of the four-fermion interaction breaks the usual
global U(1) symmetry down to Z4 whose action is given
explicitly by ψ → Γψ where Γ = [1,−1, iε(x),−iε(x)].
The action is also invariant under the shift symmetry

ψ(x)→ ξρ(x)ψ(x+ ρ̂) (3)

where the flavor phase ξµ(x) = (−1)
∑d−1
i=µ+1 xi . These

shift symmetries can be thought of as a discrete remnant
of continuum chiral symmetry [15].

These symmetries strongly constrain the possible bi-
linear terms that can arise in the lattice effective ac-
tion as a result of quantum corrections. For example,
a single-site mass term of the form ψa(x)ψb(x) breaks

1 The SO(4) symmetry discussed in [10] naturally enhances to
SU(4) if the fermions are allowed to be complex. Such an en-
largement of the symmetry group does not invalidate the argu-
ments needed to construct an auxiliary field representation or to
show the Pfaffian is real and positive semi-definite.

the SU(4) invariance and the Z4 symmetry but main-
tains the shift symmetry, while SU(4)-invariant bilin-
ear terms constructed from products of staggered fields
within the unit hypercube generically break the shift
symmetries [16, 17].2 The possible SU(4)-invariant mul-
tilink bilinear operators for a reduced staggered fermion
are

O1 =
∑
x,µ

mµε(x)ξµ(x)ψa(x)Sµψ
a(x) (4)

O3 =
∑

x,µ,ν,λ

mµνλξµνλ(x)ψa(x)SµSνSλψ
a(x)

where ξµνλ(x) ≡ ξµ(x)ξν(x+ µ̂)ξλ(x+ µ̂+ ν̂) and mµνλ is
totally antisymmetric in its indices. In these expressions
the symmetric translation operator Sµ acts on a lattice
field according to Sµψ(x) = ψ(x+ µ̂) + ψ(x− µ̂).

Notice that while the exact lattice symmetries con-
strain the form of the effective action of the theory it
is still possible for condensates of either the single-site
and/or multilink operators to appear if the vacuum state
spontaneously breaks one or more of these symmetries.

III. STRONG-COUPLING BEHAVIOR

Before turning to the auxiliary field representation of
the four-fermi term and our numerical simulations we can
first attempt to understand the behavior of the theory in
the limits of both weak and strong coupling. At weak
coupling one expects that the fermions are massless and
there should be no bilinear condensate since the four-
fermi term is an irrelevant operator by power counting.

In contrast the behavior of the system for large cou-
pling can be deduced from a strong-coupling expansion.
The leading term corresponds to the static limit G→∞
in which the kinetic operator is dropped and the expo-
nential of the four-fermi term is expanded in powers of
G. In this limit the partition function for lattice volume
V is saturated by terms of the form

Z ∼

[
6G2

∫
dψ1(x)dψ2(x)dψ3(x)dψ4(x)

× ψ1(x)ψ2(x)ψ3(x)ψ4(x)

]V (5)

corresponding to a single-site four-fermi condensate. To
leading order in this expansion it should also be clear that
the vev of any bilinear operator will be zero since one
cannot then saturate all the Grassmann integrals using
just the four-fermion operator.

2 The usual single-site mass term ψ
a
(x)ψa(x) that is possible for

a full staggered field is invariant under all symmetries but this
term is absent for a reduced staggered field since in this case there
is no independent ψ field.
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To compute the fermion propagator at strong coupling
it is convenient to rescale the fermion fields by

√
α where

α = 1√
6G
� 1 which removes the coupling from the inter-

action term and instead places a factor of α in front of the
kinetic term. To leading order in α the partition function
is now unity. The strong-coupling expansion then corre-

sponds to an expansion in α. We follow the procedure
described in [18] and consider the fermion propagator
F (x) =

〈
ψ1(x)ψ1(0)

〉
. To integrate out the fields at site

x one needs to bring down ψ2(x), ψ3(x), ψ4(x) from the
kinetic term. This yields a leading contribution

F (x) =
(α

2

)3
∫
x

Dψ
∑
µ

ηµ(x)
(
Ψ1(x+ µ̂)−Ψ1(x− µ̂)

)
ψ1(0)e−S (6)

where Ψ1 = ψ2ψ3ψ4 and
∫
x

means we no longer include an integration over the fields at x. We then repeat this
procedure at x± µ̂ leading to

F (x) =
(α

2

)3∑
µ

ηµ(x) (δx+µ̂,0 − δx−µ̂,0) +
(α

2

)4
∫
x,x±µ̂

Dψ
∑
µ

(
ψ1(x+ 2µ̂) + ψ1(x− 2µ̂)

)
ψ1(0)e−S . (7)

Notice that to this order in α we can restore the integra-
tions over x, x± µ̂ and we now recognize that the right-
hand side of this expression contains the propagator at
the displaced points F (x±2µ̂).3 A closed-form expression
for the latter can hence be found by going to momentum
space where

F (p) =
(i/α)

∑
µ sin pµ∑

µ sin2 pµ +m2
F

(8)

with m2
F = −2 + 4

α4 . Thus the strong-coupling calcu-
lation indicates that for sufficiently large G the system
should realize a phase in which the fermions acquire a
mass without breaking the SU(4) symmetry.

An analogous calculation can be performed for the
bosonic propagator B(x) = 〈b(x)b(0)〉 corresponding to
the single-site fermion bilinear b = ψ1ψ2 + ψ3ψ4:

B(x) = 2δx0 +
(α

2

)2∑
µ

(B(x+ µ̂) +B(x− µ̂)) (9)

or in momentum space

B(p) =
8/α2

4
∑
µ sin2 pµ/2 +m2

B

(10)

yielding a corresponding boson mass m2
B = −8 + 4

α2 .
Thus one expects both bosonic and fermionic excita-
tions to be gapped at strong coupling. Furthermore, this
strong-coupling expansion suggests that the mechanism
of dynamical mass generation in this model corresponds
to the condensation of a bilinear formed from the original

3 One might have imagined that there are additional contributions
arising from sites x ± µ̂ ± ν̂ but these in fact cancel due to the
staggered fermion phases.

elementary fermions ψa and a composite three-fermion
state Ψa = εabcdψ

bψcψd that transforms in the complex
conjugate representation of the SU(4) symmetry. Clearly
this is a non-perturbative phenomenon invisible in weak-
coupling perturbation theory.

The weak- and strong-coupling phases must be sepa-
rated by at least one phase transition. Previous work
with similar lattice Higgs–Yukawa models employing
staggered or naive fermions had revealed such a paramag-
netic strong-coupling (PMS) phase in a variety of models.
However such studies also typically revealed the presence
of a third, intermediate phase in which the symmetries of
the system were spontaneously broken by the formation
of a bilinear fermion condensate [1–3]. In these earlier
studies this intermediate phase was separated from the
weak- and strong-coupling regimes by first-order phase
transitions. One of the goals of the current work is to
ascertain whether such bilinear condensates appear at
intermediate coupling in the current model.

IV. AUXILIARY FIELD REPRESENTATION

We follow the standard strategy and rewrite the origi-
nal action (Eq. 1) in a new form quadratic in the fermions
but including an auxiliary real scalar field. In our case
this auxiliary field σ+

ab is an antisymmetric matrix in the
internal space and possesses an important self-dual prop-
erty as described below. This transformation preserves
the free energy up to a constant:

S =
∑
x,µ

ψa
[
η.∆ δab +Gσ+

ab

]
ψb +

1

4

(
σ+
ab

)2
(11)

where

σ+
ab = P+

abcdσcd =
1

2

(
σab +

1

2
εabcdσcd

)
(12)
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and we have introduced the projectors

P±abcd =
1

2

(
δacδbd ±

1

2
εabcd

)
. (13)

In principle one can now integrate over the fermions to
produce a Pfaffian Pf(M) where the fermion operator M
is given by

M = η.∆ +Gσ+. (14)

Rather remarkably one can show that the Pfaffian of this
operator is in fact positive semi-definite. To see this con-
sider the associated eigenvalue equation(

η.∆ +Gσ+
)
ψ = λψ. (15)

Since the operator is real and antisymmetric the eigen-
values of M are pure imaginary and come in pairs iλ
and −iλ. Sign changes in the Pfaffian would then corre-
spond to an odd number of eigenvalues passing through
the origin as the field σ+ varies. But in our case we can
show that all eigenvalues are doubly degenerate, so no
sign change is possible.

This degeneracy stems from the fact that M is invari-
ant under a set of SU(2) transformations that form a
subgroup of the SO(4) symmetry of the auxiliary field
representation with SO(4) ' SU(2) × SU(2). While
the fermion transforms as a doublet under each of these
SU(2)s the auxiliary σ+ is a singlet under one of them.4

Since the fermion operator is invariant under this SU(2)
its eigenvalues are doubly degenerate. This conclusion
has been checked numerically and guarantees positivity
of the Pfaffian. It is of crucial importance for our later
numerical work since it is equivalent to the statement
that the system does not suffer from a sign problem—we

can replace Pf(M)→ det
1
4
(
MM†

)
.

V. PHASE DIAGRAM

To probe the phase structure of the theory we
first examine the square of the auxiliary field 1

4σ
2
+ =

1
2

∑
a<b

(
σab+

)2
, which serves as a proxy for a four-fermion

condensate and can be computed analytically in the lim-
its G→ 0 and G→∞. Consider the modified action

S (G, β) =
∑ β

4
σ2

+ +
∑

ψ (η.∆ +Gσ+)ψ. (16)

Clearly 〈
1

4
σ2

+

〉
= − 1

V

∂ lnZ (G, β)

∂β
. (17)

4 σ− is a singlet under the other SU(2)—this is just the standard
representation theory of SO(4).

FIG. 1.
〈
1
4
σ2
±
〉
− 3

2
vs. G for L = 4, 6 and 8 with vanishing

external sources (m = 0 in Eq. 26).

Rescaling σ+ by 1/
√
β allows us to write the partition

function Z (G, β) as

Z (G, β) =

∫
Dσ+

∫
Dψ e−S = β−3V/2Z

(
G√
β
, 1

)
where we have exploited the antisymmetric self-dual
character of σ+ by allowing for just 3 independent σ in-
tegrations at each lattice site. Thus

〈
1

4
σ2

+

〉
=

3

2β
− 1

V

∂ lnZ
(
G√
β
, 1
)

∂β
. (18)

Integrating over the fermions yields

Z

(
G√
β
, 1

)
=

∫
Dσ+ Pf

(
η.∆ +

G√
β
σ+

)
e−

1
4σ

2
+ . (19)

For G = 0 the partition function is β independent, while
its β dependence is simply β−V in the strong-coupling
limit (Eq. 5). Using these results and setting β = 1 gives〈

1

4
σ2

+

〉
=

{
3/2 as G→ 0
5/2 as G→∞. (20)

In practice we simulate the full antisymmetric σ field
which allows us to monitor the vev of the anti-selfdual
component σ− also. Since this component does not cou-
ple to the fermions we expect

〈
1
4σ

2
−
〉

= 3/2 independent
of G.

Our numerical results for
〈

1
4σ

2
±
〉
− 3

2 shown in Fig. 1 are
consistent with these predictions. The observed behavior
of σ2

+ appears to interpolate smoothly between the weak-
and strong-coupling limits of Eq. 20, while σ2

− shows no
dependence on G as expected. There are no signs of
first-order phase transitions and indeed on L4 lattices
with L > 4 the observed finite-volume effects are small.
In our simulations we have employed thermal boundary
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FIG. 2. Site bilinear vs. G for L = 8 and 12 with zero
external sources.

conditions: the fermions wrapping the temporal direction
pick up a minus sign. This has the merit of removing an
exact fermion zero mode arising at G = 0 and preserves
all symmetries of the system.5

The transition from weakly coupled free fields to
strongly coupled four-fermion condensates is most clearly
seen by plotting a susceptibility defined by

χ =
1

V

∑
x,y,a,b

〈
ψa(x)ψb(x)ψa(y)ψb(y)

〉
. (21)

Using Wick’s theorem this can be written as sums of
products of fermion propagators. We group these into
connected and disconnected contributions

χconn =
1

V

∑
x,y

[〈
ψa(x)ψa(y)

〉〈
ψb(x)ψb(y)

〉
(22)

−
〈
ψa(x)ψb(y)

〉〈
ψb(x)ψa(y)

〉]

χdis =
1

V

[∑
x

〈
ψa(x)ψb(x)

〉]2

, (23)

respectively. The disconnected contribution χdis should
vanish by symmetry in finite volume, and we have verified
that this is indeed the case: See Fig. 2 in which we plot
the bilinear expectation value that is responsible for χdis.
As expected it is statistically consistent with zero for all
values of the four-fermi coupling. If one assumes a non-
zero vev consistent with the error bars one can easily see

5 This corrects a comment in our earlier paper [10], which stated
that thermal boundary conditions break the shift symmetries.
We thank Shailesh Chandrasekharan for the correction.
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L=12 

FIG. 3. lnχconn vs. G for L = 4, 6, 8 and 12 with zero external
sources.

that the corresponding disconnected susceptibility χdis <
0.1 for all G.

This is much smaller than the connected contribution
χconn, the logarithm of which we plot in Fig. 3. The
fermion propagators used in this measurement were ob-
tained by inverting the fermion operator on sixteen point
sources located at (p1, p2, p3, p4) with pi ∈ {0, L/2} on
each configuration and subsequently averaging the results
over the Monte Carlo ensemble. A well-defined peak that
scales rapidly with increasing volume is seen centered
around Gc ≈ 1.05. The position, width and height of
this peak agree well with those reported in [12], using
the mapping G2 = 2

3U to relate our coupling G to the
coupling U appearing in that work. This mapping re-
quires rescaling the fermions by a factor of

√
2 to fix the

coefficient of the kinetic term.
If we assume that the height of the connected suscep-

tibility peak scales as χmax ∼ Lγ we can estimate γ from
a log–log plot of the susceptibility versus the lattice size.
Such a plot is shown in Fig. 4. The value γ = 3.8(1) ex-
tracted from a fit is in approximate agreement with the
volume scaling reported in [12] for the full susceptibility
χ. In the latter work the volume scaling is attributed
to the formation of an SU(4)-breaking fermion bilinear
condensate. However, such a condensate would be as-
sociated with the disconnected contribution χdis which
is not included in Fig. 3. We conclude that whatever is
the reason for the volume scaling of the susceptibility χ it
does not require the appearance of a bilinear fermion con-
densate. Indeed, in the following section we have looked
carefully for the appearance of such a condensate and see
no evidence for it.

Instead to explain the divergence of the connected sus-
ceptibility the system must develop long-range correla-
tions. One piece of evidence for this can be seen in
Fig. 5 where we plot the logarithm of the smallest eigen-
value of the fermion operator vs. the four-fermi coupling.
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FIG. 4. lnχconn vs. lnL at G = 1.05 for zero external sources.
A least-squares fit to the power law χconn ∝ Lγ yields γ =
3.8(1).

FIG. 5. 2 lnλmin vs. G for L = 8 and 12 with zero external
sources.

The smallest eigenvalue falls rapidly in a region between
G ≈ 1.0–1.1 consistent with the peak seen in the con-
nected susceptibility.6

We can gain further insight into this issue by comput-
ing the bosonic two-point function whose temporal sum

6 This dramatic drop in the smallest eigenvalue is paired with a
corresponding rapid increase in the number of conjugate gradient
(CG) iterations needed to invert the fermion operator. It is this
fact that has limited the largest lattice that we can easily simu-
late; at the critical point with zero external sources the L = 12
lattice requires approximately 20,000 CG iterations per solve.

FIG. 6. Timeslice-averaged correlator G(t) of bilinear density
for several couplings G around the critical region, on 83 × 16
lattices with zero external sources. The lines are cosh fits.

yields χconn:

χconn =
1

V

∑
t

G(t) (24)

where

G(t) =
1

V

∑
x,y,a,b

(〈
ψa(x)ψa(y)

〉〈
ψb(x)ψb(y)

〉
(25)

−
〈
ψa(x)ψb(y)

〉〈
ψb(x)ψa(y)

〉)
δ(xt − yt − t)

and the δ function picks out points separated by t units in
the time direction. This connected correlation function
G(t) is shown in Fig. 6 for 83 × 16 lattices. The solid
lines are cosh fits and allow us to read off the mass of the
bosonic state created by operating on the vacuum with
the bilinear operator ψa(x)ψb(x).

Figure 7 shows this mass as a function of the cou-
pling G. At strong coupling the mass rises quickly as
expected from the strong-coupling expansion. But in
the critical region 1.0 ≤ G ≤ 1.1 corresponding to the
peak in the susceptibility the mass is very small and in-
dependent of G. This structure together with the ob-
served rather broad peak in the susceptibility prompts
one to conjecture that the system may indeed possess a
narrow intermediate phase as reported in [12]. Where
we differ from [12] is in the question of whether such a
phase is characterized by a bilinear condensate. In the
next section we study the model with external symmetry-
breaking source terms and find no evidence of a fermion
condensate formed from either single-site or multilink bi-
linear operators.
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FIG. 7. Mass of the bilinear state Bab = ψaψb versus G, for
83 × 16 lattices with zero external sources. Most error bars
are smaller than the symbols.

VI. BILINEAR CONDENSATES AND
SPONTANEOUS SYMMETRY BREAKING

To probe the question of spontaneous symmetry break-
ing, we have augmented the action shown in Eq. 1
by adding source terms which couple to both SU(4)-
breaking fermion bilinear terms and the shift-symmetry-
breaking one-link terms described in Eq. 4:

∆S =
∑
x,a,b

(m1 + ε(x)m2)
[
ψa(x)ψb(x)

]
+

Σab

+m3

∑
x,µ,a

ε(x)ξµ(x)ψa(x)Sµψ
a(x),

(26)

where we choose the SU(4)-breaking source term

Σab =

(
iσ2 0
0 iσ2

)
. (27)

Notice that we allow for both a regular and staggered
single-site fermion bilinear in this expression. The latter
operator breaks all the exact symmetries of the action but
appears as a rather natural mass term when the model
is rewritten in terms of two full staggered fields.7

We have additionally assumed a rotationally invariant
form of the coupling to the one-link term. The results for
the link and site bilinear vevs from runs with m1 = m3 =
0.1 andm2 = 0 with varyingG are shown in Fig. 8. While
the presence of the source terms clearly leads to non-zero
vevs for the bilinears at any coupling G, these plots make
it clear that these vevs are monotonically suppressed as
one enters the strongly coupled regime. Of course to

7 We thank Shailesh Chandrasekharan for pointing this out.

look for symmetry breaking we should fix the four-fermi
coupling and examine the behavior of these vevs in the
thermodynamic limit as the external source is sent to
zero. Since any would-be symmetry breaking must occur
in the critical regime 1.0 ≤ G ≤ 1.1 we initially fix G =
1.05 while varying the external sources.

The results of such a study are shown in Fig. 9 for
G = 1.05, m1 = m3 = m and m2 = 0. As expected the
vevs vanish on any finite-volume system in the limit in
which the external field is sent to zero as a consequence of
the exact lattice symmetries which appear in that limit.
A signal of spontaneous symmetry breaking would be a
condensate that grows with volume for small enough val-
ues of the external source. Such behavior would allow for
the possibility that the condensate remains finite in the
thermodynamic limit as the source is removed. This oc-
curs, for example, in the reduced staggered four-fermion
model studied by Ref. [19], where the signal for sponta-
neous symmetry breaking via the formation of a bilinear
is very clear even on small lattices.

The results shown in Fig. 9 are not consistent with this
scenario: the finite-volume effects are small for both the
single-site bilinear and the link bilinear for small exter-
nal sources. We conclude that our numerical results for
these particular bilinear terms are not compatible with
spontaneous breaking of either the shift or SU(4) symme-
tries. This conclusion extends to all couplings G < 1.05,
as illustrated by Fig. 10 for G = 1. These results are
strengthened by the calculation presented in Sec. VII,
which shows that the one-loop effective potential for the
auxiliary field σ+ retains a minimum at the origin for any
value of G—a result consistent with the vanishing vev of
the single-site bilinear examined here.

We have also examined the model in the presence of the
staggered single-site bilinear term corresponding to m2 =
m3 = 0.1 and m1 = 0 and show the results in Fig. 11.
The vev of the link operator in Fig. 11 is again driven
monotonically to zero with increasing coupling G but the
staggered site bilinear shows more interesting behavior—
its magnitude attains a maximum precisely in the critical
regime 1.0 ≤ G ≤ 1.1. This suggests that in this region
the system may be trying to form a staggered bilinear
condensate. Such a staggered vev would be invisible to
an order parameter that simply averages over the lattice
sites without regard to site parity, such as the single-site
bilinear examined above. A non-zero staggered vev would
nevertheless correspond to SU(4) symmetry breaking.

Again, to see whether such a symmetry breaking pat-
tern occurs we have examined the volume dependence of
this staggered bilinear vev as a function of the external
source m. The results are shown in Fig. 12. Again the
volume dependence for both the link and now the stag-
gered site bilinear is very weak and there is no sign that
spontaneous symmetry breaking will occur in the ther-
modynamic limit as the source is removed. This conclu-
sion is supported by the Monte Carlo time-series plots in
Fig. 13, which show representative raw data for several
of the points with small m ≤ 0.02 in Fig. 12. For both
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FIG. 8. Site (left) and link (right) bilinears vs. G for L = 4, 6 and 8 with external source couplings m1 = m3 = 0.1 and m2 = 0.

FIG. 9. Site (left) and link (right) bilinears vs. m for L = 6, 8 and 12 at G = 1.05 with external source couplings m1 = m3 = m
and m2 = 0.

FIG. 10. Site (left) and link (right) bilinears vs. m for L = 8 and 12 at G = 1.0 with external source couplings m1 = m3 = m
and m2 = 0.
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FIG. 12. Staggered site (left) and link (right) bilinears vs. m for L = 4, 6, 8 and 12 at G = 1.05 with external source couplings
m2 = m3 = m and m1 = 0.

FIG. 13. Monte Carlo time-series plots for the staggered site (left) and link (right) bilinears for three small values of m2 = m3 =
0.005, 0.01 and 0.02 (from top to bottom) with m1 = 0 and G = 1.05. In each case there is no visible change between the data
for L = 8 (dashed red lines) and L = 12 (solid black lines), reflecting the very weak volume dependence of the corresponding
vevs shown in Fig. 12.
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FIG. 14. Staggered susceptibility vs. G for L = 4, 8 and 12
with zero external sources.

the staggered site and link bilinear these time series show
no visible change between the L = 8 data and that for
L = 12.

To summarize we have examined three separate bilin-
ear operators—the single-site, staggered single-site and
one-link operators—for signals of non-zero symmetry-
breaking condensates and find a null result. The stag-
gered single-site operator is interesting as it shows the
strongest response to an external field but even in this
case there is no evidence that it forms a condensate in the
critical region. Nevertheless, it is interesting to examine
the corresponding staggered susceptibility

χstag =
1

V

(〈
O2

stag

〉
− 〈Ostag〉2

)
(28)

with Ostag =
∑
x ε(x)

[
ψ0(x)ψ1(x)

]
+

. This is shown in

Fig. 14 as a function of G with no external sources. While
this staggered susceptibility diverges in the same critical
regime as before it does so with a significantly smaller ex-
ponent than the susceptibility considered earlier. A least-
squares fit to χstag ∼ Lp yields an exponent p = 1.55(14)
with a χ2/dof = 1.2. Such an exponent would correspond
to a continuous transition and yields a scaling dimension
∆ ∼ 1.2 for the staggered bilinear. Of course confidence
in the value of this scaling exponent will require the use of
larger lattices than those employed in the current study.
This is underway.

VII. COLEMAN–WEINBERG EFFECTIVE
POTENTIAL

One standard way to look for spontaneous symmetry
breaking in four-fermi theories is to compute the one-loop

effective potential for the σ+ field.8 After integrating
over the fermions the effective action takes the form

Seff(σ+) = −1

2
Tr ln (η.∆ +Gσ+). (29)

In a constant σ+ = µΣ background (Eq. 27) we can di-
agonalize the kinetic operator and exploit its real anti-
symmetric character to derive the effective potential

Veff(µ) = −1

4
tr
∑
k

(ln [iλk +GµΣ] + ln [−iλk +GµΣ])

where tr denotes the remaining trace over SU(4) indices
and ±iλk are eigenvalues of η.∆. Collecting terms and
carrying out the final trace yields

Veff(µ) = −
∑
k

ln
[
λ2
k −G2µ2

]
= V (0)−

∑
k

ln

[
1− G2µ2

λ2
k

]
.

(30)

One can see that the effective potential is extremized at
µ = 0 and it is trivial to further show that

∂2Veff

∂µ2

∣∣∣∣
µ=0

> 0 (31)

independent of G. Thus the symmetric state µ = 0 re-
mains a local minimum of the effective potential and the
vev of σ+ vanishes for allG—there can be no spontaneous
symmetry breaking at least in the one-loop approxima-
tion.

VIII. CONCLUSIONS

In this paper we have studied perhaps the simplest
relativistic lattice four-fermion model one can construct
comprising exactly four Grassmann degrees of freedom
per site arising from four reduced staggered fermions.
We have argued that the system will possess a symmet-
ric gapped phase for large four-fermi coupling but will
describe eight free massless Dirac fermions in the con-
tinuum limit at weak coupling. For a narrow region of
intermediate couplings we have observed that the sys-
tem develops long-range correlations. In all the earlier
work on lattice Higgs–Yukawa theories the appearance
of such long-range correlations was associated with the
appearance of an intermediate ferromagnetic phase char-
acterized by a symmetry-breaking fermion bilinear con-
densate. These earlier works typically employed a scalar
kinetic term with hopping parameter κ, and sometimes
also a quartic scalar coupling λ, in addition to the scalar
mass term and Yukawa interaction. Thus the κ = λ = 0

8 We thank Jan Smit for pointing out this possibility.
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line in these earlier phase diagrams would come closest
to the model described here. An example of such a phase
diagram is Figure 1 in Ref. [5], which makes it clear that
even along the line κ = 0 a ferromagnetic phase separates
the PMW and PMS phases.

In the current study we have searched for the appear-
ance of such bilinear symmetry-breaking condensates ex-
plicitly by sourcing the system with a variety of fermion
bilinear mass terms and examined carefully the response
of the system as these source terms are sent to zero. The
results of our calculations are completely consistent with
the absence of bilinear condensates at all couplings. We
have strengthened this conclusion with an analytic cal-
culation of the one-loop effective potential for the auxil-
iary field. For this model we find that Veff is not of the
symmetry-breaking form, in agreement with the numer-
ical results. Thus the current model appears to exhibit
quite different behavior from those studied earlier.

One reason for the difference may be the different
fermion discretizations used in the various studies. The
naive, Wilson or regular staggered fermions employed in
the past enjoy a different set of exact lattice symmetries,
and in particular allow for symmetric single-site mass
terms that are absent for the reduced staggered fermions
used here. Although Ref. [15] also uses reduced staggered
fermions, it considers the limit λ→∞ rather than λ = 0
and employs a four-fermi term based on the square of a
one-link mass operator, which means that discrete shift
symmetries rather than continuous lattice symmetries are
broken by the formation of a condensate. Since the exact
lattice symmetries are not the same, we cannot assume
that the same critical behavior should be observed at
non-zero four-fermi coupling.

While we see no signs of a broken phase we do see
strong signs of critical behavior at intermediate cou-
pling: Susceptibilities associated with certain fermion
four-point functions diverge with increasing lattice size in
a narrow region of the four-fermi coupling and the mass
of a certain composite boson approaches zero. In Ref. [12]
the volume scaling of this susceptibility was interpreted
as evidence for a narrow intermediate phase with broken
SU(4) symmetry. This phase structure would necessarily
imply the existence of two phase transitions. Our results
are compatible with the appearance of a narrow inter-
mediate phase, but indicate that no symmetry-breaking
bilinear condensate forms in this regime. Given the ab-
sence of an obvious local order parameter we remain ag-
nostic as to whether the phase diagram contains a narrow
intermediate phase or a single phase transition directly
separating the weak- and strong-coupling regimes. We
plan further studies to test these two possibilities.

The observed phase structure is somewhat reminiscent
of the two-dimensional Thirring model which develops
a mass gap without breaking chiral symmetry [20].9 In

9 We thank Simon Hands for bringing this and related papers to
our attention [21].

the two-dimensional case the corresponding susceptibility
is the integral of the four-point function which develops
power-law scaling for strong coupling,〈

ψ(0)ψ(0)ψ(r)ψ(r)
〉
∼ 1

rx
(32)

where x ∼ 1/Nf and Nf is the number of continuum fla-
vors. This model also possesses a phase transition with-
out an order parameter, driven by the condensation of
topological defects associated with the auxiliary field in-
troduced to represent the effects of the four-fermi inter-
action. Of course the physics in two dimensions is quite
different from four dimensions so one must be careful in
pursuing this analogy too far. Even so, we note that the
would-be breaking pattern SU(2)→ U(1) does allow for
topological field configurations—Hopf defects—to exist
in the four-dimensional model.

There has been considerable interest in recent years
within the condensed matter community in the construc-
tion of models in which fermions can be gapped without
breaking symmetries using carefully chosen quartic inter-
actions [13, 14]. Although the condensed matter models
are constructed using Hamiltonian language and describe
non-relativistic fermions it is nevertheless intriguing that
the sixteen Majorana fermions they require match the
sixteen Majorana fermions that are expected at weak
coupling in this lattice theory. It has been proposed that
such quartic interactions can be used in the context of do-
main wall fermion theories to provide a path to achieve
chiral lattice gauge theories [22–24]. If indeed the cur-
rent model avoids symmetry-breaking phases it may be
possible to revisit the original Eichten–Preskill proposal
for the construction of chiral lattice gauge theories using
strong four-fermion terms in the bulk to lift fermion dou-
bler modes [18, 25]. However, it is not clear to the authors
how such constructions can work in detail; the model de-
scribed here uses reduced staggered rather than Wilson
or naive fermions which negates a simple transcription of
the four-fermion interaction appearing in this model to
those earlier constructions.

Independently of these speculations one can wonder
whether the phase transition(s) in the model described
here are evidence of new continuum limit(s) for strongly
interacting fermions in four dimensions. One must be
careful in drawing too strong a conclusion at this stage;
even if a new fixed point exists it might not be Lorentz
invariant. Indeed, given the connection between stag-
gered fermions and Kähler–Dirac fermions such a sce-
nario is possible since the latter are invariant only under
a twisted group comprising both Lorentz and flavor sym-
metries [26]. In staggered approaches to QCD one can
show that the theory becomes invariant under both sym-
metries in the continuum limit. However this may not be
true when taking the continuum limit in the vicinity of
a strongly coupled fixed point.

Clearly, further work, both theoretical and computa-
tional, will be required to understand these issues. On
the numerical front one will need to simulate larger sys-
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tems to improve control over finite-volume effects, de-
termine whether there is indeed an intermediate phase,
explore its nature and measure critical exponents more
precisely. It is possible that higher-resolution studies
will reveal small but non-zero bilinear condensates on
larger volumes or that the continuous transitions we ob-
serve will become first order. Such future studies will
likely require significant improvements to the simula-
tion algorithm, for example by using deflation techniques
and/or carefully chosen preconditioners to handle the

small fermion eigenvalues.
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