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As with parton distributions, flexible phenomenological parameterizations of generalized parton
distributions (GPDs) are essential for their extraction from data. The large number of constraints
imposed on GPDs make simple Lorentz covariant models viable; but, such models are often incom-
plete in that they employ the impulse approximation. Using the GPD of the pion as a test case,
we show that the impulse approximation can lead to violation of the positivity bound required of
GPDs. We focus on a particular model of the pion bound-state vertex that was recently proposed
and demonstrate that satisfying the bound is not guaranteed by Lorentz covariance. Violation of the
positivity bound is tied to a problematic mismatch between the behavior of the quark distribution
at the endpoint and the crossover value of the GPD.

I. INTRODUCTION

Generalized parton distributions [1–5] contain the
physics of form factors and parton distributions, and
thereby allow for the study of correlations between
transverse position and longitudinal momentum inside
hadrons. In impact-parameter space, GPDs elegantly de-
scribe the transverse structure of fast moving hadrons [6–
8]. Intense activity has been generated in this field, which
is largely due to the ability to measure GPDs in deeply
virtual Compton scattering, and resolve the angular mo-
mentum content of hadrons. A number of insightful re-
views have appeared on the subject, see, for example,
Refs. [9–12].

From a theoretical perspective, GPDs are rather com-
plicated objects to model. As with ordinary parton dis-
tribution functions, flexible phenomenological parame-
terizations would be welcome to aid in their extraction
from data. The large number of constraints imposed on
GPDs, however, makes such parameterizations challeng-
ing to devise. We restrict our attention to twist-two
GPDs throughout. One such non-trivial constraint re-
quired of twist-two GPDs is a general bound due to the
positivity of the norm on the hadronic light-front Fock
space. These so-called positivity bounds are introduced
and discussed in several works [13–18].

As an example of a positivity bound, consider the
single-particle density operator, ρΨ = |Ψ〉〈Ψ|, in a many-
body Hilbert space. The coordinate-space density matrix
has the definition ρ(r′, r) = 〈r′|ρΨ|r〉. In particular, the
forward matrix element, ρ(r) ≡ 〈r|ρΨ|r〉, is the average
density of particles at the position r in the multi-particle
state |Ψ〉, which is strictly a positive semidefinite quan-
tity, ρ(r) ≥ 0. Accordingly, the mixed density satisfies
the bound

|ρ(r′, r)| ≤
√
ρ(r′)ρ(r), (1)
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as a consequence of the Cauchy-Schwarz inequality. In
the case of GPDs, the underlying parton distribution,
q(x), is a probability distribution and thereby satisfies
the positivity condition q(x) ≥ 0. The GPD is similar
in structure to a mixed plus-momentum density in the
bound state. With symmetrical kinematic variables and
for x > ξ, the incoming parton has momentum fraction
xi = (x + ξ)/(1 + ξ), and the outgoing parton has mo-
mentum fraction xf = (x − ξ)/(1 − ξ). On account of
the Cauchy-Schwarz inequality, the pion GPD, which we
denote by H(x, ξ, t), is bounded by

|H(x, ξ, t)| ≤
√
q(xf )q(xi), (2)

when x > ξ. If the GPD is expressed in terms of
quark light-front wavefunctions, this positivity bound
is an immediate consequence that arises from the con-
volution of diagonal Fock-state wavefunctions [19, 20].
While not manifestly Lorentz covariant, the light-front
Fock-space expansion makes the positivity bound trans-
parent. On the other hand, the large number of con-
straints on GPDs stemming from Lorentz invariance are
best satisfied within Lorentz covariant frameworks, for
which purpose the double distributions (DDs) have been
devised [16, 21]. Such frameworks, however, obfuscate
the positivity bound. This situation is addressed in the
present work; and, we argue that the impulse approxima-
tion, while Lorentz covariant, is insufficient to describe
the higher Fock components self consistently. As a result,
the positivity bound on GPDs can be violated in the im-
pulse approximation, and we use the particular model of
Ref. [22] to exemplify this fact.

The calculation of model GPDs in Lorentz covariant
frameworks is not entirely new, however, the line of inves-
tigation pursued in Ref. [22] represents a physically mo-
tivated departure from earlier models. Such models have
largely employed the point-like bound-state vertex aris-
ing in the Nambu–Jona-Lasinio model, a couple examples
of which are Refs. [23, 24]. While simple, the point-like
Ansatz provides a solution of the Bethe-Salpeter equation
with a contact interaction that includes a binding effect.
As the particular contact interaction cannot be gauged,
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the point-like model is complete in the impulse approx-
imation. The corresponding model GPDs should then
satisfy all known constraints, modulo difficulties arising
from the regularization of ultraviolet divergences. The
potential danger of these subtractions on the positivity
bound was discussed in Ref. [24], where it was found that
a particular Pauli-Villars subtraction [25] maintains the
positivity bound on GPDs. As pointed out in Ref. [26],
one can construct further consistent models of GPDs by
summing over these basic contributions evaluated at dif-
ferent constituent masses. This is the essence of the con-
sistency of the spectral quark model GPDs computed in
Ref. [24]; however, it must be stressed that, unlike two-
point functions, GPDs do not possess a spectral repre-
sentation. In contrast to these models, that employed
in Ref. [22] introduces a non point-like Bethe-Salpeter
vertex for the bound state. This covariant smearing has
the salient feature that ultraviolet divergences are cured;
however, such an Ansatz arises from a non-trivial kernel.
Without knowledge of the underlying dynamics, one does
not know how to gauge the kernel and such contributions
must be omitted. Due to this malady, the model is in-
complete in the impulse approximation. Consequently
the positivity bound cannot be guaranteed; and, indeed,
we find that it is (rather severely) violated.1

The organization of this work is as follows. We be-
gin with a short reminder about the definitions of the
Lorentz invariant DDs in Sec. II, and determine the DDs
for the covariant model of the pion proposed in Ref. [22].
Technical details in the computation of the DDs are rel-
egated to Appendix A. The DDs are used to compute
the twist-two pion GPD, and the positivity bound is
shown to be violated, both in strong and weak forms.
Investigating the cause of this violation leads us to the
light-front Fock-space representation of GPDs in Sec. III.
Here, an analysis of the pole structure leading to the
light-front representation of the GPD is given. We ar-
gue that positivity violation arises from the mismatch
between the endpoint behavior of the quark distribution
and the crossover value of the GPD. Appendix B pro-
vides details about light-front spinors, normalization fac-
tors, and other conventions employed. A brief summary,
which is given in Sec. IV, concludes this work.

1 Beyond writing down flexible parameterizations of GPDs, there
is also interest in computing GPDs using dynamical models.
Considerable interest has been recently generated [27–29] by the
ability to obtain light-front solutions from Bethe-Salpeter wave-
functions by way of the Nakanishi integral representation [30, 31].
In light of the present work, the positivity bound on GPDs pro-
vides an essential test of the consistency of form factors and
quark distributions obtained in such an approach. In another di-
rection, valence quark distributions of pseudoscalar mesons have
been obtained from solutions to a model based on truncated
Dyson-Schwinger equations [32]. While incorporating some of
the features of QCD, it is already recognized that the impulse
approximation is insufficient to describe GPDs within this ap-
proach [33].

II. THE MODEL AND ITS DOUBLE
DISTRIBUTIONS

While GPDs are not Lorentz invariant objects, they
nonetheless inherit a number of constraints related to
the underlying Lorentz covariance of their defining QCD
matrix elements. These constraints (in particular, the
polynomiality of GPD moments) are elegantly satisfied
by employing the DD representation. The DD for a given
model is Lorentz invariant, and the GPD is obtained by
non-covariant integration over a slice in the space where
the DD has support [16, 21].

As our focus is with Lorentz covariant models for twist-
two GPDs, we begin with the DD representation. Per-
tinent definitions and conventions for pion DDs are re-
viewed, followed by the determination of the DDs in a
covariant model of the pion. The positivity bound is
then tested in this model, and found to be violated.

A. Double Distributions

Matrix elements of twist-two operators with a t-
channel momentum transfer define moments which can
be summed into the so-called DDs. Using the symmetric

derivative, which we define by
↔
Dµ = 1

2

(
→
Dµ −

←
Dµ

)
, the

quark bilinear twist-two operators have the form

Oµµ1···µn = ψ(0)γ

{
µi
↔
Dµ1 · · · i

↔
Dµn

}
ψ(0), (3)

where the curly brackets denote the complete sym-
metrization and trace subtraction of the enclosed Lorentz
indices. Matrix elements, Mµµ1···µn , of these operators
within the pion are defined by

Mµµ1···µn ≡
〈
P ′
∣∣∣Oµµ1···µn

∣∣∣P〉, (4)

where P ′ = P + ∆; and, the matrix elements can be
parameterized in the form

Mµµ1···µn =

n∑
k=0

(
n
k

)(
2PAnk −∆Bnk

){µ
Pµ1 · · ·Pµn−k

×
(
−∆

2

)µn−k+1

· · ·
(
−∆

2

)µn

}
, (5)

where the (nk)-th moments are Lorentz invariant func-
tions of the t-channel momentum transfer, Ank = Ank(t)
and Bnk = Bnk(t), with t = ∆2. The momentum Pµ
is defined to be the average between the initial and final
states, Pµ = 1

2 (P ′ + P )µ. For n = k = 0, the matrix ele-
ment is simply that of the vector current. Consequently,
we have A00(t) = F (t), where F (t) is the vector form-
factor of the pion, and B00(t) = 0, due to vector-current
conservation. Time-reversal invariance restricts the al-
lowed values of k in the binomial sums. For the Ank(t)
moments, k must be even; while, for the Bnk(t) moments,
k must be odd.
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The DDs are generating functions for the moments of
twist-two operators. Written in terms of the moments,
we can define two2 DDs F (β, α, t) and G(β, α, t) as

Ank(t) =

∫ β

0

dβ

∫ +1−β

−1+β

dαβn−kαk F (β, α, t),

Bnk(t) =

∫ β

0

dβ

∫ +1−β

−1+β

dαβn−kαkG(β, α, t), (6)

which satisfy the α-symmetry properties F (β, α, t) =
F (β,−α, t) and G(β, α, t) = −G(β,−α, t). These prop-
erties express the consequences of time-reversal invari-
ance. Throughout, we consider β > 0 for the quark dis-
tribution in the pion.

Using a vector zµ that is light-like, z2 = 0, and such

that zµ = λ√
2
(1, 0, 0, 1), we can sum the moments into

the matrix element of the quark bilocal operator3

O(z) = ψ
(
−z

2

)
/z ψ
(z

2

)
=

∞∑
n=0

(−i)n

n!
zµzµ1

· · · zµn
Oµµ1···µn , (7)

which, on account of Eq. (5), can be written in terms of
the generating functions in the form〈

P ′
∣∣∣O(z)

∣∣∣P〉 =

∫ 1

0

dβ

∫ +1−β

−1+β

dα e−i(βP−α
∆
2 )·z

×
[
2P · z F (β, α, t)−∆ · z G(β, α, t)

]
. (8)

The pion GPD is defined from the Fourier transform of
this light-cone correlation of quark fields. Writing the
skewness variable as

ξ = −1

2
∆ · z/P · z, (9)

we have the conventional definition of the GPD as an
off-forward matrix element of the bilocal operator

H(x, ξ, t) ≡
∫
dλ

4π
eixP ·z

〈
P ′
∣∣∣O(z)

∣∣∣P〉. (10)

2 As it stands, there is freedom in the decomposition of moments,
Eq. (5), which ultimately implies that the DDs F (β, α, t) and
G(β, α, t) are not unique. This redundancy is akin to gauge free-
dom [34], and a minimal gauge is one in which there is only an
F -type DD, and what is called the D-term [35], which reduces
the G-type DD to a δ(β) contribution. There is a way, further-
more, to write these two contributions as the projection of a
single function, see Ref. [36]. Nonetheless, we use two DDs for
computational ease, and note that the more minimal descriptions
can be straightforwardly obtained therefrom.

3 With QCD gauge interactions, one needs to assume the light-
cone gauge, z ·A = 0, to arrive at Eq. (7), otherwise a gauge link
proportional to z · U

(
− z

2
, z
2

)
will appear in the bilocal operator

in order to maintain gauge invariance.

Expressing the GPD in terms of its underlying Lorentz
invariant DDs, we have the relation

H(x, ξ, t) =

∫ 1

0

dβ

∫ +1−β

−1+β

dα δ(x− β − ξα)

×
[
F (β, α, t) + ξ G(β, α, t)

]
. (11)

All constraints on the GPDs associated with Lorentz
invariance are built into the DD representation that ap-
pears in Eq. (11). For example, notice that the n-th
moment of the GPD with respect to x∫ 1

0

dxxnH(x, ξ, t) =

∫ 1

0

dβ

∫ +1−β

−1+β

dα (β + ξα)n

×
[
F (β, α, t) + ξ G(β, α, t)

]
, (12)

is at most an n-th [(n + 1)-st] degree polynomial in ξ,
for n even [odd]. The zeroth moment, which must be ξ
independent, produces the so-called GPD sum rule for
the form factor ∫ 1

0

dxH(x, ξ, t) = F (t), (13)

having used B00(t) = 0. Finally, the quark distribution
function, which we denote by q(x), is contained in the
forward limit, ∆µ = 0, of the GPD

q(x) = H(x, 0, 0) =

∫ +1−x

−1+x

dαF (x, α, 0). (14)

Notice that contributions from G(β, α, t) to both the
form factor and quark distribution vanish due to time-
reversal invariance. In this way, GPDs naturally contain
additional information unconstrained by their zeroth mo-
ment and forward limit.4 Consequently, the positivity
bound provides essential guidance for constructing con-
sistent models for GPDs.

B. The Model & Violation of the Positivity Bound

The model of the pion proposed in Ref. [22], employs
an Ansatz for the covariant Bethe-Salpeter wavefunction.
It is written in the form

Ψ(k, P ) = S(k)iγ5Γ(k, P )S(k − P ), (15)

4 It was pointed out in Ref. [37] that the ambiguity inherent
in defining DDs can be used in reverse to reduce the entirety
of the F -type DD to a contribution proportional to δ(α). In
this representation, all of the skewness dependence of the GPD
arises from the G-type DD, specifically in the form H(x, ξ, t) =

F (x, 0, t) + ξ
∫ 1
0 dβ

∫+1−β
−1+β dα δ(x − β − ξα) G̃(β, α, t). The only

constraint on the skewness dependence is through the time-
reversal condition, G̃(β, α, t) = −G̃(β,−α, t); and, of course, the
positivity bound.
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Γ Γ

FIG. 1. Required Feynman diagram for bound-state matrix
elements of twist-two operators computed within the impulse
approximation. Pions are depicted by double lines, with the
bound-state vertices labelled by Γ. Quarks are depicted by
directed lines, with insertion of the quark bilocal operator
appearing in Eq. (3) shown by a cross.

where S(k) denotes the constituent quark propagator,
which is assumed to have the free-particle form

S(k) =
i

/k −m+ iε
, (16)

and Γ(k, P ) is the Bethe-Salpeter vertex. Within this
particular model, the latter is taken as

Γ(k, P ) ≡ N [k2−m2
R+iε]−1[(k−P )2−m2

R+iε]−1, (17)

where N is a normalization factor. The covariant vertext
is symmetric under the interchange of quark momentum,
Γ(P−k, P ) = Γ(k, P ), as one expects for isospin symmet-
ric valence quarks. The mass mR is a model parameter,
which additionally serves as a built-in regulator for ul-
traviolet divergences.5 Previous covariant models, see,
for example, Ref. [38], have adopted a point-like vertex
between the quarks and pion. While there is a binding ef-
fect in such models (as well as those of the Nambu–Jona-
Lasinio type), the point-like bound-state vertex is an ap-
proximation that the model of Ref. [22] seeks to remedy.
Notice that beyond γ5, there are additional structures
that can contribute to the Bethe-Salpeter vertex, but
these have been dropped in the interest of simplicity.

The DDs, and in turn the GPDs, can be computed
from matrix elements of the twist-two operators, Eq. (5).
Because the model employs an Ansatz for the Bethe-
Salpeter vertex, the DDs are computed within the im-
pulse approximation. The triangle diagram formed from
the insertion of the twist-two operators is shown in Fig. 1.
Using the Bethe-Salpeter wavefunction, these matrix el-
ements are given by

Mµµ1···µn =

∫
k

Tr
[
Ψ(k, P )S−1(k − P )Ψ(k′, P ′)γ

{
µ
]

×(k + ∆/2)µ1 · · · (k + ∆/2)µn

}
, (18)

5 Notice that because this is an ingredient of the model, one does
not attempt to take the limit mR → ∞ to produce regulariza-
tion independent results. The covariant smearing of the ultravi-
olet behavior of the vertex is assumed to be due to the physical
structure of the bound state.

0.0 0.2 0.4 0.6 0.8 1.0
0.0

0.5

1.0

1.5

FIG. 2. Quark distribution function in the pion. Using
the model Bethe-Salpeter vertex in Eq. (17), the normalized
quark distribution function, q(x), is obtained using Eq. (14),
and plotted as a function of x (solid curve). Additionally
shown (dashed curve) is the quark distribution function ob-
tained from the two-body light-front wavefunction, Eq. (25).
The effect of higher Fock-state contributions in this model re-
duces the average x, however, higher Fock states only account
for 16% of the probability distribution.

where the shorthand
∫
k

indicates the Minkowski four-

momentum integration,
∫
k

=
∫
d4k/(2π)4. The primed

variables are defined to be boosted by the momentum
transfer ∆, so that k′ = k + ∆ for the struck quark,
along with P ′ = P + ∆ for the final-state pion. With a
real-valued normalization factor, N ∈ R, the conjugate
Bethe-Salpeter wavefunction is given by

Ψ(k′, P ′) = S(k′ − P ′)iγ5Γ(k′, P ′)S(k′). (19)

Notice the equality of the momentum differences for the
spectator quark, k′ − P ′ = k − P .

Determination of the DDs from the above equation
is rather technical, however, the procedure outlined in
Refs. [39, 40] can be adapted to the present model. We
provide the essential details leading to the extraction of
F (β, α, t) and G(β, α, t) from Eq. (18) in Appendix A.
From these DDs, we obtain the pion GPD via Eq. (11).
To evaluate the GPD, we require model parameters. In
Ref. [22], central values for the model parameters are
adopted: m = 0.220 GeV and mR = 1.192 GeV. These val-
ues reproduce the pion decay constant determined within
the model, and give a good description of the experimen-
tally measured vector form factor of the pion. Once the
model parameters are fixed, the normalization factor N 2

follows from the value of the vector form factor at vanish-
ing momentum transfer, F (t = 0) = 1; or, equivalently
from normalizing the quark distribution,

∫
dx q(x) = 1.

For reference, we determine the normalization factor to
be N = 1.207 GeV4. The model’s quark distribution is
shown in Fig. 2. This quark distribution is contrasted
with that obtained from the two-body light-front wave-
function, which will be determined below in Sec. III. One
attributes the differences as due to higher Fock compo-
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FIG. 3. Investigation of the positivity bounds required on the
GPD within the model. The top panel shows the ratio R(x, ξ)
in Eq. (20), which tests the strongest bound. This bound is
tested using the listed values of ξ, with the dashed vertical
lines showing the corresponding starting points, where x =
ξ. The bottom panel shows the ratio R(x, ξ) appearing in
Eq. (23). This ratio tests the weaker positivity bound. For
x > ξ, both ratios are required to be less than unity.

nents introduced by the covariant Ansatz for the Bethe-
Salpeter vertex.

To test the self-consistency of the model, we investigate
the positivity bound, which arises from the positivity of
the norm on Fock space. The strongest bound arises at
vanishing momentum transfer.6 To this end, we form the

6 At t = 0, the consideration of nonzero skewness, ξ 6= 0, places
one in an unphysical regime, which technically requires analytic
continuation. In terms of the Lorentz invariant DDs, this ana-
lytic continuation is trivially carried out by evaluating Eq. (11)
at t = 0. In the light-front wavefunction overlap representation,
one first performs the integration over the transverse momentum,
which produces functions of ∆2

⊥, and then evaluates at the point
∆2
⊥ = −4ξ2M2. We have checked that the two procedures pro-

duce identical results. Additionally in the physical regime, with

t < 0 and 0 < ξ <
(

1− 4M2

t

)−1/2
, violation of the positivity

bound is qualitatively quite similar to what is shown in Fig. 3.

0.0 0.2 0.4 0.6 0.8 1.0
0.995

1.000

1.005

1.010

1.015

1.020

FIG. 4. Saturation of the (strong) positivity bound in the
limit ξ → 0. The ratio R(x, ξ) appearing in Eq. (20) is plotted
as a function of x for the skewness ξ = 0.001, for which the
value x = ξ is indicated by the dashed vertical line. Notice
the considerable reduction in the range plotted compared to
that in Fig. 3. Violation of the bound appears linked with the
two limits: x→ ξ and ξ → 0.

ratio

R(x, ξ) ≡ |H(x, ξ, 0)|√
q(xf )q(xi)

≤ 1, (20)

which is bounded by unity from above for x > ξ. The
momentum fractions carried by the struck quark before
and after interacting with the current are given by

xi =
x+ ξ

1 + ξ
, and xf =

x− ξ
1− ξ

. (21)

Investigation of this ratio as a function of x is shown in
Fig. 3 using a few values for the skewness parameter ξ.
The model of Ref. [22] violates the positivity bound in
a window ξ < x < xm(ξ), encompassing the majority of
x values. The turn-over point, xm(ξ) ∼ 0.95, depends
mildly on ξ as can be discerned from the figure. In the
narrow end-point region, xm(ξ) < x < 1, the bound is
satisfied, however, this region shrinks to zero as the skew-
ness approaches zero. Notice that as ξ → 0, the positiv-
ity bound must be saturated according to the limiting
behavior of the GPD in Eq. (14); however, the approach
is from above rather than below. This is exactly the op-
posite from the behavior required by the positivity of the
norm on Fock space. Saturation of the bound is investi-
gated in Fig. 4.

Due to violation of the positivity bound in Eq. (20),
we investigate the severity of violation by considering a
weaker bound. Weaker than the bound involving the ge-
ometric mean of quark distributions, there is a positivity
bound required due to the inequality between geometric
and arithmetic means√

q(xf )q(xi) ≤
q(xf ) + q(xi)

2
. (22)



6

Hence, we consider an additional ratio to test the weaker
bound

R(x, ξ) =
|H(x, ξ, 0)|

1
2 [q(xf ) + q(xi)]

≤ 1. (23)

This ratio is shown in Fig. 3 for the same values of ξ.
Violation of the weaker bound qualitatively follows the
same trend as seen in violation of the stronger bound.
The violation is less severe, but that is precisely what is
expected of a weaker bound.

Despite the fully covariant nature of the model, the
positivity bounds required of the GPD are violated. This
points to the model not being self consistent. With-
out knowledge of the dynamics giving rise to the Bethe-
Salpeter vertex function, it is not at all obvious how to
consistently couple the quark bilocal operator to the dy-
namics. Investigation of the light-front representation for
the GPD provides considerable intuition about the short-
comings of the model; and, it is to this representation
that we now turn.

III. LIGHT-FRONT WAVEFUNCTION
ANALYSIS

A. Two-Body Analysis

The two-body wavefunction for the pion is obtained by
the overlap of the Bethe-Salpeter wavefunction onto on-
shell quark and antiquark spinors. Subsequent integra-
tion over the minus-component of momentum produces
the restriction to the plane x+ = 0, and the light-front
wavefunction reads, see, e.g. [41],

ψ
(2)
λλ′(x,k⊥) =

∫
dk−

2π

uλ(k+,k⊥)√
k+

γ+Ψ(k, P )γ+

× vλ′(P
+ − k+,−k⊥)√
P+ − k+

, (24)

where we have taken P⊥ = 0 for simplicity. In the wave-
function, the variable x is the plus-momentum fraction
of the quark relative to that of the pion, x = k+/P+.
Because the transverse boosts generate a kinematic sub-
group of the Poincaré group, the boosted wavefunction,
P⊥ 6= 0, can be obtained by the simple replacement
k⊥ → k⊥ − xP⊥, which is the relative transverse mo-
mentum.

Using the Bethe-Salpeter wavefunction in Eq. (15),
the two-body (valence) light-front wavefunction can be
obtained. For manipulations involving the light-front
spinors, consult Appendix B. Treating the factor of
θ[x(1− x)] implicitly, we arrive at the wavefunction

ψ
(2)
λλ′(x,k⊥) = N k−λδλ,λ′ − λmδλ,−λ′

m2
R −m2

×
[
ϕ(x,k⊥;m,m,mR)

− ϕ(x,k⊥;mR,m,mR)
]
, (25)

which has been written with the help of the helicity in-
dependent amplitude

ϕ(x,k⊥;ma,mb,mc) = DW (x,k⊥;ma,mb)

× DW (x,k⊥;ma,mc)

x2(1− x)
. (26)

This amplitude has been expressed in terms of the prop-
agator for the Weinberg equation [42]

DW (x,k⊥;ma,mb) =
1

M2 − k2
⊥+xm2

a+(1−x)m2
b

x(1−x)

, (27)

in the unequal mass case. At this stage, the first mass ar-
gument of the amplitude ϕ is redundant, however, the de-
pendence on three different masses will be utilized below
in computing the GPD. The light-front helicity structure
of the wavefunction in Eq. (25) has both opposite helicity,
δλ,−λ′ and same helicity, δλ,λ′ contributions. The latter
are accompanied by a unit of quark orbital angular mo-
mentum to preserve the spin of the pion. This is reflected
by the factor of transverse momentum, kλ = k1 + iλk2,
appearing in the numerator of the wavefunction. Such
contributions are symmetric under the interchange of the
mass parameters, m↔ mR. The contributions from op-
posite helicity states are not symmetric under this inter-
change.

The two-body light-front wavefunction is not sym-
metric under the interchange of quark and antiquark,
i.e. x ↔ 1 − x. The wavefunction vanishes linearly at
both endpoints, x = 0 and x = 1. The vanishing at
x = 0 is particularly interesting because it arises from an
exact cancellation between the two terms appearing in
Eq. (25). The quark distribution obtained from the two-
body light-front wavefunction takes the simple quantum
mechanical form

q(2)(x) =
∑
λ,λ′

∫
dk⊥

2(2π)3

∣∣∣ψ(2)
λλ′(x,k⊥)

∣∣∣2 , (28)

and is plotted in Fig. 2. The absolute normalization is
closely examined in Appendix B. Qualitatively this two-
body quark distribution is similar to the full quark dis-
tribution function obtained in the model. The full dis-
tribution has a smaller value of 〈x〉, for example, which
is consistent with expectations from higher Fock compo-
nents. The difference is not very appreciable: 〈x〉 = 0.47
in the full model, while 〈x〉(2) = 0.50 within the two-
body sector. The x ↔ 1 − x asymmetry is practically
negligible for the two-body quark distribution, which is
a fortunate circumstance on physical grounds. Integrat-
ing the two-body quark distribution over x, we find that
the two-body Fock state accounts for 84% of the quark
distribution.

From the two-body wavefunction, one can obtain the
GPD only in a limited kinematic regime. In the region
x > ξ, we have

H(2)(x, ξ, t) =
∑
λ,λ′

∫
dk⊥

2(2π)3
ψ

(2)
λλ′ (xi,k⊥)ψ

(2)∗
λλ′ (xf ,k

′
⊥) ,

(29)
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where the boosted transverse momentum is given by

k′⊥ = k⊥ +

(
1− xi + xf

2

)
∆⊥. (30)

Due to the convolution of the initial- and final-state wave-
functions, the two-body GPD self consistently satisfies
the positivity bound. The tradeoff is that the two-body
approximation violates Lorentz invariance (for example,
the sum-rule for the form factor does not hold). Addi-
tionally when x < ξ, higher Fock components are nec-
essarily required for non-vanishing contributions to the
GPD.

B. Complete Light-Front Analysis

One similarity between the two-body and higher Fock-
state contributions is that they both vanish at x = 0.
While this is required of the former, the latter are gen-
erally non-vanishing at x = 0. Elaboration on this point
is made in Refs. [43, 44]. The vanishing of this model’s
quark distribution at x = 0 is the culprit of positivity vi-
olation. To demonstrate this, we turn to the light-front
representation of the model’s GPD.

Complementary to the representation in terms of DDs,
the GPD can be evaluated directly from the bilocal ma-
trix element in Eq. (10) computed within the model. This
alternative expression for the GPD is

H(x, ξ, t) =
1

2P+

∫
k

δ

(
x+ ξ − k+

P+

)
Tr
[
Ψ(k, P )

× S−1(k − P )Ψ(k′, P ′)γ+
]
. (31)

Results for the quark distribution and GPD obtained
from Eq. (31) agree numerically with those determined
from DDs. Our investigation of the violation of the
positivity bound leads us to consider the GPD at the
crossover point, x = ξ. We show in the form of an in-
tegral that the GPD is nonvanishing at the crossover,
H(ξ, ξ, t) 6= 0, using light-front integration. This result
can also be established analytically from the DDs, how-
ever, the light-front integration offers a more intuitive
picture, not to mention the ability to display using more
compact expressions.

To obtain the GPD, we integrate the expression in
Eq. (31) over k−. The integral is performed by the
residue theorem, and different residues are required de-
pending on the value of k+. A particularly illustrative

discussion of the contour integration for light-front and
instant-form dynamics can be found in Ref. [45]. We re-
strict our attention to the region x > ξ, for which residues
at the spectator poles are required. There are two such
poles: one for the spectator quark, and one for the spec-
tator regulator particle having mass mR. Due to the
Ansatz in Eq. (17), the spectator propagator for the reg-
ulator is squared in the bilocal current matrix element.
For ease in evaluating and displaying the results, we use
the standard trick to rewrite the square of a propagator
in terms of a derivative of the propagator, namely

1

[(P − k)2 −m2
R]

2 =
∂

∂m2
A

1

(P − k)2 −m2
A

∣∣∣∣∣
mA=mR

.

(32)
A different mass, mA, is required for this intermediate
step because mR appears elsewhere in the expression for
the GPD. Carrying out the light-front integration, we
arrive at the result

θ(x− ξ)H(x, ξ, t) = N 2

∫
dk⊥

2(2π)3

∂

∂m2
A

Hm −HA
m2 −m2

A

∣∣∣∣∣
mA=mR

(33)

where Hm and HA denote contributions to the integrand
that arise from taking the residue at the spectator quark
pole and spectator regulator pole, respectively. The for-
mer is given by

Hm = 2
(
k⊥ · k′⊥ +m2

)
×ϕ(xi,k⊥;m,mR,m)ϕ(xf ,k

′
⊥;m,mR,m), (34)

while the latter takes the form

HA = 2

(
k⊥ · k′⊥ +

1− x2

1− ξ2
m2 + xi xf m

2
A

)
×ϕ(xi,k⊥;mA,m,mR)ϕ(xf ,k

′
⊥;mA,m,mR).

(35)

Using Eq. (33), we derive the crossover behavior by
taking the limit x → ξ from above. To this end, it is
useful to note the finite limit

lim
x→0

ϕ(x,k⊥;ma,mb,mc) =
1

(k2
⊥ +m2

b)(k
2
⊥ +m2

c)
,

(36)
which is independent of the mass ma. As a consequence,
we have the non-vanishing result

H(ξ, ξ, t) = N 2

∫
dk⊥
(2π)3

k⊥ · k(0)
⊥ +m2[(

k
(0)
⊥

)2

+m2

] [(
k

(0)
⊥

)2

+m2
R

] ∂

∂m2
A

ϕ(x0,k⊥;m,mR,m)− ϕ(x0,k⊥;mA,m,mR)

m2 −m2
A

∣∣∣
mA=mR

,

(37)
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FIG. 5. Value of the GPD at the crossover point, x = ξ,
plotted as a function of ξ. For simplicity, we determine the
value using t = 0. The vanishing ξ → 0 limit of the crossover
value, implies vanishing of the quark distribution function at
the endpoint, x = 0. The non-vanishing value of H(ξ, ξ, t) for
ξ 6= 0, then leads to (infinite) violation of the positivity bound
in Eq. (20). Close inspection shows that H(ξ, ξ, t) ∝ ξ2, for
ξ � 1.

where we have defined the crossover values

x0 = xi(x = ξ) =
2ξ

1 + ξ
, (38)

for the initial quark’s momentum fraction, and

k
(0)
⊥ = k⊥ +

1

1 + ξ
∆⊥, (39)

for the relative transverse momentum of the final-state
quark. Finally, taking the limit ξ → 0 results in

lim
ξ→0

H(ξ, ξ, t) = 0, (40)

which can be easily demonstrated upon noting that x0 →
0 in this limit, then subsequently applying Eq. (36) to the
expression for the GPD at the crossover, Eq. (37).7

A plot of the ξ-dependence of the GPD at the crossover
is shown in Fig. 5, and confirms its non-vanishing value,

7 One can generalize these findings in the following way. Adopting
a more general (but asymmetric) Ansatz for the Bethe-Salpeter
amplitude having the form

Γ(k, P ) = N [k2 −m2
R + iε]−1[(P − k)2 −m2

R + iε]−ν/2,

for ν = 1, 2, · · · , it is straightforward to show using light-front
integration that the corresponding crossover value of the GPD,
H(ξ, ξ, t), is non-vanishing, but vanishes in the limit of vanishing
skewness, ξ → 0. Thus models of this type will violate the pos-
itivity bound in an analogous way to the ν = 2 model detailed
above. The model with ν = 0, by contrast, satisfies the positivity
bound, and was considered previously in Refs. [39, 40]. This par-
ticular case is best viewed as smearing the bilocal current rather
than the bound-state vertex, see Ref. [46].

as well as the vanishing forward limit. These two features
are directly at odds with the positivity of the norm on the
light-front Fock space. The vanishing of the crossover’s
forward limit confirms that the model’s quark distribu-
tion function vanishes at x = 0, as we have numerically
shown above. In terms of the general light-front wave-
function representation, we have schematically

q(x = 0) = H(0, 0, 0) =
∑
n

∣∣∣ψ(n)(x = 0, · · · )
∣∣∣2 = 0.

(41)
We write the n-body Fock component of the bound state
as ψ(n), and only indicate the active quark’s momentum
fraction x, which is at the endpoint, x = 0. Due to
positivity of the norm, the vanishing quark distribution
at the endpoint implies that

ψ(n)(x = 0, · · · ) = 0, ∀n. (42)

Approaching the crossover from above, the GPD at the
crossover has an expansion in terms of diagonal Fock-
component overlaps, which schematically takes the form

H(ξ, ξ, t) =
∑
n

ψ(n)(xi, · · · )ψ∗(n)(xf = 0, · · · ). (43)

Given the endpoint behavior of the wavefunctions de-
duced from the norm, Eq. (42), we should very likely have
H(ξ, ξ, t) = 0 for self consistency, which is in contradic-
tion with Eq. (37).8 This contradiction is precisely the
source of the observed (infinite) violation of the positiv-
ity bound in Eq. (20) at x = ξ. Away from the crossover,
violation then persists until the relatively large value of
x = xm(ξ), as discussed above.

IV. SUMMARY

We investigate GPDs in the quark model for the pion
proposed in Ref. [22]. A feature of this model is the
covariant smearing of the Bethe-Salpeter vertex, which
was put forward in order to provide realistic bound-state
structure beyond the point-like approximation. The co-
variant nature of the model, moreover, guarantees that
all constraints associated with Lorentz invariance of the
underlying matrix element are automatically satisfied.
This fact enables us in Sec. II to derive the DDs for the
model, see Eq. (A15). The GPD obtained from the DDs
is then scrutinized using the ratios in Eqs. (20) and (23).
Positivity of the norm on the light-front Fock space re-
quires both of these ratios to be less than unity, with the
former bound stronger than the latter. Both bounds,
however, are violated for nearly all values of x > ξ.

8 Mathematically speaking, it is possible that the crossover value,
as the sum of infinitely many vanishing contributions, need not
itself vanish. If this scenario is realized, however, the positivity
bound in Eq. (20) will nevertheless be violated.



9

This is shown in Fig. 3. Such violation, moreover, is
tied to a mismatch between the endpoint behavior of the
quark distribution and the crossover value of the GPD,
see Eq. (37). As the former vanishes and the latter is non-
vanishing, the mismatch leads to an infinite violation of
the positivity bound.

The GPDs encompass physics of both quark distribu-
tions and form factors. We have shown that fully covari-
ant models, which can be tuned to reproduce the experi-
mentally measured quark distributions and form factors,
need not give a good description of GPDs. In fact, the
behavior of the model’s GPD at the crossover is inconsis-
tent with its quark distribution. While the model is de-
fined at a low scale, QCD radiation will drive the model’s
quark distribution at the endpoint away from zero as the
renormalization scale is raised. The positivity bounds,
however, are stable with respect to evolution. Thus, the
defect in the model at a low scale will persist at higher
scales. The value of the GPD at the crossover, more-
over, directly enters the imaginary part of the deeply vir-
tual Compton scattering amplitude. This imaginary part
then appears in the cross section through interference
terms with Bethe-Heitler processes, which enable GPDs
to be accessed experimentally. The model therefore fails
to describe GPDs at the most phenomenologically rel-
evant point. The mismatch in endpoint and crossover
behavior requires proper treatment of higher Fock states
in order to resolve. Such treatment requires one to go
beyond the impulse approximation. While theoretically
challenging, consistent modeling of GPDs presents an es-
sential test in the phenomenological description of hadron
structure. Passing this test will help enable great insight
into the nature of bound states in QCD.
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Appendix A: Derivation of the Double Distributions

In this Appendix, we calculate the pion matrix element
of the twist-two operators,Mµµ1···µn , in the model spec-
ified by the Bethe-Salpeter vertex in Eq. (17). Thereby,
we extract the DDs, F (β, α, t) and G(β, α, t) appearing
in Eq. (6). These are utilized in the main text to put the
model under scrutiny.

The key observation to obtain the DDs from Eq. (18)
is that the required binomial coefficients can readily be
obtained after reducing momentum factors appearing in
the numerator. Such factors arise due to the trace over
spinor indices, which appear in the numerator as

Nµ = Tr [(/k +m)γ5(/k − P/+m)γ5(/k′ +m)γµ] . (A1)

The trace can be uniquely expressed in terms of factors
appearing in the denominator. In terms of the momen-
tum dependence, there are three such factors due to the
inverse propagators, which we write as

Aa = (k − P )2 −m2
a + iε,

Bb = (k + ∆)2 −m2
b + iε,

Cc = k2 −m2
c + iε. (A2)

These definitions allow us to refer to the constituent
quark mass and regulator mass as A and AR, respec-
tively. It will sometimes be convenient to write Am for
the former. Due to its dependence on only the con-
stituent quark mass, the trace can be written as

Nµ = 2Pµ (t− B − C) + ∆µ (B − C)
+ 4 (k + ∆/2)

µ (
M2 − t/2−A

)
. (A3)

Consequently there are four types of contributions to con-
sider: those without a momentum reduction, and the
three momentum reductions corresponding to cancelling
A, B, and C.

In terms of the quantities defined in Eq. (A2), the mo-
mentum denominators of Eq. (18) take the form

1

AA2
R BBR C CR

=
∂

∂m2
A

1

AAA BBR C CR

∣∣∣
mA=mR

.(A4)

Notice that there are three factors from constituent quark
propagators in the above expression, AB C, which reflect
those appearing in the triangle diagram, Fig. 1. The
factors from propagators of the regulator particle with
mass mR appropriately reflect those resulting from the
initial-state Bethe-Salpeter vertex, AR CR, as well as the
final state, AR BR. This, of course, leads to the squaring
of AR, which is adeptly handled by the differentiation
and subsequent evaluation that is shown above. Products
of two propagators with identical momenta, such as BBR,
can be written as differences between single propagators,
for example

1

BBR
=

1

m2 −m2
R

(
1

B
− 1

BR

)
. (A5)

It will be convenient to define the multiplicative factor

µj =
1

m2 −m2
j

, (A6)

with j = A and j = R as the two cases required below.
In light of such relations, we can turn all products of mul-
tiple propagators into various instances of an elementary
product of three propagators. As an example of this, we
write the following product as

1

AAA BBR C CR
=

1

Aa Bb Cc
µA µ

2
R (δa,m − δa,A)

× (δb,m − δb,R) (δc,m − δc,R) , (A7)

where we treat a, b, and c as indices that keep track of
the required masses in the various contributions.
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At this point, it is useful to completely detail one par-
ticular contribution to the model’s DDs, with the under-
standing that the general procedure is quite similar for
all contributions. From the trace appearing in the nu-
merator, Eq. (A3), we focus on the term proportional
to M2, which does not require a momentum reduction.
As a result, this term depends on (a derivative of) the
propagators appearing in Eq. (A7). Up to multiplicative
constants, all contributions from this terms are of the
form

δMµµ1···µn

abc =

∫
k

i

Aa Bb Cc
4 (k + ∆/2)

{
µ

×(k + ∆/2)µ1 · · · (k + ∆/2)µn

}
. (A8)

Evaluation of the momentum integral can be carried out
using Feynman parameterization. With malice afore-
thought, the Feynman parameters are chosen so that the
α, β variables of the DDs can be identified. To this end,
notice that we can write

1

Aa Bb Cc
=

∫ 1

0

dβ

∫ +1−β

−1+β

dα
1

D3
abc

, (A9)

where the denominators have been combined according
to the recipe

Dabc = βAa +
1

2
(1 + α− β)Bb +

1

2
(1− α− β) Cc.

(A10)

In terms of the shifted momentum variable `µ, given by
`µ =

[
k − βP + (1 + α)∆/2

]µ
, the combined denomina-

tor takes the form

Dabc = `2 −Dabc + iε (A11)

where

Dabc = β m2
a +

1

2
(1 + α− β)m2

b +
1

2
(1− α− β)m2

c

−β(1− β)M2 − [(1− β)2 − α2]
t

4
. (A12)

As a result of the momentum shift, this particular con-
tribution to the twist-two matrix element is given by

δMµµ1···µn

abc =

∫ 1

0

dβ

∫ +1−β

−1+β

dα

∫
`

4i

[`2 −Dabc + iε]3

×
(
βP − α∆/2

){µ (
βP − α∆/2

)µ1

× · · ·
(
βP − α∆/2

)µn

}
, (A13)

where we have appealed to Lorentz invariance and the
traceless property of the tensor. The four-momentum in-
tegration can be performed, and the binomial expansion
carried out. This procedure allows for the direct identi-
fication of contributions to the F - and G-type DDs. For
the contribution in Eq. (A8), we thus find

δF (β, α, t) =
1

(4π)2

β

Dabc
, δG(β, α, t) =

1

(4π)2

α

Dabc
.

(A14)
Having spelled out the necessary steps to obtain the

DDs, we carry out this procedure on each of the four con-
tributions required by the momentum dependence of the
numerator appearing in Eq. (A3). Reducing the numer-
ator appropriately, forming propagator differences, and
then carrying out the Feynman parameterization and mo-
mentum integration produces the DDs. Writing the F -
and G-type DDs in the form of a column vector, we find

(
F (β, α, t)

G(β, α, t)

)
=
N 2µR
(4π)2

∂

∂m2
A

1

Dabc

[
µR (δb,m − δb,R) (δc,m − δc,R)

(
µA (δa,m − δa,A)

(
β(M2 − t

2 ) + t
2

α(M2 − t
2 )

)
− δa,A

(
β

α

))

−µA
2

(δa,m − δa,A)

(
δb,R (δc,m − δc,R)

(
1

1

)
+ (δb,m − δb,R) δc,R

(
1

−1

))]
mA=mR

. (A15)

In the above expression, the first grouping of terms in
the first line arises from the non-reduced contribution,
while the second grouping in the first line arises from
the A-reduced contribution. The second line is the sum
of B-reduced and C-reduced contributions. Notice that
under the sign reversal of α, we have Dabc(β,−α, t) =
Dacb(β, α, t). Because the contributions to the DDs on
the first line are symmetric under the interchange b ↔
c, these terms produce even and odd contributions to
the F - and G-type DDs, respectively. The oddness of
contributions to G(β, α, t) is due to the overall factor of
α in the first line. In the second line, the contributions to

F (β, α, t) are even under b↔ c, while those for G(β, α, t)
are odd under this interchange. Thus the α-symmetry of
the model’s DDs is consistent with the required time-
reversal invariance properties.

Appendix B: Conventions and Light-Front Spinors

In this Appendix, we make explicit the conventions
employed above. This includes those for the light-front
spinors and the normalization leading to the two-body
wavefunction, which is detailed using a simple model with
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a point-like Bethe-Salpeter vertex.

1. Spinors

For any Lorentz four-vector, aµ, we define its light-
front components as a± = 1√

2
(a0 ± a3), along with

a⊥ = (a1, a2). Similarly, for Dirac matrices γµ, we have
γ± = 1√

2
(γ0 ± γ3), and γ⊥ = (γ1, γ2). The former

can be used to construct the Hermitian projection ma-
trices Λ± = 1

2γ
∓γ±, which satisfy the usual properties:

Λ+ + Λ− = 1, along with (Λ±)2 = Λ±, and Λ±Λ∓ = 0.
It is also convenient to employ the Hermitian matrices
β = γ0, and α⊥ = γ0γ⊥. Manipulations of light-front
spinors are made more economical by the use of the iden-
tities: βΛ± = Λ∓β and α⊥Λ± = Λ∓α⊥.

In the main text, we utilize light-front spinors for
quarks and antiquarks. These are solutions to the Dirac
equation and its conjugate

(/kon −m)uλ(k+,k⊥) = 0,

(/kon +m) vλ(k+,k⊥) = 0, (B1)

where the light-front energy is on shell, k−on =
k2
⊥+m2

2k+ .
Such solutions can be written in terms of the Dirac basis
spinors

X+ =
1√
2

1
0
1
0

 , X− =
1√
2

 0
1
0
−1

 , (B2)

which are eigenstates of the projector onto the so-called
good spinor components, Λ+Xλ = Xλ. Explicit solutions
for the light-front spinors are

uλ(k+,k⊥) =
1

(
√

2k+)
1
2

[√
2k+ + βm+α⊥ · k⊥

]
Xλ,

vλ(k+,k⊥) =
1

(
√

2k+)
1
2

[√
2k+ − βm+α⊥ · k⊥

]
X−λ.

(B3)

The normalization of these spinors is such that

uλ(k+,k⊥)γ+uλ′(q
+, q⊥) = 2

√
k+q+δλ,λ′ , (B4)

and similarly for the vλ. These spinors have been chosen
to agree with those of Ref. [47].

In computing the two-body light-front wavefunction
above, it is useful to note the product relations

uλ(k+,k⊥)γ+ (/k +m) = 2k+uλ(k+,k⊥),

(/k −m) γ+vλ(k+,k⊥) = 2k+vλ(k+,k⊥), (B5)

which hold for any value of k− by virtue of the property

(γ+)
2

= 0. Additionally, we note that the spinors are
eigenvectors of light-front helicity γ5, namely γ5Xλ =
λXλ, which leads to the relation γ5 vλ(k+,k⊥) =

−λu−λ(k+,k⊥). In computing the two-body light-front
wavefunction, we need the spinor product

uλ(k+,k⊥) γ5 vλ′(q
+, q⊥) = δλ,λ′

k+q−λ − q+k−λ√
k+q+

+λmδλ,−λ′
k+ + q+√
k+q+

. (B6)

In the case where qµ = (P −k)µ, we arrive at the helicity
structure in Eq. (25).

2. Normalization

To obtain the correct normalization of the two-
body light-front wavefunction from the covariant Bethe-
Salpeter wavefunction, we return to Eq. (15) in the case
of a point-like vertex, Γ(k, P ) ≡ N . In such a simple
model, there are no higher Fock components. Thus the
normalization condition for the two-body wavefunction
in this case is fixed by that of the form factor at van-
ishing momentum transfer. We use this fact to establish
the normalization convention for the two-body wavefunc-
tion in more general models where there are nonvanishing
contributions from higher-Fock components.

In the point-like case, the two-body light-front wave-
function obtained from Eq. (24) reads

ψ
(2)
λλ′(x,k⊥) = N k−λδλ,λ′ −mλδλ,−λ′

x(1− x)
DW (x,k⊥;m,m).

(B7)

We omit the factor of θ[x(1−x)] for simplicity. It remains
to show that the normalization condition is∑

λ,λ′

∫
dx dk⊥
2(2π)3

∣∣∣ψ(2)
λλ′(x,k⊥)

∣∣∣2 = N (2), (B8)

which is that implicitly used above in defining the two-
body quark distribution, Eq. (28). In the present point-
like model, N (2) = 1 after suitable regularization; how-
ever, in the model of the main text, N (2) < 1 due to
higher Fock states.

To show the requirement N (2) = 1, we compute the
form factor at vanishing momentum transfer in the point-
like model. As a particular instance of Eq. (18), the
normalization is fixed by∫

k

Tr
[
Ψ(k, P )S−1(k − P )Ψ(k, P )γ+

]
= 2P+, (B9)

where the right-hand side is simply the plus-component
of the vector-current matrix element, (P ′+P )µF (t), eval-
uated at vanishing momentum transfer. Writing out the
elements in Eq. (B9), we have the condition

N 2

2P+

∫
k

iN+|∆=0

AC2
= 1, (B10)

where Nµ is the trace appearing in the numerator,
Eq. (A1), and the scalar propagators, A and C, are given
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in Eq. (A2). The plus-component of the trace at vanish-
ing momentum transfer takes the form

N+
∣∣
∆=0

= 4
[
k+(M2 −A)− P+C

]
eff
= 4(k+M2 − P+C). (B11)

The second equality results from observing that: i). can-
celing the single A appearing in the denominator leads
to light-front k− poles always lying in the same half
plane; and, ii). while these poles escape to infinity when
k+ → 0 leading to δ(k+) contributions, such contribu-
tions are multiplied by k+ and accordingly vanish. Thus

A-reduced light-front k− integrals vanish, because there
are no zero-mode singularities in this model, see, e.g.,
Ref. [48]. With the trace written as above, the k− inte-
gral in Eq. (B10) can be performed straightforwardly by
contour integration. This results in

N 2

∫
dx dk⊥
2(2π)3

2(k2
⊥ +m2)

x2(1− x)2
DW (x,k⊥;m,m)2 = 1.

(B12)
Comparing this expression with the point-like model’s
two-body wavefunction in Eq. (B7), we see that indeed
the normalization is fixed to N (2) = 1.
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